 5d64abb32f
			
		
	
	
		5d64abb32f
		
	
	
	
	
		
			
			Previously this was only supported for roundAndPackFloat64. New support in round_canonical, round_to_int, float128_round_to_int, roundAndPackFloat32, roundAndPackInt32, roundAndPackInt64, roundAndPackUint64. This does not include any of the floatx80 routines, as we do not have users for that rounding mode there. Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20190215170225.15537-1-richard.henderson@linaro.org> Tested-by: David Hildenbrand <david@redhat.com> [AJB: add missing break] Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
		
			
				
	
	
		
			8094 lines
		
	
	
		
			272 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			8094 lines
		
	
	
		
			272 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU float support
 | |
|  *
 | |
|  * The code in this source file is derived from release 2a of the SoftFloat
 | |
|  * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 | |
|  * some later contributions) are provided under that license, as detailed below.
 | |
|  * It has subsequently been modified by contributors to the QEMU Project,
 | |
|  * so some portions are provided under:
 | |
|  *  the SoftFloat-2a license
 | |
|  *  the BSD license
 | |
|  *  GPL-v2-or-later
 | |
|  *
 | |
|  * Any future contributions to this file after December 1st 2014 will be
 | |
|  * taken to be licensed under the Softfloat-2a license unless specifically
 | |
|  * indicated otherwise.
 | |
|  */
 | |
| 
 | |
| /*
 | |
| ===============================================================================
 | |
| This C source file is part of the SoftFloat IEC/IEEE Floating-point
 | |
| Arithmetic Package, Release 2a.
 | |
| 
 | |
| Written by John R. Hauser.  This work was made possible in part by the
 | |
| International Computer Science Institute, located at Suite 600, 1947 Center
 | |
| Street, Berkeley, California 94704.  Funding was partially provided by the
 | |
| National Science Foundation under grant MIP-9311980.  The original version
 | |
| of this code was written as part of a project to build a fixed-point vector
 | |
| processor in collaboration with the University of California at Berkeley,
 | |
| overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 | |
| is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
 | |
| arithmetic/SoftFloat.html'.
 | |
| 
 | |
| THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
 | |
| has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
 | |
| TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
 | |
| PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
 | |
| AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
 | |
| 
 | |
| Derivative works are acceptable, even for commercial purposes, so long as
 | |
| (1) they include prominent notice that the work is derivative, and (2) they
 | |
| include prominent notice akin to these four paragraphs for those parts of
 | |
| this code that are retained.
 | |
| 
 | |
| ===============================================================================
 | |
| */
 | |
| 
 | |
| /* BSD licensing:
 | |
|  * Copyright (c) 2006, Fabrice Bellard
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright notice,
 | |
|  * this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
|  * this list of conditions and the following disclaimer in the documentation
 | |
|  * and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * 3. Neither the name of the copyright holder nor the names of its contributors
 | |
|  * may be used to endorse or promote products derived from this software without
 | |
|  * specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
|  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 | |
|  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
|  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
|  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
|  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
|  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
|  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 | |
|  * THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| /* Portions of this work are licensed under the terms of the GNU GPL,
 | |
|  * version 2 or later. See the COPYING file in the top-level directory.
 | |
|  */
 | |
| 
 | |
| /* softfloat (and in particular the code in softfloat-specialize.h) is
 | |
|  * target-dependent and needs the TARGET_* macros.
 | |
|  */
 | |
| #include "qemu/osdep.h"
 | |
| #include <math.h>
 | |
| #include "qemu/bitops.h"
 | |
| #include "fpu/softfloat.h"
 | |
| 
 | |
| /* We only need stdlib for abort() */
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Primitive arithmetic functions, including multi-word arithmetic, and
 | |
| | division and square root approximations.  (Can be specialized to target if
 | |
| | desired.)
 | |
| *----------------------------------------------------------------------------*/
 | |
| #include "fpu/softfloat-macros.h"
 | |
| 
 | |
| /*
 | |
|  * Hardfloat
 | |
|  *
 | |
|  * Fast emulation of guest FP instructions is challenging for two reasons.
 | |
|  * First, FP instruction semantics are similar but not identical, particularly
 | |
|  * when handling NaNs. Second, emulating at reasonable speed the guest FP
 | |
|  * exception flags is not trivial: reading the host's flags register with a
 | |
|  * feclearexcept & fetestexcept pair is slow [slightly slower than soft-fp],
 | |
|  * and trapping on every FP exception is not fast nor pleasant to work with.
 | |
|  *
 | |
|  * We address these challenges by leveraging the host FPU for a subset of the
 | |
|  * operations. To do this we expand on the idea presented in this paper:
 | |
|  *
 | |
|  * Guo, Yu-Chuan, et al. "Translating the ARM Neon and VFP instructions in a
 | |
|  * binary translator." Software: Practice and Experience 46.12 (2016):1591-1615.
 | |
|  *
 | |
|  * The idea is thus to leverage the host FPU to (1) compute FP operations
 | |
|  * and (2) identify whether FP exceptions occurred while avoiding
 | |
|  * expensive exception flag register accesses.
 | |
|  *
 | |
|  * An important optimization shown in the paper is that given that exception
 | |
|  * flags are rarely cleared by the guest, we can avoid recomputing some flags.
 | |
|  * This is particularly useful for the inexact flag, which is very frequently
 | |
|  * raised in floating-point workloads.
 | |
|  *
 | |
|  * We optimize the code further by deferring to soft-fp whenever FP exception
 | |
|  * detection might get hairy. Two examples: (1) when at least one operand is
 | |
|  * denormal/inf/NaN; (2) when operands are not guaranteed to lead to a 0 result
 | |
|  * and the result is < the minimum normal.
 | |
|  */
 | |
| #define GEN_INPUT_FLUSH__NOCHECK(name, soft_t)                          \
 | |
|     static inline void name(soft_t *a, float_status *s)                 \
 | |
|     {                                                                   \
 | |
|         if (unlikely(soft_t ## _is_denormal(*a))) {                     \
 | |
|             *a = soft_t ## _set_sign(soft_t ## _zero,                   \
 | |
|                                      soft_t ## _is_neg(*a));            \
 | |
|             s->float_exception_flags |= float_flag_input_denormal;      \
 | |
|         }                                                               \
 | |
|     }
 | |
| 
 | |
| GEN_INPUT_FLUSH__NOCHECK(float32_input_flush__nocheck, float32)
 | |
| GEN_INPUT_FLUSH__NOCHECK(float64_input_flush__nocheck, float64)
 | |
| #undef GEN_INPUT_FLUSH__NOCHECK
 | |
| 
 | |
| #define GEN_INPUT_FLUSH1(name, soft_t)                  \
 | |
|     static inline void name(soft_t *a, float_status *s) \
 | |
|     {                                                   \
 | |
|         if (likely(!s->flush_inputs_to_zero)) {         \
 | |
|             return;                                     \
 | |
|         }                                               \
 | |
|         soft_t ## _input_flush__nocheck(a, s);          \
 | |
|     }
 | |
| 
 | |
| GEN_INPUT_FLUSH1(float32_input_flush1, float32)
 | |
| GEN_INPUT_FLUSH1(float64_input_flush1, float64)
 | |
| #undef GEN_INPUT_FLUSH1
 | |
| 
 | |
| #define GEN_INPUT_FLUSH2(name, soft_t)                                  \
 | |
|     static inline void name(soft_t *a, soft_t *b, float_status *s)      \
 | |
|     {                                                                   \
 | |
|         if (likely(!s->flush_inputs_to_zero)) {                         \
 | |
|             return;                                                     \
 | |
|         }                                                               \
 | |
|         soft_t ## _input_flush__nocheck(a, s);                          \
 | |
|         soft_t ## _input_flush__nocheck(b, s);                          \
 | |
|     }
 | |
| 
 | |
| GEN_INPUT_FLUSH2(float32_input_flush2, float32)
 | |
| GEN_INPUT_FLUSH2(float64_input_flush2, float64)
 | |
| #undef GEN_INPUT_FLUSH2
 | |
| 
 | |
| #define GEN_INPUT_FLUSH3(name, soft_t)                                  \
 | |
|     static inline void name(soft_t *a, soft_t *b, soft_t *c, float_status *s) \
 | |
|     {                                                                   \
 | |
|         if (likely(!s->flush_inputs_to_zero)) {                         \
 | |
|             return;                                                     \
 | |
|         }                                                               \
 | |
|         soft_t ## _input_flush__nocheck(a, s);                          \
 | |
|         soft_t ## _input_flush__nocheck(b, s);                          \
 | |
|         soft_t ## _input_flush__nocheck(c, s);                          \
 | |
|     }
 | |
| 
 | |
| GEN_INPUT_FLUSH3(float32_input_flush3, float32)
 | |
| GEN_INPUT_FLUSH3(float64_input_flush3, float64)
 | |
| #undef GEN_INPUT_FLUSH3
 | |
| 
 | |
| /*
 | |
|  * Choose whether to use fpclassify or float32/64_* primitives in the generated
 | |
|  * hardfloat functions. Each combination of number of inputs and float size
 | |
|  * gets its own value.
 | |
|  */
 | |
| #if defined(__x86_64__)
 | |
| # define QEMU_HARDFLOAT_1F32_USE_FP 0
 | |
| # define QEMU_HARDFLOAT_1F64_USE_FP 1
 | |
| # define QEMU_HARDFLOAT_2F32_USE_FP 0
 | |
| # define QEMU_HARDFLOAT_2F64_USE_FP 1
 | |
| # define QEMU_HARDFLOAT_3F32_USE_FP 0
 | |
| # define QEMU_HARDFLOAT_3F64_USE_FP 1
 | |
| #else
 | |
| # define QEMU_HARDFLOAT_1F32_USE_FP 0
 | |
| # define QEMU_HARDFLOAT_1F64_USE_FP 0
 | |
| # define QEMU_HARDFLOAT_2F32_USE_FP 0
 | |
| # define QEMU_HARDFLOAT_2F64_USE_FP 0
 | |
| # define QEMU_HARDFLOAT_3F32_USE_FP 0
 | |
| # define QEMU_HARDFLOAT_3F64_USE_FP 0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * QEMU_HARDFLOAT_USE_ISINF chooses whether to use isinf() over
 | |
|  * float{32,64}_is_infinity when !USE_FP.
 | |
|  * On x86_64/aarch64, using the former over the latter can yield a ~6% speedup.
 | |
|  * On power64 however, using isinf() reduces fp-bench performance by up to 50%.
 | |
|  */
 | |
| #if defined(__x86_64__) || defined(__aarch64__)
 | |
| # define QEMU_HARDFLOAT_USE_ISINF   1
 | |
| #else
 | |
| # define QEMU_HARDFLOAT_USE_ISINF   0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Some targets clear the FP flags before most FP operations. This prevents
 | |
|  * the use of hardfloat, since hardfloat relies on the inexact flag being
 | |
|  * already set.
 | |
|  */
 | |
| #if defined(TARGET_PPC) || defined(__FAST_MATH__)
 | |
| # if defined(__FAST_MATH__)
 | |
| #  warning disabling hardfloat due to -ffast-math: hardfloat requires an exact \
 | |
|     IEEE implementation
 | |
| # endif
 | |
| # define QEMU_NO_HARDFLOAT 1
 | |
| # define QEMU_SOFTFLOAT_ATTR QEMU_FLATTEN
 | |
| #else
 | |
| # define QEMU_NO_HARDFLOAT 0
 | |
| # define QEMU_SOFTFLOAT_ATTR QEMU_FLATTEN __attribute__((noinline))
 | |
| #endif
 | |
| 
 | |
| static inline bool can_use_fpu(const float_status *s)
 | |
| {
 | |
|     if (QEMU_NO_HARDFLOAT) {
 | |
|         return false;
 | |
|     }
 | |
|     return likely(s->float_exception_flags & float_flag_inexact &&
 | |
|                   s->float_rounding_mode == float_round_nearest_even);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Hardfloat generation functions. Each operation can have two flavors:
 | |
|  * either using softfloat primitives (e.g. float32_is_zero_or_normal) for
 | |
|  * most condition checks, or native ones (e.g. fpclassify).
 | |
|  *
 | |
|  * The flavor is chosen by the callers. Instead of using macros, we rely on the
 | |
|  * compiler to propagate constants and inline everything into the callers.
 | |
|  *
 | |
|  * We only generate functions for operations with two inputs, since only
 | |
|  * these are common enough to justify consolidating them into common code.
 | |
|  */
 | |
| 
 | |
| typedef union {
 | |
|     float32 s;
 | |
|     float h;
 | |
| } union_float32;
 | |
| 
 | |
| typedef union {
 | |
|     float64 s;
 | |
|     double h;
 | |
| } union_float64;
 | |
| 
 | |
| typedef bool (*f32_check_fn)(union_float32 a, union_float32 b);
 | |
| typedef bool (*f64_check_fn)(union_float64 a, union_float64 b);
 | |
| 
 | |
| typedef float32 (*soft_f32_op2_fn)(float32 a, float32 b, float_status *s);
 | |
| typedef float64 (*soft_f64_op2_fn)(float64 a, float64 b, float_status *s);
 | |
| typedef float   (*hard_f32_op2_fn)(float a, float b);
 | |
| typedef double  (*hard_f64_op2_fn)(double a, double b);
 | |
| 
 | |
| /* 2-input is-zero-or-normal */
 | |
| static inline bool f32_is_zon2(union_float32 a, union_float32 b)
 | |
| {
 | |
|     if (QEMU_HARDFLOAT_2F32_USE_FP) {
 | |
|         /*
 | |
|          * Not using a temp variable for consecutive fpclassify calls ends up
 | |
|          * generating faster code.
