 79825f4d58
			
		
	
	
		79825f4d58
		
	
	
	
	
		
			
			That "b" means "base address" and thus shouldn't be in the name of actual entries and related constants. This patch keeps the synthetic patb_entry field of the spapr virtual hypervisor unchanged until I figure out if that has an impact on the migration stream. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Cédric Le Goater <clg@kaod.org> Message-Id: <20190215170029.15641-11-clg@kaod.org> Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
		
			
				
	
	
		
			1893 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1893 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "qemu/osdep.h"
 | |
| #include "qapi/error.h"
 | |
| #include "sysemu/hw_accel.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "qemu/log.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "cpu.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "helper_regs.h"
 | |
| #include "hw/ppc/spapr.h"
 | |
| #include "hw/ppc/spapr_cpu_core.h"
 | |
| #include "mmu-hash64.h"
 | |
| #include "cpu-models.h"
 | |
| #include "trace.h"
 | |
| #include "kvm_ppc.h"
 | |
| #include "hw/ppc/spapr_ovec.h"
 | |
| #include "mmu-book3s-v3.h"
 | |
| #include "hw/mem/memory-device.h"
 | |
| 
 | |
| static bool has_spr(PowerPCCPU *cpu, int spr)
 | |
| {
 | |
|     /* We can test whether the SPR is defined by checking for a valid name */
 | |
|     return cpu->env.spr_cb[spr].name != NULL;
 | |
| }
 | |
| 
 | |
| static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
 | |
| {
 | |
|     /*
 | |
|      * hash value/pteg group index is normalized by HPT mask
 | |
|      */
 | |
|     if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
 | |
| {
 | |
|     MachineState *machine = MACHINE(spapr);
 | |
|     DeviceMemoryState *dms = machine->device_memory;
 | |
| 
 | |
|     if (addr < machine->ram_size) {
 | |
|         return true;
 | |
|     }
 | |
|     if ((addr >= dms->base)
 | |
|         && ((addr - dms->base) < memory_region_size(&dms->mr))) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                             target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     target_ulong flags = args[0];
 | |
|     target_ulong ptex = args[1];
 | |
|     target_ulong pteh = args[2];
 | |
|     target_ulong ptel = args[3];
 | |
|     unsigned apshift;
 | |
|     target_ulong raddr;
 | |
|     target_ulong slot;
 | |
|     const ppc_hash_pte64_t *hptes;
 | |
| 
 | |
|     apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
 | |
|     if (!apshift) {
 | |
|         /* Bad page size encoding */
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
 | |
| 
 | |
|     if (is_ram_address(spapr, raddr)) {
 | |
|         /* Regular RAM - should have WIMG=0010 */
 | |
|         if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
 | |
|             return H_PARAMETER;
 | |
|         }
 | |
|     } else {
 | |
|         target_ulong wimg_flags;
 | |
|         /* Looks like an IO address */
 | |
|         /* FIXME: What WIMG combinations could be sensible for IO?
 | |
|          * For now we allow WIMG=010x, but are there others? */
 | |
|         /* FIXME: Should we check against registered IO addresses? */
 | |
|         wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
 | |
| 
 | |
|         if (wimg_flags != HPTE64_R_I &&
 | |
|             wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
 | |
|             return H_PARAMETER;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     pteh &= ~0x60ULL;
 | |
| 
 | |
|     if (!valid_ptex(cpu, ptex)) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     slot = ptex & 7ULL;
 | |
|     ptex = ptex & ~7ULL;
 | |
| 
 | |
|     if (likely((flags & H_EXACT) == 0)) {
 | |
|         hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
 | |
|         for (slot = 0; slot < 8; slot++) {
 | |
|             if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 | |
|         if (slot == 8) {
 | |
|             return H_PTEG_FULL;
 | |
|         }
 | |
|     } else {
 | |
|         hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
 | |
|         if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
 | |
|             ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
 | |
|             return H_PTEG_FULL;
 | |
|         }
 | |
|         ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 | |
|     }
 | |
| 
 | |
|     ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
 | |
| 
 | |
|     args[0] = ptex + slot;
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| typedef enum {
 | |
|     REMOVE_SUCCESS = 0,
 | |
|     REMOVE_NOT_FOUND = 1,
 | |
|     REMOVE_PARM = 2,
 | |
|     REMOVE_HW = 3,
 | |
| } RemoveResult;
 | |
| 
 | |
| static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
 | |
|                                 target_ulong avpn,
 | |
|                                 target_ulong flags,
 | |
|                                 target_ulong *vp, target_ulong *rp)
 | |
| {
 | |
|     const ppc_hash_pte64_t *hptes;
 | |
|     target_ulong v, r;
 | |
| 
 | |
|     if (!valid_ptex(cpu, ptex)) {
 | |
|         return REMOVE_PARM;
 | |
|     }
 | |
| 
 | |
|     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
 | |
|     v = ppc_hash64_hpte0(cpu, hptes, 0);
 | |
|     r = ppc_hash64_hpte1(cpu, hptes, 0);
 | |
|     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 | |
| 
 | |
|     if ((v & HPTE64_V_VALID) == 0 ||
 | |
|         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
 | |
|         ((flags & H_ANDCOND) && (v & avpn) != 0)) {
 | |
|         return REMOVE_NOT_FOUND;
 | |
|     }
 | |
|     *vp = v;
 | |
|     *rp = r;
 | |
|     ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
 | |
|     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
 | |
|     return REMOVE_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                              target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     target_ulong flags = args[0];
 | |
|     target_ulong ptex = args[1];
 | |
|     target_ulong avpn = args[2];
 | |
|     RemoveResult ret;
 | |
| 
 | |
|     ret = remove_hpte(cpu, ptex, avpn, flags,
 | |
|                       &args[0], &args[1]);
 | |
| 
 | |
|     switch (ret) {
 | |
|     case REMOVE_SUCCESS:
 | |
|         check_tlb_flush(env, true);
 | |
|         return H_SUCCESS;
 | |
| 
 | |
|     case REMOVE_NOT_FOUND:
 | |
|         return H_NOT_FOUND;
 | |
| 
 | |
|     case REMOVE_PARM:
 | |
|         return H_PARAMETER;
 | |
| 
 | |
|     case REMOVE_HW:
 | |
|         return H_HARDWARE;
 | |
|     }
 | |
| 
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| 
 | |
| #define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
 | |
| #define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
 | |
| #define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
 | |
| #define   H_BULK_REMOVE_END            0xc000000000000000ULL
 | |
| #define H_BULK_REMOVE_CODE             0x3000000000000000ULL
 | |
| #define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
 | |
| #define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
