 dc9f06ca81
			
		
	
	
		dc9f06ca81
		
	
	
	
	
		
			
			In-kernel ITS emulation on ARM64 will require to supply requester IDs. These IDs can now be retrieved from the device pointer using new pci_requester_id() function. This patch adds pci_dev pointer to KVM GSI routing functions and makes callers passing it. x86 architecture does not use requester IDs, but hw/i386/kvm/pci-assign.c also made passing PCI device pointer instead of NULL for consistency with the rest of the code. Signed-off-by: Pavel Fedin <p.fedin@samsung.com> Message-Id: <ce081423ba2394a4efc30f30708fca07656bc500.1444916432.git.p.fedin@samsung.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			617 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			617 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ARM implementation of KVM hooks
 | |
|  *
 | |
|  * Copyright Christoffer Dall 2009-2010
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/ioctl.h>
 | |
| #include <sys/mman.h>
 | |
| 
 | |
| #include <linux/kvm.h>
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "kvm_arm.h"
 | |
| #include "cpu.h"
 | |
| #include "internals.h"
 | |
| #include "hw/arm/arm.h"
 | |
| #include "exec/memattrs.h"
 | |
| 
 | |
| const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
 | |
|     KVM_CAP_LAST_INFO
 | |
| };
 | |
| 
 | |
| static bool cap_has_mp_state;
 | |
| 
 | |
| int kvm_arm_vcpu_init(CPUState *cs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     struct kvm_vcpu_init init;
 | |
| 
 | |
|     init.target = cpu->kvm_target;
 | |
|     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
 | |
| 
 | |
|     return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
 | |
| }
 | |
| 
 | |
| bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
 | |
|                                       int *fdarray,
 | |
|                                       struct kvm_vcpu_init *init)
 | |
| {
 | |
|     int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
 | |
| 
 | |
|     kvmfd = qemu_open("/dev/kvm", O_RDWR);
 | |
|     if (kvmfd < 0) {
 | |
|         goto err;
 | |
|     }
 | |
|     vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
 | |
|     if (vmfd < 0) {
 | |
|         goto err;
 | |
|     }
 | |
|     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
 | |
|     if (cpufd < 0) {
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
 | |
|     if (ret >= 0) {
 | |
|         ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
 | |
|         if (ret < 0) {
 | |
|             goto err;
 | |
|         }
 | |
|     } else {
 | |
|         /* Old kernel which doesn't know about the
 | |
|          * PREFERRED_TARGET ioctl: we know it will only support
 | |
|          * creating one kind of guest CPU which is its preferred
 | |
|          * CPU type.
 | |
|          */
 | |
|         while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
 | |
|             init->target = *cpus_to_try++;
 | |
|             memset(init->features, 0, sizeof(init->features));
 | |
|             ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
 | |
|             if (ret >= 0) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (ret < 0) {
 | |
|             goto err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fdarray[0] = kvmfd;
 | |
|     fdarray[1] = vmfd;
 | |
|     fdarray[2] = cpufd;
 | |
| 
 | |
|     return true;
 | |
| 
 | |
| err:
 | |
|     if (cpufd >= 0) {
 | |
|         close(cpufd);
 | |
|     }
 | |
|     if (vmfd >= 0) {
 | |
|         close(vmfd);
 | |
|     }
 | |
|     if (kvmfd >= 0) {
 | |
|         close(kvmfd);
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 2; i >= 0; i--) {
 | |
|         close(fdarray[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_arm_host_cpu_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     ARMHostCPUClass *ahcc = ARM_HOST_CPU_CLASS(oc);
 | |
| 
 | |
|     /* All we really need to set up for the 'host' CPU
 | |
|      * is the feature bits -- we rely on the fact that the
 | |
|      * various ID register values in ARMCPU are only used for
 | |
|      * TCG CPUs.
 | |
|      */
 | |
|     if (!kvm_arm_get_host_cpu_features(ahcc)) {
 | |
|         fprintf(stderr, "Failed to retrieve host CPU features!\n");
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_arm_host_cpu_initfn(Object *obj)
 | |
| {
 | |
|     ARMHostCPUClass *ahcc = ARM_HOST_CPU_GET_CLASS(obj);
 | |
|     ARMCPU *cpu = ARM_CPU(obj);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     cpu->kvm_target = ahcc->target;
 | |
|     cpu->dtb_compatible = ahcc->dtb_compatible;
 | |
|     env->features = ahcc->features;
 | |
| }
 | |
| 
 | |
| static const TypeInfo host_arm_cpu_type_info = {
 | |
|     .name = TYPE_ARM_HOST_CPU,
 | |
| #ifdef TARGET_AARCH64
 | |
|     .parent = TYPE_AARCH64_CPU,
 | |
| #else
 | |
|     .parent = TYPE_ARM_CPU,
 | |
| #endif
 | |
|     .instance_init = kvm_arm_host_cpu_initfn,
 | |
|     .class_init = kvm_arm_host_cpu_class_init,
 | |
|     .class_size = sizeof(ARMHostCPUClass),
 | |
| };
 | |
| 
 | |
| int kvm_arch_init(MachineState *ms, KVMState *s)
 | |
| {
 | |
|     /* For ARM interrupt delivery is always asynchronous,
 | |
|      * whether we are using an in-kernel VGIC or not.
