 900cfbcac6
			
		
	
	
		900cfbcac6
		
	
	
	
	
		
			
			Remove two uses of strdup (use g_path_get_basename instead), and add a comment that this strncpy use is ok. Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Jim Meyering <meyering@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
		
			
				
	
	
		
			2897 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2897 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* This is the Linux kernel elf-loading code, ported into user space */
 | |
| #include <sys/time.h>
 | |
| #include <sys/param.h>
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <sys/types.h>
 | |
| #include <fcntl.h>
 | |
| #include <errno.h>
 | |
| #include <unistd.h>
 | |
| #include <sys/mman.h>
 | |
| #include <sys/resource.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <time.h>
 | |
| 
 | |
| #include "qemu.h"
 | |
| #include "disas.h"
 | |
| 
 | |
| #ifdef _ARCH_PPC64
 | |
| #undef ARCH_DLINFO
 | |
| #undef ELF_PLATFORM
 | |
| #undef ELF_HWCAP
 | |
| #undef ELF_CLASS
 | |
| #undef ELF_DATA
 | |
| #undef ELF_ARCH
 | |
| #endif
 | |
| 
 | |
| #define ELF_OSABI   ELFOSABI_SYSV
 | |
| 
 | |
| /* from personality.h */
 | |
| 
 | |
| /*
 | |
|  * Flags for bug emulation.
 | |
|  *
 | |
|  * These occupy the top three bytes.
 | |
|  */
 | |
| enum {
 | |
|     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
 | |
|     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
 | |
|                                            descriptors (signal handling) */
 | |
|     MMAP_PAGE_ZERO =    0x0100000,
 | |
|     ADDR_COMPAT_LAYOUT = 0x0200000,
 | |
|     READ_IMPLIES_EXEC = 0x0400000,
 | |
|     ADDR_LIMIT_32BIT =  0x0800000,
 | |
|     SHORT_INODE =       0x1000000,
 | |
|     WHOLE_SECONDS =     0x2000000,
 | |
|     STICKY_TIMEOUTS =   0x4000000,
 | |
|     ADDR_LIMIT_3GB =    0x8000000,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Personality types.
 | |
|  *
 | |
|  * These go in the low byte.  Avoid using the top bit, it will
 | |
|  * conflict with error returns.
 | |
|  */
 | |
| enum {
 | |
|     PER_LINUX =         0x0000,
 | |
|     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
 | |
|     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
 | |
|     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
 | |
|     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
 | |
|     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
 | |
|     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
 | |
|     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
 | |
|     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
 | |
|     PER_BSD =           0x0006,
 | |
|     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
 | |
|     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
 | |
|     PER_LINUX32 =       0x0008,
 | |
|     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
 | |
|     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
 | |
|     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
 | |
|     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
 | |
|     PER_RISCOS =        0x000c,
 | |
|     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
 | |
|     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
 | |
|     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
 | |
|     PER_HPUX =          0x0010,
 | |
|     PER_MASK =          0x00ff,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Return the base personality without flags.
 | |
|  */
 | |
| #define personality(pers)       (pers & PER_MASK)
 | |
| 
 | |
| /* this flag is uneffective under linux too, should be deleted */
 | |
| #ifndef MAP_DENYWRITE
 | |
| #define MAP_DENYWRITE 0
 | |
| #endif
 | |
| 
 | |
| /* should probably go in elf.h */
 | |
| #ifndef ELIBBAD
 | |
| #define ELIBBAD 80
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
| #define ELF_DATA        ELFDATA2MSB
 | |
| #else
 | |
| #define ELF_DATA        ELFDATA2LSB
 | |
| #endif
 | |
| 
 | |
| typedef target_ulong    target_elf_greg_t;
 | |
| #ifdef USE_UID16
 | |
| typedef target_ushort   target_uid_t;
 | |
| typedef target_ushort   target_gid_t;
 | |
| #else
 | |
| typedef target_uint     target_uid_t;
 | |
| typedef target_uint     target_gid_t;
 | |
| #endif
 | |
| typedef target_int      target_pid_t;
 | |
| 
 | |
| #ifdef TARGET_I386
 | |
| 
 | |
| #define ELF_PLATFORM get_elf_platform()
 | |
| 
 | |
| static const char *get_elf_platform(void)
 | |
| {
 | |
|     static char elf_platform[] = "i386";
 | |
|     int family = (thread_env->cpuid_version >> 8) & 0xff;
 | |
|     if (family > 6)
 | |
|         family = 6;
 | |
|     if (family >= 3)
 | |
|         elf_platform[1] = '0' + family;
 | |
|     return elf_platform;
 | |
| }
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     return thread_env->cpuid_features;
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_X86_64
 | |
| #define ELF_START_MMAP 0x2aaaaab000ULL
 | |
| #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
 | |
| 
 | |
| #define ELF_CLASS      ELFCLASS64
 | |
| #define ELF_ARCH       EM_X86_64
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 | |
| {
 | |
|     regs->rax = 0;
 | |
|     regs->rsp = infop->start_stack;
 | |
|     regs->rip = infop->entry;
 | |
| }
 | |
| 
 | |
| #define ELF_NREG    27
 | |
| typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| /*
 | |
|  * Note that ELF_NREG should be 29 as there should be place for
 | |
|  * TRAPNO and ERR "registers" as well but linux doesn't dump
 | |
|  * those.
 | |
|  *
 | |
|  * See linux kernel: arch/x86/include/asm/elf.h
 | |
|  */
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 | |
| {
 | |
|     (*regs)[0] = env->regs[15];
 | |
|     (*regs)[1] = env->regs[14];
 | |
|     (*regs)[2] = env->regs[13];
 | |
|     (*regs)[3] = env->regs[12];
 | |
|     (*regs)[4] = env->regs[R_EBP];
 | |
|     (*regs)[5] = env->regs[R_EBX];
 | |
|     (*regs)[6] = env->regs[11];
 | |
|     (*regs)[7] = env->regs[10];
 | |
|     (*regs)[8] = env->regs[9];
 | |
|     (*regs)[9] = env->regs[8];
 | |
|     (*regs)[10] = env->regs[R_EAX];
 | |
|     (*regs)[11] = env->regs[R_ECX];
 | |
|     (*regs)[12] = env->regs[R_EDX];
 | |
|     (*regs)[13] = env->regs[R_ESI];
 | |
|     (*regs)[14] = env->regs[R_EDI];
 | |
|     (*regs)[15] = env->regs[R_EAX]; /* XXX */
 | |
|     (*regs)[16] = env->eip;
 | |
|     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
 | |
|     (*regs)[18] = env->eflags;
 | |
|     (*regs)[19] = env->regs[R_ESP];
 | |
|     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
 | |
|     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
 | |
|     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
 | |
|     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
 | |
|     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
 | |
|     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
 | |
|     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| /*
 | |
|  * This is used to ensure we don't load something for the wrong architecture.
 | |
|  */
 | |
| #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
 | |
| 
 | |
| /*
 | |
|  * These are used to set parameters in the core dumps.
 | |
|  */
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| #define ELF_ARCH        EM_386
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->esp = infop->start_stack;
 | |
|     regs->eip = infop->entry;
 | |
| 
 | |
|     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
 | |
|        starts %edx contains a pointer to a function which might be
 | |
|        registered using `atexit'.  This provides a mean for the
 | |
|        dynamic linker to call DT_FINI functions for shared libraries
 | |
|        that have been loaded before the code runs.
 | |
| 
 | |
|        A value of 0 tells we have no such handler.  */
 | |
|     regs->edx = 0;
 | |
| }
 | |
| 
 | |
| #define ELF_NREG    17
 | |
| typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| /*
 | |
|  * Note that ELF_NREG should be 19 as there should be place for
 | |
|  * TRAPNO and ERR "registers" as well but linux doesn't dump
 | |
|  * those.
 | |
|  *
 | |
|  * See linux kernel: arch/x86/include/asm/elf.h
 | |
|  */
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 | |
| {
 | |
|     (*regs)[0] = env->regs[R_EBX];
 | |
|     (*regs)[1] = env->regs[R_ECX];
 | |
|     (*regs)[2] = env->regs[R_EDX];
 | |
|     (*regs)[3] = env->regs[R_ESI];
 | |
|     (*regs)[4] = env->regs[R_EDI];
 | |
|     (*regs)[5] = env->regs[R_EBP];
 | |
|     (*regs)[6] = env->regs[R_EAX];
 | |
|     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
 | |
|     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
 | |
|     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
 | |
|     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
 | |
|     (*regs)[11] = env->regs[R_EAX]; /* XXX */
 | |
|     (*regs)[12] = env->eip;
 | |
|     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
 | |
|     (*regs)[14] = env->eflags;
 | |
|     (*regs)[15] = env->regs[R_ESP];
 | |
|     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE       4096
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_ARM
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| #define elf_check_arch(x) ( (x) == EM_ARM )
 | |
| 
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| #define ELF_ARCH        EM_ARM
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     abi_long stack = infop->start_stack;
 | |
|     memset(regs, 0, sizeof(*regs));
 | |
|     regs->ARM_cpsr = 0x10;
 | |
|     if (infop->entry & 1)
 | |
|         regs->ARM_cpsr |= CPSR_T;
 | |
|     regs->ARM_pc = infop->entry & 0xfffffffe;
 | |
|     regs->ARM_sp = infop->start_stack;
 | |
|     /* FIXME - what to for failure of get_user()? */
 | |
|     get_user_ual(regs->ARM_r2, stack + 8); /* envp */
 | |
|     get_user_ual(regs->ARM_r1, stack + 4); /* envp */
 | |
|     /* XXX: it seems that r0 is zeroed after ! */
 | |
|     regs->ARM_r0 = 0;
 | |
|     /* For uClinux PIC binaries.  */
 | |
|     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
 | |
|     regs->ARM_r10 = infop->start_data;
 | |
| }
 | |
| 
 | |
| #define ELF_NREG    18
 | |
| typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
 | |
| {
 | |
|     (*regs)[0] = tswapl(env->regs[0]);
 | |
|     (*regs)[1] = tswapl(env->regs[1]);
 | |
|     (*regs)[2] = tswapl(env->regs[2]);
 | |
|     (*regs)[3] = tswapl(env->regs[3]);
 | |
|     (*regs)[4] = tswapl(env->regs[4]);
 | |
|     (*regs)[5] = tswapl(env->regs[5]);
 | |
|     (*regs)[6] = tswapl(env->regs[6]);
 | |
|     (*regs)[7] = tswapl(env->regs[7]);
 | |
|     (*regs)[8] = tswapl(env->regs[8]);
 | |
|     (*regs)[9] = tswapl(env->regs[9]);
 | |
|     (*regs)[10] = tswapl(env->regs[10]);
 | |
|     (*regs)[11] = tswapl(env->regs[11]);
 | |
|     (*regs)[12] = tswapl(env->regs[12]);
 | |
|     (*regs)[13] = tswapl(env->regs[13]);
 | |
|     (*regs)[14] = tswapl(env->regs[14]);
 | |
|     (*regs)[15] = tswapl(env->regs[15]);
 | |
| 
 | |
|     (*regs)[16] = tswapl(cpsr_read((CPUARMState *)env));
 | |
|     (*regs)[17] = tswapl(env->regs[0]); /* XXX */
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE       4096
 | |
| 
 | |
| enum
 | |
| {
 | |
|     ARM_HWCAP_ARM_SWP       = 1 << 0,
 | |
|     ARM_HWCAP_ARM_HALF      = 1 << 1,
 | |
|     ARM_HWCAP_ARM_THUMB     = 1 << 2,
 | |
|     ARM_HWCAP_ARM_26BIT     = 1 << 3,
 | |
|     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
 | |
|     ARM_HWCAP_ARM_FPA       = 1 << 5,
 | |
|     ARM_HWCAP_ARM_VFP       = 1 << 6,
 | |
|     ARM_HWCAP_ARM_EDSP      = 1 << 7,
 | |
|     ARM_HWCAP_ARM_JAVA      = 1 << 8,
 | |
|     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
 | |
|     ARM_HWCAP_ARM_THUMBEE   = 1 << 10,
 | |
|     ARM_HWCAP_ARM_NEON      = 1 << 11,
 | |
|     ARM_HWCAP_ARM_VFPv3     = 1 << 12,
 | |
|     ARM_HWCAP_ARM_VFPv3D16  = 1 << 13,
 | |
| };
 | |
| 
 | |
| #define TARGET_HAS_VALIDATE_GUEST_SPACE
 | |
| /* Return 1 if the proposed guest space is suitable for the guest.
 | |
|  * Return 0 if the proposed guest space isn't suitable, but another
 | |
|  * address space should be tried.
 | |
|  * Return -1 if there is no way the proposed guest space can be
 | |
|  * valid regardless of the base.
 | |
|  * The guest code may leave a page mapped and populate it if the
 | |
|  * address is suitable.
 | |
|  */
 | |
| static int validate_guest_space(unsigned long guest_base,
 | |
|                                 unsigned long guest_size)
 | |
| {
 | |
|     unsigned long real_start, test_page_addr;
 | |
| 
 | |
|     /* We need to check that we can force a fault on access to the
 | |
|      * commpage at 0xffff0fxx
 | |
|      */
 | |
|     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
 | |
| 
 | |
|     /* If the commpage lies within the already allocated guest space,
 | |
|      * then there is no way we can allocate it.