 | |
| #define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
 | |
| #define   H_BULK_REMOVE_HW             0x3000000000000000ULL
 | |
| #define H_BULK_REMOVE_RC               0x0c00000000000000ULL
 | |
| #define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
 | |
| #define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
 | |
| #define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
 | |
| #define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
 | |
| #define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
 | |
| 
 | |
| #define H_BULK_REMOVE_MAX_BATCH        4
 | |
| 
 | |
| static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                                   target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     int i;
 | |
|     target_ulong rc = H_SUCCESS;
 | |
| 
 | |
|     for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
 | |
|         target_ulong *tsh = &args[i*2];
 | |
|         target_ulong tsl = args[i*2 + 1];
 | |
|         target_ulong v, r, ret;
 | |
| 
 | |
|         if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
 | |
|             break;
 | |
|         } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
 | |
|             return H_PARAMETER;
 | |
|         }
 | |
| 
 | |
|         *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
 | |
|         *tsh |= H_BULK_REMOVE_RESPONSE;
 | |
| 
 | |
|         if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
 | |
|             *tsh |= H_BULK_REMOVE_PARM;
 | |
|             return H_PARAMETER;
 | |
|         }
 | |
| 
 | |
|         ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
 | |
|                           (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
 | |
|                           &v, &r);
 | |
| 
 | |
|         *tsh |= ret << 60;
 | |
| 
 | |
|         switch (ret) {
 | |
|         case REMOVE_SUCCESS:
 | |
|             *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
 | |
|             break;
 | |
| 
 | |
|         case REMOVE_PARM:
 | |
|             rc = H_PARAMETER;
 | |
|             goto exit;
 | |
| 
 | |
|         case REMOVE_HW:
 | |
|             rc = H_HARDWARE;
 | |
|             goto exit;
 | |
|         }
 | |
|     }
 | |
|  exit:
 | |
|     check_tlb_flush(env, true);
 | |
| 
 | |
|     return rc;
 | |
| }
 | |
| 
 | |
| static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                               target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     target_ulong flags = args[0];
 | |
|     target_ulong ptex = args[1];
 | |
|     target_ulong avpn = args[2];
 | |
|     const ppc_hash_pte64_t *hptes;
 | |
|     target_ulong v, r;
 | |
| 
 | |
|     if (!valid_ptex(cpu, ptex)) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
 | |
|     v = ppc_hash64_hpte0(cpu, hptes, 0);
 | |
|     r = ppc_hash64_hpte1(cpu, hptes, 0);
 | |
|     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 | |
| 
 | |
|     if ((v & HPTE64_V_VALID) == 0 ||
 | |
|         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
 | |
|         return H_NOT_FOUND;
 | |
|     }
 | |
| 
 | |
|     r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
 | |
|            HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
 | |
|     r |= (flags << 55) & HPTE64_R_PP0;
 | |
|     r |= (flags << 48) & HPTE64_R_KEY_HI;
 | |
|     r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
 | |
|     ppc_hash64_store_hpte(cpu, ptex,
 | |
|                           (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
 | |
|     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
 | |
|     /* Flush the tlb */
 | |
|     check_tlb_flush(env, true);
 | |
|     /* Don't need a memory barrier, due to qemu's global lock */
 | |
|     ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                            target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     target_ulong flags = args[0];
 | |
|     target_ulong ptex = args[1];
 | |
|     uint8_t *hpte;
 | |
|     int i, ridx, n_entries = 1;
 | |
| 
 | |
|     if (!valid_ptex(cpu, ptex)) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     if (flags & H_READ_4) {
 | |
|         /* Clear the two low order bits */
 | |
|         ptex &= ~(3ULL);
 | |
|         n_entries = 4;
 | |
|     }
 | |
| 
 | |
|     hpte = spapr->htab + (ptex * HASH_PTE_SIZE_64);
 | |
| 
 | |
|     for (i = 0, ridx = 0; i < n_entries; i++) {
 | |
|         args[ridx++] = ldq_p(hpte);
 | |
|         args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
 | |
|         hpte += HASH_PTE_SIZE_64;
 | |
|     }
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| struct sPAPRPendingHPT {
 | |
|     /* These fields are read-only after initialization */
 | |
|     int shift;
 | |
|     QemuThread thread;
 | |
| 
 | |
|     /* These fields are protected by the BQL */
 | |
|     bool complete;
 | |
| 
 | |
|     /* These fields are private to the preparation thread if
 | |
|      * !complete, otherwise protected by the BQL */
 | |
|     int ret;
 | |
|     void *hpt;
 | |
| };
 | |
| 
 | |
| static void free_pending_hpt(sPAPRPendingHPT *pending)
 | |
| {
 | |
|     if (pending->hpt) {
 | |
|         qemu_vfree(pending->hpt);
 | |
|     }
 | |
| 
 | |
|     g_free(pending);
 | |
| }
 | |
| 
 | |
| static void *hpt_prepare_thread(void *opaque)
 | |
| {
 | |
|     sPAPRPendingHPT *pending = opaque;
 | |
|     size_t size = 1ULL << pending->shift;
 | |
| 
 | |
|     pending->hpt = qemu_memalign(size, size);
 | |
|     if (pending->hpt) {
 | |
|         memset(pending->hpt, 0, size);
 | |
|         pending->ret = H_SUCCESS;
 | |
|     } else {
 | |
|         pending->ret = H_NO_MEM;
 | |
|     }
 | |
| 
 | |
|     qemu_mutex_lock_iothread();
 | |
| 
 | |
|     if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
 | |
|         /* Ready to go */
 | |
|         pending->complete = true;
 | |
|     } else {
 | |
|         /* We've been cancelled, clean ourselves up */
 | |
|         free_pending_hpt(pending);
 | |
|     }
 | |
| 
 | |
|     qemu_mutex_unlock_iothread();
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /* Must be called with BQL held */
 | |
| static void cancel_hpt_prepare(sPAPRMachineState *spapr)
 | |
| {
 | |
|     sPAPRPendingHPT *pending = spapr->pending_hpt;
 | |
| 
 | |
|     /* Let the thread know it's cancelled */
 | |
|     spapr->pending_hpt = NULL;
 | |
| 
 | |
|     if (!pending) {
 | |
|         /* Nothing to do */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!pending->complete) {
 | |
|         /* thread will clean itself up */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     free_pending_hpt(pending);
 | |
| }
 | |
| 
 | |
| /* Convert a return code from the KVM ioctl()s implementing resize HPT
 | |
|  * into a PAPR hypercall return code */
 | |
| static target_ulong resize_hpt_convert_rc(int ret)
 | |
| {
 | |
|     if (ret >= 100000) {
 | |
|         return H_LONG_BUSY_ORDER_100_SEC;
 | |
|     } else if (ret >= 10000) {
 | |
|         return H_LONG_BUSY_ORDER_10_SEC;
 | |
