 9a45729d3b
			
		
	
	
		9a45729d3b
		
	
	
	
	
		
			
			Move from X86MachineClass to PCMachineClass so it disappears from microvm machine type property list. Signed-off-by: Gerd Hoffmann <kraxel@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Reviewed-by: Igor Mammedov <imammedo@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Message-id: 20200529073957.8018-4-kraxel@redhat.com
		
			
				
	
	
		
			976 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			976 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003-2004 Fabrice Bellard
 | |
|  * Copyright (c) 2019 Red Hat, Inc.
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  */
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "qemu/option.h"
 | |
| #include "qemu/cutils.h"
 | |
| #include "qemu/units.h"
 | |
| #include "qemu-common.h"
 | |
| #include "qapi/error.h"
 | |
| #include "qapi/qmp/qerror.h"
 | |
| #include "qapi/qapi-visit-common.h"
 | |
| #include "qapi/visitor.h"
 | |
| #include "sysemu/qtest.h"
 | |
| #include "sysemu/numa.h"
 | |
| #include "sysemu/replay.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| #include "hw/i386/x86.h"
 | |
| #include "target/i386/cpu.h"
 | |
| #include "hw/i386/topology.h"
 | |
| #include "hw/i386/fw_cfg.h"
 | |
| #include "hw/intc/i8259.h"
 | |
| 
 | |
| #include "hw/acpi/cpu_hotplug.h"
 | |
| #include "hw/irq.h"
 | |
| #include "hw/nmi.h"
 | |
| #include "hw/loader.h"
 | |
| #include "multiboot.h"
 | |
| #include "elf.h"
 | |
| #include "standard-headers/asm-x86/bootparam.h"
 | |
| #include "config-devices.h"
 | |
| #include "kvm_i386.h"
 | |
| 
 | |
| #define BIOS_FILENAME "bios.bin"
 | |
| 
 | |
| /* Physical Address of PVH entry point read from kernel ELF NOTE */
 | |
| static size_t pvh_start_addr;
 | |
| 
 | |
| inline void init_topo_info(X86CPUTopoInfo *topo_info,
 | |
|                            const X86MachineState *x86ms)
 | |
| {
 | |
|     MachineState *ms = MACHINE(x86ms);
 | |
| 
 | |
|     topo_info->nodes_per_pkg = ms->numa_state->num_nodes / ms->smp.sockets;
 | |
|     topo_info->dies_per_pkg = x86ms->smp_dies;
 | |
|     topo_info->cores_per_die = ms->smp.cores;
 | |
|     topo_info->threads_per_core = ms->smp.threads;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up with the new EPYC topology handlers
 | |
|  *
 | |
|  * AMD uses different apic id encoding for EPYC based cpus. Override
 | |
|  * the default topo handlers with EPYC encoding handlers.
 | |
|  */
 | |
| static void x86_set_epyc_topo_handlers(MachineState *machine)
 | |
| {
 | |
|     X86MachineState *x86ms = X86_MACHINE(machine);
 | |
| 
 | |
|     x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx_epyc;
 | |
|     x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid_epyc;
 | |
|     x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids_epyc;
 | |
|     x86ms->apicid_pkg_offset = apicid_pkg_offset_epyc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculates initial APIC ID for a specific CPU index
 | |
|  *
 | |
|  * Currently we need to be able to calculate the APIC ID from the CPU index
 | |
|  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
 | |
|  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
 | |
|  * all CPUs up to max_cpus.
 | |
|  */
 | |
| uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
 | |
|                                     unsigned int cpu_index)
 | |
| {
 | |
|     X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
 | |
|     X86CPUTopoInfo topo_info;
 | |
|     uint32_t correct_id;
 | |
|     static bool warned;
 | |
| 
 | |
|     init_topo_info(&topo_info, x86ms);
 | |
| 
 | |
|     correct_id = x86ms->apicid_from_cpu_idx(&topo_info, cpu_index);
 | |
|     if (x86mc->compat_apic_id_mode) {
 | |
|         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
 | |
|             error_report("APIC IDs set in compatibility mode, "
 | |
|                          "CPU topology won't match the configuration");
 | |
|             warned = true;
 | |
|         }
 | |
|         return cpu_index;
 | |
|     } else {
 | |
|         return correct_id;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
 | |
| {
 | |
|     Object *cpu = NULL;
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     cpu = object_new(MACHINE(x86ms)->cpu_type);
 | |
| 
 | |
|     object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
 | |
|     qdev_realize(DEVICE(cpu), NULL, &local_err);
 | |
| 
 | |
|     object_unref(cpu);
 | |
|     error_propagate(errp, local_err);
 | |
| }
 | |
| 
 | |
| void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
 | |
| {
 | |
|     int i;
 | |
|     const CPUArchIdList *possible_cpus;
 | |
|     MachineState *ms = MACHINE(x86ms);
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(x86ms);
 | |
| 
 | |
|     /* Check for apicid encoding */
 | |
|     if (cpu_x86_use_epyc_apic_id_encoding(ms->cpu_type)) {
 | |
|         x86_set_epyc_topo_handlers(ms);
 | |
|     }
 | |
| 
 | |
|     x86_cpu_set_default_version(default_cpu_version);
 | |
| 
 | |
|     /*
 | |
|      * Calculates the limit to CPU APIC ID values
 | |
|      *
 | |
|      * Limit for the APIC ID value, so that all
 | |
|      * CPU APIC IDs are < x86ms->apic_id_limit.