 | |
|      */
 | |
|     if (test_page_addr >= guest_base
 | |
|         && test_page_addr <= (guest_base + guest_size)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* Note it needs to be writeable to let us initialise it */
 | |
|     real_start = (unsigned long)
 | |
|                  mmap((void *)test_page_addr, qemu_host_page_size,
 | |
|                      PROT_READ | PROT_WRITE,
 | |
|                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 | |
| 
 | |
|     /* If we can't map it then try another address */
 | |
|     if (real_start == -1ul) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (real_start != test_page_addr) {
 | |
|         /* OS didn't put the page where we asked - unmap and reject */
 | |
|         munmap((void *)real_start, qemu_host_page_size);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Leave the page mapped
 | |
|      * Populate it (mmap should have left it all 0'd)
 | |
|      */
 | |
| 
 | |
|     /* Kernel helper versions */
 | |
|     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
 | |
| 
 | |
|     /* Now it's populated make it RO */
 | |
|     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
 | |
|         perror("Protecting guest commpage");
 | |
|         exit(-1);
 | |
|     }
 | |
| 
 | |
|     return 1; /* All good */
 | |
| }
 | |
| 
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     CPUARMState *e = thread_env;
 | |
|     uint32_t hwcaps = 0;
 | |
| 
 | |
|     hwcaps |= ARM_HWCAP_ARM_SWP;
 | |
|     hwcaps |= ARM_HWCAP_ARM_HALF;
 | |
|     hwcaps |= ARM_HWCAP_ARM_THUMB;
 | |
|     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
 | |
|     hwcaps |= ARM_HWCAP_ARM_FPA;
 | |
| 
 | |
|     /* probe for the extra features */
 | |
| #define GET_FEATURE(feat, hwcap) \
 | |
|     do {if (arm_feature(e, feat)) { hwcaps |= hwcap; } } while (0)
 | |
|     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
 | |
|     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
 | |
|     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
 | |
|     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
 | |
|     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
 | |
|     GET_FEATURE(ARM_FEATURE_VFP_FP16, ARM_HWCAP_ARM_VFPv3D16);
 | |
| #undef GET_FEATURE
 | |
| 
 | |
|     return hwcaps;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_UNICORE32
 | |
| 
 | |
| #define ELF_START_MMAP          0x80000000
 | |
| 
 | |
| #define elf_check_arch(x)       ((x) == EM_UNICORE32)
 | |
| 
 | |
| #define ELF_CLASS               ELFCLASS32
 | |
| #define ELF_DATA                ELFDATA2LSB
 | |
| #define ELF_ARCH                EM_UNICORE32
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|         struct image_info *infop)
 | |
| {
 | |
|     abi_long stack = infop->start_stack;
 | |
|     memset(regs, 0, sizeof(*regs));
 | |
|     regs->UC32_REG_asr = 0x10;
 | |
|     regs->UC32_REG_pc = infop->entry & 0xfffffffe;
 | |
|     regs->UC32_REG_sp = infop->start_stack;
 | |
|     /* FIXME - what to for failure of get_user()? */
 | |
|     get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
 | |
|     get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
 | |
|     /* XXX: it seems that r0 is zeroed after ! */
 | |
|     regs->UC32_REG_00 = 0;
 | |
| }
 | |
| 
 | |
| #define ELF_NREG    34
 | |
| typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
 | |
| {
 | |
|     (*regs)[0] = env->regs[0];
 | |
|     (*regs)[1] = env->regs[1];
 | |
|     (*regs)[2] = env->regs[2];
 | |
|     (*regs)[3] = env->regs[3];
 | |
|     (*regs)[4] = env->regs[4];
 | |
|     (*regs)[5] = env->regs[5];
 | |
|     (*regs)[6] = env->regs[6];
 | |
|     (*regs)[7] = env->regs[7];
 | |
|     (*regs)[8] = env->regs[8];
 | |
|     (*regs)[9] = env->regs[9];
 | |
|     (*regs)[10] = env->regs[10];
 | |
|     (*regs)[11] = env->regs[11];
 | |
|     (*regs)[12] = env->regs[12];
 | |
|     (*regs)[13] = env->regs[13];
 | |
|     (*regs)[14] = env->regs[14];
 | |
|     (*regs)[15] = env->regs[15];
 | |
|     (*regs)[16] = env->regs[16];
 | |
|     (*regs)[17] = env->regs[17];
 | |
|     (*regs)[18] = env->regs[18];
 | |
|     (*regs)[19] = env->regs[19];
 | |
|     (*regs)[20] = env->regs[20];
 | |
|     (*regs)[21] = env->regs[21];
 | |
|     (*regs)[22] = env->regs[22];
 | |
|     (*regs)[23] = env->regs[23];
 | |
|     (*regs)[24] = env->regs[24];
 | |
|     (*regs)[25] = env->regs[25];
 | |
|     (*regs)[26] = env->regs[26];
 | |
|     (*regs)[27] = env->regs[27];
 | |
|     (*regs)[28] = env->regs[28];
 | |
|     (*regs)[29] = env->regs[29];
 | |
|     (*regs)[30] = env->regs[30];
 | |
|     (*regs)[31] = env->regs[31];
 | |
| 
 | |
|     (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
 | |
|     (*regs)[33] = env->regs[0]; /* XXX */
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE               4096
 | |
| 
 | |
| #define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_SPARC
 | |
| #ifdef TARGET_SPARC64
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 | |
|                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
 | |
| #ifndef TARGET_ABI32
 | |
| #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
 | |
| #else
 | |
| #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
 | |
| #endif
 | |
| 
 | |
| #define ELF_CLASS   ELFCLASS64
 | |
| #define ELF_ARCH    EM_SPARCV9
 | |
| 
 | |
| #define STACK_BIAS              2047
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
| #ifndef TARGET_ABI32
 | |
|     regs->tstate = 0;
 | |
| #endif
 | |
|     regs->pc = infop->entry;
 | |
|     regs->npc = regs->pc + 4;
 | |
|     regs->y = 0;
 | |
| #ifdef TARGET_ABI32
 | |
|     regs->u_regs[14] = infop->start_stack - 16 * 4;
 | |
| #else
 | |
|     if (personality(infop->personality) == PER_LINUX32)
 | |
|         regs->u_regs[14] = infop->start_stack - 16 * 4;
 | |
|     else
 | |
|         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 | |
|                     | HWCAP_SPARC_MULDIV)
 | |
| #define elf_check_arch(x) ( (x) == EM_SPARC )
 | |
| 
 | |
| #define ELF_CLASS   ELFCLASS32
 | |
| #define ELF_ARCH    EM_SPARC
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->psr = 0;
 | |
|     regs->pc = infop->entry;
 | |
|     regs->npc = regs->pc + 4;
 | |
|     regs->y = 0;
 | |
|     regs->u_regs[14] = infop->start_stack - 16 * 4;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_PPC
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
 | |
| 
 | |
| #define elf_check_arch(x) ( (x) == EM_PPC64 )
 | |
| 
 | |
| #define ELF_CLASS       ELFCLASS64
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define elf_check_arch(x) ( (x) == EM_PPC )
 | |
| 
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #define ELF_ARCH        EM_PPC
 | |
| 
 | |
| /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
 | |
|    See arch/powerpc/include/asm/cputable.h.  */
 | |
| enum {
 | |
|     QEMU_PPC_FEATURE_32 = 0x80000000,
 | |
|     QEMU_PPC_FEATURE_64 = 0x40000000,
 | |
|     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
 | |
|     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
 | |
|     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
 | |
|     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
 | |
|     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
 | |
|     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
 | |
|     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
 | |
|     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
 | |
|     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
 | |
|     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
 | |
|     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
 | |
|     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
 | |
|     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
 | |
|     QEMU_PPC_FEATURE_CELL = 0x00010000,
 | |
|     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
 | |
|     QEMU_PPC_FEATURE_SMT = 0x00004000,
 | |
|     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
 | |
|     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
 | |
|     QEMU_PPC_FEATURE_PA6T = 0x00000800,
 | |
|     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
 | |
|     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
 | |
|     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
 | |
|     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
 | |
|     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
 | |
| 
 | |
|     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
 | |
|     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
 | |
| };
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     CPUPPCState *e = thread_env;
 | |
|     uint32_t features = 0;
 | |
| 
 | |
|     /* We don't have to be terribly complete here; the high points are
 | |
|        Altivec/FP/SPE support.  Anything else is just a bonus.  */
 | |
| #define GET_FEATURE(flag, feature)                                      \
 | |
|     do {if (e->insns_flags & flag) features |= feature; } while(0)
 | |
|     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
 | |
|     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
 | |
|     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
 | |
|     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
 | |
|     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
 | |
|     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
 | |
|     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
 | |
|     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
 | |
| #undef GET_FEATURE
 | |
| 
 | |
|     return features;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The requirements here are:
 | |
|  * - keep the final alignment of sp (sp & 0xf)
 | |
|  * - make sure the 32-bit value at the first 16 byte aligned position of
 | |
|  *   AUXV is greater than 16 for glibc compatibility.
 | |
|  *   AT_IGNOREPPC is used for that.
 | |
|  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
 | |
|  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
 | |
|  */
 | |
| #define DLINFO_ARCH_ITEMS       5
 | |
| #define ARCH_DLINFO                                     \
 | |
|     do {                                                \
 | |
|         NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20);              \
 | |
|         NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20);              \
 | |
|         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
 | |
|         /*                                              \
 | |
|          * Now handle glibc compatibility.              \
 | |
|          */                                             \
 | |
|         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 | |
|         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 | |
|     } while (0)
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
 | |
| {
 | |
|     _regs->gpr[1] = infop->start_stack;
 | |
| #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
 | |
|     _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_bias;
 | |
|     infop->entry = ldq_raw(infop->entry) + infop->load_bias;
 | |
| #endif
 | |
|     _regs->nip = infop->entry;
 | |
| }
 | |
| 
 | |
| /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
 | |
| #define ELF_NREG 48
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
 | |
| {
 | |
|     int i;
 | |
|     target_ulong ccr = 0;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
 | |
|         (*regs)[i] = tswapl(env->gpr[i]);
 | |
|     }
 | |
| 
 | |
|     (*regs)[32] = tswapl(env->nip);
 | |
|     (*regs)[33] = tswapl(env->msr);
 | |
|     (*regs)[35] = tswapl(env->ctr);
 | |
|     (*regs)[36] = tswapl(env->lr);
 | |
|     (*regs)[37] = tswapl(env->xer);
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
 | |
|         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
 | |
|     }
 | |
|     (*regs)[38] = tswapl(ccr);
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE       4096
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_MIPS
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| #define elf_check_arch(x) ( (x) == EM_MIPS )
 | |
| 
 | |
| #ifdef TARGET_MIPS64
 | |
| #define ELF_CLASS   ELFCLASS64
 | |
| #else
 | |
| #define ELF_CLASS   ELFCLASS32
 | |
| #endif
 | |
| #define ELF_ARCH    EM_MIPS
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->cp0_status = 2 << CP0St_KSU;
 | |
|     regs->cp0_epc = infop->entry;
 | |
|     regs->regs[29] = infop->start_stack;
 | |
| }
 | |
| 
 | |
| /* See linux kernel: arch/mips/include/asm/elf.h.  */
 | |
| #define ELF_NREG 45
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| /* See linux kernel: arch/mips/include/asm/reg.h.  */
 | |
| enum {
 | |
| #ifdef TARGET_MIPS64
 | |
|     TARGET_EF_R0 = 0,
 | |
| #else
 | |
|     TARGET_EF_R0 = 6,
 | |
| #endif
 | |
|     TARGET_EF_R26 = TARGET_EF_R0 + 26,
 | |
|     TARGET_EF_R27 = TARGET_EF_R0 + 27,
 | |
|     TARGET_EF_LO = TARGET_EF_R0 + 32,
 | |
|     TARGET_EF_HI = TARGET_EF_R0 + 33,
 | |
|     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
 | |
|     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
 | |
|     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
 | |
|     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
 | |
| };
 | |
| 
 | |
| /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < TARGET_EF_R0; i++) {
 | |
|         (*regs)[i] = 0;
 | |
|     }
 | |
|     (*regs)[TARGET_EF_R0] = 0;
 | |
| 
 | |
|     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
 | |
|         (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]);
 | |
|     }
 | |
| 
 | |
|     (*regs)[TARGET_EF_R26] = 0;
 | |
|     (*regs)[TARGET_EF_R27] = 0;
 | |
|     (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]);
 | |
|     (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]);
 | |
|     (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC);
 | |
|     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr);
 | |
|     (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status);
 | |
|     (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause);
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE        4096
 | |
| 
 | |
| #endif /* TARGET_MIPS */
 | |
| 
 | |
| #ifdef TARGET_MICROBLAZE
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
 | |
| 
 | |
| #define ELF_CLASS   ELFCLASS32
 | |
| #define ELF_ARCH    EM_MICROBLAZE
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->pc = infop->entry;
 | |
|     regs->r1 = infop->start_stack;
 | |
| 
 | |
| }
 | |
| 
 | |
| #define ELF_EXEC_PAGESIZE        4096
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_NREG 38
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
 | |
| {
 | |
|     int i, pos = 0;
 | |
| 
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         (*regs)[pos++] = tswapl(env->regs[i]);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 6; i++) {
 | |
|         (*regs)[pos++] = tswapl(env->sregs[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif /* TARGET_MICROBLAZE */
 | |
| 
 | |
| #ifdef TARGET_OPENRISC
 | |
| 
 | |
| #define ELF_START_MMAP 0x08000000
 | |
| 
 | |
| #define elf_check_arch(x) ((x) == EM_OPENRISC)
 | |
| 
 | |
| #define ELF_ARCH EM_OPENRISC
 | |
| #define ELF_CLASS ELFCLASS32
 | |
| #define ELF_DATA  ELFDATA2MSB
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->pc = infop->entry;
 | |
|     regs->gpr[1] = infop->start_stack;
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE 8192
 | |
| 
 | |
| /* See linux kernel arch/openrisc/include/asm/elf.h.  */
 | |
| #define ELF_NREG 34 /* gprs and pc, sr */
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs,
 | |
|                                const CPUOpenRISCState *env)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         (*regs)[i] = tswapl(env->gpr[i]);
 | |
|     }
 | |
| 
 | |
|     (*regs)[32] = tswapl(env->pc);
 | |
|     (*regs)[33] = tswapl(env->sr);
 | |
| }
 | |
| #define ELF_HWCAP 0
 | |
| #define ELF_PLATFORM NULL
 | |
| 
 | |
| #endif /* TARGET_OPENRISC */
 | |
| 
 | |
| #ifdef TARGET_SH4
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| #define elf_check_arch(x) ( (x) == EM_SH )
 | |
| 
 | |
| #define ELF_CLASS ELFCLASS32
 | |
| #define ELF_ARCH  EM_SH
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     /* Check other registers XXXXX */
 | |
|     regs->pc = infop->entry;
 | |
|     regs->regs[15] = infop->start_stack;
 | |
| }
 | |
| 
 | |
| /* See linux kernel: arch/sh/include/asm/elf.h.  */
 | |
| #define ELF_NREG 23
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
 | |
| enum {
 | |
|     TARGET_REG_PC = 16,
 | |
|     TARGET_REG_PR = 17,
 | |
|     TARGET_REG_SR = 18,
 | |
|     TARGET_REG_GBR = 19,
 | |
|     TARGET_REG_MACH = 20,
 | |
|     TARGET_REG_MACL = 21,
 | |
|     TARGET_REG_SYSCALL = 22
 | |
| };
 | |
| 
 | |
| static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
 | |
|                                       const CPUSH4State *env)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         (*regs[i]) = tswapl(env->gregs[i]);
 | |
|     }
 | |
| 
 | |
|     (*regs)[TARGET_REG_PC] = tswapl(env->pc);
 | |
|     (*regs)[TARGET_REG_PR] = tswapl(env->pr);
 | |
|     (*regs)[TARGET_REG_SR] = tswapl(env->sr);
 | |
|     (*regs)[TARGET_REG_GBR] = tswapl(env->gbr);
 | |
|     (*regs)[TARGET_REG_MACH] = tswapl(env->mach);
 | |
|     (*regs)[TARGET_REG_MACL] = tswapl(env->macl);
 | |
|     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE        4096
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_CRIS
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| #define elf_check_arch(x) ( (x) == EM_CRIS )
 | |
| 
 | |
| #define ELF_CLASS ELFCLASS32
 | |
| #define ELF_ARCH  EM_CRIS
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->erp = infop->entry;
 | |
| }
 | |
| 
 | |
| #define ELF_EXEC_PAGESIZE        8192
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_M68K
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| #define elf_check_arch(x) ( (x) == EM_68K )
 | |
| 
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| #define ELF_ARCH        EM_68K
 | |
| 
 | |
| /* ??? Does this need to do anything?