 | |
|      */
 | |
|     kvm_async_interrupts_allowed = true;
 | |
| 
 | |
|     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
 | |
| 
 | |
|     type_register_static(&host_arm_cpu_type_info);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 | |
| {
 | |
|     return cpu->cpu_index;
 | |
| }
 | |
| 
 | |
| /* We track all the KVM devices which need their memory addresses
 | |
|  * passing to the kernel in a list of these structures.
 | |
|  * When board init is complete we run through the list and
 | |
|  * tell the kernel the base addresses of the memory regions.
 | |
|  * We use a MemoryListener to track mapping and unmapping of
 | |
|  * the regions during board creation, so the board models don't
 | |
|  * need to do anything special for the KVM case.
 | |
|  */
 | |
| typedef struct KVMDevice {
 | |
|     struct kvm_arm_device_addr kda;
 | |
|     struct kvm_device_attr kdattr;
 | |
|     MemoryRegion *mr;
 | |
|     QSLIST_ENTRY(KVMDevice) entries;
 | |
|     int dev_fd;
 | |
| } KVMDevice;
 | |
| 
 | |
| static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
 | |
| 
 | |
| static void kvm_arm_devlistener_add(MemoryListener *listener,
 | |
|                                     MemoryRegionSection *section)
 | |
| {
 | |
|     KVMDevice *kd;
 | |
| 
 | |
|     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 | |
|         if (section->mr == kd->mr) {
 | |
|             kd->kda.addr = section->offset_within_address_space;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_arm_devlistener_del(MemoryListener *listener,
 | |
|                                     MemoryRegionSection *section)
 | |
| {
 | |
|     KVMDevice *kd;
 | |
| 
 | |
|     QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 | |
|         if (section->mr == kd->mr) {
 | |
|             kd->kda.addr = -1;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static MemoryListener devlistener = {
 | |
|     .region_add = kvm_arm_devlistener_add,
 | |
|     .region_del = kvm_arm_devlistener_del,
 | |
| };
 | |
| 
 | |
| static void kvm_arm_set_device_addr(KVMDevice *kd)
 | |
| {
 | |
|     struct kvm_device_attr *attr = &kd->kdattr;
 | |
|     int ret;
 | |
| 
 | |
|     /* If the device control API is available and we have a device fd on the
 | |
|      * KVMDevice struct, let's use the newer API
 | |
|      */
 | |
|     if (kd->dev_fd >= 0) {
 | |
|         uint64_t addr = kd->kda.addr;
 | |
|         attr->addr = (uintptr_t)&addr;
 | |
|         ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
 | |
|     } else {
 | |
|         ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
 | |
|     }
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "Failed to set device address: %s\n",
 | |
|                 strerror(-ret));
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
 | |
| {
 | |
|     KVMDevice *kd, *tkd;
 | |
| 
 | |
|     memory_listener_unregister(&devlistener);
 | |
|     QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
 | |
|         if (kd->kda.addr != -1) {
 | |
|             kvm_arm_set_device_addr(kd);
 | |
|         }
 | |
|         memory_region_unref(kd->mr);
 | |
|         g_free(kd);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static Notifier notify = {
 | |
|     .notify = kvm_arm_machine_init_done,
 | |
| };
 | |
| 
 | |
| void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
 | |
|                              uint64_t attr, int dev_fd)
 | |
| {
 | |
|     KVMDevice *kd;
 | |
| 
 | |
|     if (!kvm_irqchip_in_kernel()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (QSLIST_EMPTY(&kvm_devices_head)) {
 | |
|         memory_listener_register(&devlistener, NULL);
 | |
|         qemu_add_machine_init_done_notifier(¬ify);
 | |
|     }
 | |
|     kd = g_new0(KVMDevice, 1);
 | |
|     kd->mr = mr;
 | |
|     kd->kda.id = devid;
 | |
|     kd->kda.addr = -1;
 | |
|     kd->kdattr.flags = 0;
 | |
|     kd->kdattr.group = group;
 | |
|     kd->kdattr.attr = attr;
 | |
|     kd->dev_fd = dev_fd;
 | |
|     QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
 | |
|     memory_region_ref(kd->mr);
 | |
| }
 | |
| 
 | |
| static int compare_u64(const void *a, const void *b)
 | |
| {
 | |
|     if (*(uint64_t *)a > *(uint64_t *)b) {
 | |
|         return 1;
 | |
|     }
 | |
|     if (*(uint64_t *)a < *(uint64_t *)b) {
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Initialize the CPUState's cpreg list according to the kernel's
 | |
|  * definition of what CPU registers it knows about (and throw away
 | |
|  * the previous TCG-created cpreg list).
