 42fedbca8f
			
		
	
	
		42fedbca8f
		
	
	
	
	
		
			
			Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Richard Henderson <rth@twiddle.net>
		
			
				
	
	
		
			541 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			541 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  AArch64 specific helpers
 | |
|  *
 | |
|  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "cpu.h"
 | |
| #include "exec/gdbstub.h"
 | |
| #include "exec/helper-proto.h"
 | |
| #include "qemu/host-utils.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "qemu/bitops.h"
 | |
| #include "internals.h"
 | |
| #include "qemu/crc32c.h"
 | |
| #include <zlib.h> /* For crc32 */
 | |
| 
 | |
| /* C2.4.7 Multiply and divide */
 | |
| /* special cases for 0 and LLONG_MIN are mandated by the standard */
 | |
| uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
 | |
| {
 | |
|     if (den == 0) {
 | |
|         return 0;
 | |
|     }
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| int64_t HELPER(sdiv64)(int64_t num, int64_t den)
 | |
| {
 | |
|     if (den == 0) {
 | |
|         return 0;
 | |
|     }
 | |
|     if (num == LLONG_MIN && den == -1) {
 | |
|         return LLONG_MIN;
 | |
|     }
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(clz64)(uint64_t x)
 | |
| {
 | |
|     return clz64(x);
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(cls64)(uint64_t x)
 | |
| {
 | |
|     return clrsb64(x);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(cls32)(uint32_t x)
 | |
| {
 | |
|     return clrsb32(x);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(clz32)(uint32_t x)
 | |
| {
 | |
|     return clz32(x);
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(rbit64)(uint64_t x)
 | |
| {
 | |
|     return revbit64(x);
 | |
| }
 | |
| 
 | |
| /* Convert a softfloat float_relation_ (as returned by
 | |
|  * the float*_compare functions) to the correct ARM
 | |
|  * NZCV flag state.
 | |
|  */
 | |
| static inline uint32_t float_rel_to_flags(int res)
 | |
| {
 | |
|     uint64_t flags;
 | |
|     switch (res) {
 | |
|     case float_relation_equal:
 | |
|         flags = PSTATE_Z | PSTATE_C;
 | |
|         break;
 | |
|     case float_relation_less:
 | |
|         flags = PSTATE_N;
 | |
|         break;
 | |
|     case float_relation_greater:
 | |
|         flags = PSTATE_C;
 | |
|         break;
 | |
|     case float_relation_unordered:
 | |
|     default:
 | |
|         flags = PSTATE_C | PSTATE_V;
 | |
|         break;
 | |
|     }
 | |
|     return flags;
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
 | |
| {
 | |
|     return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
 | |
| {
 | |
|     return float_rel_to_flags(float32_compare(x, y, fp_status));
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
 | |
| {
 | |
|     return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
 | |
| {
 | |
|     return float_rel_to_flags(float64_compare(x, y, fp_status));
 | |
| }
 | |
| 
 | |
| float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, fpst);
 | |
|     b = float32_squash_input_denormal(b, fpst);
 | |
| 
 | |
|     if ((float32_is_zero(a) && float32_is_infinity(b)) ||
 | |
|         (float32_is_infinity(a) && float32_is_zero(b))) {
 | |
|         /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 | |
|         return make_float32((1U << 30) |
 | |
|                             ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
 | |
|     }
 | |
|     return float32_mul(a, b, fpst);
 | |
| }
 | |
| 
 | |
| float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, fpst);
 | |
|     b = float64_squash_input_denormal(b, fpst);
 | |
| 
 | |
|     if ((float64_is_zero(a) && float64_is_infinity(b)) ||
 | |
|         (float64_is_infinity(a) && float64_is_zero(b))) {
 | |
|         /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 | |
|         return make_float64((1ULL << 62) |
 | |
|                             ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
 | |
|     }
 | |
|     return float64_mul(a, b, fpst);
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
 | |
|                           uint32_t rn, uint32_t numregs)
 | |
| {
 | |
|     /* Helper function for SIMD TBL and TBX. We have to do the table
 | |
|      * lookup part for the 64 bits worth of indices we're passed in.
 | |