 | |
|    #define ELF_PLAT_INIT(_r) */
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->usp = infop->start_stack;
 | |
|     regs->sr = 0;
 | |
|     regs->pc = infop->entry;
 | |
| }
 | |
| 
 | |
| /* See linux kernel: arch/m68k/include/asm/elf.h.  */
 | |
| #define ELF_NREG 20
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
 | |
| {
 | |
|     (*regs)[0] = tswapl(env->dregs[1]);
 | |
|     (*regs)[1] = tswapl(env->dregs[2]);
 | |
|     (*regs)[2] = tswapl(env->dregs[3]);
 | |
|     (*regs)[3] = tswapl(env->dregs[4]);
 | |
|     (*regs)[4] = tswapl(env->dregs[5]);
 | |
|     (*regs)[5] = tswapl(env->dregs[6]);
 | |
|     (*regs)[6] = tswapl(env->dregs[7]);
 | |
|     (*regs)[7] = tswapl(env->aregs[0]);
 | |
|     (*regs)[8] = tswapl(env->aregs[1]);
 | |
|     (*regs)[9] = tswapl(env->aregs[2]);
 | |
|     (*regs)[10] = tswapl(env->aregs[3]);
 | |
|     (*regs)[11] = tswapl(env->aregs[4]);
 | |
|     (*regs)[12] = tswapl(env->aregs[5]);
 | |
|     (*regs)[13] = tswapl(env->aregs[6]);
 | |
|     (*regs)[14] = tswapl(env->dregs[0]);
 | |
|     (*regs)[15] = tswapl(env->aregs[7]);
 | |
|     (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */
 | |
|     (*regs)[17] = tswapl(env->sr);
 | |
|     (*regs)[18] = tswapl(env->pc);
 | |
|     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE       8192
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_ALPHA
 | |
| 
 | |
| #define ELF_START_MMAP (0x30000000000ULL)
 | |
| 
 | |
| #define elf_check_arch(x) ( (x) == ELF_ARCH )
 | |
| 
 | |
| #define ELF_CLASS      ELFCLASS64
 | |
| #define ELF_ARCH       EM_ALPHA
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->pc = infop->entry;
 | |
|     regs->ps = 8;
 | |
|     regs->usp = infop->start_stack;
 | |
| }
 | |
| 
 | |
| #define ELF_EXEC_PAGESIZE        8192
 | |
| 
 | |
| #endif /* TARGET_ALPHA */
 | |
| 
 | |
| #ifdef TARGET_S390X
 | |
| 
 | |
| #define ELF_START_MMAP (0x20000000000ULL)
 | |
| 
 | |
| #define elf_check_arch(x) ( (x) == ELF_ARCH )
 | |
| 
 | |
| #define ELF_CLASS	ELFCLASS64
 | |
| #define ELF_DATA	ELFDATA2MSB
 | |
| #define ELF_ARCH	EM_S390
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 | |
| {
 | |
|     regs->psw.addr = infop->entry;
 | |
|     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
 | |
|     regs->gprs[15] = infop->start_stack;
 | |
| }
 | |
| 
 | |
| #endif /* TARGET_S390X */
 | |
| 
 | |
| #ifndef ELF_PLATFORM
 | |
| #define ELF_PLATFORM (NULL)
 | |
| #endif
 | |
| 
 | |
| #ifndef ELF_HWCAP
 | |
| #define ELF_HWCAP 0
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_ABI32
 | |
| #undef ELF_CLASS
 | |
| #define ELF_CLASS ELFCLASS32
 | |
| #undef bswaptls
 | |
| #define bswaptls(ptr) bswap32s(ptr)
 | |
| #endif
 | |
| 
 | |
| #include "elf.h"
 | |
| 
 | |
| struct exec
 | |
| {
 | |
|     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
 | |
|     unsigned int a_text;   /* length of text, in bytes */
 | |
|     unsigned int a_data;   /* length of data, in bytes */
 | |
|     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
 | |
|     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
 | |
|     unsigned int a_entry;  /* start address */
 | |
|     unsigned int a_trsize; /* length of relocation info for text, in bytes */
 | |
|     unsigned int a_drsize; /* length of relocation info for data, in bytes */
 | |
| };
 | |
| 
 | |
| 
 | |
| #define N_MAGIC(exec) ((exec).a_info & 0xffff)
 | |
| #define OMAGIC 0407
 | |
| #define NMAGIC 0410
 | |
| #define ZMAGIC 0413
 | |
| #define QMAGIC 0314
 | |
| 
 | |
| /* Necessary parameters */
 | |
| #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
 | |
| #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
 | |
| #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
 | |
| 
 | |
| #define DLINFO_ITEMS 13
 | |
| 
 | |
| static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
 | |
| {
 | |
|     memcpy(to, from, n);
 | |
| }
 | |
| 
 | |
| #ifdef BSWAP_NEEDED
 | |
| static void bswap_ehdr(struct elfhdr *ehdr)
 | |
| {
 | |
|     bswap16s(&ehdr->e_type);            /* Object file type */
 | |
|     bswap16s(&ehdr->e_machine);         /* Architecture */
 | |
|     bswap32s(&ehdr->e_version);         /* Object file version */
 | |
|     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
 | |
|     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
 | |
|     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
 | |
|     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
 | |
|     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
 | |
|     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
 | |
|     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
 | |
|     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
 | |
|     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
 | |
|     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
 | |
| }
 | |
| 
 | |
| static void bswap_phdr(struct elf_phdr *phdr, int phnum)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < phnum; ++i, ++phdr) {
 | |
|         bswap32s(&phdr->p_type);        /* Segment type */
 | |
|         bswap32s(&phdr->p_flags);       /* Segment flags */
 | |
|         bswaptls(&phdr->p_offset);      /* Segment file offset */
 | |
|         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
 | |
|         bswaptls(&phdr->p_paddr);       /* Segment physical address */
 | |
|         bswaptls(&phdr->p_filesz);      /* Segment size in file */
 | |
|         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
 | |
|         bswaptls(&phdr->p_align);       /* Segment alignment */
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bswap_shdr(struct elf_shdr *shdr, int shnum)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < shnum; ++i, ++shdr) {
 | |
|         bswap32s(&shdr->sh_name);
 | |
|         bswap32s(&shdr->sh_type);
 | |
|         bswaptls(&shdr->sh_flags);
 | |
|         bswaptls(&shdr->sh_addr);
 | |
|         bswaptls(&shdr->sh_offset);
 | |
|         bswaptls(&shdr->sh_size);
 | |
|         bswap32s(&shdr->sh_link);
 | |
|         bswap32s(&shdr->sh_info);
 | |
|         bswaptls(&shdr->sh_addralign);
 | |
|         bswaptls(&shdr->sh_entsize);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bswap_sym(struct elf_sym *sym)
 | |
| {
 | |
|     bswap32s(&sym->st_name);
 | |
|     bswaptls(&sym->st_value);
 | |
|     bswaptls(&sym->st_size);
 | |
|     bswap16s(&sym->st_shndx);
 | |
| }
 | |
| #else
 | |
| static inline void bswap_ehdr(struct elfhdr *ehdr) { }
 | |
| static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
 | |
| static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
 | |
| static inline void bswap_sym(struct elf_sym *sym) { }
 | |
| #endif
 | |
| 
 | |
| #ifdef USE_ELF_CORE_DUMP
 | |
| static int elf_core_dump(int, const CPUArchState *);
 | |
| #endif /* USE_ELF_CORE_DUMP */
 | |
| static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
 | |
| 
 | |
| /* Verify the portions of EHDR within E_IDENT for the target.
 | |
|    This can be performed before bswapping the entire header.  */
 | |
| static bool elf_check_ident(struct elfhdr *ehdr)
 | |
| {
 | |
|     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
 | |
|             && ehdr->e_ident[EI_MAG1] == ELFMAG1
 | |
|             && ehdr->e_ident[EI_MAG2] == ELFMAG2
 | |
|             && ehdr->e_ident[EI_MAG3] == ELFMAG3
 | |
|             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
 | |
|             && ehdr->e_ident[EI_DATA] == ELF_DATA
 | |
|             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
 | |
| }
 | |
| 
 | |
| /* Verify the portions of EHDR outside of E_IDENT for the target.
 | |
|    This has to wait until after bswapping the header.  */
 | |
| static bool elf_check_ehdr(struct elfhdr *ehdr)
 | |
| {
 | |
|     return (elf_check_arch(ehdr->e_machine)
 | |
|             && ehdr->e_ehsize == sizeof(struct elfhdr)
 | |
|             && ehdr->e_phentsize == sizeof(struct elf_phdr)
 | |
|             && ehdr->e_shentsize == sizeof(struct elf_shdr)
 | |
|             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 'copy_elf_strings()' copies argument/envelope strings from user
 | |
|  * memory to free pages in kernel mem. These are in a format ready
 | |
|  * to be put directly into the top of new user memory.