 | |
|      *
 | |
|      * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
 | |
|      */
 | |
|     x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
 | |
|                                                       ms->smp.max_cpus - 1) + 1;
 | |
|     possible_cpus = mc->possible_cpu_arch_ids(ms);
 | |
| 
 | |
|     for (i = 0; i < ms->possible_cpus->len; i++) {
 | |
|         ms->possible_cpus->cpus[i].arch_id =
 | |
|             x86_cpu_apic_id_from_index(x86ms, i);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < ms->smp.cpus; i++) {
 | |
|         x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
 | |
|     }
 | |
| }
 | |
| 
 | |
| CpuInstanceProperties
 | |
| x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
 | |
| {
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(ms);
 | |
|     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
 | |
| 
 | |
|     assert(cpu_index < possible_cpus->len);
 | |
|     return possible_cpus->cpus[cpu_index].props;
 | |
| }
 | |
| 
 | |
| int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
 | |
| {
 | |
|    X86CPUTopoIDs topo_ids;
 | |
|    X86MachineState *x86ms = X86_MACHINE(ms);
 | |
|    X86CPUTopoInfo topo_info;
 | |
| 
 | |
|    init_topo_info(&topo_info, x86ms);
 | |
| 
 | |
|    assert(idx < ms->possible_cpus->len);
 | |
|    x86_topo_ids_from_idx(&topo_info, idx, &topo_ids);
 | |
|    return topo_ids.pkg_id % ms->numa_state->num_nodes;
 | |
| }
 | |
| 
 | |
| const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
 | |
| {
 | |
|     X86MachineState *x86ms = X86_MACHINE(ms);
 | |
|     unsigned int max_cpus = ms->smp.max_cpus;
 | |
|     X86CPUTopoInfo topo_info;
 | |
|     int i;
 | |
| 
 | |
|     if (ms->possible_cpus) {
 | |
|         /*
 | |
|          * make sure that max_cpus hasn't changed since the first use, i.e.
 | |
|          * -smp hasn't been parsed after it
 | |
|          */
 | |
|         assert(ms->possible_cpus->len == max_cpus);
 | |
|         return ms->possible_cpus;
 | |
|     }
 | |
| 
 | |
|     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
 | |
|                                   sizeof(CPUArchId) * max_cpus);
 | |
|     ms->possible_cpus->len = max_cpus;
 | |
| 
 | |
|     init_topo_info(&topo_info, x86ms);
 | |
| 
 | |
|     for (i = 0; i < ms->possible_cpus->len; i++) {
 | |
|         X86CPUTopoIDs topo_ids;
 | |
| 
 | |
|         ms->possible_cpus->cpus[i].type = ms->cpu_type;
 | |
|         ms->possible_cpus->cpus[i].vcpus_count = 1;
 | |
|         x86_topo_ids_from_idx(&topo_info, i, &topo_ids);
 | |
|         ms->possible_cpus->cpus[i].props.has_socket_id = true;
 | |
|         ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
 | |
|         if (x86ms->smp_dies > 1) {
 | |
|             ms->possible_cpus->cpus[i].props.has_die_id = true;
 | |
|             ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
 | |
|         }
 | |
|         ms->possible_cpus->cpus[i].props.has_core_id = true;
 | |
|         ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
 | |
|         ms->possible_cpus->cpus[i].props.has_thread_id = true;
 | |
|         ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
 | |
|     }
 | |
|     return ms->possible_cpus;
 | |
| }
 | |
| 
 | |
| static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
 | |
| {
 | |
|     /* cpu index isn't used */
 | |
|     CPUState *cs;
 | |
| 
 | |
|     CPU_FOREACH(cs) {
 | |
|         X86CPU *cpu = X86_CPU(cs);
 | |
| 
 | |
|         if (!cpu->apic_state) {
 | |
|             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
 | |
|         } else {
 | |
|             apic_deliver_nmi(cpu->apic_state);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static long get_file_size(FILE *f)
 | |
| {
 | |
|     long where, size;
 | |
| 
 | |
|     /* XXX: on Unix systems, using fstat() probably makes more sense */
 | |
| 
 | |