 | |
|  */
 | |
| int kvm_arm_init_cpreg_list(ARMCPU *cpu)
 | |
| {
 | |
|     struct kvm_reg_list rl;
 | |
|     struct kvm_reg_list *rlp;
 | |
|     int i, ret, arraylen;
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     rl.n = 0;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
 | |
|     if (ret != -E2BIG) {
 | |
|         return ret;
 | |
|     }
 | |
|     rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
 | |
|     rlp->n = rl.n;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
 | |
|     if (ret) {
 | |
|         goto out;
 | |
|     }
 | |
|     /* Sort the list we get back from the kernel, since cpreg_tuples
 | |
|      * must be in strictly ascending order.
 | |
|      */
 | |
|     qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
 | |
| 
 | |
|     for (i = 0, arraylen = 0; i < rlp->n; i++) {
 | |
|         if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
 | |
|             continue;
 | |
|         }
 | |
|         switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
 | |
|         case KVM_REG_SIZE_U32:
 | |
|         case KVM_REG_SIZE_U64:
 | |
|             break;
 | |
|         default:
 | |
|             fprintf(stderr, "Can't handle size of register in kernel list\n");
 | |
|             ret = -EINVAL;
 | |
|             goto out;
 | |
|         }
 | |
| 
 | |
|         arraylen++;
 | |
|     }
 | |
| 
 | |
|     cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
 | |
|     cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
 | |
|     cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
 | |
|                                          arraylen);
 | |
|     cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
 | |
|                                         arraylen);
 | |
|     cpu->cpreg_array_len = arraylen;
 | |
|     cpu->cpreg_vmstate_array_len = arraylen;
 | |
| 
 | |
|     for (i = 0, arraylen = 0; i < rlp->n; i++) {
 | |
|         uint64_t regidx = rlp->reg[i];
 | |
|         if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
 | |
|             continue;
 | |
|         }
 | |
|         cpu->cpreg_indexes[arraylen] = regidx;
 | |
|         arraylen++;
 | |
|     }
 | |
|     assert(cpu->cpreg_array_len == arraylen);
 | |
| 
 | |
|     if (!write_kvmstate_to_list(cpu)) {
 | |
|         /* Shouldn't happen unless kernel is inconsistent about
 | |
|          * what registers exist.
 | |
|          */
 | |
|         fprintf(stderr, "Initial read of kernel register state failed\n");
 | |
|         ret = -EINVAL;
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
| out:
 | |
|     g_free(rlp);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| bool write_kvmstate_to_list(ARMCPU *cpu)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     int i;
 | |
|     bool ok = true;
 | |
| 
 | |
|     for (i = 0; i < cpu->cpreg_array_len; i++) {
 | |
|         struct kvm_one_reg r;
 | |
|         uint64_t regidx = cpu->cpreg_indexes[i];
 | |
|         uint32_t v32;
 | |
|         int ret;
 | |
| 
 | |
|         r.id = regidx;
 | |
| 
 | |
|         switch (regidx & KVM_REG_SIZE_MASK) {
 | |
|         case KVM_REG_SIZE_U32:
 | |
|             r.addr = (uintptr_t)&v32;
 | |
|             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 | |
|             if (!ret) {
 | |
|                 cpu->cpreg_values[i] = v32;
 | |
|             }
 | |
|             break;
 | |
|         case KVM_REG_SIZE_U64:
 | |
|             r.addr = (uintptr_t)(cpu->cpreg_values + i);
 | |
|             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 | |
|             break;
 | |
|         default:
 | |
|             abort();
 | |
|         }
 | |
|         if (ret) {
 | |
|             ok = false;
 | |
|         }
 | |
|     }
 | |
|     return ok;
 | |
| }
 | |
| 
 | |
| bool write_list_to_kvmstate(ARMCPU *cpu, int level)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     int i;
 | |
|     bool ok = true;
 | |
| 
 | |
|     for (i = 0; i < cpu->cpreg_array_len; i++) {
 | |
|         struct kvm_one_reg r;
 | |
|         uint64_t regidx = cpu->cpreg_indexes[i];
 | |
|         uint32_t v32;
 | |
|         int ret;
 | |
| 
 | |
|         if (kvm_arm_cpreg_level(regidx) > level) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         r.id = regidx;
 | |
|         switch (regidx & KVM_REG_SIZE_MASK) {
 | |
|         case KVM_REG_SIZE_U32:
 | |
|             v32 = cpu->cpreg_values[i];
 | |
|             r.addr = (uintptr_t)&v32;
 | |
|             break;
 | |
|         case KVM_REG_SIZE_U64:
 | |
|             r.addr = (uintptr_t)(cpu->cpreg_values + i);
 | |
|             break;
 | |
|         default:
 | |
|             abort();
 | |
|         }
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 | |
|         if (ret) {
 | |
|             /* We might fail for "unknown register" and also for
 | |
|              * "you tried to set a register which is constant with
 | |
|              * a different value from what it actually contains".