 | |
|  *
 | |
|  */
 | |
| static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
 | |
|                                   abi_ulong p)
 | |
| {
 | |
|     char *tmp, *tmp1, *pag = NULL;
 | |
|     int len, offset = 0;
 | |
| 
 | |
|     if (!p) {
 | |
|         return 0;       /* bullet-proofing */
 | |
|     }
 | |
|     while (argc-- > 0) {
 | |
|         tmp = argv[argc];
 | |
|         if (!tmp) {
 | |
|             fprintf(stderr, "VFS: argc is wrong");
 | |
|             exit(-1);
 | |
|         }
 | |
|         tmp1 = tmp;
 | |
|         while (*tmp++);
 | |
|         len = tmp - tmp1;
 | |
|         if (p < len) {  /* this shouldn't happen - 128kB */
 | |
|             return 0;
 | |
|         }
 | |
|         while (len) {
 | |
|             --p; --tmp; --len;
 | |
|             if (--offset < 0) {
 | |
|                 offset = p % TARGET_PAGE_SIZE;
 | |
|                 pag = (char *)page[p/TARGET_PAGE_SIZE];
 | |
|                 if (!pag) {
 | |
|                     pag = g_try_malloc0(TARGET_PAGE_SIZE);
 | |
|                     page[p/TARGET_PAGE_SIZE] = pag;
 | |
|                     if (!pag)
 | |
|                         return 0;
 | |
|                 }
 | |
|             }
 | |
|             if (len == 0 || offset == 0) {
 | |
|                 *(pag + offset) = *tmp;
 | |
|             }
 | |
|             else {
 | |
|                 int bytes_to_copy = (len > offset) ? offset : len;
 | |
|                 tmp -= bytes_to_copy;
 | |
|                 p -= bytes_to_copy;
 | |
|                 offset -= bytes_to_copy;
 | |
|                 len -= bytes_to_copy;
 | |
|                 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
 | |
|                                  struct image_info *info)
 | |
| {
 | |
|     abi_ulong stack_base, size, error, guard;
 | |
|     int i;
 | |
| 
 | |
|     /* Create enough stack to hold everything.  If we don't use
 | |
|        it for args, we'll use it for something else.  */
 | |
|     size = guest_stack_size;
 | |
|     if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
 | |
|         size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
 | |
|     }
 | |
|     guard = TARGET_PAGE_SIZE;
 | |
|     if (guard < qemu_real_host_page_size) {
 | |
|         guard = qemu_real_host_page_size;
 | |
|     }
 | |
| 
 | |
|     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
 | |
|                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 | |
|     if (error == -1) {
 | |
|         perror("mmap stack");
 | |
|         exit(-1);
 | |
|     }
 | |
| 
 | |
|     /* We reserve one extra page at the top of the stack as guard.  */
 | |
|     target_mprotect(error, guard, PROT_NONE);
 | |
| 
 | |
|     info->stack_limit = error + guard;
 | |
|     stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
 | |
|     p += stack_base;
 | |
| 
 | |
|     for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
 | |
|         if (bprm->page[i]) {
 | |
|             info->rss++;
 | |
|             /* FIXME - check return value of memcpy_to_target() for failure */
 | |
|             memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
 | |
|             g_free(bprm->page[i]);
 | |
|         }
 | |
|         stack_base += TARGET_PAGE_SIZE;
 | |
|     }
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| /* Map and zero the bss.  We need to explicitly zero any fractional pages
 | |
|    after the data section (i.e. bss).  */
 | |
| static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
 | |
| {
 | |
|     uintptr_t host_start, host_map_start, host_end;
 | |
| 
 | |
|     last_bss = TARGET_PAGE_ALIGN(last_bss);
 | |
| 
 | |
|     /* ??? There is confusion between qemu_real_host_page_size and
 | |
|        qemu_host_page_size here and elsewhere in target_mmap, which
 | |
|        may lead to the end of the data section mapping from the file
 | |
|        not being mapped.  At least there was an explicit test and
 | |
|        comment for that here, suggesting that "the file size must
 | |
|        be known".  The comment probably pre-dates the introduction
 | |
|        of the fstat system call in target_mmap which does in fact
 | |
|        find out the size.  What isn't clear is if the workaround
 | |
|        here is still actually needed.  For now, continue with it,
 | |
|        but merge it with the "normal" mmap that would allocate the bss.  */
 | |
| 
 | |
|     host_start = (uintptr_t) g2h(elf_bss);
 | |
|     host_end = (uintptr_t) g2h(last_bss);
 | |
|     host_map_start = (host_start + qemu_real_host_page_size - 1);
 | |
|     host_map_start &= -qemu_real_host_page_size;
 | |
| 
 | |
|     if (host_map_start < host_end) {
 | |
|         void *p = mmap((void *)host_map_start, host_end - host_map_start,
 | |
|                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 | |
|         if (p == MAP_FAILED) {
 | |
|             perror("cannot mmap brk");
 | |
|             exit(-1);
 | |
|         }
 | |
| 
 | |
|         /* Since we didn't use target_mmap, make sure to record
 | |
|            the validity of the pages with qemu.  */
 | |
|         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID);
 | |
|     }
 | |
| 
 | |
|     if (host_start < host_map_start) {
 | |
|         memset((void *)host_start, 0, host_map_start - host_start);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_USE_FDPIC
 | |
| static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
 | |
| {
 | |
|     uint16_t n;
 | |
|     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
 | |
| 
 | |
|     /* elf32_fdpic_loadseg */
 | |
|     n = info->nsegs;
 | |
|     while (n--) {
 | |
|         sp -= 12;
 | |
|         put_user_u32(loadsegs[n].addr, sp+0);
 | |
|         put_user_u32(loadsegs[n].p_vaddr, sp+4);
 | |
|         put_user_u32(loadsegs[n].p_memsz, sp+8);
 | |
|     }
 | |
| 
 | |
|     /* elf32_fdpic_loadmap */
 | |
|     sp -= 4;
 | |
|     put_user_u16(0, sp+0); /* version */
 | |
|     put_user_u16(info->nsegs, sp+2); /* nsegs */
 | |
| 
 | |
|     info->personality = PER_LINUX_FDPIC;
 | |
|     info->loadmap_addr = sp;
 | |
| 
 | |
|     return sp;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
 | |
|                                    struct elfhdr *exec,
 | |
|                                    struct image_info *info,
 | |
|                                    struct image_info *interp_info)
 | |
| {
 | |
|     abi_ulong sp;
 | |
|     abi_ulong sp_auxv;
 | |
|     int size;
 | |
|     int i;
 | |
|     abi_ulong u_rand_bytes;
 | |
|     uint8_t k_rand_bytes[16];
 | |
|     abi_ulong u_platform;
 | |
|     const char *k_platform;
 | |
|     const int n = sizeof(elf_addr_t);
 | |
| 
 | |
|     sp = p;
 | |
| 
 | |
| #ifdef CONFIG_USE_FDPIC
 | |
|     /* Needs to be before we load the env/argc/... */
 | |
|     if (elf_is_fdpic(exec)) {
 | |
|         /* Need 4 byte alignment for these structs */
 | |
|         sp &= ~3;
 | |
|         sp = loader_build_fdpic_loadmap(info, sp);
 | |
|         info->other_info = interp_info;
 | |
|         if (interp_info) {
 | |
|             interp_info->other_info = info;
 | |
|             sp = loader_build_fdpic_loadmap(interp_info, sp);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     u_platform = 0;
 | |
|     k_platform = ELF_PLATFORM;
 | |
|     if (k_platform) {
 | |
|         size_t len = strlen(k_platform) + 1;
 | |
|         sp -= (len + n - 1) & ~(n - 1);
 | |
|         u_platform = sp;
 | |
|         /* FIXME - check return value of memcpy_to_target() for failure */
 | |
|         memcpy_to_target(sp, k_platform, len);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Generate 16 random bytes for userspace PRNG seeding (not
 | |
|      * cryptically secure but it's not the aim of QEMU).
 | |
|      */
 | |
|     srand((unsigned int) time(NULL));
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         k_rand_bytes[i] = rand();
 | |
|     }
 | |
|     sp -= 16;
 | |
|     u_rand_bytes = sp;
 | |
|     /* FIXME - check return value of memcpy_to_target() for failure */
 | |
|     memcpy_to_target(sp, k_rand_bytes, 16);
 | |
| 
 | |
|     /*
 | |
|      * Force 16 byte _final_ alignment here for generality.
 | |
|      */
 | |
|     sp = sp &~ (abi_ulong)15;
 | |
|     size = (DLINFO_ITEMS + 1) * 2;
 | |
|     if (k_platform)
 | |
|         size += 2;
 | |
| #ifdef DLINFO_ARCH_ITEMS
 | |
|     size += DLINFO_ARCH_ITEMS * 2;
 | |
| #endif
 | |
|     size += envc + argc + 2;
 | |
|     size += 1;  /* argc itself */
 | |
|     size *= n;
 | |
|     if (size & 15)
 | |
|         sp -= 16 - (size & 15);
 | |
| 
 | |
|     /* This is correct because Linux defines
 | |
|      * elf_addr_t as Elf32_Off / Elf64_Off
 | |
|      */
 | |
| #define NEW_AUX_ENT(id, val) do {               \
 | |
|         sp -= n; put_user_ual(val, sp);         \
 | |
|         sp -= n; put_user_ual(id, sp);          \
 | |
|     } while(0)
 | |
| 
 | |
|     sp_auxv = sp;
 | |
|     NEW_AUX_ENT (AT_NULL, 0);
 | |
| 
 | |
|     /* There must be exactly DLINFO_ITEMS entries here.  */
 | |
|     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
 | |
|     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
 | |
|     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
 | |
|     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
 | |
|     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
 | |
|     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
 | |
|     NEW_AUX_ENT(AT_ENTRY, info->entry);
 | |
|     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
 | |
|     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
 | |
|     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
 | |
|     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
 | |
|     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
 | |
|     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
 | |
|     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
 | |
| 
 | |
|     if (k_platform)
 | |
|         NEW_AUX_ENT(AT_PLATFORM, u_platform);
 | |
| #ifdef ARCH_DLINFO
 | |
|     /*
 | |
|      * ARCH_DLINFO must come last so platform specific code can enforce
 | |
|      * special alignment requirements on the AUXV if necessary (eg. PPC).
 | |
|      */
 | |
|     ARCH_DLINFO;
 | |
| #endif
 | |
| #undef NEW_AUX_ENT
 | |
| 
 | |
|     info->saved_auxv = sp;
 | |
|     info->auxv_len = sp_auxv - sp;
 | |
| 
 | |
|     sp = loader_build_argptr(envc, argc, sp, p, 0);
 | |
|     return sp;
 | |
| }
 | |
| 
 | |
| #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
 | |
| /* If the guest doesn't have a validation function just agree */
 | |
| static int validate_guest_space(unsigned long guest_base,
 | |
|                                 unsigned long guest_size)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| unsigned long init_guest_space(unsigned long host_start,
 | |
|                                unsigned long host_size,
 | |
|                                unsigned long guest_start,
 | |
|                                bool fixed)
 | |
| {
 | |
|     unsigned long current_start, real_start;
 | |
|     int flags;
 | |
| 
 | |
|     assert(host_start || host_size);
 | |
| 
 | |
|     /* If just a starting address is given, then just verify that
 | |
|      * address.  */
 | |
|     if (host_start && !host_size) {
 | |
|         if (validate_guest_space(host_start, host_size) == 1) {
 | |
|             return host_start;
 | |
|         } else {
 | |
|             return (unsigned long)-1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Setup the initial flags and start address.  */
 | |
|     current_start = host_start & qemu_host_page_mask;
 | |
|     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
 | |
|     if (fixed) {
 | |
|         flags |= MAP_FIXED;
 | |
|     }
 | |
| 
 | |
|     /* Otherwise, a non-zero size region of memory needs to be mapped
 | |
|      * and validated.  */
 | |
|     while (1) {
 | |
|         unsigned long real_size = host_size;
 | |
| 
 | |
|         /* Do not use mmap_find_vma here because that is limited to the
 | |
|          * guest address space.  We are going to make the
 | |
|          * guest address space fit whatever we're given.
 | |
|          */
 | |
|         real_start = (unsigned long)
 | |
|             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
 | |
|         if (real_start == (unsigned long)-1) {
 | |
|             return (unsigned long)-1;
 | |
|         }
 | |
| 
 | |
|         /* Ensure the address is properly aligned.  */
 | |
|         if (real_start & ~qemu_host_page_mask) {
 | |
|             munmap((void *)real_start, host_size);
 | |
|             real_size = host_size + qemu_host_page_size;
 | |
|             real_start = (unsigned long)
 | |
|                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
 | |
|             if (real_start == (unsigned long)-1) {
 | |
|                 return (unsigned long)-1;
 | |
|             }
 | |
|             real_start = HOST_PAGE_ALIGN(real_start);
 | |
|         }
 | |
| 
 | |
|         /* Check to see if the address is valid.  */
 | |
|         if (!host_start || real_start == current_start) {
 | |
|             int valid = validate_guest_space(real_start - guest_start,
 | |
|                                              real_size);
 | |
|             if (valid == 1) {
 | |
|                 break;
 | |
|             } else if (valid == -1) {
 | |
|                 return (unsigned long)-1;
 | |
|             }
 | |
|             /* valid == 0, so try again. */
 | |
|         }
 | |
| 
 | |
|         /* That address didn't work.  Unmap and try a different one.