|     where = ftell(f);
 | |
|     fseek(f, 0, SEEK_END);
 | |
|     size = ftell(f);
 | |
|     fseek(f, where, SEEK_SET);
 | |
| 
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| /* TSC handling */
 | |
| uint64_t cpu_get_tsc(CPUX86State *env)
 | |
| {
 | |
|     return cpu_get_ticks();
 | |
| }
 | |
| 
 | |
| /* IRQ handling */
 | |
| static void pic_irq_request(void *opaque, int irq, int level)
 | |
| {
 | |
|     CPUState *cs = first_cpu;
 | |
|     X86CPU *cpu = X86_CPU(cs);
 | |
| 
 | |
|     trace_x86_pic_interrupt(irq, level);
 | |
|     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
 | |
|         CPU_FOREACH(cs) {
 | |
|             cpu = X86_CPU(cs);
 | |
|             if (apic_accept_pic_intr(cpu->apic_state)) {
 | |
|                 apic_deliver_pic_intr(cpu->apic_state, level);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         if (level) {
 | |
|             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
 | |
|         } else {
 | |
|             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| qemu_irq x86_allocate_cpu_irq(void)
 | |
| {
 | |
|     return qemu_allocate_irq(pic_irq_request, NULL, 0);
 | |
| }
 | |
| 
 | |
| int cpu_get_pic_interrupt(CPUX86State *env)
 | |
| {
 | |
|     X86CPU *cpu = env_archcpu(env);
 | |
|     int intno;
 | |
| 
 | |
|     if (!kvm_irqchip_in_kernel()) {
 | |
|         intno = apic_get_interrupt(cpu->apic_state);
 | |
|         if (intno >= 0) {
 | |
|             return intno;
 | |
|         }
 | |
|         /* read the irq from the PIC */
 | |
|         if (!apic_accept_pic_intr(cpu->apic_state)) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     intno = pic_read_irq(isa_pic);
 | |
|     return intno;
 | |
| }
 | |
| 
 | |
| DeviceState *cpu_get_current_apic(void)
 | |
| {
 | |
|     if (current_cpu) {
 | |
|         X86CPU *cpu = X86_CPU(current_cpu);
 | |
|         return cpu->apic_state;
 | |
|     } else {
 | |
|         return NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void gsi_handler(void *opaque, int n, int level)
 | |
| {
 | |
|     GSIState *s = opaque;
 | |
| 
 | |
|     trace_x86_gsi_interrupt(n, level);
 | |
|     if (n < ISA_NUM_IRQS) {
 | |
|         /* Under KVM, Kernel will forward to both PIC and IOAPIC */
 | |
|         qemu_set_irq(s->i8259_irq[n], level);
 | |
|     }
 | |
|     qemu_set_irq(s->ioapic_irq[n], level);
 | |
| }
 | |
| 
 | |
| void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
 | |
| {
 | |
|     DeviceState *dev;
 | |
|     SysBusDevice *d;
 | |
|     unsigned int i;
 | |
| 
 | |
|     assert(parent_name);
 | |
|     if (kvm_ioapic_in_kernel()) {
 | |
|         dev = qdev_new(TYPE_KVM_IOAPIC);
 | |
|     } else {
 | |
|         dev = qdev_new(TYPE_IOAPIC);
 | |
|     }
 | |
|     object_property_add_child(object_resolve_path(parent_name, NULL),
 | |
|                               "ioapic", OBJECT(dev));
 | |
|     d = SYS_BUS_DEVICE(dev);
 | |
|     sysbus_realize_and_unref(d, &error_fatal);
 | |
|     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
 | |
| 
 | |
|     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
 | |
|         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| struct setup_data {
 | |
|     uint64_t next;
 | |
|     uint32_t type;
 | |
|     uint32_t len;
 | |
|     uint8_t data[];
 | |
| } __attribute__((packed));
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The entry point into the kernel for PVH boot is different from
 | |
|  * the native entry point.  The PVH entry is defined by the x86/HVM
 | |
|  * direct boot ABI and is available in an ELFNOTE in the kernel binary.
 | |
|  *
 | |
|  * This function is passed to load_elf() when it is called from
 | |
|  * load_elfboot() which then additionally checks for an ELF Note of
 | |
|  * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
 | |
|  * parse the PVH entry address from the ELF Note.