|     } else if (ret >= 1000) {
 | |
|         return H_LONG_BUSY_ORDER_1_SEC;
 | |
|     } else if (ret >= 100) {
 | |
|         return H_LONG_BUSY_ORDER_100_MSEC;
 | |
|     } else if (ret >= 10) {
 | |
|         return H_LONG_BUSY_ORDER_10_MSEC;
 | |
|     } else if (ret > 0) {
 | |
|         return H_LONG_BUSY_ORDER_1_MSEC;
 | |
|     }
 | |
| 
 | |
|     switch (ret) {
 | |
|     case 0:
 | |
|         return H_SUCCESS;
 | |
|     case -EPERM:
 | |
|         return H_AUTHORITY;
 | |
|     case -EINVAL:
 | |
|         return H_PARAMETER;
 | |
|     case -ENXIO:
 | |
|         return H_CLOSED;
 | |
|     case -ENOSPC:
 | |
|         return H_PTEG_FULL;
 | |
|     case -EBUSY:
 | |
|         return H_BUSY;
 | |
|     case -ENOMEM:
 | |
|         return H_NO_MEM;
 | |
|     default:
 | |
|         return H_HARDWARE;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
 | |
|                                          sPAPRMachineState *spapr,
 | |
|                                          target_ulong opcode,
 | |
|                                          target_ulong *args)
 | |
| {
 | |
|     target_ulong flags = args[0];
 | |
|     int shift = args[1];
 | |
|     sPAPRPendingHPT *pending = spapr->pending_hpt;
 | |
|     uint64_t current_ram_size;
 | |
|     int rc;
 | |
| 
 | |
|     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
 | |
|         return H_AUTHORITY;
 | |
|     }
 | |
| 
 | |
|     if (!spapr->htab_shift) {
 | |
|         /* Radix guest, no HPT */
 | |
|         return H_NOT_AVAILABLE;
 | |
|     }
 | |
| 
 | |
|     trace_spapr_h_resize_hpt_prepare(flags, shift);
 | |
| 
 | |
|     if (flags != 0) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     if (shift && ((shift < 18) || (shift > 46))) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
 | |
| 
 | |
|     /* We only allow the guest to allocate an HPT one order above what
 | |
|      * we'd normally give them (to stop a small guest claiming a huge
 | |
|      * chunk of resources in the HPT */
 | |
|     if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
 | |
|         return H_RESOURCE;
 | |
|     }
 | |
| 
 | |
|     rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
 | |
|     if (rc != -ENOSYS) {
 | |
|         return resize_hpt_convert_rc(rc);
 | |
|     }
 | |
| 
 | |
|     if (pending) {
 | |
|         /* something already in progress */
 | |
|         if (pending->shift == shift) {
 | |
|             /* and it's suitable */
 | |
|             if (pending->complete) {
 | |
|                 return pending->ret;
 | |
|             } else {
 | |
|                 return H_LONG_BUSY_ORDER_100_MSEC;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* not suitable, cancel and replace */
 | |
|         cancel_hpt_prepare(spapr);
 | |
|     }
 | |
| 
 | |
|     if (!shift) {
 | |
|         /* nothing to do */
 | |
|         return H_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     /* start new prepare */
 | |
| 
 | |
|     pending = g_new0(sPAPRPendingHPT, 1);
 | |
|     pending->shift = shift;
 | |
|     pending->ret = H_HARDWARE;
 | |
| 
 | |
|     qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
 | |
|                        hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
 | |
| 
 | |
|     spapr->pending_hpt = pending;
 | |
| 
 | |
|     /* In theory we could estimate the time more accurately based on
 | |
|      * the new size, but there's not much point */
 | |
|     return H_LONG_BUSY_ORDER_100_MSEC;
 | |
| }
 | |
| 
 | |
| static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
 | |
| {
 | |
|     uint8_t *addr = htab;
 | |
| 
 | |
|     addr += pteg * HASH_PTEG_SIZE_64;
 | |
|     addr += slot * HASH_PTE_SIZE_64;
 | |
|     return  ldq_p(addr);
 | |
| }
 | |
| 
 | |
| static void new_hpte_store(void *htab, uint64_t pteg, int slot,
 | |
|                            uint64_t pte0, uint64_t pte1)
 | |
| {
 | |
|     uint8_t *addr = htab;
 | |
| 
 | |
|     addr += pteg * HASH_PTEG_SIZE_64;
 | |
|     addr += slot * HASH_PTE_SIZE_64;
 | |
| 
 | |
|     stq_p(addr, pte0);
 | |
|     stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
 | |
| }
 | |
| 
 | |
| static int rehash_hpte(PowerPCCPU *cpu,
 | |
|                        const ppc_hash_pte64_t *hptes,
 | |
|                        void *old_hpt, uint64_t oldsize,
 | |
|                        void *new_hpt, uint64_t newsize,
 | |
|                        uint64_t pteg, int slot)
 | |
| {
 | |
|     uint64_t old_hash_mask = (oldsize >> 7) - 1;
 | |
|     uint64_t new_hash_mask = (newsize >> 7) - 1;
 | |
|     target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
 | |
|     target_ulong pte1;
 | |
|     uint64_t avpn;
 | |
|     unsigned base_pg_shift;
 | |
|     uint64_t hash, new_pteg, replace_pte0;
 | |
| 
 | |
|     if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
 | |
|         return H_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
 | |
| 
 | |
|     base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
 | |
|     assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
 | |
|     avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
 | |
| 
 | |
|     if (pte0 & HPTE64_V_SECONDARY) {
 | |
|         pteg = ~pteg;
 | |
|     }
 | |
| 
 | |
|     if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
 | |
|         uint64_t offset, vsid;
 | |
| 
 | |
|         /* We only have 28 - 23 bits of offset in avpn */
 | |
|         offset = (avpn & 0x1f) << 23;
 | |
|         vsid = avpn >> 5;
 | |
|         /* We can find more bits from the pteg value */
 | |
|         if (base_pg_shift < 23) {
 | |
|             offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
 | |
|         }
 | |
| 
 | |
|         hash = vsid ^ (offset >> base_pg_shift);
 | |
|     } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
 | |
|         uint64_t offset, vsid;
 | |
| 
 | |
|         /* We only have 40 - 23 bits of seg_off in avpn */
 | |
|         offset = (avpn & 0x1ffff) << 23;
 | |
|         vsid = avpn >> 17;
 | |
|         if (base_pg_shift < 23) {
 | |
|             offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
 | |
|                 << base_pg_shift;
 | |
|         }
 | |
| 
 | |
|         hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
 | |
|     } else {
 | |
|         error_report("rehash_pte: Bad segment size in HPTE");
 | |
|         return H_HARDWARE;
 | |
|     }
 | |
| 
 | |
|     new_pteg = hash & new_hash_mask;
 | |
|     if (pte0 & HPTE64_V_SECONDARY) {
 | |
|         assert(~pteg == (hash & old_hash_mask));
 | |
|         new_pteg = ~new_pteg;
 | |
|     } else {
 | |
|         assert(pteg == (hash & old_hash_mask));
 | |
|     }
 | |
|     assert((oldsize != newsize) || (pteg == new_pteg));
 | |
|     replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
 | |
|     /*
 | |
|      * Strictly speaking, we don't need all these tests, since we only
 | |
|      * ever rehash bolted HPTEs.  We might in future handle non-bolted
 | |
|      * HPTEs, though so make the logic correct for those cases as
 | |
|      * well.