 | |
|          * The address the host picked because is typically right at
 | |
|          * the top of the host address space and leaves the guest with
 | |
|          * no usable address space.  Resort to a linear search.  We
 | |
|          * already compensated for mmap_min_addr, so this should not
 | |
|          * happen often.  Probably means we got unlucky and host
 | |
|          * address space randomization put a shared library somewhere
 | |
|          * inconvenient.
 | |
|          */
 | |
|         munmap((void *)real_start, host_size);
 | |
|         current_start += qemu_host_page_size;
 | |
|         if (host_start == current_start) {
 | |
|             /* Theoretically possible if host doesn't have any suitably
 | |
|              * aligned areas.  Normally the first mmap will fail.
 | |
|              */
 | |
|             return (unsigned long)-1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
 | |
| 
 | |
|     return real_start;
 | |
| }
 | |
| 
 | |
| static void probe_guest_base(const char *image_name,
 | |
|                              abi_ulong loaddr, abi_ulong hiaddr)
 | |
| {
 | |
|     /* Probe for a suitable guest base address, if the user has not set
 | |
|      * it explicitly, and set guest_base appropriately.
 | |
|      * In case of error we will print a suitable message and exit.
 | |
|      */
 | |
| #if defined(CONFIG_USE_GUEST_BASE)
 | |
|     const char *errmsg;
 | |
|     if (!have_guest_base && !reserved_va) {
 | |
|         unsigned long host_start, real_start, host_size;
 | |
| 
 | |
|         /* Round addresses to page boundaries.  */
 | |
|         loaddr &= qemu_host_page_mask;
 | |
|         hiaddr = HOST_PAGE_ALIGN(hiaddr);
 | |
| 
 | |
|         if (loaddr < mmap_min_addr) {
 | |
|             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
 | |
|         } else {
 | |
|             host_start = loaddr;
 | |
|             if (host_start != loaddr) {
 | |
|                 errmsg = "Address overflow loading ELF binary";
 | |
|                 goto exit_errmsg;
 | |
|             }
 | |
|         }
 | |
|         host_size = hiaddr - loaddr;
 | |
| 
 | |
|         /* Setup the initial guest memory space with ranges gleaned from
 | |
|          * the ELF image that is being loaded.
 | |
|          */
 | |
|         real_start = init_guest_space(host_start, host_size, loaddr, false);
 | |
|         if (real_start == (unsigned long)-1) {
 | |
|             errmsg = "Unable to find space for application";
 | |
|             goto exit_errmsg;
 | |
|         }
 | |
|         guest_base = real_start - loaddr;
 | |
| 
 | |
|         qemu_log("Relocating guest address space from 0x"
 | |
|                  TARGET_ABI_FMT_lx " to 0x%lx\n",
 | |
|                  loaddr, real_start);
 | |
|     }
 | |
|     return;
 | |
| 
 | |
| exit_errmsg:
 | |
|     fprintf(stderr, "%s: %s\n", image_name, errmsg);
 | |
|     exit(-1);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Load an ELF image into the address space.
 | |
| 
 | |
|    IMAGE_NAME is the filename of the image, to use in error messages.
 | |
|    IMAGE_FD is the open file descriptor for the image.
 | |
| 
 | |
|    BPRM_BUF is a copy of the beginning of the file; this of course
 | |
|    contains the elf file header at offset 0.  It is assumed that this
 | |
|    buffer is sufficiently aligned to present no problems to the host
 | |
|    in accessing data at aligned offsets within the buffer.
 | |
| 
 | |
|    On return: INFO values will be filled in, as necessary or available.  */
 | |
| 
 | |
| static void load_elf_image(const char *image_name, int image_fd,
 | |
|                            struct image_info *info, char **pinterp_name,
 | |
|                            char bprm_buf[BPRM_BUF_SIZE])
 | |
| {
 | |
|     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
 | |
|     struct elf_phdr *phdr;
 | |
|     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
 | |
|     int i, retval;
 | |
|     const char *errmsg;
 | |
| 
 | |
|     /* First of all, some simple consistency checks */
 | |
|     errmsg = "Invalid ELF image for this architecture";
 | |
|     if (!elf_check_ident(ehdr)) {
 | |
|         goto exit_errmsg;
 | |
|     }
 | |
|     bswap_ehdr(ehdr);
 | |
|     if (!elf_check_ehdr(ehdr)) {
 | |
|         goto exit_errmsg;
 | |
|     }
 | |
| 
 | |
|     i = ehdr->e_phnum * sizeof(struct elf_phdr);
 | |
|     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
 | |
|         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
 | |
|     } else {
 | |
|         phdr = (struct elf_phdr *) alloca(i);
 | |
|         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
 | |
|         if (retval != i) {
 | |
|             goto exit_read;
 | |
|         }
 | |
|     }
 | |
|     bswap_phdr(phdr, ehdr->e_phnum);
 | |
| 
 | |
| #ifdef CONFIG_USE_FDPIC
 | |
|     info->nsegs = 0;
 | |
|     info->pt_dynamic_addr = 0;
 | |
| #endif
 | |
| 
 | |
|     /* Find the maximum size of the image and allocate an appropriate
 | |
|        amount of memory to handle that.  */
 | |
|     loaddr = -1, hiaddr = 0;
 | |
|     for (i = 0; i < ehdr->e_phnum; ++i) {
 | |
|         if (phdr[i].p_type == PT_LOAD) {
 | |
|             abi_ulong a = phdr[i].p_vaddr;
 | |
|             if (a < loaddr) {
 | |
|                 loaddr = a;
 | |
|             }
 | |
|             a += phdr[i].p_memsz;
 | |
|             if (a > hiaddr) {
 | |
|                 hiaddr = a;
 | |
|             }
 | |
| #ifdef CONFIG_USE_FDPIC
 | |
|             ++info->nsegs;
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     load_addr = loaddr;
 | |
|     if (ehdr->e_type == ET_DYN) {
 | |
|         /* The image indicates that it can be loaded anywhere.  Find a
 | |
|            location that can hold the memory space required.  If the
 | |
|            image is pre-linked, LOADDR will be non-zero.  Since we do
 | |
|            not supply MAP_FIXED here we'll use that address if and
 | |
|            only if it remains available.  */
 | |
|         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
 | |
|                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
 | |
|                                 -1, 0);
 | |
|         if (load_addr == -1) {
 | |
|             goto exit_perror;
 | |
|         }
 | |
|     } else if (pinterp_name != NULL) {
 | |
|         /* This is the main executable.  Make sure that the low
 | |
|            address does not conflict with MMAP_MIN_ADDR or the
 | |
|            QEMU application itself.  */
 | |
|         probe_guest_base(image_name, loaddr, hiaddr);
 | |
|     }
 | |
|     load_bias = load_addr - loaddr;
 | |
| 
 | |
| #ifdef CONFIG_USE_FDPIC
 | |
|     {
 | |
|         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
 | |
|             g_malloc(sizeof(*loadsegs) * info->nsegs);
 | |
| 
 | |
|         for (i = 0; i < ehdr->e_phnum; ++i) {
 | |
|             switch (phdr[i].p_type) {
 | |
|             case PT_DYNAMIC:
 | |
|                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
 | |
|                 break;
 | |
|             case PT_LOAD:
 | |
|                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
 | |
|                 loadsegs->p_vaddr = phdr[i].p_vaddr;
 | |
|                 loadsegs->p_memsz = phdr[i].p_memsz;
 | |
|                 ++loadsegs;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     info->load_bias = load_bias;
 | |
|     info->load_addr = load_addr;
 | |
|     info->entry = ehdr->e_entry + load_bias;
 | |
|     info->start_code = -1;
 | |
|     info->end_code = 0;
 | |
|     info->start_data = -1;
 | |
|     info->end_data = 0;
 | |
|     info->brk = 0;
 | |
|     info->elf_flags = ehdr->e_flags;
 | |
| 
 | |
|     for (i = 0; i < ehdr->e_phnum; i++) {
 | |
|         struct elf_phdr *eppnt = phdr + i;
 | |
|         if (eppnt->p_type == PT_LOAD) {
 | |
|             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
 | |
|             int elf_prot = 0;
 | |
| 
 | |
|             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
 | |
|             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
 | |
|             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
 | |
| 
 | |
|             vaddr = load_bias + eppnt->p_vaddr;
 | |
|             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
 | |
|             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
 | |
| 
 | |
|             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
 | |
|                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
 | |
|                                 image_fd, eppnt->p_offset - vaddr_po);
 | |
|             if (error == -1) {
 | |
|                 goto exit_perror;
 | |
|             }
 | |
| 
 | |
|             vaddr_ef = vaddr + eppnt->p_filesz;
 | |
|             vaddr_em = vaddr + eppnt->p_memsz;
 | |
| 
 | |
|             /* If the load segment requests extra zeros (e.g. bss), map it.  */
 | |
|             if (vaddr_ef < vaddr_em) {
 | |
|                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
 | |
|             }
 | |
| 
 | |
|             /* Find the full program boundaries.  */
 | |
|             if (elf_prot & PROT_EXEC) {
 | |
|                 if (vaddr < info->start_code) {
 | |
|                     info->start_code = vaddr;
 | |
|                 }
 | |
|                 if (vaddr_ef > info->end_code) {
 | |
|                     info->end_code = vaddr_ef;
 | |
|                 }
 | |
|             }
 | |
|             if (elf_prot & PROT_WRITE) {
 | |
|                 if (vaddr < info->start_data) {
 | |
|                     info->start_data = vaddr;
 | |
|                 }
 | |
|                 if (vaddr_ef > info->end_data) {
 | |
|                     info->end_data = vaddr_ef;
 | |
|                 }
 | |
|                 if (vaddr_em > info->brk) {
 | |
|                     info->brk = vaddr_em;
 | |
|                 }
 | |
|             }
 | |
|         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
 | |
|             char *interp_name;
 | |
| 
 | |
|             if (*pinterp_name) {
 | |
|                 errmsg = "Multiple PT_INTERP entries";
 | |
|                 goto exit_errmsg;
 | |
|             }
 | |
|             interp_name = malloc(eppnt->p_filesz);
 | |
|             if (!interp_name) {
 | |
|                 goto exit_perror;
 | |
|             }
 | |
| 
 | |
|             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
 | |
|                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
 | |
|                        eppnt->p_filesz);
 | |
|             } else {
 | |
|                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
 | |
|                                eppnt->p_offset);
 | |
|                 if (retval != eppnt->p_filesz) {
 | |
|                     goto exit_perror;
 | |
|                 }
 | |
|             }
 | |
|             if (interp_name[eppnt->p_filesz - 1] != 0) {
 | |
|                 errmsg = "Invalid PT_INTERP entry";
 | |
|                 goto exit_errmsg;
 | |
|             }
 | |
|             *pinterp_name = interp_name;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (info->end_data == 0) {
 | |
|         info->start_data = info->end_code;
 | |
|         info->end_data = info->end_code;
 | |
|         info->brk = info->end_code;
 | |
|     }
 | |
| 
 | |
|     if (qemu_log_enabled()) {
 | |
|         load_symbols(ehdr, image_fd, load_bias);
 | |
|     }
 | |
| 
 | |
|     close(image_fd);
 | |
|     return;
 | |
| 
 | |
|  exit_read:
 | |
|     if (retval >= 0) {
 | |
|         errmsg = "Incomplete read of file header";
 | |
|         goto exit_errmsg;
 | |
|     }
 | |
|  exit_perror:
 | |
|     errmsg = strerror(errno);
 | |
|  exit_errmsg:
 | |
|     fprintf(stderr, "%s: %s\n", image_name, errmsg);
 | |
|     exit(-1);
 | |
| }
 | |
| 
 | |
| static void load_elf_interp(const char *filename, struct image_info *info,
 | |
|                             char bprm_buf[BPRM_BUF_SIZE])
 | |
| {
 | |
|     int fd, retval;
 | |
| 
 | |
|     fd = open(path(filename), O_RDONLY);
 | |
|     if (fd < 0) {
 | |
|         goto exit_perror;
 | |
|     }
 | |
| 
 | |
|     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
 | |
|     if (retval < 0) {
 | |
|         goto exit_perror;
 | |
|     }
 | |
|     if (retval < BPRM_BUF_SIZE) {
 | |
|         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
 | |
|     }
 | |
| 
 | |
|     load_elf_image(filename, fd, info, NULL, bprm_buf);
 | |
|     return;