|      * result is the initial results vector (either zeroes for TBL
 | |
|      * or some guest values for TBX), rn the register number where
 | |
|      * the table starts, and numregs the number of registers in the table.
 | |
|      * We return the results of the lookups.
 | |
|      */
 | |
|     int shift;
 | |
| 
 | |
|     for (shift = 0; shift < 64; shift += 8) {
 | |
|         int index = extract64(indices, shift, 8);
 | |
|         if (index < 16 * numregs) {
 | |
|             /* Convert index (a byte offset into the virtual table
 | |
|              * which is a series of 128-bit vectors concatenated)
 | |
|              * into the correct vfp.regs[] element plus a bit offset
 | |
|              * into that element, bearing in mind that the table
 | |
|              * can wrap around from V31 to V0.
 | |
|              */
 | |
|             int elt = (rn * 2 + (index >> 3)) % 64;
 | |
|             int bitidx = (index & 7) * 8;
 | |
|             uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8);
 | |
| 
 | |
|             result = deposit64(result, shift, 8, val);
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /* 64bit/double versions of the neon float compare functions */
 | |
| uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     return -float64_eq_quiet(a, b, fpst);
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     return -float64_le(b, a, fpst);
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     return -float64_lt(b, a, fpst);
 | |
| }
 | |
| 
 | |
| /* Reciprocal step and sqrt step. Note that unlike the A32/T32
 | |
|  * versions, these do a fully fused multiply-add or
 | |
|  * multiply-add-and-halve.
 | |
|  */
 | |
| #define float32_two make_float32(0x40000000)
 | |
| #define float32_three make_float32(0x40400000)
 | |
| #define float32_one_point_five make_float32(0x3fc00000)
 | |
| 
 | |
| #define float64_two make_float64(0x4000000000000000ULL)
 | |
| #define float64_three make_float64(0x4008000000000000ULL)
 | |
| #define float64_one_point_five make_float64(0x3FF8000000000000ULL)
 | |
| 
 | |
| float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, fpst);
 | |
|     b = float32_squash_input_denormal(b, fpst);
 | |
| 
 | |
|     a = float32_chs(a);
 | |
|     if ((float32_is_infinity(a) && float32_is_zero(b)) ||
 | |
|         (float32_is_infinity(b) && float32_is_zero(a))) {
 | |
|         return float32_two;
 | |
|     }
 | |
|     return float32_muladd(a, b, float32_two, 0, fpst);
 | |
| }
 | |
| 
 | |
| float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, fpst);
 | |
|     b = float64_squash_input_denormal(b, fpst);
 | |
| 
 | |
|     a = float64_chs(a);
 | |
|     if ((float64_is_infinity(a) && float64_is_zero(b)) ||
 | |
|         (float64_is_infinity(b) && float64_is_zero(a))) {
 | |
|         return float64_two;
 | |
|     }
 | |
|     return float64_muladd(a, b, float64_two, 0, fpst);
 | |
| }
 | |
| 
 | |
| float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, fpst);
 | |
|     b = float32_squash_input_denormal(b, fpst);
 | |
| 
 | |
|     a = float32_chs(a);
 | |
|     if ((float32_is_infinity(a) && float32_is_zero(b)) ||
 | |
|         (float32_is_infinity(b) && float32_is_zero(a))) {
 | |
|         return float32_one_point_five;
 | |
|     }
 | |
|     return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
 | |
| }
 | |
| 
 | |
| float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, fpst);
 | |
|     b = float64_squash_input_denormal(b, fpst);
 | |
| 
 | |
|     a = float64_chs(a);
 | |
|     if ((float64_is_infinity(a) && float64_is_zero(b)) ||
 | |
|         (float64_is_infinity(b) && float64_is_zero(a))) {
 | |
|         return float64_one_point_five;
 | |
|     }
 | |
|     return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
 | |
| }
 | |
| 
 | |
| /* Pairwise long add: add pairs of adjacent elements into
 | |
|  * double-width elements in the result (eg _s8 is an 8x8->16 op)
 | |
|  */
 | |
| uint64_t HELPER(neon_addlp_s8)(uint64_t a)
 | |
| {
 | |
|     uint64_t nsignmask = 0x0080008000800080ULL;
 | |
|     uint64_t wsignmask = 0x8000800080008000ULL;
 | |
|     uint64_t elementmask = 0x00ff00ff00ff00ffULL;
 | |
|     uint64_t tmp1, tmp2;
 | |
|     uint64_t res, signres;
 | |
| 
 | |
|     /* Extract odd elements, sign extend each to a 16 bit field */
 | |