 | |
|          */
 | |
|         return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
 | |
|                (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO);
 | |
|     }
 | |
|     return float32_is_zero_or_normal(a.s) &&
 | |
|            float32_is_zero_or_normal(b.s);
 | |
| }
 | |
| 
 | |
| static inline bool f64_is_zon2(union_float64 a, union_float64 b)
 | |
| {
 | |
|     if (QEMU_HARDFLOAT_2F64_USE_FP) {
 | |
|         return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
 | |
|                (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO);
 | |
|     }
 | |
|     return float64_is_zero_or_normal(a.s) &&
 | |
|            float64_is_zero_or_normal(b.s);
 | |
| }
 | |
| 
 | |
| /* 3-input is-zero-or-normal */
 | |
| static inline
 | |
| bool f32_is_zon3(union_float32 a, union_float32 b, union_float32 c)
 | |
| {
 | |
|     if (QEMU_HARDFLOAT_3F32_USE_FP) {
 | |
|         return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
 | |
|                (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO) &&
 | |
|                (fpclassify(c.h) == FP_NORMAL || fpclassify(c.h) == FP_ZERO);
 | |
|     }
 | |
|     return float32_is_zero_or_normal(a.s) &&
 | |
|            float32_is_zero_or_normal(b.s) &&
 | |
|            float32_is_zero_or_normal(c.s);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| bool f64_is_zon3(union_float64 a, union_float64 b, union_float64 c)
 | |
| {
 | |
|     if (QEMU_HARDFLOAT_3F64_USE_FP) {
 | |
|         return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
 | |
|                (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO) &&
 | |
|                (fpclassify(c.h) == FP_NORMAL || fpclassify(c.h) == FP_ZERO);
 | |
|     }
 | |
|     return float64_is_zero_or_normal(a.s) &&
 | |
|            float64_is_zero_or_normal(b.s) &&
 | |
|            float64_is_zero_or_normal(c.s);
 | |
| }
 | |
| 
 | |
| static inline bool f32_is_inf(union_float32 a)
 | |
| {
 | |
|     if (QEMU_HARDFLOAT_USE_ISINF) {
 | |
|         return isinf(a.h);
 | |
|     }
 | |
|     return float32_is_infinity(a.s);
 | |
| }
 | |
| 
 | |
| static inline bool f64_is_inf(union_float64 a)
 | |
| {
 | |
|     if (QEMU_HARDFLOAT_USE_ISINF) {
 | |
|         return isinf(a.h);
 | |
|     }
 | |
|     return float64_is_infinity(a.s);
 | |
| }
 | |
| 
 | |
| /* Note: @fast_test and @post can be NULL */
 | |
| static inline float32
 | |
| float32_gen2(float32 xa, float32 xb, float_status *s,
 | |
|              hard_f32_op2_fn hard, soft_f32_op2_fn soft,
 | |
|              f32_check_fn pre, f32_check_fn post,
 | |
|              f32_check_fn fast_test, soft_f32_op2_fn fast_op)
 | |
| {
 | |
|     union_float32 ua, ub, ur;
 | |
| 
 | |
|     ua.s = xa;
 | |
|     ub.s = xb;
 | |
| 
 | |
|     if (unlikely(!can_use_fpu(s))) {
 | |
|         goto soft;
 | |
|     }
 | |
| 
 | |
|     float32_input_flush2(&ua.s, &ub.s, s);
 | |
|     if (unlikely(!pre(ua, ub))) {
 | |
|         goto soft;
 | |
|     }
 | |
|     if (fast_test && fast_test(ua, ub)) {
 | |
|         return fast_op(ua.s, ub.s, s);
 | |
|     }
 | |
| 
 | |
|     ur.h = hard(ua.h, ub.h);
 | |
|     if (unlikely(f32_is_inf(ur))) {
 | |
|         s->float_exception_flags |= float_flag_overflow;
 | |
|     } else if (unlikely(fabsf(ur.h) <= FLT_MIN)) {
 | |
|         if (post == NULL || post(ua, ub)) {
 | |
|             goto soft;
 | |
|         }
 | |
|     }
 | |
|     return ur.s;
 | |
| 
 | |
|  soft:
 | |
|     return soft(ua.s, ub.s, s);
 | |
| }
 | |
| 
 | |
| static inline float64
 | |
| float64_gen2(float64 xa, float64 xb, float_status *s,
 | |
|              hard_f64_op2_fn hard, soft_f64_op2_fn soft,
 | |
|              f64_check_fn pre, f64_check_fn post,
 | |
|              f64_check_fn fast_test, soft_f64_op2_fn fast_op)
 | |
| {
 | |
|     union_float64 ua, ub, ur;
 | |
| 
 | |
|     ua.s = xa;
 | |
|     ub.s = xb;
 | |
| 
 | |
|     if (unlikely(!can_use_fpu(s))) {
 | |
|         goto soft;
 | |
|     }
 | |
| 
 | |
|     float64_input_flush2(&ua.s, &ub.s, s);
 | |
|     if (unlikely(!pre(ua, ub))) {
 | |
|         goto soft;
 | |
|     }
 | |
|     if (fast_test && fast_test(ua, ub)) {
 | |
|         return fast_op(ua.s, ub.s, s);
 | |
|     }
 | |
| 
 | |
|     ur.h = hard(ua.h, ub.h);
 | |
|     if (unlikely(f64_is_inf(ur))) {
 | |
|         s->float_exception_flags |= float_flag_overflow;
 | |
|     } else if (unlikely(fabs(ur.h) <= DBL_MIN)) {
 | |
|         if (post == NULL || post(ua, ub)) {
 | |
|             goto soft;
 | |
|         }
 | |
|     }
 | |
|     return ur.s;
 | |
| 
 | |
|  soft:
 | |
|     return soft(ua.s, ub.s, s);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the fraction bits of the half-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline uint32_t extractFloat16Frac(float16 a)
 | |
| {
 | |
|     return float16_val(a) & 0x3ff;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the exponent bits of the half-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline int extractFloat16Exp(float16 a)
 | |
| {
 | |
|     return (float16_val(a) >> 10) & 0x1f;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the fraction bits of the single-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline uint32_t extractFloat32Frac(float32 a)
 | |
| {
 | |
|     return float32_val(a) & 0x007FFFFF;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the exponent bits of the single-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline int extractFloat32Exp(float32 a)
 | |
| {
 | |
|     return (float32_val(a) >> 23) & 0xFF;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the sign bit of the single-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline flag extractFloat32Sign(float32 a)
 | |
| {
 | |
|     return float32_val(a) >> 31;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the fraction bits of the double-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline uint64_t extractFloat64Frac(float64 a)
 | |
| {
 | |
|     return float64_val(a) & LIT64(0x000FFFFFFFFFFFFF);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the exponent bits of the double-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline int extractFloat64Exp(float64 a)
 | |
| {
 | |
|     return (float64_val(a) >> 52) & 0x7FF;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the sign bit of the double-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline flag extractFloat64Sign(float64 a)
 | |
| {
 | |
|     return float64_val(a) >> 63;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Classify a floating point number. Everything above float_class_qnan
 | |
|  * is a NaN so cls >= float_class_qnan is any NaN.
 | |
|  */
 | |
| 
 | |
| typedef enum __attribute__ ((__packed__)) {
 | |
|     float_class_unclassified,
 | |
|     float_class_zero,
 | |
|     float_class_normal,
 | |
|     float_class_inf,
 | |
|     float_class_qnan,  /* all NaNs from here */
 | |
|     float_class_snan,
 | |
| } FloatClass;
 | |
| 
 | |
| /* Simple helpers for checking if, or what kind of, NaN we have */
 | |
| static inline __attribute__((unused)) bool is_nan(FloatClass c)
 | |
| {
 | |
|     return unlikely(c >= float_class_qnan);
 | |
| }
 | |
| 
 | |
| static inline __attribute__((unused)) bool is_snan(FloatClass c)
 | |
| {
 | |
|     return c == float_class_snan;
 | |
| }
 | |
| 
 | |
| static inline __attribute__((unused)) bool is_qnan(FloatClass c)
 | |
| {
 | |
|     return c == float_class_qnan;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Structure holding all of the decomposed parts of a float. The
 | |
|  * exponent is unbiased and the fraction is normalized. All
 | |
|  * calculations are done with a 64 bit fraction and then rounded as
 | |
|  * appropriate for the final format.
 | |
|  *
 | |
|  * Thanks to the packed FloatClass a decent compiler should be able to
 | |
|  * fit the whole structure into registers and avoid using the stack
 | |
|  * for parameter passing.
 | |
|  */
 | |
| 
 | |
| typedef struct {
 | |
|     uint64_t frac;
 | |
|     int32_t  exp;
 | |
|     FloatClass cls;
 | |
|     bool sign;
 | |
| } FloatParts;
 | |
| 
 | |
| #define DECOMPOSED_BINARY_POINT    (64 - 2)
 | |
| #define DECOMPOSED_IMPLICIT_BIT    (1ull << DECOMPOSED_BINARY_POINT)
 | |
| #define DECOMPOSED_OVERFLOW_BIT    (DECOMPOSED_IMPLICIT_BIT << 1)
 | |
| 
 | |
| /* Structure holding all of the relevant parameters for a format.
 | |
|  *   exp_size: the size of the exponent field
 | |
|  *   exp_bias: the offset applied to the exponent field
 | |
|  *   exp_max: the maximum normalised exponent
 | |
|  *   frac_size: the size of the fraction field
 | |
|  *   frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT
 | |
|  * The following are computed based the size of fraction
 | |
|  *   frac_lsb: least significant bit of fraction
 | |
|  *   frac_lsbm1: the bit below the least significant bit (for rounding)
 | |
|  *   round_mask/roundeven_mask: masks used for rounding
 | |
|  * The following optional modifiers are available:
 | |
|  *   arm_althp: handle ARM Alternative Half Precision
 | |
|  */
 | |
| typedef struct {
 | |
|     int exp_size;
 | |
|     int exp_bias;
 | |
|     int exp_max;
 | |
|     int frac_size;
 | |
|     int frac_shift;
 | |
|     uint64_t frac_lsb;
 | |
|     uint64_t frac_lsbm1;
 | |
|     uint64_t round_mask;
 | |
|     uint64_t roundeven_mask;
 | |
|     bool arm_althp;
 | |
| } FloatFmt;
 | |
| 
 | |
| /* Expand fields based on the size of exponent and fraction */
 | |
| #define FLOAT_PARAMS(E, F)                                           \
 | |
|     .exp_size       = E,                                             \
 | |
|     .exp_bias       = ((1 << E) - 1) >> 1,                           \
 | |
|     .exp_max        = (1 << E) - 1,                                  \
 | |
|     .frac_size      = F,                                             \
 | |
|     .frac_shift     = DECOMPOSED_BINARY_POINT - F,                   \
 | |
|     .frac_lsb       = 1ull << (DECOMPOSED_BINARY_POINT - F),         \
 | |
|     .frac_lsbm1     = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1),   \
 | |
|     .round_mask     = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1,   \
 | |
|     .roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1
 | |
| 
 | |
| static const FloatFmt float16_params = {
 | |
|     FLOAT_PARAMS(5, 10)
 | |
| };
 | |
| 
 | |
| static const FloatFmt float16_params_ahp = {
 | |
|     FLOAT_PARAMS(5, 10),
 | |
|     .arm_althp = true
 | |
| };
 | |
| 
 | |
| static const FloatFmt float32_params = {
 | |
|     FLOAT_PARAMS(8, 23)
 | |
| };
 | |
| 
 | |
| static const FloatFmt float64_params = {
 | |
|     FLOAT_PARAMS(11, 52)
 | |
| };
 | |
| 
 | |
| /* Unpack a float to parts, but do not canonicalize.  */
 | |
| static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw)
 | |
| {
 | |
|     const int sign_pos = fmt.frac_size + fmt.exp_size;
 | |
| 
 | |
|     return (FloatParts) {
 | |
|         .cls = float_class_unclassified,
 | |
|         .sign = extract64(raw, sign_pos, 1),
 | |
|         .exp = extract64(raw, fmt.frac_size, fmt.exp_size),
 | |
|         .frac = extract64(raw, 0, fmt.frac_size),
 | |
|     };
 | |
| }
 | |
| 
 | |
| static inline FloatParts float16_unpack_raw(float16 f)
 | |
| {
 | |
|     return unpack_raw(float16_params, f);
 | |
| }
 | |
| 
 | |
| static inline FloatParts float32_unpack_raw(float32 f)
 | |
| {
 | |
|     return unpack_raw(float32_params, f);
 | |
| }
 | |
| 
 | |
| static inline FloatParts float64_unpack_raw(float64 f)
 | |
| {
 | |
|     return unpack_raw(float64_params, f);
 | |
| }
 | |
| 
 | |
| /* Pack a float from parts, but do not canonicalize.  */
 | |
| static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p)
 | |
| {
 | |
|     const int sign_pos = fmt.frac_size + fmt.exp_size;
 | |
|     uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp);
 | |
|     return deposit64(ret, sign_pos, 1, p.sign);
 | |
| }
 | |
| 
 | |
| static inline float16 float16_pack_raw(FloatParts p)
 | |
| {
 | |
|     return make_float16(pack_raw(float16_params, p));
 | |
| }
 | |
| 
 | |
| static inline float32 float32_pack_raw(FloatParts p)
 | |
| {
 | |
|     return make_float32(pack_raw(float32_params, p));
 | |
| }
 | |
| 
 | |
| static inline float64 float64_pack_raw(FloatParts p)
 | |
| {
 | |
|     return make_float64(pack_raw(float64_params, p));
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Functions and definitions to determine:  (1) whether tininess for underflow
 | |
| | is detected before or after rounding by default, (2) what (if anything)
 | |
| | happens when exceptions are raised, (3) how signaling NaNs are distinguished
 | |
| | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
 | |
| | are propagated from function inputs to output.  These details are target-
 | |
| | specific.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #include "softfloat-specialize.h"
 | |
| 
 | |
| /* Canonicalize EXP and FRAC, setting CLS.  */
 | |
| static FloatParts sf_canonicalize(FloatParts part, const FloatFmt *parm,
 | |
|                                   float_status *status)
 | |
| {
 | |
|     if (part.exp == parm->exp_max && !parm->arm_althp) {
 | |
|         if (part.frac == 0) {
 | |
|             part.cls = float_class_inf;
 | |
|         } else {
 | |
|             part.frac <<= parm->frac_shift;
 | |
|             part.cls = (parts_is_snan_frac(part.frac, status)
 | |
|                         ? float_class_snan : float_class_qnan);
 | |
|         }
 | |
|     } else if (part.exp == 0) {
 | |
|         if (likely(part.frac == 0)) {
 | |
|             part.cls = float_class_zero;
 | |
|         } else if (status->flush_inputs_to_zero) {
 | |
|             float_raise(float_flag_input_denormal, status);
 | |
|             part.cls = float_class_zero;
 | |
|             part.frac = 0;
 | |
|         } else {
 | |
|             int shift = clz64(part.frac) - 1;
 | |
|             part.cls = float_class_normal;
 | |
|             part.exp = parm->frac_shift - parm->exp_bias - shift + 1;
 | |
|             part.frac <<= shift;
 | |
|         }
 | |
|     } else {
 | |
|         part.cls = float_class_normal;
 | |
|         part.exp -= parm->exp_bias;
 | |
|         part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift);
 | |
|     }
 | |
|     return part;
 | |
| }
 | |
| 
 | |
| /* Round and uncanonicalize a floating-point number by parts. There
 | |
|  * are FRAC_SHIFT bits that may require rounding at the bottom of the
 | |
|  * fraction; these bits will be removed. The exponent will be biased
 | |
|  * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
 | |
|  */
 | |
| 
 | |
| static FloatParts round_canonical(FloatParts p, float_status *s,
 | |
|                                   const FloatFmt *parm)
 | |
| {
 | |
|     const uint64_t frac_lsb = parm->frac_lsb;
 | |
|     const uint64_t frac_lsbm1 = parm->frac_lsbm1;
 | |
|     const uint64_t round_mask = parm->round_mask;
 | |
|     const uint64_t roundeven_mask = parm->roundeven_mask;
 | |
|     const int exp_max = parm->exp_max;
 | |
|     const int frac_shift = parm->frac_shift;
 | |
|     uint64_t frac, inc;
 | |
|     int exp, flags = 0;
 | |
|     bool overflow_norm;
 | |
| 
 | |
|     frac = p.frac;
 | |
|     exp = p.exp;
 | |
| 
 | |
|     switch (p.cls) {
 | |
|     case float_class_normal:
 | |
|         switch (s->float_rounding_mode) {
 | |
|         case float_round_nearest_even:
 | |
|             overflow_norm = false;
 | |
|             inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
 | |
|             break;
 | |
|         case float_round_ties_away:
 | |
|             overflow_norm = false;
 | |
|             inc = frac_lsbm1;
 | |
|             break;
 | |
|         case float_round_to_zero:
 | |
|             overflow_norm = true;
 | |
|             inc = 0;
 | |
|             break;
 | |
|         case float_round_up:
 | |
|             inc = p.sign ? 0 : round_mask;
 | |
|             overflow_norm = p.sign;
 | |
|             break;
 | |