 | |
| 
 | |
|  exit_perror:
 | |
|     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
 | |
|     exit(-1);
 | |
| }
 | |
| 
 | |
| static int symfind(const void *s0, const void *s1)
 | |
| {
 | |
|     target_ulong addr = *(target_ulong *)s0;
 | |
|     struct elf_sym *sym = (struct elf_sym *)s1;
 | |
|     int result = 0;
 | |
|     if (addr < sym->st_value) {
 | |
|         result = -1;
 | |
|     } else if (addr >= sym->st_value + sym->st_size) {
 | |
|         result = 1;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
 | |
| {
 | |
| #if ELF_CLASS == ELFCLASS32
 | |
|     struct elf_sym *syms = s->disas_symtab.elf32;
 | |
| #else
 | |
|     struct elf_sym *syms = s->disas_symtab.elf64;
 | |
| #endif
 | |
| 
 | |
|     // binary search
 | |
|     struct elf_sym *sym;
 | |
| 
 | |
|     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
 | |
|     if (sym != NULL) {
 | |
|         return s->disas_strtab + sym->st_name;
 | |
|     }
 | |
| 
 | |
|     return "";
 | |
| }
 | |
| 
 | |
| /* FIXME: This should use elf_ops.h  */
 | |
| static int symcmp(const void *s0, const void *s1)
 | |
| {
 | |
|     struct elf_sym *sym0 = (struct elf_sym *)s0;
 | |
|     struct elf_sym *sym1 = (struct elf_sym *)s1;
 | |
|     return (sym0->st_value < sym1->st_value)
 | |
|         ? -1
 | |
|         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
 | |
| }
 | |
| 
 | |
| /* Best attempt to load symbols from this ELF object. */
 | |
| static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
 | |
| {
 | |
|     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
 | |
|     struct elf_shdr *shdr;
 | |
|     char *strings = NULL;
 | |
|     struct syminfo *s = NULL;
 | |
|     struct elf_sym *new_syms, *syms = NULL;
 | |
| 
 | |
|     shnum = hdr->e_shnum;
 | |
|     i = shnum * sizeof(struct elf_shdr);
 | |
|     shdr = (struct elf_shdr *)alloca(i);
 | |
|     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bswap_shdr(shdr, shnum);
 | |
|     for (i = 0; i < shnum; ++i) {
 | |
|         if (shdr[i].sh_type == SHT_SYMTAB) {
 | |
|             sym_idx = i;
 | |
|             str_idx = shdr[i].sh_link;
 | |
|             goto found;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* There will be no symbol table if the file was stripped.  */
 | |
|     return;
 | |
| 
 | |
|  found:
 | |
|     /* Now know where the strtab and symtab are.  Snarf them.  */
 | |
|     s = malloc(sizeof(*s));
 | |
|     if (!s) {
 | |
|         goto give_up;
 | |
|     }
 | |
| 
 | |
|     i = shdr[str_idx].sh_size;
 | |
|     s->disas_strtab = strings = malloc(i);
 | |
|     if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
 | |
|         goto give_up;
 | |
|     }
 | |
| 
 | |
|     i = shdr[sym_idx].sh_size;
 | |
|     syms = malloc(i);
 | |
|     if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
 | |
|         goto give_up;
 | |
|     }
 | |
| 
 | |
|     nsyms = i / sizeof(struct elf_sym);
 | |
|     for (i = 0; i < nsyms; ) {
 | |
|         bswap_sym(syms + i);
 | |
|         /* Throw away entries which we do not need.  */
 | |
|         if (syms[i].st_shndx == SHN_UNDEF
 | |
|             || syms[i].st_shndx >= SHN_LORESERVE
 | |
|             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
 | |
|             if (i < --nsyms) {
 | |
|                 syms[i] = syms[nsyms];
 | |
|             }
 | |
|         } else {
 | |
| #if defined(TARGET_ARM) || defined (TARGET_MIPS)
 | |
|             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
 | |
|             syms[i].st_value &= ~(target_ulong)1;
 | |
| #endif
 | |
|             syms[i].st_value += load_bias;
 | |
|             i++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* No "useful" symbol.  */
 | |
|     if (nsyms == 0) {
 | |
|         goto give_up;
 | |
|     }
 | |
| 
 | |
|     /* Attempt to free the storage associated with the local symbols
 | |
|        that we threw away.  Whether or not this has any effect on the
 | |
|        memory allocation depends on the malloc implementation and how
 | |
|        many symbols we managed to discard.  */
 | |
|     new_syms = realloc(syms, nsyms * sizeof(*syms));
 | |
|     if (new_syms == NULL) {
 | |
|         goto give_up;
 | |
|     }
 | |
|     syms = new_syms;
 | |
| 
 | |
|     qsort(syms, nsyms, sizeof(*syms), symcmp);
 | |
| 
 | |
|     s->disas_num_syms = nsyms;
 | |
| #if ELF_CLASS == ELFCLASS32
 | |
|     s->disas_symtab.elf32 = syms;
 | |
| #else
 | |
|     s->disas_symtab.elf64 = syms;
 | |
| #endif
 | |
|     s->lookup_symbol = lookup_symbolxx;
 | |
|     s->next = syminfos;
 | |
|     syminfos = s;
 | |
| 
 | |
|     return;
 | |
| 
 | |
| give_up:
 | |
|     free(s);
 | |
|     free(strings);
 | |
|     free(syms);
 | |
| }
 | |
| 
 | |
| int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
 | |
|                     struct image_info * info)
 | |
| {
 | |
|     struct image_info interp_info;
 | |
|     struct elfhdr elf_ex;
 | |
|     char *elf_interpreter = NULL;
 | |
| 
 | |
|     info->start_mmap = (abi_ulong)ELF_START_MMAP;
 | |
|     info->mmap = 0;
 | |
|     info->rss = 0;
 | |
| 
 | |
|     load_elf_image(bprm->filename, bprm->fd, info,
 | |
|                    &elf_interpreter, bprm->buf);
 | |
| 
 | |
|     /* ??? We need a copy of the elf header for passing to create_elf_tables.
 | |
|        If we do nothing, we'll have overwritten this when we re-use bprm->buf
 | |
|        when we load the interpreter.  */
 | |
|     elf_ex = *(struct elfhdr *)bprm->buf;
 | |
| 
 | |
|     bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
 | |
|     bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
 | |
|     bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
 | |
|     if (!bprm->p) {
 | |
|         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
 | |
|         exit(-1);
 | |
|     }
 | |
| 
 | |
|     /* Do this so that we can load the interpreter, if need be.  We will
 | |
|        change some of these later */
 | |
|     bprm->p = setup_arg_pages(bprm->p, bprm, info);
 | |
| 
 | |
|     if (elf_interpreter) {
 | |
|         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
 | |
| 
 | |
|         /* If the program interpreter is one of these two, then assume
 | |
|            an iBCS2 image.  Otherwise assume a native linux image.  */
 | |
| 
 | |
|         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
 | |
|             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
 | |
|             info->personality = PER_SVR4;
 | |
| 
 | |
|             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
 | |
|                and some applications "depend" upon this behavior.  Since
 | |
|                we do not have the power to recompile these, we emulate
 | |
|                the SVr4 behavior.  Sigh.  */
 | |
|             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
 | |
|                         MAP_FIXED | MAP_PRIVATE, -1, 0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
 | |
|                                 info, (elf_interpreter ? &interp_info : NULL));
 | |
|     info->start_stack = bprm->p;
 | |
| 
 | |
|     /* If we have an interpreter, set that as the program's entry point.
 | |
|        Copy the load_bias as well, to help PPC64 interpret the entry
 | |
|        point as a function descriptor.  Do this after creating elf tables
 | |
|        so that we copy the original program entry point into the AUXV.  */
 | |
|     if (elf_interpreter) {
 | |
|         info->load_bias = interp_info.load_bias;
 | |
|         info->entry = interp_info.entry;
 | |
|         free(elf_interpreter);
 | |
|     }
 | |
| 
 | |
| #ifdef USE_ELF_CORE_DUMP
 | |
|     bprm->core_dump = &elf_core_dump;
 | |
| #endif
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #ifdef USE_ELF_CORE_DUMP
 | |
| /*
 | |
|  * Definitions to generate Intel SVR4-like core files.
 | |
|  * These mostly have the same names as the SVR4 types with "target_elf_"
 | |
|  * tacked on the front to prevent clashes with linux definitions,
 | |
|  * and the typedef forms have been avoided.  This is mostly like
 | |
|  * the SVR4 structure, but more Linuxy, with things that Linux does
 | |
|  * not support and which gdb doesn't really use excluded.
 | |
|  *
 | |
|  * Fields we don't dump (their contents is zero) in linux-user qemu
 | |
|  * are marked with XXX.
 | |
|  *
 | |
|  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
 | |
|  *
 | |
|  * Porting ELF coredump for target is (quite) simple process.  First you
 | |
|  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
 | |
|  * the target resides):
 | |
|  *
 | |
|  * #define USE_ELF_CORE_DUMP
 | |
|  *
 | |
|  * Next you define type of register set used for dumping.  ELF specification
 | |
|  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
 | |
|  *
 | |
|  * typedef <target_regtype> target_elf_greg_t;
 | |
|  * #define ELF_NREG <number of registers>
 | |
|  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
|  *
 | |
|  * Last step is to implement target specific function that copies registers
 | |
|  * from given cpu into just specified register set.  Prototype is:
 | |
|  *
 | |
|  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
 | |
|  *                                const CPUArchState *env);
 | |
|  *
 | |
|  * Parameters:
 | |
|  *     regs - copy register values into here (allocated and zeroed by caller)
 | |
|  *     env - copy registers from here
 | |
|  *
 | |
|  * Example for ARM target is provided in this file.
 | |
|  */
 | |
| 
 | |
| /* An ELF note in memory */
 | |
| struct memelfnote {
 | |
|     const char *name;
 | |
|     size_t     namesz;
 | |
|     size_t     namesz_rounded;
 | |
|     int        type;
 | |
|     size_t     datasz;
 | |
|     size_t     datasz_rounded;
 | |
|     void       *data;
 | |
|     size_t     notesz;
 | |
| };
 | |
| 
 | |
| struct target_elf_siginfo {
 | |
|     target_int  si_signo; /* signal number */
 | |
|     target_int  si_code;  /* extra code */
 | |
|     target_int  si_errno; /* errno */
 | |
| };
 | |
| 
 | |
| struct target_elf_prstatus {
 | |
|     struct target_elf_siginfo pr_info;      /* Info associated with signal */
 | |
|     target_short       pr_cursig;    /* Current signal */
 | |
|     target_ulong       pr_sigpend;   /* XXX */
 | |
|     target_ulong       pr_sighold;   /* XXX */
 | |
|     target_pid_t       pr_pid;
 | |
|     target_pid_t       pr_ppid;
 | |
|     target_pid_t       pr_pgrp;
 | |
|     target_pid_t       pr_sid;
 | |
|     struct target_timeval pr_utime;  /* XXX User time */
 | |
|     struct target_timeval pr_stime;  /* XXX System time */
 | |
|     struct target_timeval pr_cutime; /* XXX Cumulative user time */
 | |
|     struct target_timeval pr_cstime; /* XXX Cumulative system time */
 | |
|     target_elf_gregset_t      pr_reg;       /* GP registers */
 | |
|     target_int         pr_fpvalid;   /* XXX */
 | |
| };
 | |
| 
 | |
| #define ELF_PRARGSZ     (80) /* Number of chars for args */
 | |
| 
 | |
| struct target_elf_prpsinfo {
 | |
|     char         pr_state;       /* numeric process state */
 | |
|     char         pr_sname;       /* char for pr_state */
 | |
|     char         pr_zomb;        /* zombie */
 | |
|     char         pr_nice;        /* nice val */
 | |
|     target_ulong pr_flag;        /* flags */
 | |
|     target_uid_t pr_uid;
 | |
|     target_gid_t pr_gid;
 | |
|     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
 | |
|     /* Lots missing */
 | |
|     char    pr_fname[16];           /* filename of executable */
 | |
|     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
 | |
| };
 | |
| 
 | |
| /* Here is the structure in which status of each thread is captured. */
 | |
| struct elf_thread_status {
 | |
|     QTAILQ_ENTRY(elf_thread_status)  ets_link;
 | |
|     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
 | |
| #if 0
 | |
|     elf_fpregset_t fpu;             /* NT_PRFPREG */
 | |
|     struct task_struct *thread;
 | |
|     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
 | |
| #endif
 | |
|     struct memelfnote notes[1];
 | |
|     int num_notes;
 | |
| };
 | |
| 
 | |
| struct elf_note_info {
 | |
|     struct memelfnote   *notes;
 | |
|     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
 | |
|     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
 | |
| 
 | |
|     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
 | |
| #if 0
 | |
|     /*
 | |
|      * Current version of ELF coredump doesn't support
 | |
|      * dumping fp regs etc.