 | |
|  *
 | |
|  * Due to trickery in elf_opts.h, load_elf() is actually available as
 | |
|  * load_elf32() or load_elf64() and this routine needs to be able
 | |
|  * to deal with being called as 32 or 64 bit.
 | |
|  *
 | |
|  * The address of the PVH entry point is saved to the 'pvh_start_addr'
 | |
|  * global variable.  (although the entry point is 32-bit, the kernel
 | |
|  * binary can be either 32-bit or 64-bit).
 | |
|  */
 | |
| static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
 | |
| {
 | |
|     size_t *elf_note_data_addr;
 | |
| 
 | |
|     /* Check if ELF Note header passed in is valid */
 | |
|     if (arg1 == NULL) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (is64) {
 | |
|         struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
 | |
|         uint64_t nhdr_size64 = sizeof(struct elf64_note);
 | |
|         uint64_t phdr_align = *(uint64_t *)arg2;
 | |
|         uint64_t nhdr_namesz = nhdr64->n_namesz;
 | |
| 
 | |
|         elf_note_data_addr =
 | |
|             ((void *)nhdr64) + nhdr_size64 +
 | |
|             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
 | |
|     } else {
 | |
|         struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
 | |
|         uint32_t nhdr_size32 = sizeof(struct elf32_note);
 | |
|         uint32_t phdr_align = *(uint32_t *)arg2;
 | |
|         uint32_t nhdr_namesz = nhdr32->n_namesz;
 | |
| 
 | |
|         elf_note_data_addr =
 | |
|             ((void *)nhdr32) + nhdr_size32 +
 | |
|             QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
 | |
|     }
 | |
| 
 | |
|     pvh_start_addr = *elf_note_data_addr;
 | |
| 
 | |
|     return pvh_start_addr;
 | |
| }
 | |
| 
 | |
| static bool load_elfboot(const char *kernel_filename,
 | |
|                          int kernel_file_size,
 | |
|                          uint8_t *header,
 | |
|                          size_t pvh_xen_start_addr,
 | |
|                          FWCfgState *fw_cfg)
 | |
| {
 | |
|     uint32_t flags = 0;
 | |
|     uint32_t mh_load_addr = 0;
 | |
|     uint32_t elf_kernel_size = 0;
 | |
|     uint64_t elf_entry;
 | |
|     uint64_t elf_low, elf_high;
 | |
|     int kernel_size;
 | |
| 
 | |
|     if (ldl_p(header) != 0x464c457f) {
 | |
|         return false; /* no elfboot */
 | |
|     }
 | |
| 
 | |
|     bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
 | |
|     flags = elf_is64 ?
 | |
|         ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
 | |
| 
 | |
|     if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
 | |
|         error_report("elfboot unsupported flags = %x", flags);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
 | |
|     kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
 | |
|                            NULL, &elf_note_type, &elf_entry,
 | |
|                            &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
 | |
|                            0, 0);
 | |
| 
 | |
|     if (kernel_size < 0) {
 | |
|         error_report("Error while loading elf kernel");
 | |
|         exit(1);
 | |
|     }
 | |
|     mh_load_addr = elf_low;
 | |
|     elf_kernel_size = elf_high - elf_low;
 | |
| 
 | |
|     if (pvh_start_addr == 0) {
 | |
|         error_report("Error loading uncompressed kernel without PVH ELF Note");
 | |
|         exit(1);
 | |
|     }
 | |
|     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
 | |
|     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
 | |
|     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void x86_load_linux(X86MachineState *x86ms,
 | |
|                     FWCfgState *fw_cfg,
 | |
|                     int acpi_data_size,
 | |
|                     bool pvh_enabled,
 | |
|                     bool linuxboot_dma_enabled)
 | |
| {
 | |
|     uint16_t protocol;
 | |
|     int setup_size, kernel_size, cmdline_size;
 | |
|     int dtb_size, setup_data_offset;
 | |
|     uint32_t initrd_max;
 | |
|     uint8_t header[8192], *setup, *kernel;
 | |
|     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
 | |
|     FILE *f;
 | |
|     char *vmode;
 | |
|     MachineState *machine = MACHINE(x86ms);
 | |
|     struct setup_data *setup_data;
 | |
|     const char *kernel_filename = machine->kernel_filename;
 | |
|     const char *initrd_filename = machine->initrd_filename;
 | |
|     const char *dtb_filename = machine->dtb;
 | |
|     const char *kernel_cmdline = machine->kernel_cmdline;
 | |
| 
 | |
|     /* Align to 16 bytes as a paranoia measure */
 | |
|     cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
 | |
| 
 | |
|     /* load the kernel header */
 | |
|     f = fopen(kernel_filename, "rb");
 | |
|     if (!f) {
 | |
|         fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
 | |
|                 kernel_filename, strerror(errno));
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     kernel_size = get_file_size(f);
 | |
|     if (!kernel_size ||
 | |
|         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
 | |
|         MIN(ARRAY_SIZE(header), kernel_size)) {
 | |
|         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
 | |
|                 kernel_filename, strerror(errno));
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     /* kernel protocol version */
 | |
|     if (ldl_p(header + 0x202) == 0x53726448) {
 | |
|         protocol = lduw_p(header + 0x206);
 | |
|     } else {
 | |
|         /*
 | |
|          * This could be a multiboot kernel. If it is, let's stop treating it
 | |
|          * like a Linux kernel.