 | |
|      */
 | |
|     if (replace_pte0 & HPTE64_V_VALID) {
 | |
|         assert(newsize < oldsize);
 | |
|         if (replace_pte0 & HPTE64_V_BOLTED) {
 | |
|             if (pte0 & HPTE64_V_BOLTED) {
 | |
|                 /* Bolted collision, nothing we can do */
 | |
|                 return H_PTEG_FULL;
 | |
|             } else {
 | |
|                 /* Discard this hpte */
 | |
|                 return H_SUCCESS;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static int rehash_hpt(PowerPCCPU *cpu,
 | |
|                       void *old_hpt, uint64_t oldsize,
 | |
|                       void *new_hpt, uint64_t newsize)
 | |
| {
 | |
|     uint64_t n_ptegs = oldsize >> 7;
 | |
|     uint64_t pteg;
 | |
|     int slot;
 | |
|     int rc;
 | |
| 
 | |
|     for (pteg = 0; pteg < n_ptegs; pteg++) {
 | |
|         hwaddr ptex = pteg * HPTES_PER_GROUP;
 | |
|         const ppc_hash_pte64_t *hptes
 | |
|             = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
 | |
| 
 | |
|         if (!hptes) {
 | |
|             return H_HARDWARE;
 | |
|         }
 | |
| 
 | |
|         for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
 | |
|             rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
 | |
|                              pteg, slot);
 | |
|             if (rc != H_SUCCESS) {
 | |
|                 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 | |
|                 return rc;
 | |
|             }
 | |
|         }
 | |
|         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 | |
|     }
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     cpu_synchronize_state(cs);
 | |
| 
 | |
|     ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
 | |
|     if (ret < 0) {
 | |
|         error_report("failed to push sregs to KVM: %s", strerror(-ret));
 | |
|         exit(1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void push_sregs_to_kvm_pr(sPAPRMachineState *spapr)
 | |
| {
 | |
|     CPUState *cs;
 | |
| 
 | |
|     /*
 | |
|      * This is a hack for the benefit of KVM PR - it abuses the SDR1
 | |
|      * slot in kvm_sregs to communicate the userspace address of the
 | |
|      * HPT
 | |
|      */
 | |
|     if (!kvm_enabled() || !spapr->htab) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     CPU_FOREACH(cs) {
 | |
|         run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
 | |
|                                         sPAPRMachineState *spapr,
 | |
|                                         target_ulong opcode,
 | |
|                                         target_ulong *args)
 | |
| {
 | |
|     target_ulong flags = args[0];
 | |
|     target_ulong shift = args[1];
 | |
|     sPAPRPendingHPT *pending = spapr->pending_hpt;
 | |
|     int rc;
 | |
|     size_t newsize;
 | |
| 
 | |
|     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
 | |
|         return H_AUTHORITY;
 | |
|     }
 | |
| 
 | |
|     if (!spapr->htab_shift) {
 | |
|         /* Radix guest, no HPT */
 | |
|         return H_NOT_AVAILABLE;
 | |
|     }
 | |
| 
 | |
|     trace_spapr_h_resize_hpt_commit(flags, shift);
 | |
| 
 | |
|     rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
 | |
|     if (rc != -ENOSYS) {
 | |
|         rc = resize_hpt_convert_rc(rc);
 | |
|         if (rc == H_SUCCESS) {
 | |
|             /* Need to set the new htab_shift in the machine state */
 | |
|             spapr->htab_shift = shift;
 | |
|         }
 | |
|         return rc;
 | |
|     }
 | |
| 
 | |
|     if (flags != 0) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     if (!pending || (pending->shift != shift)) {
 | |
|         /* no matching prepare */
 | |
|         return H_CLOSED;
 | |
|     }
 | |
| 
 | |
|     if (!pending->complete) {
 | |
|         /* prepare has not completed */
 | |
|         return H_BUSY;
 | |
|     }
 | |
| 
 | |
|     /* Shouldn't have got past PREPARE without an HPT */
 | |
|     g_assert(spapr->htab_shift);
 | |
| 
 | |
|     newsize = 1ULL << pending->shift;
 | |
|     rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
 | |
|                     pending->hpt, newsize);
 | |
|     if (rc == H_SUCCESS) {
 | |
|         qemu_vfree(spapr->htab);
 | |
|         spapr->htab = pending->hpt;
 | |
|         spapr->htab_shift = pending->shift;
 | |
| 
 | |
|         push_sregs_to_kvm_pr(spapr);
 | |
| 
 | |
|         pending->hpt = NULL; /* so it's not free()d */
 | |
|     }
 | |
| 
 | |
|     /* Clean up */
 | |
|     spapr->pending_hpt = NULL;
 | |
|     free_pending_hpt(pending);
 | |
| 
 | |
|     return rc;
 | |
| }
 | |
| 
 | |
| static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                                 target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     cpu_synchronize_state(CPU(cpu));
 | |
|     cpu->env.spr[SPR_SPRG0] = args[0];
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                                target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     if (!has_spr(cpu, SPR_DABR)) {
 | |
|         return H_HARDWARE;              /* DABR register not available */
 | |
|     }
 | |
|     cpu_synchronize_state(CPU(cpu));
 | |
| 
 | |
|     if (has_spr(cpu, SPR_DABRX)) {
 | |
|         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
 | |
|     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
 | |
|         return H_RESERVED_DABR;
 | |
|     }
 | |
| 
 | |
|     cpu->env.spr[SPR_DABR] = args[0];
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                                 target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     target_ulong dabrx = args[1];
 | |
| 
 | |
|     if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
 | |
|         return H_HARDWARE;
 | |
|     }
 | |
| 
 | |
|     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
 | |
|         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     cpu_synchronize_state(CPU(cpu));
 | |
|     cpu->env.spr[SPR_DABRX] = dabrx;
 | |
|     cpu->env.spr[SPR_DABR] = args[0];
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                                 target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     target_ulong flags = args[0];
 | |
|     hwaddr dst = args[1];
 | |
|     hwaddr src = args[2];
 | |
|     hwaddr len = TARGET_PAGE_SIZE;
 | |
|     uint8_t *pdst, *psrc;
 | |
|     target_long ret = H_SUCCESS;
 | |
| 
 | |
|     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
 | |
|                   | H_COPY_PAGE | H_ZERO_PAGE)) {
 | |
|         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
 | |
|                       flags);
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     /* Map-in destination */
 | |
|     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
|     pdst = cpu_physical_memory_map(dst, &len, 1);
 | |
|     if (!pdst || len != TARGET_PAGE_SIZE) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     if (flags & H_COPY_PAGE) {
 | |
|         /* Map-in source, copy to destination, and unmap source again */
 | |
|         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
 | |
|             ret = H_PARAMETER;
 | |
|             goto unmap_out;
 | |
|         }
 | |
|         psrc = cpu_physical_memory_map(src, &len, 0);
 | |
|         if (!psrc || len != TARGET_PAGE_SIZE) {
 | |
|             ret = H_PARAMETER;
 | |
|             goto unmap_out;
 | |
|         }
 | |
|         memcpy(pdst, psrc, len);
 | |
|         cpu_physical_memory_unmap(psrc, len, 0, len);
 | |
|     } else if (flags & H_ZERO_PAGE) {
 | |
|         memset(pdst, 0, len);          /* Just clear the destination page */
 | |
|     }
 | |
| 
 | |
|     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
 | |
|         kvmppc_dcbst_range(cpu, pdst, len);
 | |
|     }
 | |
|     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
 | |
|         if (kvm_enabled()) {
 | |
|             kvmppc_icbi_range(cpu, pdst, len);
 | |
|         } else {
 | |
|             tb_flush(CPU(cpu));
 | |
|         }
 | |
|     }
 | |
| 
 | |
| unmap_out:
 | |
|     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
 | |
| #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
 | |
| #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
 | |
| #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
 | |
| #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
 | |
| #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
 | |
| 
 | |
| #define VPA_MIN_SIZE           640
 | |
| #define VPA_SIZE_OFFSET        0x4
 | |
| #define VPA_SHARED_PROC_OFFSET 0x9
 | |
| #define VPA_SHARED_PROC_VAL    0x2
 | |
| 
 | |
| static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
 | |
|     uint16_t size;
 | |
|     uint8_t tmp;
 | |
| 
 | |
|     if (vpa == 0) {
 | |
|         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
 | |
|         return H_HARDWARE;
 | |
|     }
 | |
| 
 | |
|     if (vpa % env->dcache_line_size) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
|     /* FIXME: bounds check the address */
 | |
| 
 | |
|     size = lduw_be_phys(cs->as, vpa + 0x4);
 | |
| 
 | |