|         case float_round_down:
 | |
|             inc = p.sign ? round_mask : 0;
 | |
|             overflow_norm = !p.sign;
 | |
|             break;
 | |
|         case float_round_to_odd:
 | |
|             overflow_norm = true;
 | |
|             inc = frac & frac_lsb ? 0 : round_mask;
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
| 
 | |
|         exp += parm->exp_bias;
 | |
|         if (likely(exp > 0)) {
 | |
|             if (frac & round_mask) {
 | |
|                 flags |= float_flag_inexact;
 | |
|                 frac += inc;
 | |
|                 if (frac & DECOMPOSED_OVERFLOW_BIT) {
 | |
|                     frac >>= 1;
 | |
|                     exp++;
 | |
|                 }
 | |
|             }
 | |
|             frac >>= frac_shift;
 | |
| 
 | |
|             if (parm->arm_althp) {
 | |
|                 /* ARM Alt HP eschews Inf and NaN for a wider exponent.  */
 | |
|                 if (unlikely(exp > exp_max)) {
 | |
|                     /* Overflow.  Return the maximum normal.  */
 | |
|                     flags = float_flag_invalid;
 | |
|                     exp = exp_max;
 | |
|                     frac = -1;
 | |
|                 }
 | |
|             } else if (unlikely(exp >= exp_max)) {
 | |
|                 flags |= float_flag_overflow | float_flag_inexact;
 | |
|                 if (overflow_norm) {
 | |
|                     exp = exp_max - 1;
 | |
|                     frac = -1;
 | |
|                 } else {
 | |
|                     p.cls = float_class_inf;
 | |
|                     goto do_inf;
 | |
|                 }
 | |
|             }
 | |
|         } else if (s->flush_to_zero) {
 | |
|             flags |= float_flag_output_denormal;
 | |
|             p.cls = float_class_zero;
 | |
|             goto do_zero;
 | |
|         } else {
 | |
|             bool is_tiny = (s->float_detect_tininess
 | |
|                             == float_tininess_before_rounding)
 | |
|                         || (exp < 0)
 | |
|                         || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT);
 | |
| 
 | |
|             shift64RightJamming(frac, 1 - exp, &frac);
 | |
|             if (frac & round_mask) {
 | |
|                 /* Need to recompute round-to-even.  */
 | |
|                 switch (s->float_rounding_mode) {
 | |
|                 case float_round_nearest_even:
 | |
|                     inc = ((frac & roundeven_mask) != frac_lsbm1
 | |
|                            ? frac_lsbm1 : 0);
 | |
|                     break;
 | |
|                 case float_round_to_odd:
 | |
|                     inc = frac & frac_lsb ? 0 : round_mask;
 | |
|                     break;
 | |
|                 }
 | |
|                 flags |= float_flag_inexact;
 | |
|                 frac += inc;
 | |
|             }
 | |
| 
 | |
|             exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0);
 | |
|             frac >>= frac_shift;
 | |
| 
 | |
|             if (is_tiny && (flags & float_flag_inexact)) {
 | |
|                 flags |= float_flag_underflow;
 | |
|             }
 | |
|             if (exp == 0 && frac == 0) {
 | |
|                 p.cls = float_class_zero;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case float_class_zero:
 | |
|     do_zero:
 | |
|         exp = 0;
 | |
|         frac = 0;
 | |
|         break;
 | |
| 
 | |
|     case float_class_inf:
 | |
|     do_inf:
 | |
|         assert(!parm->arm_althp);
 | |
|         exp = exp_max;
 | |
|         frac = 0;
 | |
|         break;
 | |
| 
 | |
|     case float_class_qnan:
 | |
|     case float_class_snan:
 | |
|         assert(!parm->arm_althp);
 | |
|         exp = exp_max;
 | |
|         frac >>= parm->frac_shift;
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     float_raise(flags, s);
 | |
|     p.exp = exp;
 | |
|     p.frac = frac;
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| /* Explicit FloatFmt version */
 | |
| static FloatParts float16a_unpack_canonical(float16 f, float_status *s,
 | |
|                                             const FloatFmt *params)
 | |
| {
 | |
|     return sf_canonicalize(float16_unpack_raw(f), params, s);
 | |
| }
 | |
| 
 | |
| static FloatParts float16_unpack_canonical(float16 f, float_status *s)
 | |
| {
 | |
|     return float16a_unpack_canonical(f, s, &float16_params);
 | |
| }
 | |
| 
 | |
| static float16 float16a_round_pack_canonical(FloatParts p, float_status *s,
 | |
|                                              const FloatFmt *params)
 | |
| {
 | |
|     return float16_pack_raw(round_canonical(p, s, params));
 | |
| }
 | |
| 
 | |
| static float16 float16_round_pack_canonical(FloatParts p, float_status *s)
 | |
| {
 | |
|     return float16a_round_pack_canonical(p, s, &float16_params);
 | |
| }
 | |
| 
 | |
| static FloatParts float32_unpack_canonical(float32 f, float_status *s)
 | |
| {
 | |
|     return sf_canonicalize(float32_unpack_raw(f), &float32_params, s);
 | |
| }
 | |
| 
 | |
| static float32 float32_round_pack_canonical(FloatParts p, float_status *s)
 | |
| {
 | |
|     return float32_pack_raw(round_canonical(p, s, &float32_params));
 | |
| }
 | |
| 
 | |
| static FloatParts float64_unpack_canonical(float64 f, float_status *s)
 | |
| {
 | |
|     return sf_canonicalize(float64_unpack_raw(f), &float64_params, s);
 | |
| }
 | |
| 
 | |
| static float64 float64_round_pack_canonical(FloatParts p, float_status *s)
 | |
| {
 | |
|     return float64_pack_raw(round_canonical(p, s, &float64_params));
 | |
| }
 | |
| 
 | |
| static FloatParts return_nan(FloatParts a, float_status *s)
 | |
| {
 | |
|     switch (a.cls) {
 | |
|     case float_class_snan:
 | |
|         s->float_exception_flags |= float_flag_invalid;
 | |
|         a = parts_silence_nan(a, s);
 | |
|         /* fall through */
 | |
|     case float_class_qnan:
 | |
|         if (s->default_nan_mode) {
 | |
|             return parts_default_nan(s);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
 | |
| {
 | |
|     if (is_snan(a.cls) || is_snan(b.cls)) {
 | |
|         s->float_exception_flags |= float_flag_invalid;
 | |
|     }
 | |
| 
 | |
|     if (s->default_nan_mode) {
 | |
|         return parts_default_nan(s);
 | |
|     } else {
 | |
|         if (pickNaN(a.cls, b.cls,
 | |
|                     a.frac > b.frac ||
 | |
|                     (a.frac == b.frac && a.sign < b.sign))) {
 | |
|             a = b;
 | |
|         }
 | |
|         if (is_snan(a.cls)) {
 | |
|             return parts_silence_nan(a, s);
 | |
|         }
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c,
 | |
|                                   bool inf_zero, float_status *s)
 | |
| {
 | |
|     int which;
 | |
| 
 | |
|     if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) {
 | |
|         s->float_exception_flags |= float_flag_invalid;
 | |
|     }
 | |
| 
 | |
|     which = pickNaNMulAdd(a.cls, b.cls, c.cls, inf_zero, s);
 | |
| 
 | |
|     if (s->default_nan_mode) {
 | |
|         /* Note that this check is after pickNaNMulAdd so that function
 | |
|          * has an opportunity to set the Invalid flag.
 | |
|          */
 | |
|         which = 3;
 | |
|     }
 | |
| 
 | |
|     switch (which) {
 | |
|     case 0:
 | |
|         break;
 | |
|     case 1:
 | |
|         a = b;
 | |
|         break;
 | |
|     case 2:
 | |
|         a = c;
 | |
|         break;
 | |
|     case 3:
 | |
|         return parts_default_nan(s);
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     if (is_snan(a.cls)) {
 | |
|         return parts_silence_nan(a, s);
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the result of adding or subtracting the values of the
 | |
|  * floating-point values `a' and `b'. The operation is performed
 | |
|  * according to the IEC/IEEE Standard for Binary Floating-Point
 | |
|  * Arithmetic.
 | |
|  */
 | |
| 
 | |
| static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract,
 | |
|                                 float_status *s)
 | |
| {
 | |
|     bool a_sign = a.sign;
 | |
|     bool b_sign = b.sign ^ subtract;
 | |
| 
 | |
|     if (a_sign != b_sign) {
 | |
|         /* Subtraction */
 | |
| 
 | |
|         if (a.cls == float_class_normal && b.cls == float_class_normal) {
 | |
|             if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) {
 | |
|                 shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
 | |
|                 a.frac = a.frac - b.frac;
 | |
|             } else {
 | |
|                 shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
 | |
|                 a.frac = b.frac - a.frac;
 | |
|                 a.exp = b.exp;
 | |
|                 a_sign ^= 1;
 | |
|             }
 | |
| 
 | |
|             if (a.frac == 0) {
 | |
|                 a.cls = float_class_zero;
 | |
|                 a.sign = s->float_rounding_mode == float_round_down;
 | |
|             } else {
 | |
|                 int shift = clz64(a.frac) - 1;
 | |
|                 a.frac = a.frac << shift;
 | |
|                 a.exp = a.exp - shift;
 | |
|                 a.sign = a_sign;
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         if (is_nan(a.cls) || is_nan(b.cls)) {
 | |
|             return pick_nan(a, b, s);
 | |
|         }
 | |
|         if (a.cls == float_class_inf) {
 | |
|             if (b.cls == float_class_inf) {
 | |
|                 float_raise(float_flag_invalid, s);
 | |
|                 return parts_default_nan(s);
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         if (a.cls == float_class_zero && b.cls == float_class_zero) {
 | |
|             a.sign = s->float_rounding_mode == float_round_down;
 | |
|             return a;
 | |
|         }
 | |
|         if (a.cls == float_class_zero || b.cls == float_class_inf) {
 | |
|             b.sign = a_sign ^ 1;
 | |
|             return b;
 | |
|         }
 | |
|         if (b.cls == float_class_zero) {
 | |
|             return a;
 | |
|         }
 | |
|     } else {
 | |
|         /* Addition */
 | |
|         if (a.cls == float_class_normal && b.cls == float_class_normal) {
 | |
|             if (a.exp > b.exp) {
 | |
|                 shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
 | |
|             } else if (a.exp < b.exp) {
 | |
|                 shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
 | |
|                 a.exp = b.exp;
 | |
|             }
 | |
|             a.frac += b.frac;
 | |
|             if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
 | |
|                 shift64RightJamming(a.frac, 1, &a.frac);
 | |
|                 a.exp += 1;
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         if (is_nan(a.cls) || is_nan(b.cls)) {
 | |
|             return pick_nan(a, b, s);
 | |
|         }
 | |
|         if (a.cls == float_class_inf || b.cls == float_class_zero) {
 | |
|             return a;
 | |
|         }
 | |
|         if (b.cls == float_class_inf || a.cls == float_class_zero) {
 | |
|             b.sign = b_sign;
 | |
|             return b;
 | |
|         }
 | |
|     }
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the result of adding or subtracting the floating-point
 | |
|  * values `a' and `b'. The operation is performed according to the
 | |
|  * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
|  */
 | |
| 
 | |
| float16 QEMU_FLATTEN float16_add(float16 a, float16 b, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float16_unpack_canonical(a, status);
 | |
|     FloatParts pb = float16_unpack_canonical(b, status);
 | |
|     FloatParts pr = addsub_floats(pa, pb, false, status);
 | |
| 
 | |
|     return float16_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| float16 QEMU_FLATTEN float16_sub(float16 a, float16 b, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float16_unpack_canonical(a, status);
 | |
|     FloatParts pb = float16_unpack_canonical(b, status);
 | |
|     FloatParts pr = addsub_floats(pa, pb, true, status);
 | |
| 
 | |
|     return float16_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| static float32 QEMU_SOFTFLOAT_ATTR
 | |
| soft_f32_addsub(float32 a, float32 b, bool subtract, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float32_unpack_canonical(a, status);
 | |
|     FloatParts pb = float32_unpack_canonical(b, status);
 | |
|     FloatParts pr = addsub_floats(pa, pb, subtract, status);
 | |
| 
 | |
|     return float32_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| static inline float32 soft_f32_add(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     return soft_f32_addsub(a, b, false, status);
 | |
| }
 | |
| 
 | |
| static inline float32 soft_f32_sub(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     return soft_f32_addsub(a, b, true, status);
 | |
| }
 | |
| 
 | |
| static float64 QEMU_SOFTFLOAT_ATTR
 | |
| soft_f64_addsub(float64 a, float64 b, bool subtract, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float64_unpack_canonical(a, status);
 | |
|     FloatParts pb = float64_unpack_canonical(b, status);
 | |
|     FloatParts pr = addsub_floats(pa, pb, subtract, status);
 | |
| 
 | |
|     return float64_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| static inline float64 soft_f64_add(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     return soft_f64_addsub(a, b, false, status);
 | |
| }
 | |
| 
 | |
| static inline float64 soft_f64_sub(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     return soft_f64_addsub(a, b, true, status);
 | |
| }
 | |
| 
 | |
| static float hard_f32_add(float a, float b)
 | |
| {
 | |
|     return a + b;
 | |
| }
 | |
| 
 | |
| static float hard_f32_sub(float a, float b)
 | |
| {
 | |
|     return a - b;
 | |
| }
 | |
| 
 | |
| static double hard_f64_add(double a, double b)
 | |
| {
 | |
|     return a + b;
 | |
| }
 | |
| 
 | |
| static double hard_f64_sub(double a, double b)
 | |
| {
 | |
|     return a - b;
 | |
| }
 | |
| 
 | |
| static bool f32_addsub_post(union_float32 a, union_float32 b)
 | |
| {
 | |
|     if (QEMU_HARDFLOAT_2F32_USE_FP) {
 | |
|         return !(fpclassify(a.h) == FP_ZERO && fpclassify(b.h) == FP_ZERO);
 | |
|     }
 | |
|     return !(float32_is_zero(a.s) && float32_is_zero(b.s));
 | |
| }
 | |
| 
 | |
| static bool f64_addsub_post(union_float64 a, union_float64 b)
 | |
| {
 | |
|     if (QEMU_HARDFLOAT_2F64_USE_FP) {
 | |
|         return !(fpclassify(a.h) == FP_ZERO && fpclassify(b.h) == FP_ZERO);
 | |
|     } else {
 | |
|         return !(float64_is_zero(a.s) && float64_is_zero(b.s));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static float32 float32_addsub(float32 a, float32 b, float_status *s,
 | |
|                               hard_f32_op2_fn hard, soft_f32_op2_fn soft)
 | |
| {
 | |
|     return float32_gen2(a, b, s, hard, soft,
 | |
|                         f32_is_zon2, f32_addsub_post, NULL, NULL);
 | |
| }
 | |
| 
 | |
| static float64 float64_addsub(float64 a, float64 b, float_status *s,
 | |
|                               hard_f64_op2_fn hard, soft_f64_op2_fn soft)
 | |
| {
 | |
|     return float64_gen2(a, b, s, hard, soft,
 | |
|                         f64_is_zon2, f64_addsub_post, NULL, NULL);
 | |
| }
 | |
| 
 | |
| float32 QEMU_FLATTEN
 | |
| float32_add(float32 a, float32 b, float_status *s)
 | |
| {
 | |
|     return float32_addsub(a, b, s, hard_f32_add, soft_f32_add);
 | |
| }
 | |
| 
 | |
| float32 QEMU_FLATTEN
 | |
| float32_sub(float32 a, float32 b, float_status *s)
 | |
| {
 | |
|     return float32_addsub(a, b, s, hard_f32_sub, soft_f32_sub);
 | |
| }
 | |
| 
 | |
| float64 QEMU_FLATTEN
 | |
| float64_add(float64 a, float64 b, float_status *s)
 | |
| {
 | |
|     return float64_addsub(a, b, s, hard_f64_add, soft_f64_add);
 | |
| }
 | |
| 
 | |
| float64 QEMU_FLATTEN
 | |
| float64_sub(float64 a, float64 b, float_status *s)
 | |
| {
 | |
|     return float64_addsub(a, b, s, hard_f64_sub, soft_f64_sub);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the result of multiplying the floating-point values `a' and
 | |
|  * `b'. The operation is performed according to the IEC/IEEE Standard
 | |
|  * for Binary Floating-Point Arithmetic.