 | |
|          * Note: some multiboot images could be in the ELF format (the same of
 | |
|          * PVH), so we try multiboot first since we check the multiboot magic
 | |
|          * header before to load it.
 | |
|          */
 | |
|         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
 | |
|                            kernel_cmdline, kernel_size, header)) {
 | |
|             return;
 | |
|         }
 | |
|         /*
 | |
|          * Check if the file is an uncompressed kernel file (ELF) and load it,
 | |
|          * saving the PVH entry point used by the x86/HVM direct boot ABI.
 | |
|          * If load_elfboot() is successful, populate the fw_cfg info.
 | |
|          */
 | |
|         if (pvh_enabled &&
 | |
|             load_elfboot(kernel_filename, kernel_size,
 | |
|                          header, pvh_start_addr, fw_cfg)) {
 | |
|             fclose(f);
 | |
| 
 | |
|             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
 | |
|                 strlen(kernel_cmdline) + 1);
 | |
|             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
 | |
| 
 | |
|             fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
 | |
|             fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
 | |
|                              header, sizeof(header));
 | |
| 
 | |
|             /* load initrd */
 | |
|             if (initrd_filename) {
 | |
|                 GMappedFile *mapped_file;
 | |
|                 gsize initrd_size;
 | |
|                 gchar *initrd_data;
 | |
|                 GError *gerr = NULL;
 | |
| 
 | |
|                 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
 | |
|                 if (!mapped_file) {
 | |
|                     fprintf(stderr, "qemu: error reading initrd %s: %s\n",
 | |
|                             initrd_filename, gerr->message);
 | |
|                     exit(1);
 | |
|                 }
 | |
|                 x86ms->initrd_mapped_file = mapped_file;
 | |
| 
 | |
|                 initrd_data = g_mapped_file_get_contents(mapped_file);
 | |
|                 initrd_size = g_mapped_file_get_length(mapped_file);
 | |
|                 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
 | |
|                 if (initrd_size >= initrd_max) {
 | |
|                     fprintf(stderr, "qemu: initrd is too large, cannot support."
 | |
|                             "(max: %"PRIu32", need %"PRId64")\n",
 | |
|                             initrd_max, (uint64_t)initrd_size);
 | |
|                     exit(1);
 | |
|                 }
 | |
| 
 | |
|                 initrd_addr = (initrd_max - initrd_size) & ~4095;
 | |
| 
 | |
|                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
 | |
|                 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
 | |
|                 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
 | |
|                                  initrd_size);
 | |
|             }
 | |
| 
 | |
|             option_rom[nb_option_roms].bootindex = 0;
 | |
|             option_rom[nb_option_roms].name = "pvh.bin";
 | |
|             nb_option_roms++;
 | |
| 
 | |
|             return;
 | |
|         }
 | |
|         protocol = 0;
 | |
|     }
 | |
| 
 | |
|     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
 | |
|         /* Low kernel */
 | |
|         real_addr    = 0x90000;
 | |
|         cmdline_addr = 0x9a000 - cmdline_size;
 | |
|         prot_addr    = 0x10000;
 | |
|     } else if (protocol < 0x202) {
 | |
|         /* High but ancient kernel */
 | |
|         real_addr    = 0x90000;
 | |
|         cmdline_addr = 0x9a000 - cmdline_size;
 | |
|         prot_addr    = 0x100000;
 | |
|     } else {
 | |
|         /* High and recent kernel */
 | |
|         real_addr    = 0x10000;
 | |
|         cmdline_addr = 0x20000;
 | |
|         prot_addr    = 0x100000;
 | |
|     }
 | |
| 
 | |
|     /* highest address for loading the initrd */
 | |
|     if (protocol >= 0x20c &&
 | |
|         lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
 | |
|         /*
 | |
|          * Linux has supported initrd up to 4 GB for a very long time (2007,
 | |
|          * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
 | |
|          * though it only sets initrd_max to 2 GB to "work around bootloader
 | |
|          * bugs". Luckily, QEMU firmware(which does something like bootloader)
 | |
|          * has supported this.