|     if (size < VPA_MIN_SIZE) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     /* VPA is not allowed to cross a page boundary */
 | |
|     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     spapr_cpu->vpa_addr = vpa;
 | |
| 
 | |
|     tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
 | |
|     tmp |= VPA_SHARED_PROC_VAL;
 | |
|     stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
 | |
| {
 | |
|     sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
 | |
| 
 | |
|     if (spapr_cpu->slb_shadow_addr) {
 | |
|         return H_RESOURCE;
 | |
|     }
 | |
| 
 | |
|     if (spapr_cpu->dtl_addr) {
 | |
|         return H_RESOURCE;
 | |
|     }
 | |
| 
 | |
|     spapr_cpu->vpa_addr = 0;
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
 | |
| {
 | |
|     sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
 | |
|     uint32_t size;
 | |
| 
 | |
|     if (addr == 0) {
 | |
|         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
 | |
|         return H_HARDWARE;
 | |
|     }
 | |
| 
 | |
|     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
 | |
|     if (size < 0x8) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     if (!spapr_cpu->vpa_addr) {
 | |
|         return H_RESOURCE;
 | |
|     }
 | |
| 
 | |
|     spapr_cpu->slb_shadow_addr = addr;
 | |
|     spapr_cpu->slb_shadow_size = size;
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
 | |
| {
 | |
|     sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
 | |
| 
 | |
|     spapr_cpu->slb_shadow_addr = 0;
 | |
|     spapr_cpu->slb_shadow_size = 0;
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
 | |
| {
 | |
|     sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
 | |
|     uint32_t size;
 | |
| 
 | |
|     if (addr == 0) {
 | |
|         hcall_dprintf("Can't cope with DTL at logical 0\n");
 | |
|         return H_HARDWARE;
 | |
|     }
 | |
| 
 | |
|     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
 | |
| 
 | |
|     if (size < 48) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     if (!spapr_cpu->vpa_addr) {
 | |
|         return H_RESOURCE;
 | |
|     }
 | |
| 
 | |
|     spapr_cpu->dtl_addr = addr;
 | |
|     spapr_cpu->dtl_size = size;
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
 | |
| {
 | |
|     sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu);
 | |
| 
 | |
|     spapr_cpu->dtl_addr = 0;
 | |
|     spapr_cpu->dtl_size = 0;
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                                    target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     target_ulong flags = args[0];
 | |
|     target_ulong procno = args[1];
 | |
|     target_ulong vpa = args[2];
 | |
|     target_ulong ret = H_PARAMETER;
 | |
|     PowerPCCPU *tcpu;
 | |
| 
 | |
|     tcpu = spapr_find_cpu(procno);
 | |
|     if (!tcpu) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     switch (flags) {
 | |
|     case FLAGS_REGISTER_VPA:
 | |
|         ret = register_vpa(tcpu, vpa);
 | |
|         break;
 | |
| 
 | |
|     case FLAGS_DEREGISTER_VPA:
 | |
|         ret = deregister_vpa(tcpu, vpa);
 | |
|         break;
 | |
| 
 | |
|     case FLAGS_REGISTER_SLBSHADOW:
 | |
|         ret = register_slb_shadow(tcpu, vpa);
 | |
|         break;
 | |
| 
 | |
|     case FLAGS_DEREGISTER_SLBSHADOW:
 | |
|         ret = deregister_slb_shadow(tcpu, vpa);
 | |
|         break;
 | |
| 
 | |
|     case FLAGS_REGISTER_DTL:
 | |
|         ret = register_dtl(tcpu, vpa);
 | |
|         break;
 | |
| 
 | |
|     case FLAGS_DEREGISTER_DTL:
 | |
|         ret = deregister_dtl(tcpu, vpa);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                            target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     env->msr |= (1ULL << MSR_EE);
 | |
|     hreg_compute_hflags(env);
 | |
|     if (!cpu_has_work(cs)) {
 | |
|         cs->halted = 1;
 | |
|         cs->exception_index = EXCP_HLT;
 | |
|         cs->exit_request = 1;
 | |
|     }
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                            target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     target_ulong rtas_r3 = args[0];
 | |
|     uint32_t token = rtas_ld(rtas_r3, 0);
 | |
|     uint32_t nargs = rtas_ld(rtas_r3, 1);
 | |
|     uint32_t nret = rtas_ld(rtas_r3, 2);
 | |
| 
 | |
|     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
 | |
|                            nret, rtas_r3 + 12 + 4*nargs);
 | |
| }
 | |
| 
 | |
| static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                                    target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     target_ulong size = args[0];
 | |
|     target_ulong addr = args[1];
 | |
| 
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         args[0] = ldub_phys(cs->as, addr);
 | |
|         return H_SUCCESS;
 | |
|     case 2:
 | |
|         args[0] = lduw_phys(cs->as, addr);
 | |
|         return H_SUCCESS;
 | |
|     case 4:
 | |
|         args[0] = ldl_phys(cs->as, addr);
 | |
|         return H_SUCCESS;
 | |
|     case 8:
 | |
|         args[0] = ldq_phys(cs->as, addr);
 | |
|         return H_SUCCESS;
 | |
|     }
 | |
|     return H_PARAMETER;
 | |
| }
 | |
| 
 | |
| static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                                     target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     target_ulong size = args[0];
 | |
|     target_ulong addr = args[1];
 | |
|     target_ulong val  = args[2];
 | |
| 
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         stb_phys(cs->as, addr, val);
 | |
|         return H_SUCCESS;
 | |
|     case 2:
 | |
|         stw_phys(cs->as, addr, val);
 | |
|         return H_SUCCESS;
 | |
|     case 4:
 | |
|         stl_phys(cs->as, addr, val);
 | |
|         return H_SUCCESS;
 | |
|     case 8:
 | |
|         stq_phys(cs->as, addr, val);
 | |
|         return H_SUCCESS;
 | |
|     }
 | |
|     return H_PARAMETER;
 | |
| }
 | |
| 
 | |
| static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                                     target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     target_ulong dst   = args[0]; /* Destination address */
 | |
|     target_ulong src   = args[1]; /* Source address */
 | |
|     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
 | |
|     target_ulong count = args[3]; /* Element count */
 | |
|     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
 | |
|     uint64_t tmp;
 | |
|     unsigned int mask = (1 << esize) - 1;
 | |
|     int step = 1 << esize;
 | |
| 
 | |
|     if (count > 0x80000000) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     if ((dst & mask) || (src & mask) || (op > 1)) {
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     if (dst >= src && dst < (src + (count << esize))) {
 | |
|             dst = dst + ((count - 1) << esize);
 | |
|             src = src + ((count - 1) << esize);
 | |
|             step = -step;
 | |
|     }
 | |
| 
 | |
|     while (count--) {
 | |
|         switch (esize) {
 | |
|         case 0:
 | |
|             tmp = ldub_phys(cs->as, src);
 | |
|             break;
 | |
|         case 1:
 | |
|             tmp = lduw_phys(cs->as, src);
 | |
|             break;
 | |
|         case 2:
 | |
|             tmp = ldl_phys(cs->as, src);
 | |
|             break;
 | |
|         case 3:
 | |
|             tmp = ldq_phys(cs->as, src);
 | |
|             break;
 | |
|         default:
 | |
|             return H_PARAMETER;
 | |
|         }
 | |
|         if (op == 1) {
 | |
|             tmp = ~tmp;
 | |
|         }
 | |
|         switch (esize) {
 | |
|         case 0:
 | |
|             stb_phys(cs->as, dst, tmp);
 | |
|             break;
 | |
|         case 1:
 | |
|             stw_phys(cs->as, dst, tmp);
 | |
|             break;
 | |
|         case 2:
 | |
|             stl_phys(cs->as, dst, tmp);
 | |
|             break;
 | |
|         case 3:
 | |
|             stq_phys(cs->as, dst, tmp);
 | |
|             break;
 | |
|         }
 | |
|         dst = dst + step;
 | |
|         src = src + step;
 | |
|     }
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                                    target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     /* Nothing to do on emulation, KVM will trap this in the kernel */
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                                    target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     /* Nothing to do on emulation, KVM will trap this in the kernel */
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
 | |
|                                            target_ulong mflags,
 | |
|                                            target_ulong value1,
 | |
|                                            target_ulong value2)
 | |
| {
 | |
|     if (value1) {
 | |
|         return H_P3;
 | |
|     }
 | |
|     if (value2) {
 | |
|         return H_P4;
 | |
|     }
 | |
| 
 | |
|     switch (mflags) {
 | |
|     case H_SET_MODE_ENDIAN_BIG:
 | |
|         spapr_set_all_lpcrs(0, LPCR_ILE);
 | |
|         spapr_pci_switch_vga(true);
 | |