|     tmp1 = a & elementmask;
 | |
|     tmp1 ^= nsignmask;
 | |
|     tmp1 |= wsignmask;
 | |
|     tmp1 = (tmp1 - nsignmask) ^ wsignmask;
 | |
|     /* Ditto for the even elements */
 | |
|     tmp2 = (a >> 8) & elementmask;
 | |
|     tmp2 ^= nsignmask;
 | |
|     tmp2 |= wsignmask;
 | |
|     tmp2 = (tmp2 - nsignmask) ^ wsignmask;
 | |
| 
 | |
|     /* calculate the result by summing bits 0..14, 16..22, etc,
 | |
|      * and then adjusting the sign bits 15, 23, etc manually.
 | |
|      * This ensures the addition can't overflow the 16 bit field.
 | |
|      */
 | |
|     signres = (tmp1 ^ tmp2) & wsignmask;
 | |
|     res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
 | |
|     res ^= signres;
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(neon_addlp_u8)(uint64_t a)
 | |
| {
 | |
|     uint64_t tmp;
 | |
| 
 | |
|     tmp = a & 0x00ff00ff00ff00ffULL;
 | |
|     tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
 | |
|     return tmp;
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(neon_addlp_s16)(uint64_t a)
 | |
| {
 | |
|     int32_t reslo, reshi;
 | |
| 
 | |
|     reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
 | |
|     reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
 | |
| 
 | |
|     return (uint32_t)reslo | (((uint64_t)reshi) << 32);
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(neon_addlp_u16)(uint64_t a)
 | |
| {
 | |
|     uint64_t tmp;
 | |
| 
 | |
|     tmp = a & 0x0000ffff0000ffffULL;
 | |
|     tmp += (a >> 16) & 0x0000ffff0000ffffULL;
 | |
|     return tmp;
 | |
| }
 | |
| 
 | |
| /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
 | |
| float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     uint32_t val32, sbit;
 | |
|     int32_t exp;
 | |
| 
 | |
|     if (float32_is_any_nan(a)) {
 | |
|         float32 nan = a;
 | |
|         if (float32_is_signaling_nan(a)) {
 | |
|             float_raise(float_flag_invalid, fpst);
 | |
|             nan = float32_maybe_silence_nan(a);
 | |
|         }
 | |
|         if (fpst->default_nan_mode) {
 | |
|             nan = float32_default_nan;
 | |
|         }
 | |
|         return nan;
 | |
|     }
 | |
| 
 | |
|     val32 = float32_val(a);
 | |
|     sbit = 0x80000000ULL & val32;
 | |
|     exp = extract32(val32, 23, 8);
 | |
| 
 | |
|     if (exp == 0) {
 | |
|         return make_float32(sbit | (0xfe << 23));
 | |
|     } else {
 | |
|         return make_float32(sbit | (~exp & 0xff) << 23);
 | |
|     }
 | |
| }
 | |
| 
 | |
| float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     uint64_t val64, sbit;
 | |
|     int64_t exp;
 | |
| 
 | |
|     if (float64_is_any_nan(a)) {
 | |
|         float64 nan = a;
 | |
|         if (float64_is_signaling_nan(a)) {
 | |
|             float_raise(float_flag_invalid, fpst);
 | |
|             nan = float64_maybe_silence_nan(a);
 | |
|         }
 | |
|         if (fpst->default_nan_mode) {
 | |
|             nan = float64_default_nan;
 | |
|         }
 | |
|         return nan;
 | |
|     }
 | |
| 
 | |
|     val64 = float64_val(a);
 | |
|     sbit = 0x8000000000000000ULL & val64;
 | |
|     exp = extract64(float64_val(a), 52, 11);
 | |
| 
 | |
|     if (exp == 0) {
 | |
|         return make_float64(sbit | (0x7feULL << 52));
 | |
|     } else {
 | |
|         return make_float64(sbit | (~exp & 0x7ffULL) << 52);
 | |
|     }
 | |
| }
 | |
| 
 | |
| float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
 | |
| {
 | |
|     /* Von Neumann rounding is implemented by using round-to-zero
 | |
|      * and then setting the LSB of the result if Inexact was raised.
 | |
|      */
 | |
|     float32 r;
 | |
|     float_status *fpst = &env->vfp.fp_status;
 | |
|     float_status tstat = *fpst;
 | |
|     int exflags;
 | |
| 
 | |
|     set_float_rounding_mode(float_round_to_zero, &tstat);
 | |
|     set_float_exception_flags(0, &tstat);
 | |
|     r = float64_to_float32(a, &tstat);
 | |
|     r = float32_maybe_silence_nan(r);
 | |
|     exflags = get_float_exception_flags(&tstat);
 | |
|     if (exflags & float_flag_inexact) {
 | |
|         r = make_float32(float32_val(r) | 1);
 | |
|     }
 | |
|     exflags |= get_float_exception_flags(fpst);
 | |
|     set_float_exception_flags(exflags, fpst);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /* 64-bit versions of the CRC helpers. Note that although the operation