 | |
|          *
 | |
|          * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
 | |
|          * be loaded into any address.
 | |
|          *
 | |
|          * In addition, initrd_max is uint32_t simply because QEMU doesn't
 | |
|          * support the 64-bit boot protocol (specifically the ext_ramdisk_image
 | |
|          * field).
 | |
|          *
 | |
|          * Therefore here just limit initrd_max to UINT32_MAX simply as well.
 | |
|          */
 | |
|         initrd_max = UINT32_MAX;
 | |
|     } else if (protocol >= 0x203) {
 | |
|         initrd_max = ldl_p(header + 0x22c);
 | |
|     } else {
 | |
|         initrd_max = 0x37ffffff;
 | |
|     }
 | |
| 
 | |
|     if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
 | |
|         initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
 | |
|     }
 | |
| 
 | |
|     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
 | |
|     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
 | |
|     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
 | |
| 
 | |
|     if (protocol >= 0x202) {
 | |
|         stl_p(header + 0x228, cmdline_addr);
 | |
|     } else {
 | |
|         stw_p(header + 0x20, 0xA33F);
 | |
|         stw_p(header + 0x22, cmdline_addr - real_addr);
 | |
|     }
 | |
| 
 | |
|     /* handle vga= parameter */
 | |
|     vmode = strstr(kernel_cmdline, "vga=");
 | |
|     if (vmode) {
 | |
|         unsigned int video_mode;
 | |
|         const char *end;
 | |
|         int ret;
 | |
|         /* skip "vga=" */
 | |
|         vmode += 4;
 | |
|         if (!strncmp(vmode, "normal", 6)) {
 | |
|             video_mode = 0xffff;
 | |
|         } else if (!strncmp(vmode, "ext", 3)) {
 | |
|             video_mode = 0xfffe;
 | |
|         } else if (!strncmp(vmode, "ask", 3)) {
 | |
|             video_mode = 0xfffd;
 | |
|         } else {
 | |
|             ret = qemu_strtoui(vmode, &end, 0, &video_mode);
 | |
|             if (ret != 0 || (*end && *end != ' ')) {
 | |
|                 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
 | |
|                 exit(1);
 | |
|             }
 | |
|         }
 | |
|         stw_p(header + 0x1fa, video_mode);
 | |
|     }
 | |
| 
 | |
|     /* loader type */
 | |
|     /*
 | |
|      * High nybble = B reserved for QEMU; low nybble is revision number.
 | |
|      * If this code is substantially changed, you may want to consider
 | |
|      * incrementing the revision.
 | |
|      */
 | |
|     if (protocol >= 0x200) {
 | |
|         header[0x210] = 0xB0;
 | |
|     }
 | |
|     /* heap */
 | |
|     if (protocol >= 0x201) {
 | |
|         header[0x211] |= 0x80; /* CAN_USE_HEAP */
 | |
|         stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
 | |
|     }
 | |
| 
 | |
|     /* load initrd */
 | |
|     if (initrd_filename) {
 | |
|         GMappedFile *mapped_file;
 | |
|         gsize initrd_size;
 | |
|         gchar *initrd_data;
 | |
|         GError *gerr = NULL;
 | |
| 
 | |
|         if (protocol < 0x200) {
 | |
|             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
 | |
|         if (!mapped_file) {
 | |
|             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
 | |
|                     initrd_filename, gerr->message);
 | |
|             exit(1);
 | |
|         }
 | |
|         x86ms->initrd_mapped_file = mapped_file;
 | |
| 
 | |
|         initrd_data = g_mapped_file_get_contents(mapped_file);
 | |
|         initrd_size = g_mapped_file_get_length(mapped_file);
 | |
|         if (initrd_size >= initrd_max) {
 | |
|             fprintf(stderr, "qemu: initrd is too large, cannot support."