|         return H_SUCCESS;
 | |
| 
 | |
|     case H_SET_MODE_ENDIAN_LITTLE:
 | |
|         spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
 | |
|         spapr_pci_switch_vga(false);
 | |
|         return H_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     return H_UNSUPPORTED_FLAG;
 | |
| }
 | |
| 
 | |
| static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
 | |
|                                                         target_ulong mflags,
 | |
|                                                         target_ulong value1,
 | |
|                                                         target_ulong value2)
 | |
| {
 | |
|     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
 | |
| 
 | |
|     if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
 | |
|         return H_P2;
 | |
|     }
 | |
|     if (value1) {
 | |
|         return H_P3;
 | |
|     }
 | |
|     if (value2) {
 | |
|         return H_P4;
 | |
|     }
 | |
| 
 | |
|     if (mflags == AIL_RESERVED) {
 | |
|         return H_UNSUPPORTED_FLAG;
 | |
|     }
 | |
| 
 | |
|     spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                                target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     target_ulong resource = args[1];
 | |
|     target_ulong ret = H_P2;
 | |
| 
 | |
|     switch (resource) {
 | |
|     case H_SET_MODE_RESOURCE_LE:
 | |
|         ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
 | |
|         break;
 | |
|     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
 | |
|         ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
 | |
|                                                   args[2], args[3]);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static target_ulong h_clean_slb(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                                 target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
 | |
|                   opcode, " (H_CLEAN_SLB)");
 | |
|     return H_FUNCTION;
 | |
| }
 | |
| 
 | |
| static target_ulong h_invalidate_pid(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                                      target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
 | |
|                   opcode, " (H_INVALIDATE_PID)");
 | |
|     return H_FUNCTION;
 | |
| }
 | |
| 
 | |
| static void spapr_check_setup_free_hpt(sPAPRMachineState *spapr,
 | |
|                                        uint64_t patbe_old, uint64_t patbe_new)
 | |
| {
 | |
|     /*
 | |
|      * We have 4 Options:
 | |
|      * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
 | |
|      * HASH->RADIX                                  : Free HPT
 | |
|      * RADIX->HASH                                  : Allocate HPT
 | |
|      * NOTHING->HASH                                : Allocate HPT
 | |
|      * Note: NOTHING implies the case where we said the guest could choose
 | |
|      *       later and so assumed radix and now it's called H_REG_PROC_TBL
 | |
|      */
 | |
| 
 | |
|     if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
 | |
|         /* We assume RADIX, so this catches all the "Do Nothing" cases */
 | |
|     } else if (!(patbe_old & PATE1_GR)) {
 | |
|         /* HASH->RADIX : Free HPT */
 | |
|         spapr_free_hpt(spapr);
 | |
|     } else if (!(patbe_new & PATE1_GR)) {
 | |
|         /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
 | |
|         spapr_setup_hpt_and_vrma(spapr);
 | |
|     }
 | |
|     return;
 | |
| }
 | |
| 
 | |
| #define FLAGS_MASK              0x01FULL
 | |
| #define FLAG_MODIFY             0x10
 | |
| #define FLAG_REGISTER           0x08
 | |
| #define FLAG_RADIX              0x04
 | |
| #define FLAG_HASH_PROC_TBL      0x02
 | |
| #define FLAG_GTSE               0x01
 | |
| 
 | |
| static target_ulong h_register_process_table(PowerPCCPU *cpu,
 | |
|                                              sPAPRMachineState *spapr,
 | |
|                                              target_ulong opcode,
 | |
|                                              target_ulong *args)
 | |
| {
 | |
|     target_ulong flags = args[0];
 | |
|     target_ulong proc_tbl = args[1];
 | |
|     target_ulong page_size = args[2];
 | |
|     target_ulong table_size = args[3];
 | |
|     uint64_t cproc;
 | |
| 
 | |
|     if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
|     if (flags & FLAG_MODIFY) {
 | |
|         if (flags & FLAG_REGISTER) {
 | |
|             if (flags & FLAG_RADIX) { /* Register new RADIX process table */
 | |
|                 if (proc_tbl & 0xfff || proc_tbl >> 60) {
 | |
|                     return H_P2;
 | |
|                 } else if (page_size) {
 | |
|                     return H_P3;
 | |
|                 } else if (table_size > 24) {
 | |
|                     return H_P4;
 | |
|                 }
 | |
|                 cproc = PATE1_GR | proc_tbl | table_size;
 | |
|             } else { /* Register new HPT process table */
 | |
|                 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
 | |
|                     /* TODO - Not Supported */
 | |
|                     /* Technically caused by flag bits => H_PARAMETER */
 | |
|                     return H_PARAMETER;
 | |
|                 } else { /* Hash with SLB */
 | |
|                     if (proc_tbl >> 38) {
 | |
|                         return H_P2;
 | |
|                     } else if (page_size & ~0x7) {
 | |
|                         return H_P3;
 | |
|                     } else if (table_size > 24) {
 | |
|                         return H_P4;
 | |
|                     }
 | |
|                 }
 | |
|                 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
 | |
|             }
 | |
| 
 | |
|         } else { /* Deregister current process table */
 | |
|             /*
 | |
|              * Set to benign value: (current GR) | 0. This allows
 | |
|              * deregistration in KVM to succeed even if the radix bit
 | |
|              * in flags doesn't match the radix bit in the old PATE.
 | |
|              */
 | |
|             cproc = spapr->patb_entry & PATE1_GR;
 | |
|         }
 | |
|     } else { /* Maintain current registration */
 | |
|         if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
 | |
|             /* Technically caused by flag bits => H_PARAMETER */
 | |
|             return H_PARAMETER; /* Existing Process Table Mismatch */
 | |
|         }
 | |
|         cproc = spapr->patb_entry;
 | |
|     }
 | |
| 
 | |
|     /* Check if we need to setup OR free the hpt */
 | |
|     spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
 | |
| 
 | |
|     spapr->patb_entry = cproc; /* Save new process table */
 | |
| 
 | |
|     /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
 | |
|     spapr_set_all_lpcrs(((flags & (FLAG_RADIX | FLAG_HASH_PROC_TBL)) ?
 | |
|                          (LPCR_UPRT | LPCR_HR) : 0) |
 | |
|                         ((flags & FLAG_GTSE) ? LPCR_GTSE : 0),
 | |
|                         LPCR_UPRT | LPCR_HR | LPCR_GTSE);
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
 | |
|                                        flags & FLAG_GTSE, cproc);
 | |
|     }
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| #define H_SIGNAL_SYS_RESET_ALL         -1
 | |
| #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
 | |
| 
 | |
| static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
 | |
|                                        sPAPRMachineState *spapr,
 | |
|                                        target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     target_long target = args[0];
 | |
|     CPUState *cs;
 | |
| 
 | |
|     if (target < 0) {
 | |
|         /* Broadcast */
 | |
|         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
 | |
|             return H_PARAMETER;
 | |
|         }
 | |
| 
 | |
|         CPU_FOREACH(cs) {
 | |
|             PowerPCCPU *c = POWERPC_CPU(cs);
 | |
| 
 | |
|             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
 | |
|                 if (c == cpu) {
 | |
|                     continue;
 | |
|                 }
 | |
|             }
 | |
|             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
 | |
|         }
 | |
|         return H_SUCCESS;
 | |
| 
 | |
|     } else {
 | |
|         /* Unicast */
 | |
|         cs = CPU(spapr_find_cpu(target));
 | |
|         if (cs) {
 | |
|             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
 | |
|             return H_SUCCESS;
 | |
|         }
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t cas_check_pvr(sPAPRMachineState *spapr, PowerPCCPU *cpu,
 | |
|                               target_ulong *addr, bool *raw_mode_supported,
 | |
|                               Error **errp)
 | |
| {
 | |
|     bool explicit_match = false; /* Matched the CPU's real PVR */
 | |
|     uint32_t max_compat = spapr->max_compat_pvr;
 | |
|     uint32_t best_compat = 0;
 | |
|     int i;
 | |
| 
 | |
|     /*
 | |
|      * We scan the supplied table of PVRs looking for two things
 | |
|      *   1. Is our real CPU PVR in the list?