 | |
|  */
 | |
| 
 | |
| static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s)
 | |
| {
 | |
|     bool sign = a.sign ^ b.sign;
 | |
| 
 | |
|     if (a.cls == float_class_normal && b.cls == float_class_normal) {
 | |
|         uint64_t hi, lo;
 | |
|         int exp = a.exp + b.exp;
 | |
| 
 | |
|         mul64To128(a.frac, b.frac, &hi, &lo);
 | |
|         shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
 | |
|         if (lo & DECOMPOSED_OVERFLOW_BIT) {
 | |
|             shift64RightJamming(lo, 1, &lo);
 | |
|             exp += 1;
 | |
|         }
 | |
| 
 | |
|         /* Re-use a */
 | |
|         a.exp = exp;
 | |
|         a.sign = sign;
 | |
|         a.frac = lo;
 | |
|         return a;
 | |
|     }
 | |
|     /* handle all the NaN cases */
 | |
|     if (is_nan(a.cls) || is_nan(b.cls)) {
 | |
|         return pick_nan(a, b, s);
 | |
|     }
 | |
|     /* Inf * Zero == NaN */
 | |
|     if ((a.cls == float_class_inf && b.cls == float_class_zero) ||
 | |
|         (a.cls == float_class_zero && b.cls == float_class_inf)) {
 | |
|         s->float_exception_flags |= float_flag_invalid;
 | |
|         return parts_default_nan(s);
 | |
|     }
 | |
|     /* Multiply by 0 or Inf */
 | |
|     if (a.cls == float_class_inf || a.cls == float_class_zero) {
 | |
|         a.sign = sign;
 | |
|         return a;
 | |
|     }
 | |
|     if (b.cls == float_class_inf || b.cls == float_class_zero) {
 | |
|         b.sign = sign;
 | |
|         return b;
 | |
|     }
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| 
 | |
| float16 QEMU_FLATTEN float16_mul(float16 a, float16 b, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float16_unpack_canonical(a, status);
 | |
|     FloatParts pb = float16_unpack_canonical(b, status);
 | |
|     FloatParts pr = mul_floats(pa, pb, status);
 | |
| 
 | |
|     return float16_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| static float32 QEMU_SOFTFLOAT_ATTR
 | |
| soft_f32_mul(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float32_unpack_canonical(a, status);
 | |
|     FloatParts pb = float32_unpack_canonical(b, status);
 | |
|     FloatParts pr = mul_floats(pa, pb, status);
 | |
| 
 | |
|     return float32_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| static float64 QEMU_SOFTFLOAT_ATTR
 | |
| soft_f64_mul(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float64_unpack_canonical(a, status);
 | |
|     FloatParts pb = float64_unpack_canonical(b, status);
 | |
|     FloatParts pr = mul_floats(pa, pb, status);
 | |
| 
 | |
|     return float64_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| static float hard_f32_mul(float a, float b)
 | |
| {
 | |
|     return a * b;
 | |
| }
 | |
| 
 | |
| static double hard_f64_mul(double a, double b)
 | |
| {
 | |
|     return a * b;
 | |
| }
 | |
| 
 | |
| static bool f32_mul_fast_test(union_float32 a, union_float32 b)
 | |
| {
 | |
|     return float32_is_zero(a.s) || float32_is_zero(b.s);
 | |
| }
 | |
| 
 | |
| static bool f64_mul_fast_test(union_float64 a, union_float64 b)
 | |
| {
 | |
|     return float64_is_zero(a.s) || float64_is_zero(b.s);
 | |
| }
 | |
| 
 | |
| static float32 f32_mul_fast_op(float32 a, float32 b, float_status *s)
 | |
| {
 | |
|     bool signbit = float32_is_neg(a) ^ float32_is_neg(b);
 | |
| 
 | |
|     return float32_set_sign(float32_zero, signbit);
 | |
| }
 | |
| 
 | |
| static float64 f64_mul_fast_op(float64 a, float64 b, float_status *s)
 | |
| {
 | |
|     bool signbit = float64_is_neg(a) ^ float64_is_neg(b);
 | |
| 
 | |
|     return float64_set_sign(float64_zero, signbit);
 | |
| }
 | |
| 
 | |
| float32 QEMU_FLATTEN
 | |
| float32_mul(float32 a, float32 b, float_status *s)
 | |
| {
 | |
|     return float32_gen2(a, b, s, hard_f32_mul, soft_f32_mul,
 | |
|                         f32_is_zon2, NULL, f32_mul_fast_test, f32_mul_fast_op);
 | |
| }
 | |
| 
 | |
| float64 QEMU_FLATTEN
 | |
| float64_mul(float64 a, float64 b, float_status *s)
 | |
| {
 | |
|     return float64_gen2(a, b, s, hard_f64_mul, soft_f64_mul,
 | |
|                         f64_is_zon2, NULL, f64_mul_fast_test, f64_mul_fast_op);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the result of multiplying the floating-point values `a' and
 | |
|  * `b' then adding 'c', with no intermediate rounding step after the
 | |
|  * multiplication. The operation is performed according to the
 | |
|  * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
 | |
|  * The flags argument allows the caller to select negation of the
 | |
|  * addend, the intermediate product, or the final result. (The
 | |
|  * difference between this and having the caller do a separate
 | |
|  * negation is that negating externally will flip the sign bit on
 | |
|  * NaNs.)
 | |
|  */
 | |
| 
 | |
| static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c,
 | |
|                                 int flags, float_status *s)
 | |
| {
 | |
|     bool inf_zero = ((1 << a.cls) | (1 << b.cls)) ==
 | |
|                     ((1 << float_class_inf) | (1 << float_class_zero));
 | |
|     bool p_sign;
 | |
|     bool sign_flip = flags & float_muladd_negate_result;
 | |
|     FloatClass p_class;
 | |
|     uint64_t hi, lo;
 | |
|     int p_exp;
 | |
| 
 | |
|     /* It is implementation-defined whether the cases of (0,inf,qnan)
 | |
|      * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
 | |
|      * they return if they do), so we have to hand this information
 | |
|      * off to the target-specific pick-a-NaN routine.
 | |
|      */
 | |
|     if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) {
 | |
|         return pick_nan_muladd(a, b, c, inf_zero, s);
 | |
|     }
 | |
| 
 | |
|     if (inf_zero) {
 | |
|         s->float_exception_flags |= float_flag_invalid;
 | |
|         return parts_default_nan(s);
 | |
|     }
 | |
| 
 | |
|     if (flags & float_muladd_negate_c) {
 | |
|         c.sign ^= 1;
 | |
|     }
 | |
| 
 | |
|     p_sign = a.sign ^ b.sign;
 | |
| 
 | |
|     if (flags & float_muladd_negate_product) {
 | |
|         p_sign ^= 1;
 | |
|     }
 | |
| 
 | |
|     if (a.cls == float_class_inf || b.cls == float_class_inf) {
 | |
|         p_class = float_class_inf;
 | |
|     } else if (a.cls == float_class_zero || b.cls == float_class_zero) {
 | |
|         p_class = float_class_zero;
 | |
|     } else {
 | |
|         p_class = float_class_normal;
 | |
|     }
 | |
| 
 | |
|     if (c.cls == float_class_inf) {
 | |
|         if (p_class == float_class_inf && p_sign != c.sign) {
 | |
|             s->float_exception_flags |= float_flag_invalid;
 | |
|             return parts_default_nan(s);
 | |
|         } else {
 | |
|             a.cls = float_class_inf;
 | |
|             a.sign = c.sign ^ sign_flip;
 | |
|             return a;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (p_class == float_class_inf) {
 | |
|         a.cls = float_class_inf;
 | |
|         a.sign = p_sign ^ sign_flip;
 | |
|         return a;
 | |
|     }
 | |
| 
 | |
|     if (p_class == float_class_zero) {
 | |
|         if (c.cls == float_class_zero) {
 | |
|             if (p_sign != c.sign) {
 | |
|                 p_sign = s->float_rounding_mode == float_round_down;
 | |
|             }
 | |
|             c.sign = p_sign;
 | |
|         } else if (flags & float_muladd_halve_result) {
 | |
|             c.exp -= 1;
 | |
|         }
 | |
|         c.sign ^= sign_flip;
 | |
|         return c;
 | |
|     }
 | |
| 
 | |
|     /* a & b should be normals now... */
 | |
|     assert(a.cls == float_class_normal &&
 | |
|            b.cls == float_class_normal);
 | |
| 
 | |
|     p_exp = a.exp + b.exp;
 | |
| 
 | |
|     /* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit
 | |
|      * result.