 | |
|                     "(max: %"PRIu32", need %"PRId64")\n",
 | |
|                     initrd_max, (uint64_t)initrd_size);
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         initrd_addr = (initrd_max - initrd_size) & ~4095;
 | |
| 
 | |
|         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
 | |
|         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
 | |
|         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
 | |
| 
 | |
|         stl_p(header + 0x218, initrd_addr);
 | |
|         stl_p(header + 0x21c, initrd_size);
 | |
|     }
 | |
| 
 | |
|     /* load kernel and setup */
 | |
|     setup_size = header[0x1f1];
 | |
|     if (setup_size == 0) {
 | |
|         setup_size = 4;
 | |
|     }
 | |
|     setup_size = (setup_size + 1) * 512;
 | |
|     if (setup_size > kernel_size) {
 | |
|         fprintf(stderr, "qemu: invalid kernel header\n");
 | |
|         exit(1);
 | |
|     }
 | |
|     kernel_size -= setup_size;
 | |
| 
 | |
|     setup  = g_malloc(setup_size);
 | |
|     kernel = g_malloc(kernel_size);
 | |
|     fseek(f, 0, SEEK_SET);
 | |
|     if (fread(setup, 1, setup_size, f) != setup_size) {
 | |
|         fprintf(stderr, "fread() failed\n");
 | |
|         exit(1);
 | |
|     }
 | |
|     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
 | |
|         fprintf(stderr, "fread() failed\n");
 | |
|         exit(1);
 | |
|     }
 | |
|     fclose(f);
 | |
| 
 | |
|     /* append dtb to kernel */
 | |
|     if (dtb_filename) {
 | |
|         if (protocol < 0x209) {
 | |
|             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         dtb_size = get_image_size(dtb_filename);
 | |
|         if (dtb_size <= 0) {
 | |
|             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
 | |
|                     dtb_filename, strerror(errno));
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
 | |
|         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
 | |
|         kernel = g_realloc(kernel, kernel_size);
 | |
| 
 | |
|         stq_p(header + 0x250, prot_addr + setup_data_offset);
 | |
| 
 | |
|         setup_data = (struct setup_data *)(kernel + setup_data_offset);
 | |
|         setup_data->next = 0;
 | |
|         setup_data->type = cpu_to_le32(SETUP_DTB);
 | |
|         setup_data->len = cpu_to_le32(dtb_size);
 | |
| 
 | |
|         load_image_size(dtb_filename, setup_data->data, dtb_size);
 | |
|     }
 | |
| 
 | |
|     memcpy(setup, header, MIN(sizeof(header), setup_size));
 | |
| 
 | |
|     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
 | |
|     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
 | |
|     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
 | |
| 
 | |
|     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
 | |
|     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
 | |
|     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
 | |
| 
 | |
|     option_rom[nb_option_roms].bootindex = 0;
 | |
|     option_rom[nb_option_roms].name = "linuxboot.bin";
 | |
|     if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
 | |
|         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
 | |
|     }
 | |
|     nb_option_roms++;
 | |
| }
 | |
| 
 | |
| void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
 | |
| {
 | |
|     char *filename;
 | |
|     MemoryRegion *bios, *isa_bios;
 | |
|     int bios_size, isa_bios_size;
 | |
|     int ret;
 | |
| 
 | |
|     /* BIOS load */
 | |
|     if (bios_name == NULL) {
 | |
|         bios_name = BIOS_FILENAME;
 | |
|     }
 | |
|     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
 | |
|     if (filename) {
 | |
|         bios_size = get_image_size(filename);
 | |
|     } else {
 | |
|         bios_size = -1;
 | |
|     }
 | |
|     if (bios_size <= 0 ||
 | |
|         (bios_size % 65536) != 0) {
 | |
|         goto bios_error;
 | |
|     }
 | |
|     bios = g_malloc(sizeof(*bios));
 | |
|     memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
 | |
|     if (!isapc_ram_fw) {
 | |
|         memory_region_set_readonly(bios, true);
 | |
|     }
 | |
|     ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
 | |
|     if (ret != 0) {
 | |
|     bios_error:
 | |
|         fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
 | |
|         exit(1);
 | |
|     }
 | |
|     g_free(filename);
 | |
| 
 | |
|     /* map the last 128KB of the BIOS in ISA space */
 | |
|     isa_bios_size = MIN(bios_size, 128 * KiB);
 | |
|     isa_bios = g_malloc(sizeof(*isa_bios));
 | |
|     memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
 | |
|                              bios_size - isa_bios_size, isa_bios_size);
 | |
|     memory_region_add_subregion_overlap(rom_memory,
 | |