 | |
|      *   2. What's the "best" listed logical PVR
 | |
|      */
 | |
|     for (i = 0; i < 512; ++i) {
 | |
|         uint32_t pvr, pvr_mask;
 | |
| 
 | |
|         pvr_mask = ldl_be_phys(&address_space_memory, *addr);
 | |
|         pvr = ldl_be_phys(&address_space_memory, *addr + 4);
 | |
|         *addr += 8;
 | |
| 
 | |
|         if (~pvr_mask & pvr) {
 | |
|             break; /* Terminator record */
 | |
|         }
 | |
| 
 | |
|         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
 | |
|             explicit_match = true;
 | |
|         } else {
 | |
|             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
 | |
|                 best_compat = pvr;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ((best_compat == 0) && (!explicit_match || max_compat)) {
 | |
|         /* We couldn't find a suitable compatibility mode, and either
 | |
|          * the guest doesn't support "raw" mode for this CPU, or raw
 | |
|          * mode is disabled because a maximum compat mode is set */
 | |
|         error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     *raw_mode_supported = explicit_match;
 | |
| 
 | |
|     /* Parsing finished */
 | |
|     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
 | |
| 
 | |
|     return best_compat;
 | |
| }
 | |
| 
 | |
| static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
 | |
|                                                   sPAPRMachineState *spapr,
 | |
|                                                   target_ulong opcode,
 | |
|                                                   target_ulong *args)
 | |
| {
 | |
|     /* Working address in data buffer */
 | |
|     target_ulong addr = ppc64_phys_to_real(args[0]);
 | |
|     target_ulong ov_table;
 | |
|     uint32_t cas_pvr;
 | |
|     sPAPROptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
 | |
|     bool guest_radix;
 | |
|     Error *local_err = NULL;
 | |
|     bool raw_mode_supported = false;
 | |
| 
 | |
|     cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err);
 | |
|     if (local_err) {
 | |
|         error_report_err(local_err);
 | |
|         return H_HARDWARE;
 | |
|     }
 | |
| 
 | |
|     /* Update CPUs */
 | |
|     if (cpu->compat_pvr != cas_pvr) {
 | |
|         ppc_set_compat_all(cas_pvr, &local_err);
 | |
|         if (local_err) {
 | |
|             /* We fail to set compat mode (likely because running with KVM PR),
 | |
|              * but maybe we can fallback to raw mode if the guest supports it.
 | |
|              */
 | |
|             if (!raw_mode_supported) {
 | |
|                 error_report_err(local_err);
 | |
|                 return H_HARDWARE;
 | |
|             }
 | |
|             error_free(local_err);
 | |
|             local_err = NULL;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* For the future use: here @ov_table points to the first option vector */
 | |
|     ov_table = addr;
 | |
| 
 | |
|     ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
 | |
|     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
 | |
|     if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
 | |
|         error_report("guest requested hash and radix MMU, which is invalid.");
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
|     /* The radix/hash bit in byte 24 requires special handling: */
 | |
|     guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
 | |
|     spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
 | |
| 
 | |
|     /*
 | |
|      * HPT resizing is a bit of a special case, because when enabled
 | |
|      * we assume an HPT guest will support it until it says it
 | |
|      * doesn't, instead of assuming it won't support it until it says
 | |
|      * it does.  Strictly speaking that approach could break for
 | |
|      * guests which don't make a CAS call, but those are so old we
 | |
|      * don't care about them.  Without that assumption we'd have to
 | |
|      * make at least a temporary allocation of an HPT sized for max
 | |
|      * memory, which could be impossibly difficult under KVM HV if
 | |
|      * maxram is large.
 | |
|      */
 | |
|     if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
 | |
|         int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
 | |
| 
 | |
|         if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
 | |
|             error_report(
 | |
|                 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         if (spapr->htab_shift < maxshift) {
 | |
|             /* Guest doesn't know about HPT resizing, so we
 | |
|              * pre-emptively resize for the maximum permitted RAM.  At
 | |
|              * the point this is called, nothing should have been
 | |
|              * entered into the existing HPT */
 | |
|             spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
 | |
|             push_sregs_to_kvm_pr(spapr);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* NOTE: there are actually a number of ov5 bits where input from the
 | |
|      * guest is always zero, and the platform/QEMU enables them independently
 | |
|      * of guest input. To model these properly we'd want some sort of mask,
 | |
|      * but since they only currently apply to memory migration as defined
 | |
|      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
 | |
|      * to worry about this for now.
 | |
|      */
 | |
|     ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
 | |
| 
 | |
|     /* also clear the radix/hash bit from the current ov5_cas bits to
 | |
|      * be in sync with the newly ov5 bits. Else the radix bit will be
 | |
|      * seen as being removed and this will generate a reset loop
 | |
|      */
 | |
|     spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300);
 | |
| 
 | |
|     /* full range of negotiated ov5 capabilities */
 | |
|     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
 | |
|     spapr_ovec_cleanup(ov5_guest);
 | |
|     /* capabilities that have been added since CAS-generated guest reset.
 | |
|      * if capabilities have since been removed, generate another reset
 | |
|      */
 | |
|     ov5_updates = spapr_ovec_new();
 | |
|     spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
 | |
|                                         ov5_cas_old, spapr->ov5_cas);
 | |
|     /* Now that processing is finished, set the radix/hash bit for the
 | |
|      * guest if it requested a valid mode; otherwise terminate the boot. */
 | |
|     if (guest_radix) {
 | |
|         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
 | |
|             error_report("Guest requested unavailable MMU mode (radix).");
 | |
|             exit(EXIT_FAILURE);
 | |
|         }
 | |
|         spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
 | |
|     } else {
 | |
|         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
 | |
|             && !kvmppc_has_cap_mmu_hash_v3()) {
 | |
|             error_report("Guest requested unavailable MMU mode (hash).");
 | |
|             exit(EXIT_FAILURE);
 | |
|         }
 | |
|     }
 | |
|     spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
 | |
|                                                           OV1_PPC_3_00);
 | |
|     if (!spapr->cas_reboot) {
 | |
|         /* If spapr_machine_reset() did not set up a HPT but one is necessary
 | |
|          * (because the guest isn't going to use radix) then set it up here. */
 | |
|         if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
 | |
|             /* legacy hash or new hash: */
 | |
|             spapr_setup_hpt_and_vrma(spapr);
 | |
|         }
 | |
|         spapr->cas_reboot =
 | |
|             (spapr_h_cas_compose_response(spapr, args[1], args[2],
 | |
|                                           ov5_updates) != 0);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Generate a machine reset when we have an update of the
 | |
|      * interrupt mode. Only required when the machine supports both
 | |
|      * modes.