 | |
|      */
 | |
|     mul64To128(a.frac, b.frac, &hi, &lo);
 | |
|     /* binary point now at bit 124 */
 | |
| 
 | |
|     /* check for overflow */
 | |
|     if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) {
 | |
|         shift128RightJamming(hi, lo, 1, &hi, &lo);
 | |
|         p_exp += 1;
 | |
|     }
 | |
| 
 | |
|     /* + add/sub */
 | |
|     if (c.cls == float_class_zero) {
 | |
|         /* move binary point back to 62 */
 | |
|         shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
 | |
|     } else {
 | |
|         int exp_diff = p_exp - c.exp;
 | |
|         if (p_sign == c.sign) {
 | |
|             /* Addition */
 | |
|             if (exp_diff <= 0) {
 | |
|                 shift128RightJamming(hi, lo,
 | |
|                                      DECOMPOSED_BINARY_POINT - exp_diff,
 | |
|                                      &hi, &lo);
 | |
|                 lo += c.frac;
 | |
|                 p_exp = c.exp;
 | |
|             } else {
 | |
|                 uint64_t c_hi, c_lo;
 | |
|                 /* shift c to the same binary point as the product (124) */
 | |
|                 c_hi = c.frac >> 2;
 | |
|                 c_lo = 0;
 | |
|                 shift128RightJamming(c_hi, c_lo,
 | |
|                                      exp_diff,
 | |
|                                      &c_hi, &c_lo);
 | |
|                 add128(hi, lo, c_hi, c_lo, &hi, &lo);
 | |
|                 /* move binary point back to 62 */
 | |
|                 shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
 | |
|             }
 | |
| 
 | |
|             if (lo & DECOMPOSED_OVERFLOW_BIT) {
 | |
|                 shift64RightJamming(lo, 1, &lo);
 | |
|                 p_exp += 1;
 | |
|             }
 | |
| 
 | |
|         } else {
 | |
|             /* Subtraction */
 | |
|             uint64_t c_hi, c_lo;
 | |
|             /* make C binary point match product at bit 124 */
 | |
|             c_hi = c.frac >> 2;
 | |
|             c_lo = 0;
 | |
| 
 | |
|             if (exp_diff <= 0) {
 | |
|                 shift128RightJamming(hi, lo, -exp_diff, &hi, &lo);
 | |
|                 if (exp_diff == 0
 | |
|                     &&
 | |
|                     (hi > c_hi || (hi == c_hi && lo >= c_lo))) {
 | |
|                     sub128(hi, lo, c_hi, c_lo, &hi, &lo);
 | |
|                 } else {
 | |
|                     sub128(c_hi, c_lo, hi, lo, &hi, &lo);
 | |
|                     p_sign ^= 1;
 | |
|                     p_exp = c.exp;
 | |
|                 }
 | |
|             } else {
 | |
|                 shift128RightJamming(c_hi, c_lo,
 | |
|                                      exp_diff,
 | |
|                                      &c_hi, &c_lo);
 | |
|                 sub128(hi, lo, c_hi, c_lo, &hi, &lo);
 | |
|             }
 | |
| 
 | |
|             if (hi == 0 && lo == 0) {
 | |
|                 a.cls = float_class_zero;
 | |
|                 a.sign = s->float_rounding_mode == float_round_down;
 | |
|                 a.sign ^= sign_flip;
 | |
|                 return a;
 | |
|             } else {
 | |
|                 int shift;
 | |
|                 if (hi != 0) {
 | |
|                     shift = clz64(hi);
 | |
|                 } else {
 | |
|                     shift = clz64(lo) + 64;
 | |
|                 }
 | |
|                 /* Normalizing to a binary point of 124 is the
 | |
|                    correct adjust for the exponent.  However since we're
 | |
|                    shifting, we might as well put the binary point back
 | |
|                    at 62 where we really want it.  Therefore shift as
 | |
|                    if we're leaving 1 bit at the top of the word, but
 | |
|                    adjust the exponent as if we're leaving 3 bits.  */
 | |
|                 shift -= 1;
 | |
|                 if (shift >= 64) {
 | |
|                     lo = lo << (shift - 64);
 | |
|                 } else {
 | |
|                     hi = (hi << shift) | (lo >> (64 - shift));
 | |
|                     lo = hi | ((lo << shift) != 0);
 | |
|                 }
 | |
|                 p_exp -= shift - 2;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (flags & float_muladd_halve_result) {
 | |
|         p_exp -= 1;
 | |
|     }
 | |
| 
 | |
|     /* finally prepare our result */
 | |
|     a.cls = float_class_normal;
 | |
|     a.sign = p_sign ^ sign_flip;
 | |
|     a.exp = p_exp;
 | |
|     a.frac = lo;
 | |
| 
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| float16 QEMU_FLATTEN float16_muladd(float16 a, float16 b, float16 c,
 | |
|                                                 int flags, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float16_unpack_canonical(a, status);
 | |
|     FloatParts pb = float16_unpack_canonical(b, status);
 | |
|     FloatParts pc = float16_unpack_canonical(c, status);
 | |
|     FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
 | |
| 
 | |
|     return float16_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| static float32 QEMU_SOFTFLOAT_ATTR
 | |
| soft_f32_muladd(float32 a, float32 b, float32 c, int flags,
 | |
|                 float_status *status)
 | |
| {
 | |
|     FloatParts pa = float32_unpack_canonical(a, status);
 | |
|     FloatParts pb = float32_unpack_canonical(b, status);
 | |
|     FloatParts pc = float32_unpack_canonical(c, status);
 | |
|     FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
 | |
| 
 | |
|     return float32_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| static float64 QEMU_SOFTFLOAT_ATTR
 | |
| soft_f64_muladd(float64 a, float64 b, float64 c, int flags,
 | |
|                 float_status *status)
 | |
| {
 | |
|     FloatParts pa = float64_unpack_canonical(a, status);
 | |
|     FloatParts pb = float64_unpack_canonical(b, status);
 | |
|     FloatParts pc = float64_unpack_canonical(c, status);
 | |
|     FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
 | |
| 
 | |
|     return float64_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| static bool force_soft_fma;
 | |
| 
 | |
| float32 QEMU_FLATTEN
 | |
| float32_muladd(float32 xa, float32 xb, float32 xc, int flags, float_status *s)
 | |
| {
 | |
|     union_float32 ua, ub, uc, ur;
 | |
| 
 | |
|     ua.s = xa;
 | |
|     ub.s = xb;
 | |
|     uc.s = xc;
 | |
| 
 | |
|     if (unlikely(!can_use_fpu(s))) {
 | |
|         goto soft;
 | |
|     }
 | |
|     if (unlikely(flags & float_muladd_halve_result)) {
 | |
|         goto soft;
 | |
|     }
 | |
| 
 | |
|     float32_input_flush3(&ua.s, &ub.s, &uc.s, s);
 | |
|     if (unlikely(!f32_is_zon3(ua, ub, uc))) {
 | |
|         goto soft;
 | |
|     }
 | |
| 
 | |
|     if (unlikely(force_soft_fma)) {
 | |
|         goto soft;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * When (a || b) == 0, there's no need to check for under/over flow,
 | |
|      * since we know the addend is (normal || 0) and the product is 0.
 | |
|      */
 | |
|     if (float32_is_zero(ua.s) || float32_is_zero(ub.s)) {
 | |
|         union_float32 up;
 | |
|         bool prod_sign;
 | |
| 
 | |
|         prod_sign = float32_is_neg(ua.s) ^ float32_is_neg(ub.s);
 | |
|         prod_sign ^= !!(flags & float_muladd_negate_product);
 | |
|         up.s = float32_set_sign(float32_zero, prod_sign);
 | |
| 
 | |
|         if (flags & float_muladd_negate_c) {
 | |
|             uc.h = -uc.h;
 | |
|         }
 | |
|         ur.h = up.h + uc.h;
 | |
|     } else {
 | |
|         if (flags & float_muladd_negate_product) {
 | |
|             ua.h = -ua.h;
 | |
|         }
 | |
|         if (flags & float_muladd_negate_c) {
 | |
|             uc.h = -uc.h;
 | |
|         }
 | |
| 
 | |
|         ur.h = fmaf(ua.h, ub.h, uc.h);
 | |
| 
 | |
|         if (unlikely(f32_is_inf(ur))) {
 | |
|             s->float_exception_flags |= float_flag_overflow;
 | |
|         } else if (unlikely(fabsf(ur.h) <= FLT_MIN)) {
 | |
|             goto soft;
 | |
|         }
 | |
|     }
 | |
|     if (flags & float_muladd_negate_result) {
 | |
|         return float32_chs(ur.s);
 | |
|     }
 | |
|     return ur.s;
 | |
| 
 | |
|  soft:
 | |
|     return soft_f32_muladd(ua.s, ub.s, uc.s, flags, s);
 | |
| }
 | |
| 
 | |
| float64 QEMU_FLATTEN
 | |
| float64_muladd(float64 xa, float64 xb, float64 xc, int flags, float_status *s)
 | |
| {
 | |
|     union_float64 ua, ub, uc, ur;
 | |
| 
 | |
|     ua.s = xa;
 | |
|     ub.s = xb;
 | |
|     uc.s = xc;
 | |
| 
 | |
|     if (unlikely(!can_use_fpu(s))) {
 | |
|         goto soft;
 | |
|     }
 | |
|     if (unlikely(flags & float_muladd_halve_result)) {
 | |
|         goto soft;
 | |
|     }
 | |
| 
 | |
|     float64_input_flush3(&ua.s, &ub.s, &uc.s, s);
 | |
|     if (unlikely(!f64_is_zon3(ua, ub, uc))) {
 | |
|         goto soft;
 | |
|     }
 | |
| 
 | |
|     if (unlikely(force_soft_fma)) {
 | |
|         goto soft;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * When (a || b) == 0, there's no need to check for under/over flow,
 | |
|      * since we know the addend is (normal || 0) and the product is 0.
 | |
|      */
 | |
|     if (float64_is_zero(ua.s) || float64_is_zero(ub.s)) {
 | |
|         union_float64 up;
 | |
|         bool prod_sign;
 | |
| 
 | |
|         prod_sign = float64_is_neg(ua.s) ^ float64_is_neg(ub.s);
 | |
|         prod_sign ^= !!(flags & float_muladd_negate_product);
 | |
|         up.s = float64_set_sign(float64_zero, prod_sign);
 | |
| 
 | |
|         if (flags & float_muladd_negate_c) {
 | |
|             uc.h = -uc.h;
 | |
|         }
 | |
|         ur.h = up.h + uc.h;
 | |
|     } else {
 | |
|         if (flags & float_muladd_negate_product) {
 | |
|             ua.h = -ua.h;
 | |
|         }
 | |
|         if (flags & float_muladd_negate_c) {
 | |
|             uc.h = -uc.h;
 | |
|         }
 | |
| 
 | |
|         ur.h = fma(ua.h, ub.h, uc.h);
 | |
| 
 | |
|         if (unlikely(f64_is_inf(ur))) {
 | |
|             s->float_exception_flags |= float_flag_overflow;
 | |
|         } else if (unlikely(fabs(ur.h) <= FLT_MIN)) {
 | |
|             goto soft;
 | |
|         }
 | |
|     }
 | |
|     if (flags & float_muladd_negate_result) {
 | |
|         return float64_chs(ur.s);
 | |
|     }
 | |
|     return ur.s;
 | |
| 
 | |
|  soft:
 | |
|     return soft_f64_muladd(ua.s, ub.s, uc.s, flags, s);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the result of dividing the floating-point value `a' by the
 | |
|  * corresponding value `b'. The operation is performed according to
 | |
|  * the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
|  */
 | |
| 
 | |
| static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s)
 | |
| {
 | |
|     bool sign = a.sign ^ b.sign;
 | |
| 
 | |
|     if (a.cls == float_class_normal && b.cls == float_class_normal) {
 | |
|         uint64_t n0, n1, q, r;
 | |
|         int exp = a.exp - b.exp;
 | |
| 
 | |
|         /*
 | |
|          * We want a 2*N / N-bit division to produce exactly an N-bit
 | |
|          * result, so that we do not lose any precision and so that we
 | |
|          * do not have to renormalize afterward.  If A.frac < B.frac,
 | |
|          * then division would produce an (N-1)-bit result; shift A left
 | |
|          * by one to produce the an N-bit result, and decrement the
 | |
|          * exponent to match.
 | |
|          *
 | |
|          * The udiv_qrnnd algorithm that we're using requires normalization,
 | |
|          * i.e. the msb of the denominator must be set.  Since we know that
 | |
|          * DECOMPOSED_BINARY_POINT is msb-1, the inputs must be shifted left
 | |
|          * by one (more), and the remainder must be shifted right by one.
 | |
|          */
 | |
|         if (a.frac < b.frac) {
 | |
|             exp -= 1;
 | |
|             shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 2, &n1, &n0);
 | |
|         } else {
 | |
|             shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1, &n1, &n0);
 | |
|         }
 | |
|         q = udiv_qrnnd(&r, n1, n0, b.frac << 1);
 | |
| 
 | |
|         /*
 | |
|          * Set lsb if there is a remainder, to set inexact.
 | |
|          * As mentioned above, to find the actual value of the remainder we
 | |
|          * would need to shift right, but (1) we are only concerned about
 | |
|          * non-zero-ness, and (2) the remainder will always be even because
 | |
|          * both inputs to the division primitive are even.
 | |
|          */
 | |
|         a.frac = q | (r != 0);
 | |
|         a.sign = sign;
 | |
|         a.exp = exp;
 | |
|         return a;
 | |
|     }
 | |
|     /* handle all the NaN cases */
 | |
|     if (is_nan(a.cls) || is_nan(b.cls)) {
 | |
|         return pick_nan(a, b, s);
 | |
|     }
 | |
|     /* 0/0 or Inf/Inf */
 | |
|     if (a.cls == b.cls
 | |
|         &&
 | |
|         (a.cls == float_class_inf || a.cls == float_class_zero)) {
 | |
|         s->float_exception_flags |= float_flag_invalid;
 | |
|         return parts_default_nan(s);
 | |
|     }
 | |
|     /* Inf / x or 0 / x */
 | |
|     if (a.cls == float_class_inf || a.cls == float_class_zero) {
 | |
|         a.sign = sign;
 | |
|         return a;
 | |
|     }
 | |
|     /* Div 0 => Inf */
 | |
|     if (b.cls == float_class_zero) {
 | |
|         s->float_exception_flags |= float_flag_divbyzero;
 | |
|         a.cls = float_class_inf;
 | |
|         a.sign = sign;
 | |
|         return a;
 | |
|     }
 | |
|     /* Div by Inf */
 | |
|     if (b.cls == float_class_inf) {
 | |
|         a.cls = float_class_zero;
 | |
|         a.sign = sign;
 | |
|         return a;
 | |
|     }
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| 
 | |
| float16 float16_div(float16 a, float16 b, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float16_unpack_canonical(a, status);
 | |
|     FloatParts pb = float16_unpack_canonical(b, status);
 | |
|     FloatParts pr = div_floats(pa, pb, status);
 | |
| 
 | |
|     return float16_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| static float32 QEMU_SOFTFLOAT_ATTR
 | |
| soft_f32_div(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float32_unpack_canonical(a, status);
 | |
|     FloatParts pb = float32_unpack_canonical(b, status);
 | |
|     FloatParts pr = div_floats(pa, pb, status);
 | |
| 
 | |
|     return float32_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| static float64 QEMU_SOFTFLOAT_ATTR
 | |
| soft_f64_div(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float64_unpack_canonical(a, status);
 | |
|     FloatParts pb = float64_unpack_canonical(b, status);
 | |
|     FloatParts pr = div_floats(pa, pb, status);
 | |
| 
 | |
|     return float64_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| static float hard_f32_div(float a, float b)
 | |
| {
 | |
|     return a / b;
 | |
| }
 | |
| 
 | |
| static double hard_f64_div(double a, double b)
 | |
| {
 | |
|     return a / b;
 | |
| }
 | |
| 
 | |
| static bool f32_div_pre(union_float32 a, union_float32 b)
 | |
| {
 | |
|     if (QEMU_HARDFLOAT_2F32_USE_FP) {
 | |
|         return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
 | |
|                fpclassify(b.h) == FP_NORMAL;
 | |
|     }
 | |
|     return float32_is_zero_or_normal(a.s) && float32_is_normal(b.s);
 | |
| }
 | |
| 
 | |
| static bool f64_div_pre(union_float64 a, union_float64 b)
 | |
| {
 | |
|     if (QEMU_HARDFLOAT_2F64_USE_FP) {
 | |
|         return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
 | |
|                fpclassify(b.h) == FP_NORMAL;
 | |
|     }
 | |
|     return float64_is_zero_or_normal(a.s) && float64_is_normal(b.s);
 | |
| }
 | |
| 
 | |
| static bool f32_div_post(union_float32 a, union_float32 b)
 | |
| {
 | |
|     if (QEMU_HARDFLOAT_2F32_USE_FP) {
 | |
|         return fpclassify(a.h) != FP_ZERO;
 | |
|     }
 | |
|     return !float32_is_zero(a.s);
 | |
| }
 | |
| 
 | |
| static bool f64_div_post(union_float64 a, union_float64 b)
 | |
| {
 | |
|     if (QEMU_HARDFLOAT_2F64_USE_FP) {
 | |
|         return fpclassify(a.h) != FP_ZERO;
 | |
|     }
 | |
|     return !float64_is_zero(a.s);
 | |
| }
 | |
| 
 | |
| float32 QEMU_FLATTEN
 | |
| float32_div(float32 a, float32 b, float_status *s)
 | |
| {
 | |
|     return float32_gen2(a, b, s, hard_f32_div, soft_f32_div,
 | |
|                         f32_div_pre, f32_div_post, NULL, NULL);
 | |
| }
 | |
| 
 | |
| float64 QEMU_FLATTEN
 | |
| float64_div(float64 a, float64 b, float_status *s)
 | |
| {
 | |
|     return float64_gen2(a, b, s, hard_f64_div, soft_f64_div,
 | |
|                         f64_div_pre, f64_div_post, NULL, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Float to Float conversions
 | |
|  *
 | |
|  * Returns the result of converting one float format to another. The
 | |
|  * conversion is performed according to the IEC/IEEE Standard for
 | |
|  * Binary Floating-Point Arithmetic.