 | |
|  * (and the prototypes of crc32c() and crc32() mean that only the bottom
 | |
|  * 32 bits of the accumulator and result are used, we pass and return
 | |
|  * uint64_t for convenience of the generated code. Unlike the 32-bit
 | |
|  * instruction set versions, val may genuinely have 64 bits of data in it.
 | |
|  * The upper bytes of val (above the number specified by 'bytes') must have
 | |
|  * been zeroed out by the caller.
 | |
|  */
 | |
| uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
 | |
| {
 | |
|     uint8_t buf[8];
 | |
| 
 | |
|     stq_le_p(buf, val);
 | |
| 
 | |
|     /* zlib crc32 converts the accumulator and output to one's complement.  */
 | |
|     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
 | |
| {
 | |
|     uint8_t buf[8];
 | |
| 
 | |
|     stq_le_p(buf, val);
 | |
| 
 | |
|     /* Linux crc32c converts the output to one's complement.  */
 | |
|     return crc32c(acc, buf, bytes) ^ 0xffffffff;
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| /* Handle a CPU exception.  */
 | |
| void aarch64_cpu_do_interrupt(CPUState *cs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     unsigned int new_el = env->exception.target_el;
 | |
|     target_ulong addr = env->cp15.vbar_el[new_el];
 | |
|     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
 | |
| 
 | |
|     if (arm_current_el(env) < new_el) {
 | |
|         if (env->aarch64) {
 | |
|             addr += 0x400;
 | |
|         } else {
 | |
|             addr += 0x600;
 | |
|         }
 | |
|     } else if (pstate_read(env) & PSTATE_SP) {
 | |
|         addr += 0x200;
 | |
|     }
 | |
| 
 | |
|     arm_log_exception(cs->exception_index);
 | |
|     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
 | |
|                   new_el);
 | |
|     if (qemu_loglevel_mask(CPU_LOG_INT)
 | |
|         && !excp_is_internal(cs->exception_index)) {
 | |
|         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%" PRIx32 "\n",
 | |
|                       env->exception.syndrome);
 | |
|     }
 | |
| 
 | |
|     if (arm_is_psci_call(cpu, cs->exception_index)) {
 | |
|         arm_handle_psci_call(cpu);
 | |
|         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     switch (cs->exception_index) {
 | |
|     case EXCP_PREFETCH_ABORT:
 | |
|     case EXCP_DATA_ABORT:
 | |
|         env->cp15.far_el[new_el] = env->exception.vaddress;
 | |
|         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
 | |
|                       env->cp15.far_el[new_el]);
 | |
|         /* fall through */
 | |
|     case EXCP_BKPT:
 | |
|     case EXCP_UDEF:
 | |
|     case EXCP_SWI:
 | |
|     case EXCP_HVC:
 | |
|     case EXCP_HYP_TRAP:
 | |
|     case EXCP_SMC:
 | |
|         env->cp15.esr_el[new_el] = env->exception.syndrome;
 | |
|         break;
 | |
|     case EXCP_IRQ:
 | |
|     case EXCP_VIRQ:
 | |
|         addr += 0x80;
 | |
|         break;
 | |
|     case EXCP_FIQ:
 | |
|     case EXCP_VFIQ:
 | |
|         addr += 0x100;
 | |
|         break;
 | |
|     case EXCP_SEMIHOST:
 | |
|         qemu_log_mask(CPU_LOG_INT,
 | |
|                       "...handling as semihosting call 0x%" PRIx64 "\n",
 | |
|                       env->xregs[0]);
 | |
|         env->xregs[0] = do_arm_semihosting(env);
 | |
|         return;
 | |
|     default:
 | |
|         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
 | |
|     }
 | |
| 
 | |
|     if (is_a64(env)) {
 | |
|         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
 | |
|         aarch64_save_sp(env, arm_current_el(env));
 | |
|         env->elr_el[new_el] = env->pc;
 | |
|     } else {
 | |
|         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
 | |
|         if (!env->thumb) {
 | |
|             env->cp15.esr_el[new_el] |= 1 << 25;
 | |
|         }
 | |
|         env->elr_el[new_el] = env->regs[15];
 | |
| 
 | |
|         aarch64_sync_32_to_64(env);
 | |
| 
 | |
|         env->condexec_bits = 0;
 | |
|     }
 | |
|     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
 | |
|                   env->elr_el[new_el]);
 | |
| 
 | |
|     pstate_write(env, PSTATE_DAIF | new_mode);
 | |
|     env->aarch64 = 1;
 | |
|     aarch64_restore_sp(env, new_el);
 | |
| 
 | |
|     env->pc = addr;
 | |
|     cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
 | |
| }
 | |
| #endif
 |