 | |
|      */
 | |
|     if (!spapr->cas_reboot) {
 | |
|         spapr->cas_reboot = spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)
 | |
|             && spapr->irq->ov5 & SPAPR_OV5_XIVE_BOTH;
 | |
|     }
 | |
| 
 | |
|     spapr_ovec_cleanup(ov5_updates);
 | |
| 
 | |
|     if (spapr->cas_reboot) {
 | |
|         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 | |
|     }
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
 | |
|                                               sPAPRMachineState *spapr,
 | |
|                                               target_ulong opcode,
 | |
|                                               target_ulong *args)
 | |
| {
 | |
|     target_ulong flags = args[0];
 | |
|     target_ulong procno = args[1];
 | |
|     PowerPCCPU *tcpu;
 | |
|     int idx;
 | |
| 
 | |
|     /* only support procno from H_REGISTER_VPA */
 | |
|     if (flags != 0x1) {
 | |
|         return H_FUNCTION;
 | |
|     }
 | |
| 
 | |
|     tcpu = spapr_find_cpu(procno);
 | |
|     if (tcpu == NULL) {
 | |
|         return H_P2;
 | |
|     }
 | |
| 
 | |
|     /* sequence is the same as in the "ibm,associativity" property */
 | |
| 
 | |
|     idx = 0;
 | |
| #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
 | |
|                              ((uint64_t)(b) & 0xffffffff))
 | |
|     args[idx++] = ASSOCIATIVITY(0, 0);
 | |
|     args[idx++] = ASSOCIATIVITY(0, tcpu->node_id);
 | |
|     args[idx++] = ASSOCIATIVITY(procno, -1);
 | |
|     for ( ; idx < 6; idx++) {
 | |
|         args[idx] = -1;
 | |
|     }
 | |
| #undef ASSOCIATIVITY
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
 | |
|                                               sPAPRMachineState *spapr,
 | |
|                                               target_ulong opcode,
 | |
|                                               target_ulong *args)
 | |
| {
 | |
|     uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
 | |
|                                ~H_CPU_CHAR_THR_RECONF_TRIG;
 | |
|     uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
 | |
|     uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
 | |
|     uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
 | |
|     uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
 | |
| 
 | |
|     switch (safe_cache) {
 | |
|     case SPAPR_CAP_WORKAROUND:
 | |
|         characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
 | |
|         characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
 | |
|         characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
 | |
|         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
 | |
|         break;
 | |
|     case SPAPR_CAP_FIXED:
 | |
|         break;
 | |
|     default: /* broken */
 | |
|         assert(safe_cache == SPAPR_CAP_BROKEN);
 | |
|         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     switch (safe_bounds_check) {
 | |
|     case SPAPR_CAP_WORKAROUND:
 | |
|         characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
 | |
|         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
 | |
|         break;
 | |
|     case SPAPR_CAP_FIXED:
 | |
|         break;
 | |
|     default: /* broken */
 | |
|         assert(safe_bounds_check == SPAPR_CAP_BROKEN);
 | |
|         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     switch (safe_indirect_branch) {
 | |
|     case SPAPR_CAP_FIXED_CCD:
 | |
|         characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
 | |
|         break;
 | |
|     case SPAPR_CAP_FIXED_IBS:
 | |
|         characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
 | |
|         break;
 | |
|     default: /* broken */
 | |
|         assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     args[0] = characteristics;
 | |
|     args[1] = behaviour;
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static target_ulong h_update_dt(PowerPCCPU *cpu, sPAPRMachineState *spapr,
 | |
|                                 target_ulong opcode, target_ulong *args)
 | |
| {
 | |
|     target_ulong dt = ppc64_phys_to_real(args[0]);
 | |
|     struct fdt_header hdr = { 0 };
 | |
|     unsigned cb;
 | |
|     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 | |
|     void *fdt;
 | |
| 
 | |
|     cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
 | |
|     cb = fdt32_to_cpu(hdr.totalsize);
 | |
| 
 | |
|     if (!smc->update_dt_enabled) {
 | |
|         return H_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     /* Check that the fdt did not grow out of proportion */
 | |
|     if (cb > spapr->fdt_initial_size * 2) {
 | |
|         trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
 | |
|                                           fdt32_to_cpu(hdr.magic));
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     fdt = g_malloc0(cb);
 | |
|     cpu_physical_memory_read(dt, fdt, cb);
 | |
| 
 | |
|     /* Check the fdt consistency */
 | |
|     if (fdt_check_full(fdt, cb)) {
 | |
|         trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
 | |
|                                            fdt32_to_cpu(hdr.magic));
 | |
|         return H_PARAMETER;
 | |
|     }
 | |
| 
 | |
|     g_free(spapr->fdt_blob);
 | |
|     spapr->fdt_size = cb;
 | |
|     spapr->fdt_blob = fdt;
 | |
|     trace_spapr_update_dt(cb);
 | |
| 
 | |
|     return H_SUCCESS;
 | |
| }
 | |
| 
 | |
| static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
 | |
| static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
 | |
| 
 | |
| void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
 | |
| {
 | |
|     spapr_hcall_fn *slot;
 | |
| 
 | |
|     if (opcode <= MAX_HCALL_OPCODE) {
 | |
|         assert((opcode & 0x3) == 0);
 | |
| 
 | |
|         slot = &papr_hypercall_table[opcode / 4];
 | |
|     } else {
 | |
|         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
 | |
| 
 | |
|         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
 | |
|     }
 | |
| 
 | |
|     assert(!(*slot));
 | |
|     *slot = fn;
 | |
| }
 | |
| 
 | |
| target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
 | |
|                              target_ulong *args)
 | |
| {
 | |
|     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
 | |
| 
 | |
|     if ((opcode <= MAX_HCALL_OPCODE)
 | |
|         && ((opcode & 0x3) == 0)) {
 | |
|         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
 | |
| 
 | |
|         if (fn) {
 | |
|             return fn(cpu, spapr, opcode, args);
 | |
|         }
 | |
|     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
 | |
|                (opcode <= KVMPPC_HCALL_MAX)) {
 | |
|         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
 | |
| 
 | |
|         if (fn) {
 | |
|             return fn(cpu, spapr, opcode, args);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
 | |
|                   opcode);
 | |
|     return H_FUNCTION;
 | |
| }
 | |
| 
 | |
| static void hypercall_register_types(void)
 | |
| {
 | |
|     /* hcall-pft */
 | |
|     spapr_register_hypercall(H_ENTER, h_enter);
 | |
|     spapr_register_hypercall(H_REMOVE, h_remove);
 | |
|     spapr_register_hypercall(H_PROTECT, h_protect);
 | |
|     spapr_register_hypercall(H_READ, h_read);
 | |
| 
 | |
|     /* hcall-bulk */
 | |
|     spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
 | |
| 
 | |
|     /* hcall-hpt-resize */
 | |
|     spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
 | |
|     spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
 | |
| 
 | |
|     /* hcall-splpar */
 | |
|     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
 | |
|     spapr_register_hypercall(H_CEDE, h_cede);
 | |
|     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
 | |
| 
 | |
|     /* processor register resource access h-calls */
 | |
|     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
 | |
|     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
 | |
|     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
 | |
|     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
 | |
|     spapr_register_hypercall(H_SET_MODE, h_set_mode);
 | |
| 
 | |
|     /* In Memory Table MMU h-calls */
 | |
|     spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
 | |
|     spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
 | |
|     spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
 | |
| 
 | |
|     /* hcall-get-cpu-characteristics */
 | |
|     spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
 | |
|                              h_get_cpu_characteristics);
 | |
| 
 | |
|     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
 | |
|      * here between the "CI" and the "CACHE" variants, they will use whatever
 | |
|      * mapping attributes qemu is using. When using KVM, the kernel will
 | |
|      * enforce the attributes more strongly
 | |
|      */
 | |
|     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
 | |
|     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
 | |
|     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
 | |
|     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
 | |
|     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
 | |
|     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
 | |
|     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
 | |
| 
 | |
|     /* qemu/KVM-PPC specific hcalls */
 | |
|     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
 | |
| 
 | |
|     /* ibm,client-architecture-support support */
 | |
|     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
 | |
| 
 | |
|     spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
 | |
| 
 | |
|     /* Virtual Processor Home Node */
 | |
|     spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
 | |
|                              h_home_node_associativity);
 | |
| }
 | |
| 
 | |
| type_init(hypercall_register_types)
 |