 | |
|  *
 | |
|  * The float_to_float helper only needs to take care of raising
 | |
|  * invalid exceptions and handling the conversion on NaNs.
 | |
|  */
 | |
| 
 | |
| static FloatParts float_to_float(FloatParts a, const FloatFmt *dstf,
 | |
|                                  float_status *s)
 | |
| {
 | |
|     if (dstf->arm_althp) {
 | |
|         switch (a.cls) {
 | |
|         case float_class_qnan:
 | |
|         case float_class_snan:
 | |
|             /* There is no NaN in the destination format.  Raise Invalid
 | |
|              * and return a zero with the sign of the input NaN.
 | |
|              */
 | |
|             s->float_exception_flags |= float_flag_invalid;
 | |
|             a.cls = float_class_zero;
 | |
|             a.frac = 0;
 | |
|             a.exp = 0;
 | |
|             break;
 | |
| 
 | |
|         case float_class_inf:
 | |
|             /* There is no Inf in the destination format.  Raise Invalid
 | |
|              * and return the maximum normal with the correct sign.
 | |
|              */
 | |
|             s->float_exception_flags |= float_flag_invalid;
 | |
|             a.cls = float_class_normal;
 | |
|             a.exp = dstf->exp_max;
 | |
|             a.frac = ((1ull << dstf->frac_size) - 1) << dstf->frac_shift;
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     } else if (is_nan(a.cls)) {
 | |
|         if (is_snan(a.cls)) {
 | |
|             s->float_exception_flags |= float_flag_invalid;
 | |
|             a = parts_silence_nan(a, s);
 | |
|         }
 | |
|         if (s->default_nan_mode) {
 | |
|             return parts_default_nan(s);
 | |
|         }
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| float32 float16_to_float32(float16 a, bool ieee, float_status *s)
 | |
| {
 | |
|     const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
 | |
|     FloatParts p = float16a_unpack_canonical(a, s, fmt16);
 | |
|     FloatParts pr = float_to_float(p, &float32_params, s);
 | |
|     return float32_round_pack_canonical(pr, s);
 | |
| }
 | |
| 
 | |
| float64 float16_to_float64(float16 a, bool ieee, float_status *s)
 | |
| {
 | |
|     const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
 | |
|     FloatParts p = float16a_unpack_canonical(a, s, fmt16);
 | |
|     FloatParts pr = float_to_float(p, &float64_params, s);
 | |
|     return float64_round_pack_canonical(pr, s);
 | |
| }
 | |
| 
 | |
| float16 float32_to_float16(float32 a, bool ieee, float_status *s)
 | |
| {
 | |
|     const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
 | |
|     FloatParts p = float32_unpack_canonical(a, s);
 | |
|     FloatParts pr = float_to_float(p, fmt16, s);
 | |
|     return float16a_round_pack_canonical(pr, s, fmt16);
 | |
| }
 | |
| 
 | |
| float64 float32_to_float64(float32 a, float_status *s)
 | |
| {
 | |
|     FloatParts p = float32_unpack_canonical(a, s);
 | |
|     FloatParts pr = float_to_float(p, &float64_params, s);
 | |
|     return float64_round_pack_canonical(pr, s);
 | |
| }
 | |
| 
 | |
| float16 float64_to_float16(float64 a, bool ieee, float_status *s)
 | |
| {
 | |
|     const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
 | |
|     FloatParts p = float64_unpack_canonical(a, s);
 | |
|     FloatParts pr = float_to_float(p, fmt16, s);
 | |
|     return float16a_round_pack_canonical(pr, s, fmt16);
 | |
| }
 | |
| 
 | |
| float32 float64_to_float32(float64 a, float_status *s)
 | |
| {
 | |
|     FloatParts p = float64_unpack_canonical(a, s);
 | |
|     FloatParts pr = float_to_float(p, &float32_params, s);
 | |
|     return float32_round_pack_canonical(pr, s);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rounds the floating-point value `a' to an integer, and returns the
 | |
|  * result as a floating-point value. The operation is performed
 | |
|  * according to the IEC/IEEE Standard for Binary Floating-Point
 | |
|  * Arithmetic.
 | |
|  */
 | |
| 
 | |
| static FloatParts round_to_int(FloatParts a, int rmode,
 | |
|                                int scale, float_status *s)
 | |
| {
 | |
|     switch (a.cls) {
 | |
|     case float_class_qnan:
 | |
|     case float_class_snan:
 | |
|         return return_nan(a, s);
 | |
| 
 | |
|     case float_class_zero:
 | |
|     case float_class_inf:
 | |
|         /* already "integral" */
 | |
|         break;
 | |
| 
 | |
|     case float_class_normal:
 | |
|         scale = MIN(MAX(scale, -0x10000), 0x10000);
 | |
|         a.exp += scale;
 | |
| 
 | |
|         if (a.exp >= DECOMPOSED_BINARY_POINT) {
 | |
|             /* already integral */
 | |
|             break;
 | |
|         }
 | |
|         if (a.exp < 0) {
 | |
|             bool one;
 | |
|             /* all fractional */
 | |
|             s->float_exception_flags |= float_flag_inexact;
 | |
|             switch (rmode) {
 | |
|             case float_round_nearest_even:
 | |
|                 one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT;
 | |
|                 break;
 | |
|             case float_round_ties_away:
 | |
|                 one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT;
 | |
|                 break;
 | |
|             case float_round_to_zero:
 | |
|                 one = false;
 | |
|                 break;
 | |
|             case float_round_up:
 | |
|                 one = !a.sign;
 | |
|                 break;
 | |
|             case float_round_down:
 | |
|                 one = a.sign;
 | |
|                 break;
 | |
|             case float_round_to_odd:
 | |
|                 one = true;
 | |
|                 break;
 | |
|             default:
 | |
|                 g_assert_not_reached();
 | |
|             }
 | |
| 
 | |
|             if (one) {
 | |
|                 a.frac = DECOMPOSED_IMPLICIT_BIT;
 | |
|                 a.exp = 0;
 | |
|             } else {
 | |
|                 a.cls = float_class_zero;
 | |
|             }
 | |
|         } else {
 | |
|             uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp;
 | |
|             uint64_t frac_lsbm1 = frac_lsb >> 1;
 | |
|             uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb;
 | |
|             uint64_t rnd_mask = rnd_even_mask >> 1;
 | |
|             uint64_t inc;
 | |
| 
 | |
|             switch (rmode) {
 | |
|             case float_round_nearest_even:
 | |
|                 inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
 | |
|                 break;
 | |
|             case float_round_ties_away:
 | |
|                 inc = frac_lsbm1;
 | |
|                 break;
 | |
|             case float_round_to_zero:
 | |
|                 inc = 0;
 | |
|                 break;
 | |
|             case float_round_up:
 | |
|                 inc = a.sign ? 0 : rnd_mask;
 | |
|                 break;
 | |
|             case float_round_down:
 | |
|                 inc = a.sign ? rnd_mask : 0;
 | |
|                 break;
 | |
|             case float_round_to_odd:
 | |
|                 inc = a.frac & frac_lsb ? 0 : rnd_mask;
 | |
|                 break;
 | |
|             default:
 | |
|                 g_assert_not_reached();
 | |
|             }
 | |
| 
 | |
|             if (a.frac & rnd_mask) {
 | |
|                 s->float_exception_flags |= float_flag_inexact;
 | |
|                 a.frac += inc;
 | |
|                 a.frac &= ~rnd_mask;
 | |
|                 if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
 | |
|                     a.frac >>= 1;
 | |
|                     a.exp++;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| float16 float16_round_to_int(float16 a, float_status *s)
 | |
| {
 | |
|     FloatParts pa = float16_unpack_canonical(a, s);
 | |
|     FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
 | |
|     return float16_round_pack_canonical(pr, s);
 | |
| }
 | |
| 
 | |
| float32 float32_round_to_int(float32 a, float_status *s)
 | |
| {
 | |
|     FloatParts pa = float32_unpack_canonical(a, s);
 | |
|     FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
 | |
|     return float32_round_pack_canonical(pr, s);
 | |
| }
 | |
| 
 | |
| float64 float64_round_to_int(float64 a, float_status *s)
 | |
| {
 | |
|     FloatParts pa = float64_unpack_canonical(a, s);
 | |
|     FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
 | |
|     return float64_round_pack_canonical(pr, s);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the result of converting the floating-point value `a' to
 | |
|  * the two's complement integer format. The conversion is performed
 | |
|  * according to the IEC/IEEE Standard for Binary Floating-Point
 | |
|  * Arithmetic---which means in particular that the conversion is
 | |
|  * rounded according to the current rounding mode. If `a' is a NaN,
 | |
|  * the largest positive integer is returned. Otherwise, if the
 | |
|  * conversion overflows, the largest integer with the same sign as `a'
 | |
|  * is returned.
 | |
| */
 | |
| 
 | |
| static int64_t round_to_int_and_pack(FloatParts in, int rmode, int scale,
 | |
|                                      int64_t min, int64_t max,
 | |
|                                      float_status *s)
 | |
| {
 | |
|     uint64_t r;
 | |
|     int orig_flags = get_float_exception_flags(s);
 | |
|     FloatParts p = round_to_int(in, rmode, scale, s);
 | |
| 
 | |
|     switch (p.cls) {
 | |
|     case float_class_snan:
 | |
|     case float_class_qnan:
 | |
|         s->float_exception_flags = orig_flags | float_flag_invalid;
 | |
|         return max;
 | |
|     case float_class_inf:
 | |
|         s->float_exception_flags = orig_flags | float_flag_invalid;
 | |
|         return p.sign ? min : max;
 | |
|     case float_class_zero:
 | |
|         return 0;
 | |
|     case float_class_normal:
 | |
|         if (p.exp < DECOMPOSED_BINARY_POINT) {
 | |
|             r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
 | |
|         } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
 | |
|             r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
 | |
|         } else {
 | |
|             r = UINT64_MAX;
 | |
|         }
 | |
|         if (p.sign) {
 | |
|             if (r <= -(uint64_t) min) {
 | |
|                 return -r;
 | |
|             } else {
 | |
|                 s->float_exception_flags = orig_flags | float_flag_invalid;
 | |
|                 return min;
 | |
|             }
 | |
|         } else {
 | |
|             if (r <= max) {
 | |
|                 return r;
 | |
|             } else {
 | |
|                 s->float_exception_flags = orig_flags | float_flag_invalid;
 | |
|                 return max;
 | |
|             }
 | |
|         }
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| int16_t float16_to_int16_scalbn(float16 a, int rmode, int scale,
 | |
|                                 float_status *s)
 | |
| {
 | |
|     return round_to_int_and_pack(float16_unpack_canonical(a, s),
 | |
|                                  rmode, scale, INT16_MIN, INT16_MAX, s);
 | |
| }
 | |
| 
 | |
| int32_t float16_to_int32_scalbn(float16 a, int rmode, int scale,
 | |
|                                 float_status *s)
 | |
| {
 | |
|     return round_to_int_and_pack(float16_unpack_canonical(a, s),
 | |
|                                  rmode, scale, INT32_MIN, INT32_MAX, s);
 | |
| }
 | |
| 
 | |
| int64_t float16_to_int64_scalbn(float16 a, int rmode, int scale,
 | |
|                                 float_status *s)
 | |
| {
 | |
|     return round_to_int_and_pack(float16_unpack_canonical(a, s),
 | |
|                                  rmode, scale, INT64_MIN, INT64_MAX, s);
 | |
| }
 | |
| 
 | |
| int16_t float32_to_int16_scalbn(float32 a, int rmode, int scale,
 | |
|                                 float_status *s)
 | |
| {
 | |
|     return round_to_int_and_pack(float32_unpack_canonical(a, s),
 | |
|                                  rmode, scale, INT16_MIN, INT16_MAX, s);
 | |
| }
 | |
| 
 | |
| int32_t float32_to_int32_scalbn(float32 a, int rmode, int scale,
 | |
|                                 float_status *s)
 | |
| {
 | |
|     return round_to_int_and_pack(float32_unpack_canonical(a, s),
 | |
|                                  rmode, scale, INT32_MIN, INT32_MAX, s);
 | |
| }
 | |
| 
 | |
| int64_t float32_to_int64_scalbn(float32 a, int rmode, int scale,
 | |
|                                 float_status *s)
 | |
| {
 | |
|     return round_to_int_and_pack(float32_unpack_canonical(a, s),
 | |
|                                  rmode, scale, INT64_MIN, INT64_MAX, s);
 | |
| }
 | |
| 
 | |
| int16_t float64_to_int16_scalbn(float64 a, int rmode, int scale,
 | |
|                                 float_status *s)
 | |
| {
 | |
|     return round_to_int_and_pack(float64_unpack_canonical(a, s),
 | |
|                                  rmode, scale, INT16_MIN, INT16_MAX, s);
 | |
| }
 | |
| 
 | |
| int32_t float64_to_int32_scalbn(float64 a, int rmode, int scale,
 | |
|                                 float_status *s)
 | |
| {
 | |
|     return round_to_int_and_pack(float64_unpack_canonical(a, s),
 | |
|                                  rmode, scale, INT32_MIN, INT32_MAX, s);
 | |
| }
 | |
| 
 | |
| int64_t float64_to_int64_scalbn(float64 a, int rmode, int scale,
 | |
|                                 float_status *s)
 | |
| {
 | |
|     return round_to_int_and_pack(float64_unpack_canonical(a, s),
 | |
|                                  rmode, scale, INT64_MIN, INT64_MAX, s);
 | |
| }
 | |
| 
 | |
| int16_t float16_to_int16(float16 a, float_status *s)
 | |
| {
 | |
|     return float16_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| int32_t float16_to_int32(float16 a, float_status *s)
 | |
| {
 | |
|     return float16_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| int64_t float16_to_int64(float16 a, float_status *s)
 | |
| {
 | |
|     return float16_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| int16_t float32_to_int16(float32 a, float_status *s)
 | |
| {
 | |
|     return float32_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| int32_t float32_to_int32(float32 a, float_status *s)
 | |
| {
 | |
|     return float32_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| int64_t float32_to_int64(float32 a, float_status *s)
 | |
| {
 | |
|     return float32_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| int16_t float64_to_int16(float64 a, float_status *s)
 | |
| {
 | |
|     return float64_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| int32_t float64_to_int32(float64 a, float_status *s)
 | |
| {
 | |
|     return float64_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| int64_t float64_to_int64(float64 a, float_status *s)
 | |
| {
 | |
|     return float64_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| int16_t float16_to_int16_round_to_zero(float16 a, float_status *s)
 | |
| {
 | |
|     return float16_to_int16_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| int32_t float16_to_int32_round_to_zero(float16 a, float_status *s)
 | |
| {
 | |
|     return float16_to_int32_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| int64_t float16_to_int64_round_to_zero(float16 a, float_status *s)
 | |
| {
 | |
|     return float16_to_int64_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| int16_t float32_to_int16_round_to_zero(float32 a, float_status *s)
 | |
| {
 | |
|     return float32_to_int16_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| int32_t float32_to_int32_round_to_zero(float32 a, float_status *s)
 | |
| {
 | |
|     return float32_to_int32_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| int64_t float32_to_int64_round_to_zero(float32 a, float_status *s)
 | |
| {
 | |
|     return float32_to_int64_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| int16_t float64_to_int16_round_to_zero(float64 a, float_status *s)
 | |
| {
 | |
|     return float64_to_int16_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| int32_t float64_to_int32_round_to_zero(float64 a, float_status *s)
 | |
| {
 | |
|     return float64_to_int32_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| int64_t float64_to_int64_round_to_zero(float64 a, float_status *s)
 | |
| {
 | |
|     return float64_to_int64_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Returns the result of converting the floating-point value `a' to
 | |
|  *  the unsigned integer format. The conversion is performed according
 | |
|  *  to the IEC/IEEE Standard for Binary Floating-Point
 | |
|  *  Arithmetic---which means in particular that the conversion is
 | |
|  *  rounded according to the current rounding mode. If `a' is a NaN,
 | |
|  *  the largest unsigned integer is returned. Otherwise, if the
 | |
|  *  conversion overflows, the largest unsigned integer is returned. If
 | |
|  *  the 'a' is negative, the result is rounded and zero is returned;
 | |
|  *  values that do not round to zero will raise the inexact exception
 | |
|  *  flag.