|                                         0x100000 - isa_bios_size,
 | |
|                                         isa_bios,
 | |
|                                         1);
 | |
|     if (!isapc_ram_fw) {
 | |
|         memory_region_set_readonly(isa_bios, true);
 | |
|     }
 | |
| 
 | |
|     /* map all the bios at the top of memory */
 | |
|     memory_region_add_subregion(rom_memory,
 | |
|                                 (uint32_t)(-bios_size),
 | |
|                                 bios);
 | |
| }
 | |
| 
 | |
| bool x86_machine_is_smm_enabled(X86MachineState *x86ms)
 | |
| {
 | |
|     bool smm_available = false;
 | |
| 
 | |
|     if (x86ms->smm == ON_OFF_AUTO_OFF) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (tcg_enabled() || qtest_enabled()) {
 | |
|         smm_available = true;
 | |
|     } else if (kvm_enabled()) {
 | |
|         smm_available = kvm_has_smm();
 | |
|     }
 | |
| 
 | |
|     if (smm_available) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if (x86ms->smm == ON_OFF_AUTO_ON) {
 | |
|         error_report("System Management Mode not supported by this hypervisor.");
 | |
|         exit(1);
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
 | |
|                                void *opaque, Error **errp)
 | |
| {
 | |
|     X86MachineState *x86ms = X86_MACHINE(obj);
 | |
|     OnOffAuto smm = x86ms->smm;
 | |
| 
 | |
|     visit_type_OnOffAuto(v, name, &smm, errp);
 | |
| }
 | |
| 
 | |
| static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
 | |
|                                void *opaque, Error **errp)
 | |
| {
 | |
|     X86MachineState *x86ms = X86_MACHINE(obj);
 | |
| 
 | |
|     visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
 | |
| }
 | |
| 
 | |
| bool x86_machine_is_acpi_enabled(X86MachineState *x86ms)
 | |
| {
 | |
|     if (x86ms->acpi == ON_OFF_AUTO_OFF) {
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
 | |
|                                  void *opaque, Error **errp)
 | |
| {
 | |
|     X86MachineState *x86ms = X86_MACHINE(obj);
 | |
|     OnOffAuto acpi = x86ms->acpi;
 | |
| 
 | |
|     visit_type_OnOffAuto(v, name, &acpi, errp);
 | |
| }
 | |
| 
 | |
| static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
 | |
|                                  void *opaque, Error **errp)
 | |
| {
 | |
|     X86MachineState *x86ms = X86_MACHINE(obj);
 | |
| 
 | |
|     visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
 | |
| }
 | |
| 
 | |
| static void x86_machine_initfn(Object *obj)
 | |
| {
 | |
|     X86MachineState *x86ms = X86_MACHINE(obj);
 | |
| 
 | |
|     x86ms->smm = ON_OFF_AUTO_AUTO;
 | |
|     x86ms->acpi = ON_OFF_AUTO_AUTO;
 | |
|     x86ms->smp_dies = 1;
 | |
| 
 | |
|     x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx;
 | |
|     x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid;
 | |
|     x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids;
 | |
|     x86ms->apicid_pkg_offset = apicid_pkg_offset;
 | |
| }
 | |
| 
 | |
| static void x86_machine_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     MachineClass *mc = MACHINE_CLASS(oc);
 | |
|     X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
 | |
|     NMIClass *nc = NMI_CLASS(oc);
 | |
| 
 | |
|     mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
 | |
|     mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
 | |
|     mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
 | |
|     x86mc->compat_apic_id_mode = false;
 | |
|     x86mc->save_tsc_khz = true;
 | |
|     nc->nmi_monitor_handler = x86_nmi;
 | |
| 
 | |
|     object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
 | |
|         x86_machine_get_smm, x86_machine_set_smm,
 | |
|         NULL, NULL);
 | |
|     object_class_property_set_description(oc, X86_MACHINE_SMM,
 | |
|         "Enable SMM");
 | |
| 
 | |
|     object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
 | |
|         x86_machine_get_acpi, x86_machine_set_acpi,
 | |
|         NULL, NULL);
 | |
|     object_class_property_set_description(oc, X86_MACHINE_ACPI,
 | |
|         "Enable ACPI");
 | |
| }
 | |
| 
 | |
| static const TypeInfo x86_machine_info = {
 | |
|     .name = TYPE_X86_MACHINE,
 | |
|     .parent = TYPE_MACHINE,
 | |
|     .abstract = true,
 | |
|     .instance_size = sizeof(X86MachineState),
 | |
|     .instance_init = x86_machine_initfn,
 | |
|     .class_size = sizeof(X86MachineClass),
 | |
|     .class_init = x86_machine_class_init,
 | |
|     .interfaces = (InterfaceInfo[]) {
 | |
|          { TYPE_NMI },
 | |
|          { }
 | |
|     },
 | |
| };
 | |
| 
 | |
| static void x86_machine_register_types(void)
 | |
| {
 | |
|     type_register_static(&x86_machine_info);
 | |
| }
 | |
| 
 | |
| type_init(x86_machine_register_types)
 |