 | |
|      */
 | |
|     elf_fpregset_t *fpu;
 | |
|     elf_fpxregset_t *xfpu;
 | |
|     int thread_status_size;
 | |
| #endif
 | |
|     int notes_size;
 | |
|     int numnote;
 | |
| };
 | |
| 
 | |
| struct vm_area_struct {
 | |
|     abi_ulong   vma_start;  /* start vaddr of memory region */
 | |
|     abi_ulong   vma_end;    /* end vaddr of memory region */
 | |
|     abi_ulong   vma_flags;  /* protection etc. flags for the region */
 | |
|     QTAILQ_ENTRY(vm_area_struct) vma_link;
 | |
| };
 | |
| 
 | |
| struct mm_struct {
 | |
|     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
 | |
|     int mm_count;           /* number of mappings */
 | |
| };
 | |
| 
 | |
| static struct mm_struct *vma_init(void);
 | |
| static void vma_delete(struct mm_struct *);
 | |
| static int vma_add_mapping(struct mm_struct *, abi_ulong,
 | |
|                            abi_ulong, abi_ulong);
 | |
| static int vma_get_mapping_count(const struct mm_struct *);
 | |
| static struct vm_area_struct *vma_first(const struct mm_struct *);
 | |
| static struct vm_area_struct *vma_next(struct vm_area_struct *);
 | |
| static abi_ulong vma_dump_size(const struct vm_area_struct *);
 | |
| static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
 | |
|                       unsigned long flags);
 | |
| 
 | |
| static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
 | |
| static void fill_note(struct memelfnote *, const char *, int,
 | |
|                       unsigned int, void *);
 | |
| static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
 | |
| static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
 | |
| static void fill_auxv_note(struct memelfnote *, const TaskState *);
 | |
| static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
 | |
| static size_t note_size(const struct memelfnote *);
 | |
| static void free_note_info(struct elf_note_info *);
 | |
| static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
 | |
| static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
 | |
| static int core_dump_filename(const TaskState *, char *, size_t);
 | |
| 
 | |
| static int dump_write(int, const void *, size_t);
 | |
| static int write_note(struct memelfnote *, int);
 | |
| static int write_note_info(struct elf_note_info *, int);
 | |
| 
 | |
| #ifdef BSWAP_NEEDED
 | |
| static void bswap_prstatus(struct target_elf_prstatus *prstatus)
 | |
| {
 | |
|     prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
 | |
|     prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
 | |
|     prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
 | |
|     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
 | |
|     prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
 | |
|     prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
 | |
|     prstatus->pr_pid = tswap32(prstatus->pr_pid);
 | |
|     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
 | |
|     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
 | |
|     prstatus->pr_sid = tswap32(prstatus->pr_sid);
 | |
|     /* cpu times are not filled, so we skip them */
 | |
|     /* regs should be in correct format already */
 | |
|     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
 | |
| }
 | |
| 
 | |
| static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
 | |
| {
 | |
|     psinfo->pr_flag = tswapl(psinfo->pr_flag);
 | |
|     psinfo->pr_uid = tswap16(psinfo->pr_uid);
 | |
|     psinfo->pr_gid = tswap16(psinfo->pr_gid);
 | |
|     psinfo->pr_pid = tswap32(psinfo->pr_pid);
 | |
|     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
 | |
|     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
 | |
|     psinfo->pr_sid = tswap32(psinfo->pr_sid);
 | |
| }
 | |
| 
 | |
| static void bswap_note(struct elf_note *en)
 | |
| {
 | |
|     bswap32s(&en->n_namesz);
 | |
|     bswap32s(&en->n_descsz);
 | |
|     bswap32s(&en->n_type);
 | |
| }
 | |
| #else
 | |
| static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
 | |
| static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
 | |
| static inline void bswap_note(struct elf_note *en) { }
 | |
| #endif /* BSWAP_NEEDED */
 | |
| 
 | |
| /*
 | |
|  * Minimal support for linux memory regions.  These are needed
 | |
|  * when we are finding out what memory exactly belongs to
 | |
|  * emulated process.  No locks needed here, as long as
 | |
|  * thread that received the signal is stopped.
 | |
|  */
 | |
| 
 | |
| static struct mm_struct *vma_init(void)
 | |
| {
 | |
|     struct mm_struct *mm;
 | |
| 
 | |
|     if ((mm = g_malloc(sizeof (*mm))) == NULL)
 | |
|         return (NULL);
 | |
| 
 | |
|     mm->mm_count = 0;
 | |
|     QTAILQ_INIT(&mm->mm_mmap);
 | |
| 
 | |
|     return (mm);
 | |
| }
 | |
| 
 | |
| static void vma_delete(struct mm_struct *mm)
 | |
| {
 | |
|     struct vm_area_struct *vma;
 | |
| 
 | |
|     while ((vma = vma_first(mm)) != NULL) {
 | |
|         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
 | |
|         g_free(vma);
 | |
|     }
 | |
|     g_free(mm);
 | |
| }
 | |
| 
 | |
| static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
 | |
|                            abi_ulong end, abi_ulong flags)
 | |
| {
 | |
|     struct vm_area_struct *vma;
 | |
| 
 | |
|     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
 | |
|         return (-1);
 | |
| 
 | |
|     vma->vma_start = start;
 | |
|     vma->vma_end = end;
 | |
|     vma->vma_flags = flags;
 | |
| 
 | |
|     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
 | |
|     mm->mm_count++;
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| static struct vm_area_struct *vma_first(const struct mm_struct *mm)
 | |
| {
 | |
|     return (QTAILQ_FIRST(&mm->mm_mmap));
 | |
| }
 | |
| 
 | |
| static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
 | |
| {
 | |
|     return (QTAILQ_NEXT(vma, vma_link));
 | |
| }
 | |
| 
 | |
| static int vma_get_mapping_count(const struct mm_struct *mm)
 | |
| {
 | |
|     return (mm->mm_count);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate file (dump) size of given memory region.
 | |
|  */
 | |
| static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
 | |
| {
 | |
|     /* if we cannot even read the first page, skip it */
 | |
|     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
 | |
|         return (0);
 | |
| 
 | |
|     /*
 | |
|      * Usually we don't dump executable pages as they contain
 | |
|      * non-writable code that debugger can read directly from
 | |
|      * target library etc.  However, thread stacks are marked
 | |
|      * also executable so we read in first page of given region
 | |
|      * and check whether it contains elf header.  If there is
 | |
|      * no elf header, we dump it.
 | |
|      */
 | |
|     if (vma->vma_flags & PROT_EXEC) {
 | |
|         char page[TARGET_PAGE_SIZE];
 | |
| 
 | |
|         copy_from_user(page, vma->vma_start, sizeof (page));
 | |
|         if ((page[EI_MAG0] == ELFMAG0) &&
 | |
|             (page[EI_MAG1] == ELFMAG1) &&
 | |
|             (page[EI_MAG2] == ELFMAG2) &&
 | |
|             (page[EI_MAG3] == ELFMAG3)) {
 | |
|             /*
 | |
|              * Mappings are possibly from ELF binary.  Don't dump
 | |
|              * them.
 | |
|              */
 | |
|             return (0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return (vma->vma_end - vma->vma_start);
 | |
| }
 | |
| 
 | |
| static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
 | |
|                       unsigned long flags)
 | |
| {
 | |
|     struct mm_struct *mm = (struct mm_struct *)priv;
 | |
| 
 | |
|     vma_add_mapping(mm, start, end, flags);
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| static void fill_note(struct memelfnote *note, const char *name, int type,
 | |
|                       unsigned int sz, void *data)
 | |
| {
 | |
|     unsigned int namesz;
 | |
| 
 | |
|     namesz = strlen(name) + 1;
 | |
|     note->name = name;
 | |
|     note->namesz = namesz;
 | |
|     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
 | |
|     note->type = type;
 | |
|     note->datasz = sz;
 | |
|     note->datasz_rounded = roundup(sz, sizeof (int32_t));
 | |
| 
 | |
|     note->data = data;
 | |
| 
 | |
|     /*
 | |
|      * We calculate rounded up note size here as specified by
 | |
|      * ELF document.
 | |
|      */
 | |
|     note->notesz = sizeof (struct elf_note) +
 | |
|         note->namesz_rounded + note->datasz_rounded;
 | |
| }
 | |
| 
 | |
| static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
 | |
|                             uint32_t flags)
 | |
| {
 | |
|     (void) memset(elf, 0, sizeof(*elf));
 | |
| 
 | |
|     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
 | |
|     elf->e_ident[EI_CLASS] = ELF_CLASS;
 | |
|     elf->e_ident[EI_DATA] = ELF_DATA;
 | |
|     elf->e_ident[EI_VERSION] = EV_CURRENT;
 | |
|     elf->e_ident[EI_OSABI] = ELF_OSABI;
 | |
| 
 | |
|     elf->e_type = ET_CORE;
 | |
|     elf->e_machine = machine;
 | |
|     elf->e_version = EV_CURRENT;
 | |
|     elf->e_phoff = sizeof(struct elfhdr);
 | |
|     elf->e_flags = flags;
 | |
|     elf->e_ehsize = sizeof(struct elfhdr);
 | |
|     elf->e_phentsize = sizeof(struct elf_phdr);
 | |
|     elf->e_phnum = segs;
 | |
| 
 | |
|     bswap_ehdr(elf);
 | |
| }
 | |
| 
 | |
| static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
 | |
| {
 | |
|     phdr->p_type = PT_NOTE;
 | |
|     phdr->p_offset = offset;
 | |
|     phdr->p_vaddr = 0;
 | |
|     phdr->p_paddr = 0;
 | |
|     phdr->p_filesz = sz;
 | |
|     phdr->p_memsz = 0;
 | |
|     phdr->p_flags = 0;
 | |
|     phdr->p_align = 0;
 | |
| 
 | |
|     bswap_phdr(phdr, 1);
 | |
| }
 | |
| 
 | |
| static size_t note_size(const struct memelfnote *note)
 | |
| {
 | |
|     return (note->notesz);
 | |
| }
 | |
| 
 | |
| static void fill_prstatus(struct target_elf_prstatus *prstatus,
 | |
|                           const TaskState *ts, int signr)
 | |
| {
 | |
|     (void) memset(prstatus, 0, sizeof (*prstatus));
 | |
|     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
 | |
|     prstatus->pr_pid = ts->ts_tid;
 | |
|     prstatus->pr_ppid = getppid();
 | |
|     prstatus->pr_pgrp = getpgrp();
 | |
|     prstatus->pr_sid = getsid(0);
 | |
| 
 | |
|     bswap_prstatus(prstatus);
 | |
| }
 | |
| 
 | |
| static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
 | |
| {
 | |
|     char *base_filename;
 | |
|     unsigned int i, len;
 | |
| 
 | |
|     (void) memset(psinfo, 0, sizeof (*psinfo));
 | |
| 
 | |
|     len = ts->info->arg_end - ts->info->arg_start;
 | |
|     if (len >= ELF_PRARGSZ)
 | |
|         len = ELF_PRARGSZ - 1;
 | |
|     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
 | |
|         return -EFAULT;
 | |
|     for (i = 0; i < len; i++)
 | |
|         if (psinfo->pr_psargs[i] == 0)
 | |
|             psinfo->pr_psargs[i] = ' ';
 | |
|     psinfo->pr_psargs[len] = 0;
 | |
| 
 | |
|     psinfo->pr_pid = getpid();
 | |
|     psinfo->pr_ppid = getppid();
 | |
|     psinfo->pr_pgrp = getpgrp();
 | |
|     psinfo->pr_sid = getsid(0);
 | |
|     psinfo->pr_uid = getuid();
 | |
|     psinfo->pr_gid = getgid();
 | |
| 
 | |
|     base_filename = g_path_get_basename(ts->bprm->filename);
 | |
|     /*
 | |
|      * Using strncpy here is fine: at max-length,
 | |
|      * this field is not NUL-terminated.
 | |
|      */
 | |
|     (void) strncpy(psinfo->pr_fname, base_filename,
 | |
|                    sizeof(psinfo->pr_fname));
 | |
| 
 | |
|     g_free(base_filename);
 | |
|     bswap_psinfo(psinfo);
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
 | |
| {
 | |
|     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
 | |
|     elf_addr_t orig_auxv = auxv;
 | |
|     void *ptr;
 | |
|     int len = ts->info->auxv_len;
 | |
| 
 | |
|     /*
 | |
|      * Auxiliary vector is stored in target process stack.  It contains
 | |
|      * {type, value} pairs that we need to dump into note.  This is not
 | |
|      * strictly necessary but we do it here for sake of completeness.
 | |
|      */
 | |
| 
 | |
|     /* read in whole auxv vector and copy it to memelfnote */
 | |
|     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
 | |
|     if (ptr != NULL) {
 | |
|         fill_note(note, "CORE", NT_AUXV, len, ptr);
 | |
|         unlock_user(ptr, auxv, len);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Constructs name of coredump file.  We have following convention
 | |
|  * for the name:
 | |
|  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
 | |
|  *
 | |
|  * Returns 0 in case of success, -1 otherwise (errno is set).
 | |
|  */
 | |
| static int core_dump_filename(const TaskState *ts, char *buf,
 | |
|                               size_t bufsize)
 | |
| {
 | |
|     char timestamp[64];
 | |
|     char *filename = NULL;
 | |
|     char *base_filename = NULL;
 | |
|     struct timeval tv;
 | |
|     struct tm tm;
 | |
| 
 | |
|     assert(bufsize >= PATH_MAX);
 | |
| 
 | |
|     if (gettimeofday(&tv, NULL) < 0) {
 | |
|         (void) fprintf(stderr, "unable to get current timestamp: %s",
 | |
|                        strerror(errno));
 | |
|         return (-1);
 | |
|     }
 | |
| 
 | |
|     filename = strdup(ts->bprm->filename);
 | |
|     base_filename = strdup(basename(filename));
 | |
|     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
 | |
|                     localtime_r(&tv.tv_sec, &tm));
 | |
|     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
 | |
|                     base_filename, timestamp, (int)getpid());
 | |
|     free(base_filename);
 | |
|     free(filename);
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| static int dump_write(int fd, const void *ptr, size_t size)
 | |
| {
 | |
|     const char *bufp = (const char *)ptr;
 | |
|     ssize_t bytes_written, bytes_left;
 | |
|     struct rlimit dumpsize;
 | |
|     off_t pos;
 | |
| 
 | |
|     bytes_written = 0;
 | |
|     getrlimit(RLIMIT_CORE, &dumpsize);
 | |
|     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
 | |
|         if (errno == ESPIPE) { /* not a seekable stream */
 | |
|             bytes_left = size;
 | |
|         } else {
 | |
|             return pos;
 | |
|         }
 | |
|     } else {
 | |
|         if (dumpsize.rlim_cur <= pos) {
 | |
|             return -1;
 | |
|         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
 | |
|             bytes_left = size;
 | |
|         } else {
 | |
|             size_t limit_left=dumpsize.rlim_cur - pos;
 | |
|             bytes_left = limit_left >= size ? size : limit_left ;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * In normal conditions, single write(2) should do but
 | |
|      * in case of socket etc. this mechanism is more portable.