 | |
|  */
 | |
| 
 | |
| static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, int scale,
 | |
|                                        uint64_t max, float_status *s)
 | |
| {
 | |
|     int orig_flags = get_float_exception_flags(s);
 | |
|     FloatParts p = round_to_int(in, rmode, scale, s);
 | |
|     uint64_t r;
 | |
| 
 | |
|     switch (p.cls) {
 | |
|     case float_class_snan:
 | |
|     case float_class_qnan:
 | |
|         s->float_exception_flags = orig_flags | float_flag_invalid;
 | |
|         return max;
 | |
|     case float_class_inf:
 | |
|         s->float_exception_flags = orig_flags | float_flag_invalid;
 | |
|         return p.sign ? 0 : max;
 | |
|     case float_class_zero:
 | |
|         return 0;
 | |
|     case float_class_normal:
 | |
|         if (p.sign) {
 | |
|             s->float_exception_flags = orig_flags | float_flag_invalid;
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         if (p.exp < DECOMPOSED_BINARY_POINT) {
 | |
|             r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
 | |
|         } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
 | |
|             r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
 | |
|         } else {
 | |
|             s->float_exception_flags = orig_flags | float_flag_invalid;
 | |
|             return max;
 | |
|         }
 | |
| 
 | |
|         /* For uint64 this will never trip, but if p.exp is too large
 | |
|          * to shift a decomposed fraction we shall have exited via the
 | |
|          * 3rd leg above.
 | |
|          */
 | |
|         if (r > max) {
 | |
|             s->float_exception_flags = orig_flags | float_flag_invalid;
 | |
|             return max;
 | |
|         }
 | |
|         return r;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint16_t float16_to_uint16_scalbn(float16 a, int rmode, int scale,
 | |
|                                   float_status *s)
 | |
| {
 | |
|     return round_to_uint_and_pack(float16_unpack_canonical(a, s),
 | |
|                                   rmode, scale, UINT16_MAX, s);
 | |
| }
 | |
| 
 | |
| uint32_t float16_to_uint32_scalbn(float16 a, int rmode, int scale,
 | |
|                                   float_status *s)
 | |
| {
 | |
|     return round_to_uint_and_pack(float16_unpack_canonical(a, s),
 | |
|                                   rmode, scale, UINT32_MAX, s);
 | |
| }
 | |
| 
 | |
| uint64_t float16_to_uint64_scalbn(float16 a, int rmode, int scale,
 | |
|                                   float_status *s)
 | |
| {
 | |
|     return round_to_uint_and_pack(float16_unpack_canonical(a, s),
 | |
|                                   rmode, scale, UINT64_MAX, s);
 | |
| }
 | |
| 
 | |
| uint16_t float32_to_uint16_scalbn(float32 a, int rmode, int scale,
 | |
|                                   float_status *s)
 | |
| {
 | |
|     return round_to_uint_and_pack(float32_unpack_canonical(a, s),
 | |
|                                   rmode, scale, UINT16_MAX, s);
 | |
| }
 | |
| 
 | |
| uint32_t float32_to_uint32_scalbn(float32 a, int rmode, int scale,
 | |
|                                   float_status *s)
 | |
| {
 | |
|     return round_to_uint_and_pack(float32_unpack_canonical(a, s),
 | |
|                                   rmode, scale, UINT32_MAX, s);
 | |
| }
 | |
| 
 | |
| uint64_t float32_to_uint64_scalbn(float32 a, int rmode, int scale,
 | |
|                                   float_status *s)
 | |
| {
 | |
|     return round_to_uint_and_pack(float32_unpack_canonical(a, s),
 | |
|                                   rmode, scale, UINT64_MAX, s);
 | |
| }
 | |
| 
 | |
| uint16_t float64_to_uint16_scalbn(float64 a, int rmode, int scale,
 | |
|                                   float_status *s)
 | |
| {
 | |
|     return round_to_uint_and_pack(float64_unpack_canonical(a, s),
 | |
|                                   rmode, scale, UINT16_MAX, s);
 | |
| }
 | |
| 
 | |
| uint32_t float64_to_uint32_scalbn(float64 a, int rmode, int scale,
 | |
|                                   float_status *s)
 | |
| {
 | |
|     return round_to_uint_and_pack(float64_unpack_canonical(a, s),
 | |
|                                   rmode, scale, UINT32_MAX, s);
 | |
| }
 | |
| 
 | |
| uint64_t float64_to_uint64_scalbn(float64 a, int rmode, int scale,
 | |
|                                   float_status *s)
 | |
| {
 | |
|     return round_to_uint_and_pack(float64_unpack_canonical(a, s),
 | |
|                                   rmode, scale, UINT64_MAX, s);
 | |
| }
 | |
| 
 | |
| uint16_t float16_to_uint16(float16 a, float_status *s)
 | |
| {
 | |
|     return float16_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| uint32_t float16_to_uint32(float16 a, float_status *s)
 | |
| {
 | |
|     return float16_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| uint64_t float16_to_uint64(float16 a, float_status *s)
 | |
| {
 | |
|     return float16_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| uint16_t float32_to_uint16(float32 a, float_status *s)
 | |
| {
 | |
|     return float32_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| uint32_t float32_to_uint32(float32 a, float_status *s)
 | |
| {
 | |
|     return float32_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| uint64_t float32_to_uint64(float32 a, float_status *s)
 | |
| {
 | |
|     return float32_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| uint16_t float64_to_uint16(float64 a, float_status *s)
 | |
| {
 | |
|     return float64_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| uint32_t float64_to_uint32(float64 a, float_status *s)
 | |
| {
 | |
|     return float64_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| uint64_t float64_to_uint64(float64 a, float_status *s)
 | |
| {
 | |
|     return float64_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
 | |
| }
 | |
| 
 | |
| uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *s)
 | |
| {
 | |
|     return float16_to_uint16_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *s)
 | |
| {
 | |
|     return float16_to_uint32_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *s)
 | |
| {
 | |
|     return float16_to_uint64_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *s)
 | |
| {
 | |
|     return float32_to_uint16_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *s)
 | |
| {
 | |
|     return float32_to_uint32_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *s)
 | |
| {
 | |
|     return float32_to_uint64_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *s)
 | |
| {
 | |
|     return float64_to_uint16_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *s)
 | |
| {
 | |
|     return float64_to_uint32_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *s)
 | |
| {
 | |
|     return float64_to_uint64_scalbn(a, float_round_to_zero, 0, s);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Integer to float conversions
 | |
|  *
 | |
|  * Returns the result of converting the two's complement integer `a'
 | |
|  * to the floating-point format. The conversion is performed according
 | |
|  * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
|  */
 | |
| 
 | |
| static FloatParts int_to_float(int64_t a, int scale, float_status *status)
 | |
| {
 | |
|     FloatParts r = { .sign = false };
 | |
| 
 | |
|     if (a == 0) {
 | |
|         r.cls = float_class_zero;
 | |
|     } else {
 | |
|         uint64_t f = a;
 | |
|         int shift;
 | |
| 
 | |
|         r.cls = float_class_normal;
 | |
|         if (a < 0) {
 | |
|             f = -f;
 | |
|             r.sign = true;
 | |
|         }
 | |
|         shift = clz64(f) - 1;
 | |
|         scale = MIN(MAX(scale, -0x10000), 0x10000);
 | |
| 
 | |
|         r.exp = DECOMPOSED_BINARY_POINT - shift + scale;
 | |
|         r.frac = (shift < 0 ? DECOMPOSED_IMPLICIT_BIT : f << shift);
 | |
|     }
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| float16 int64_to_float16_scalbn(int64_t a, int scale, float_status *status)
 | |
| {
 | |
|     FloatParts pa = int_to_float(a, scale, status);
 | |
|     return float16_round_pack_canonical(pa, status);
 | |
| }
 | |
| 
 | |
| float16 int32_to_float16_scalbn(int32_t a, int scale, float_status *status)
 | |
| {
 | |
|     return int64_to_float16_scalbn(a, scale, status);
 | |
| }
 | |
| 
 | |
| float16 int16_to_float16_scalbn(int16_t a, int scale, float_status *status)
 | |
| {
 | |
|     return int64_to_float16_scalbn(a, scale, status);
 | |
| }
 | |
| 
 | |
| float16 int64_to_float16(int64_t a, float_status *status)
 | |
| {
 | |
|     return int64_to_float16_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| float16 int32_to_float16(int32_t a, float_status *status)
 | |
| {
 | |
|     return int64_to_float16_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| float16 int16_to_float16(int16_t a, float_status *status)
 | |
| {
 | |
|     return int64_to_float16_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| float32 int64_to_float32_scalbn(int64_t a, int scale, float_status *status)
 | |
| {
 | |
|     FloatParts pa = int_to_float(a, scale, status);
 | |
|     return float32_round_pack_canonical(pa, status);
 | |
| }
 | |
| 
 | |
| float32 int32_to_float32_scalbn(int32_t a, int scale, float_status *status)
 | |
| {
 | |
|     return int64_to_float32_scalbn(a, scale, status);
 | |
| }
 | |
| 
 | |
| float32 int16_to_float32_scalbn(int16_t a, int scale, float_status *status)
 | |
| {
 | |
|     return int64_to_float32_scalbn(a, scale, status);
 | |
| }
 | |
| 
 | |
| float32 int64_to_float32(int64_t a, float_status *status)
 | |
| {
 | |
|     return int64_to_float32_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| float32 int32_to_float32(int32_t a, float_status *status)
 | |
| {
 | |
|     return int64_to_float32_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| float32 int16_to_float32(int16_t a, float_status *status)
 | |
| {
 | |
|     return int64_to_float32_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| float64 int64_to_float64_scalbn(int64_t a, int scale, float_status *status)
 | |
| {
 | |
|     FloatParts pa = int_to_float(a, scale, status);
 | |
|     return float64_round_pack_canonical(pa, status);
 | |
| }
 | |
| 
 | |
| float64 int32_to_float64_scalbn(int32_t a, int scale, float_status *status)
 | |
| {
 | |
|     return int64_to_float64_scalbn(a, scale, status);
 | |
| }
 | |
| 
 | |
| float64 int16_to_float64_scalbn(int16_t a, int scale, float_status *status)
 | |
| {
 | |
|     return int64_to_float64_scalbn(a, scale, status);
 | |
| }
 | |
| 
 | |
| float64 int64_to_float64(int64_t a, float_status *status)
 | |
| {
 | |
|     return int64_to_float64_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| float64 int32_to_float64(int32_t a, float_status *status)
 | |
| {
 | |
|     return int64_to_float64_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| float64 int16_to_float64(int16_t a, float_status *status)
 | |
| {
 | |
|     return int64_to_float64_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Unsigned Integer to float conversions
 | |
|  *
 | |
|  * Returns the result of converting the unsigned integer `a' to the
 | |
|  * floating-point format. The conversion is performed according to the
 | |
|  * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
|  */
 | |
| 
 | |
| static FloatParts uint_to_float(uint64_t a, int scale, float_status *status)
 | |
| {
 | |
|     FloatParts r = { .sign = false };
 | |
| 
 | |
|     if (a == 0) {
 | |
|         r.cls = float_class_zero;
 | |
|     } else {
 | |
|         scale = MIN(MAX(scale, -0x10000), 0x10000);
 | |
|         r.cls = float_class_normal;
 | |
|         if ((int64_t)a < 0) {
 | |
|             r.exp = DECOMPOSED_BINARY_POINT + 1 + scale;
 | |
|             shift64RightJamming(a, 1, &a);
 | |
|             r.frac = a;
 | |
|         } else {
 | |
|             int shift = clz64(a) - 1;
 | |
|             r.exp = DECOMPOSED_BINARY_POINT - shift + scale;
 | |
|             r.frac = a << shift;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| float16 uint64_to_float16_scalbn(uint64_t a, int scale, float_status *status)
 | |
| {
 | |
|     FloatParts pa = uint_to_float(a, scale, status);
 | |
|     return float16_round_pack_canonical(pa, status);
 | |
| }
 | |
| 
 | |
| float16 uint32_to_float16_scalbn(uint32_t a, int scale, float_status *status)
 | |
| {
 | |
|     return uint64_to_float16_scalbn(a, scale, status);
 | |
| }
 | |
| 
 | |
| float16 uint16_to_float16_scalbn(uint16_t a, int scale, float_status *status)
 | |
| {
 | |
|     return uint64_to_float16_scalbn(a, scale, status);
 | |
| }
 | |
| 
 | |
| float16 uint64_to_float16(uint64_t a, float_status *status)
 | |
| {
 | |
|     return uint64_to_float16_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| float16 uint32_to_float16(uint32_t a, float_status *status)
 | |
| {
 | |
|     return uint64_to_float16_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| float16 uint16_to_float16(uint16_t a, float_status *status)
 | |
| {
 | |
|     return uint64_to_float16_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| float32 uint64_to_float32_scalbn(uint64_t a, int scale, float_status *status)
 | |
| {
 | |
|     FloatParts pa = uint_to_float(a, scale, status);
 | |
|     return float32_round_pack_canonical(pa, status);
 | |
| }
 | |
| 
 | |
| float32 uint32_to_float32_scalbn(uint32_t a, int scale, float_status *status)
 | |
| {
 | |
|     return uint64_to_float32_scalbn(a, scale, status);
 | |
| }
 | |
| 
 | |
| float32 uint16_to_float32_scalbn(uint16_t a, int scale, float_status *status)
 | |
| {
 | |
|     return uint64_to_float32_scalbn(a, scale, status);
 | |
| }
 | |
| 
 | |
| float32 uint64_to_float32(uint64_t a, float_status *status)
 | |
| {
 | |
|     return uint64_to_float32_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| float32 uint32_to_float32(uint32_t a, float_status *status)
 | |
| {
 | |
|     return uint64_to_float32_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| float32 uint16_to_float32(uint16_t a, float_status *status)
 | |
| {
 | |
|     return uint64_to_float32_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| float64 uint64_to_float64_scalbn(uint64_t a, int scale, float_status *status)
 | |
| {
 | |
|     FloatParts pa = uint_to_float(a, scale, status);
 | |
|     return float64_round_pack_canonical(pa, status);
 | |
| }
 | |
| 
 | |
| float64 uint32_to_float64_scalbn(uint32_t a, int scale, float_status *status)
 | |
| {
 | |
|     return uint64_to_float64_scalbn(a, scale, status);
 | |
| }
 | |
| 
 | |
| float64 uint16_to_float64_scalbn(uint16_t a, int scale, float_status *status)
 | |
| {
 | |
|     return uint64_to_float64_scalbn(a, scale, status);
 | |
| }
 | |
| 
 | |
| float64 uint64_to_float64(uint64_t a, float_status *status)
 | |
| {
 | |
|     return uint64_to_float64_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| float64 uint32_to_float64(uint32_t a, float_status *status)
 | |
| {
 | |
|     return uint64_to_float64_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| float64 uint16_to_float64(uint16_t a, float_status *status)
 | |
| {
 | |
|     return uint64_to_float64_scalbn(a, 0, status);
 | |
| }
 | |
| 
 | |
| /* Float Min/Max */
 | |
| /* min() and max() functions. These can't be implemented as
 | |
|  * 'compare and pick one input' because that would mishandle
 | |
|  * NaNs and +0 vs -0.