 | |
|              */
 | |
|             ok = false;
 | |
|         }
 | |
|     }
 | |
|     return ok;
 | |
| }
 | |
| 
 | |
| void kvm_arm_reset_vcpu(ARMCPU *cpu)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     /* Re-init VCPU so that all registers are set to
 | |
|      * their respective reset values.
 | |
|      */
 | |
|     ret = kvm_arm_vcpu_init(CPU(cpu));
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
 | |
|         abort();
 | |
|     }
 | |
|     if (!write_kvmstate_to_list(cpu)) {
 | |
|         fprintf(stderr, "write_kvmstate_to_list failed\n");
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update KVM's MP_STATE based on what QEMU thinks it is
 | |
|  */
 | |
| int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
 | |
| {
 | |
|     if (cap_has_mp_state) {
 | |
|         struct kvm_mp_state mp_state = {
 | |
|             .mp_state =
 | |
|             cpu->powered_off ? KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
 | |
|         };
 | |
|         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
 | |
|         if (ret) {
 | |
|             fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
 | |
|                     __func__, ret, strerror(-ret));
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sync the KVM MP_STATE into QEMU
 | |
|  */
 | |
| int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
 | |
| {
 | |
|     if (cap_has_mp_state) {
 | |
|         struct kvm_mp_state mp_state;
 | |
|         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
 | |
|         if (ret) {
 | |
|             fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
 | |
|                     __func__, ret, strerror(-ret));
 | |
|             abort();
 | |
|         }
 | |
|         cpu->powered_off = (mp_state.mp_state == KVM_MP_STATE_STOPPED);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
 | |
| {
 | |
| }
 | |
| 
 | |
| MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 | |
| {
 | |
|     return MEMTXATTRS_UNSPECIFIED;
 | |
| }
 | |
| 
 | |
| int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| bool kvm_arch_stop_on_emulation_error(CPUState *cs)
 | |
| {
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| int kvm_arch_process_async_events(CPUState *cs)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int kvm_arch_on_sigbus(int code, void *addr)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | |
| }
 | |
| 
 | |
| int kvm_arch_insert_sw_breakpoint(CPUState *cs,
 | |
|                                   struct kvm_sw_breakpoint *bp)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 | |
|                                   target_ulong len, int type)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 | |
|                                   target_ulong len, int type)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| int kvm_arch_remove_sw_breakpoint(CPUState *cs,
 | |
|                                   struct kvm_sw_breakpoint *bp)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| void kvm_arch_remove_all_hw_breakpoints(void)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 | |
| }
 | |
| 
 | |
| void kvm_arch_init_irq_routing(KVMState *s)
 | |
| {
 | |
| }
 | |
| 
 | |
| int kvm_arch_irqchip_create(KVMState *s)
 | |
| {
 | |
|     /* If we can create the VGIC using the newer device control API, we
 | |
|      * let the device do this when it initializes itself, otherwise we
 | |
|      * fall back to the old API */
 | |
|     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
 | |
| }
 | |
| 
 | |
| int kvm_arm_vgic_probe(void)
 | |
| {
 | |
|     if (kvm_create_device(kvm_state,
 | |
|                           KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
 | |
|         return 3;
 | |
|     } else if (kvm_create_device(kvm_state,
 | |
|                                  KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
 | |
|         return 2;
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
 | |
|                              uint64_t address, uint32_t data, PCIDevice *dev)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_msi_data_to_gsi(uint32_t data)
 | |
| {
 | |
|     return (data - 32) & 0xffff;
 | |
| }
 |