 | |
|      */
 | |
|     do {
 | |
|         bytes_written = write(fd, bufp, bytes_left);
 | |
|         if (bytes_written < 0) {
 | |
|             if (errno == EINTR)
 | |
|                 continue;
 | |
|             return (-1);
 | |
|         } else if (bytes_written == 0) { /* eof */
 | |
|             return (-1);
 | |
|         }
 | |
|         bufp += bytes_written;
 | |
|         bytes_left -= bytes_written;
 | |
|     } while (bytes_left > 0);
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| static int write_note(struct memelfnote *men, int fd)
 | |
| {
 | |
|     struct elf_note en;
 | |
| 
 | |
|     en.n_namesz = men->namesz;
 | |
|     en.n_type = men->type;
 | |
|     en.n_descsz = men->datasz;
 | |
| 
 | |
|     bswap_note(&en);
 | |
| 
 | |
|     if (dump_write(fd, &en, sizeof(en)) != 0)
 | |
|         return (-1);
 | |
|     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
 | |
|         return (-1);
 | |
|     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
 | |
|         return (-1);
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
 | |
| {
 | |
|     TaskState *ts = (TaskState *)env->opaque;
 | |
|     struct elf_thread_status *ets;
 | |
| 
 | |
|     ets = g_malloc0(sizeof (*ets));
 | |
|     ets->num_notes = 1; /* only prstatus is dumped */
 | |
|     fill_prstatus(&ets->prstatus, ts, 0);
 | |
|     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
 | |
|     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
 | |
|               &ets->prstatus);
 | |
| 
 | |
|     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
 | |
| 
 | |
|     info->notes_size += note_size(&ets->notes[0]);
 | |
| }
 | |
| 
 | |
| static int fill_note_info(struct elf_note_info *info,
 | |
|                           long signr, const CPUArchState *env)
 | |
| {
 | |
| #define NUMNOTES 3
 | |
|     CPUArchState *cpu = NULL;
 | |
|     TaskState *ts = (TaskState *)env->opaque;
 | |
|     int i;
 | |
| 
 | |
|     (void) memset(info, 0, sizeof (*info));
 | |
| 
 | |
|     QTAILQ_INIT(&info->thread_list);
 | |
| 
 | |
|     info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
 | |
|     if (info->notes == NULL)
 | |
|         return (-ENOMEM);
 | |
|     info->prstatus = g_malloc0(sizeof (*info->prstatus));
 | |
|     if (info->prstatus == NULL)
 | |
|         return (-ENOMEM);
 | |
|     info->psinfo = g_malloc0(sizeof (*info->psinfo));
 | |
|     if (info->prstatus == NULL)
 | |
|         return (-ENOMEM);
 | |
| 
 | |
|     /*
 | |
|      * First fill in status (and registers) of current thread
 | |
|      * including process info & aux vector.
 | |
|      */
 | |
|     fill_prstatus(info->prstatus, ts, signr);
 | |
|     elf_core_copy_regs(&info->prstatus->pr_reg, env);
 | |
|     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
 | |
|               sizeof (*info->prstatus), info->prstatus);
 | |
|     fill_psinfo(info->psinfo, ts);
 | |
|     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
 | |
|               sizeof (*info->psinfo), info->psinfo);
 | |
|     fill_auxv_note(&info->notes[2], ts);
 | |
|     info->numnote = 3;
 | |
| 
 | |
|     info->notes_size = 0;
 | |
|     for (i = 0; i < info->numnote; i++)
 | |
|         info->notes_size += note_size(&info->notes[i]);
 | |
| 
 | |
|     /* read and fill status of all threads */
 | |
|     cpu_list_lock();
 | |
|     for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
 | |
|         if (cpu == thread_env)
 | |
|             continue;
 | |
|         fill_thread_info(info, cpu);
 | |
|     }
 | |
|     cpu_list_unlock();
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| static void free_note_info(struct elf_note_info *info)
 | |
| {
 | |
|     struct elf_thread_status *ets;
 | |
| 
 | |
|     while (!QTAILQ_EMPTY(&info->thread_list)) {
 | |
|         ets = QTAILQ_FIRST(&info->thread_list);
 | |
|         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
 | |
|         g_free(ets);
 | |
|     }
 | |
| 
 | |
|     g_free(info->prstatus);
 | |
|     g_free(info->psinfo);
 | |
|     g_free(info->notes);
 | |
| }
 | |
| 
 | |
| static int write_note_info(struct elf_note_info *info, int fd)
 | |
| {
 | |
|     struct elf_thread_status *ets;
 | |
|     int i, error = 0;
 | |
| 
 | |
|     /* write prstatus, psinfo and auxv for current thread */
 | |
|     for (i = 0; i < info->numnote; i++)
 | |
|         if ((error = write_note(&info->notes[i], fd)) != 0)
 | |
|             return (error);
 | |
| 
 | |
|     /* write prstatus for each thread */
 | |
|     for (ets = info->thread_list.tqh_first; ets != NULL;
 | |
|          ets = ets->ets_link.tqe_next) {
 | |
|         if ((error = write_note(&ets->notes[0], fd)) != 0)
 | |
|             return (error);
 | |
|     }
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write out ELF coredump.
 | |
|  *
 | |
|  * See documentation of ELF object file format in:
 | |
|  * http://www.caldera.com/developers/devspecs/gabi41.pdf
 | |
|  *
 | |
|  * Coredump format in linux is following:
 | |
|  *
 | |
|  * 0   +----------------------+         \
 | |
|  *     | ELF header           | ET_CORE  |
 | |
|  *     +----------------------+          |
 | |
|  *     | ELF program headers  |          |--- headers
 | |
|  *     | - NOTE section       |          |
 | |
|  *     | - PT_LOAD sections   |          |
 | |
|  *     +----------------------+         /
 | |
|  *     | NOTEs:               |
 | |
|  *     | - NT_PRSTATUS        |
 | |
|  *     | - NT_PRSINFO         |
 | |
|  *     | - NT_AUXV            |
 | |
|  *     +----------------------+ <-- aligned to target page
 | |
|  *     | Process memory dump  |
 | |
|  *     :                      :
 | |
|  *     .                      .
 | |
|  *     :                      :
 | |
|  *     |                      |
 | |
|  *     +----------------------+
 | |
|  *
 | |
|  * NT_PRSTATUS -> struct elf_prstatus (per thread)
 | |
|  * NT_PRSINFO  -> struct elf_prpsinfo
 | |
|  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
 | |
|  *
 | |
|  * Format follows System V format as close as possible.  Current
 | |
|  * version limitations are as follows:
 | |
|  *     - no floating point registers are dumped
 | |
|  *
 | |
|  * Function returns 0 in case of success, negative errno otherwise.
 | |
|  *
 | |
|  * TODO: make this work also during runtime: it should be
 | |
|  * possible to force coredump from running process and then
 | |
|  * continue processing.  For example qemu could set up SIGUSR2
 | |
|  * handler (provided that target process haven't registered
 | |
|  * handler for that) that does the dump when signal is received.
 | |
|  */
 | |
| static int elf_core_dump(int signr, const CPUArchState *env)
 | |
| {
 | |
|     const TaskState *ts = (const TaskState *)env->opaque;
 | |
|     struct vm_area_struct *vma = NULL;
 | |
|     char corefile[PATH_MAX];
 | |
|     struct elf_note_info info;
 | |
|     struct elfhdr elf;
 | |
|     struct elf_phdr phdr;
 | |
|     struct rlimit dumpsize;
 | |
|     struct mm_struct *mm = NULL;
 | |
|     off_t offset = 0, data_offset = 0;
 | |
|     int segs = 0;
 | |
|     int fd = -1;
 | |
| 
 | |
|     errno = 0;
 | |
|     getrlimit(RLIMIT_CORE, &dumpsize);
 | |
|     if (dumpsize.rlim_cur == 0)
 | |
|         return 0;
 | |
| 
 | |
|     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
 | |
|         return (-errno);
 | |
| 
 | |
|     if ((fd = open(corefile, O_WRONLY | O_CREAT,
 | |
|                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
 | |
|         return (-errno);
 | |
| 
 | |
|     /*
 | |
|      * Walk through target process memory mappings and
 | |
|      * set up structure containing this information.  After
 | |
|      * this point vma_xxx functions can be used.
 | |
|      */
 | |
|     if ((mm = vma_init()) == NULL)
 | |
|         goto out;
 | |
| 
 | |
|     walk_memory_regions(mm, vma_walker);
 | |
|     segs = vma_get_mapping_count(mm);
 | |
| 
 | |
|     /*
 | |
|      * Construct valid coredump ELF header.  We also
 | |
|      * add one more segment for notes.
 | |
|      */
 | |
|     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
 | |
|     if (dump_write(fd, &elf, sizeof (elf)) != 0)
 | |
|         goto out;
 | |
| 
 | |
|     /* fill in in-memory version of notes */
 | |
|     if (fill_note_info(&info, signr, env) < 0)
 | |
|         goto out;
 | |
| 
 | |
|     offset += sizeof (elf);                             /* elf header */
 | |
|     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
 | |
| 
 | |
|     /* write out notes program header */
 | |
|     fill_elf_note_phdr(&phdr, info.notes_size, offset);
 | |
| 
 | |
|     offset += info.notes_size;
 | |
|     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
 | |
|         goto out;
 | |
| 
 | |
|     /*
 | |
|      * ELF specification wants data to start at page boundary so
 | |
|      * we align it here.
 | |
|      */
 | |
|     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
 | |
| 
 | |
|     /*
 | |
|      * Write program headers for memory regions mapped in
 | |
|      * the target process.
 | |
|      */
 | |
|     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
 | |
|         (void) memset(&phdr, 0, sizeof (phdr));
 | |
| 
 | |
|         phdr.p_type = PT_LOAD;
 | |
|         phdr.p_offset = offset;
 | |
|         phdr.p_vaddr = vma->vma_start;
 | |
|         phdr.p_paddr = 0;
 | |
|         phdr.p_filesz = vma_dump_size(vma);
 | |
|         offset += phdr.p_filesz;
 | |
|         phdr.p_memsz = vma->vma_end - vma->vma_start;
 | |
|         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
 | |
|         if (vma->vma_flags & PROT_WRITE)
 | |
|             phdr.p_flags |= PF_W;
 | |
|         if (vma->vma_flags & PROT_EXEC)
 | |
|             phdr.p_flags |= PF_X;
 | |
|         phdr.p_align = ELF_EXEC_PAGESIZE;
 | |
| 
 | |
|         bswap_phdr(&phdr, 1);
 | |
|         dump_write(fd, &phdr, sizeof (phdr));
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Next we write notes just after program headers.  No
 | |
|      * alignment needed here.
 | |
|      */
 | |
|     if (write_note_info(&info, fd) < 0)
 | |
|         goto out;
 | |
| 
 | |
|     /* align data to page boundary */
 | |
|     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
 | |
|         goto out;
 | |
| 
 | |
|     /*
 | |
|      * Finally we can dump process memory into corefile as well.
 | |
|      */
 | |
|     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
 | |
|         abi_ulong addr;
 | |
|         abi_ulong end;
 | |
| 
 | |
|         end = vma->vma_start + vma_dump_size(vma);
 | |
| 
 | |
|         for (addr = vma->vma_start; addr < end;
 | |
|              addr += TARGET_PAGE_SIZE) {
 | |
|             char page[TARGET_PAGE_SIZE];
 | |
|             int error;
 | |
| 
 | |
|             /*
 | |
|              *  Read in page from target process memory and
 | |
|              *  write it to coredump file.
 | |
|              */
 | |
|             error = copy_from_user(page, addr, sizeof (page));
 | |
|             if (error != 0) {
 | |
|                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
 | |
|                                addr);
 | |
|                 errno = -error;
 | |
|                 goto out;
 | |
|             }
 | |
|             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
 | |
|                 goto out;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|  out:
 | |
|     free_note_info(&info);
 | |
|     if (mm != NULL)
 | |
|         vma_delete(mm);
 | |
|     (void) close(fd);
 | |
| 
 | |
|     if (errno != 0)
 | |
|         return (-errno);
 | |
|     return (0);
 | |
| }
 | |
| #endif /* USE_ELF_CORE_DUMP */
 | |
| 
 | |
| void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
 | |
| {
 | |
|     init_thread(regs, infop);
 | |
| }
 |