 | |
|  *
 | |
|  * minnum() and maxnum() functions. These are similar to the min()
 | |
|  * and max() functions but if one of the arguments is a QNaN and
 | |
|  * the other is numerical then the numerical argument is returned.
 | |
|  * SNaNs will get quietened before being returned.
 | |
|  * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
 | |
|  * and maxNum() operations. min() and max() are the typical min/max
 | |
|  * semantics provided by many CPUs which predate that specification.
 | |
|  *
 | |
|  * minnummag() and maxnummag() functions correspond to minNumMag()
 | |
|  * and minNumMag() from the IEEE-754 2008.
 | |
|  */
 | |
| static FloatParts minmax_floats(FloatParts a, FloatParts b, bool ismin,
 | |
|                                 bool ieee, bool ismag, float_status *s)
 | |
| {
 | |
|     if (unlikely(is_nan(a.cls) || is_nan(b.cls))) {
 | |
|         if (ieee) {
 | |
|             /* Takes two floating-point values `a' and `b', one of
 | |
|              * which is a NaN, and returns the appropriate NaN
 | |
|              * result. If either `a' or `b' is a signaling NaN,
 | |
|              * the invalid exception is raised.
 | |
|              */
 | |
|             if (is_snan(a.cls) || is_snan(b.cls)) {
 | |
|                 return pick_nan(a, b, s);
 | |
|             } else if (is_nan(a.cls) && !is_nan(b.cls)) {
 | |
|                 return b;
 | |
|             } else if (is_nan(b.cls) && !is_nan(a.cls)) {
 | |
|                 return a;
 | |
|             }
 | |
|         }
 | |
|         return pick_nan(a, b, s);
 | |
|     } else {
 | |
|         int a_exp, b_exp;
 | |
| 
 | |
|         switch (a.cls) {
 | |
|         case float_class_normal:
 | |
|             a_exp = a.exp;
 | |
|             break;
 | |
|         case float_class_inf:
 | |
|             a_exp = INT_MAX;
 | |
|             break;
 | |
|         case float_class_zero:
 | |
|             a_exp = INT_MIN;
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|             break;
 | |
|         }
 | |
|         switch (b.cls) {
 | |
|         case float_class_normal:
 | |
|             b_exp = b.exp;
 | |
|             break;
 | |
|         case float_class_inf:
 | |
|             b_exp = INT_MAX;
 | |
|             break;
 | |
|         case float_class_zero:
 | |
|             b_exp = INT_MIN;
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (ismag && (a_exp != b_exp || a.frac != b.frac)) {
 | |
|             bool a_less = a_exp < b_exp;
 | |
|             if (a_exp == b_exp) {
 | |
|                 a_less = a.frac < b.frac;
 | |
|             }
 | |
|             return a_less ^ ismin ? b : a;
 | |
|         }
 | |
| 
 | |
|         if (a.sign == b.sign) {
 | |
|             bool a_less = a_exp < b_exp;
 | |
|             if (a_exp == b_exp) {
 | |
|                 a_less = a.frac < b.frac;
 | |
|             }
 | |
|             return a.sign ^ a_less ^ ismin ? b : a;
 | |
|         } else {
 | |
|             return a.sign ^ ismin ? b : a;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define MINMAX(sz, name, ismin, isiee, ismag)                           \
 | |
| float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b,      \
 | |
|                                      float_status *s)                   \
 | |
| {                                                                       \
 | |
|     FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
 | |
|     FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
 | |
|     FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s);      \
 | |
|                                                                         \
 | |
|     return float ## sz ## _round_pack_canonical(pr, s);                 \
 | |
| }
 | |
| 
 | |
| MINMAX(16, min, true, false, false)
 | |
| MINMAX(16, minnum, true, true, false)
 | |
| MINMAX(16, minnummag, true, true, true)
 | |
| MINMAX(16, max, false, false, false)
 | |
| MINMAX(16, maxnum, false, true, false)
 | |
| MINMAX(16, maxnummag, false, true, true)
 | |
| 
 | |
| MINMAX(32, min, true, false, false)
 | |
| MINMAX(32, minnum, true, true, false)
 | |
| MINMAX(32, minnummag, true, true, true)
 | |
| MINMAX(32, max, false, false, false)
 | |
| MINMAX(32, maxnum, false, true, false)
 | |
| MINMAX(32, maxnummag, false, true, true)
 | |
| 
 | |
| MINMAX(64, min, true, false, false)
 | |
| MINMAX(64, minnum, true, true, false)
 | |
| MINMAX(64, minnummag, true, true, true)
 | |
| MINMAX(64, max, false, false, false)
 | |
| MINMAX(64, maxnum, false, true, false)
 | |
| MINMAX(64, maxnummag, false, true, true)
 | |
| 
 | |
| #undef MINMAX
 | |
| 
 | |
| /* Floating point compare */
 | |
| static int compare_floats(FloatParts a, FloatParts b, bool is_quiet,
 | |
|                           float_status *s)
 | |
| {
 | |
|     if (is_nan(a.cls) || is_nan(b.cls)) {
 | |
|         if (!is_quiet ||
 | |
|             a.cls == float_class_snan ||
 | |
|             b.cls == float_class_snan) {
 | |
|             s->float_exception_flags |= float_flag_invalid;
 | |
|         }
 | |
|         return float_relation_unordered;
 | |
|     }
 | |
| 
 | |
|     if (a.cls == float_class_zero) {
 | |
|         if (b.cls == float_class_zero) {
 | |
|             return float_relation_equal;
 | |
|         }
 | |
|         return b.sign ? float_relation_greater : float_relation_less;
 | |
|     } else if (b.cls == float_class_zero) {
 | |
|         return a.sign ? float_relation_less : float_relation_greater;
 | |
|     }
 | |
| 
 | |
|     /* The only really important thing about infinity is its sign. If
 | |
|      * both are infinities the sign marks the smallest of the two.
 | |
|      */
 | |
|     if (a.cls == float_class_inf) {
 | |
|         if ((b.cls == float_class_inf) && (a.sign == b.sign)) {
 | |
|             return float_relation_equal;
 | |
|         }
 | |
|         return a.sign ? float_relation_less : float_relation_greater;
 | |
|     } else if (b.cls == float_class_inf) {
 | |
|         return b.sign ? float_relation_greater : float_relation_less;
 | |
|     }
 | |
| 
 | |
|     if (a.sign != b.sign) {
 | |
|         return a.sign ? float_relation_less : float_relation_greater;
 | |
|     }
 | |
| 
 | |
|     if (a.exp == b.exp) {
 | |
|         if (a.frac == b.frac) {
 | |
|             return float_relation_equal;
 | |
|         }
 | |
|         if (a.sign) {
 | |
|             return a.frac > b.frac ?
 | |
|                 float_relation_less : float_relation_greater;
 | |
|         } else {
 | |
|             return a.frac > b.frac ?
 | |
|                 float_relation_greater : float_relation_less;
 | |
|         }
 | |
|     } else {
 | |
|         if (a.sign) {
 | |
|             return a.exp > b.exp ? float_relation_less : float_relation_greater;
 | |
|         } else {
 | |
|             return a.exp > b.exp ? float_relation_greater : float_relation_less;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define COMPARE(name, attr, sz)                                         \
 | |
| static int attr                                                         \
 | |
| name(float ## sz a, float ## sz b, bool is_quiet, float_status *s)      \
 | |
| {                                                                       \
 | |
|     FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
 | |
|     FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
 | |
|     return compare_floats(pa, pb, is_quiet, s);                         \
 | |
| }
 | |
| 
 | |
| COMPARE(soft_f16_compare, QEMU_FLATTEN, 16)
 | |
| COMPARE(soft_f32_compare, QEMU_SOFTFLOAT_ATTR, 32)
 | |
| COMPARE(soft_f64_compare, QEMU_SOFTFLOAT_ATTR, 64)
 | |
| 
 | |
| #undef COMPARE
 | |
| 
 | |
| int float16_compare(float16 a, float16 b, float_status *s)
 | |
| {
 | |
|     return soft_f16_compare(a, b, false, s);
 | |
| }
 | |
| 
 | |
| int float16_compare_quiet(float16 a, float16 b, float_status *s)
 | |
| {
 | |
|     return soft_f16_compare(a, b, true, s);
 | |
| }
 | |
| 
 | |
| static int QEMU_FLATTEN
 | |
| f32_compare(float32 xa, float32 xb, bool is_quiet, float_status *s)
 | |
| {
 | |
|     union_float32 ua, ub;
 | |
| 
 | |
|     ua.s = xa;
 | |
|     ub.s = xb;
 | |
| 
 | |
|     if (QEMU_NO_HARDFLOAT) {
 | |
|         goto soft;
 | |
|     }
 | |
| 
 | |
|     float32_input_flush2(&ua.s, &ub.s, s);
 | |
|     if (isgreaterequal(ua.h, ub.h)) {
 | |
|         if (isgreater(ua.h, ub.h)) {
 | |
|             return float_relation_greater;
 | |
|         }
 | |
|         return float_relation_equal;
 | |
|     }
 | |
|     if (likely(isless(ua.h, ub.h))) {
 | |
|         return float_relation_less;
 | |
|     }
 | |
|     /* The only condition remaining is unordered.
 | |
|      * Fall through to set flags.
 | |
|      */
 | |
|  soft:
 | |
|     return soft_f32_compare(ua.s, ub.s, is_quiet, s);
 | |
| }
 | |
| 
 | |
| int float32_compare(float32 a, float32 b, float_status *s)
 | |
| {
 | |
|     return f32_compare(a, b, false, s);
 | |
| }
 | |
| 
 | |
| int float32_compare_quiet(float32 a, float32 b, float_status *s)
 | |
| {
 | |
|     return f32_compare(a, b, true, s);
 | |
| }
 | |
| 
 | |
| static int QEMU_FLATTEN
 | |
| f64_compare(float64 xa, float64 xb, bool is_quiet, float_status *s)
 | |
| {
 | |
|     union_float64 ua, ub;
 | |
| 
 | |
|     ua.s = xa;
 | |
|     ub.s = xb;
 | |
| 
 | |
|     if (QEMU_NO_HARDFLOAT) {
 | |
|         goto soft;
 | |
|     }
 | |
| 
 | |
|     float64_input_flush2(&ua.s, &ub.s, s);
 | |
|     if (isgreaterequal(ua.h, ub.h)) {
 | |
|         if (isgreater(ua.h, ub.h)) {
 | |
|             return float_relation_greater;
 | |
|         }
 | |
|         return float_relation_equal;
 | |
|     }
 | |
|     if (likely(isless(ua.h, ub.h))) {
 | |
|         return float_relation_less;
 | |
|     }
 | |
|     /* The only condition remaining is unordered.
 | |
|      * Fall through to set flags.
 | |
|      */
 | |
|  soft:
 | |
|     return soft_f64_compare(ua.s, ub.s, is_quiet, s);
 | |
| }
 | |
| 
 | |
| int float64_compare(float64 a, float64 b, float_status *s)
 | |
| {
 | |
|     return f64_compare(a, b, false, s);
 | |
| }
 | |
| 
 | |
| int float64_compare_quiet(float64 a, float64 b, float_status *s)
 | |
| {
 | |
|     return f64_compare(a, b, true, s);
 | |
| }
 | |
| 
 | |
| /* Multiply A by 2 raised to the power N.  */
 | |
| static FloatParts scalbn_decomposed(FloatParts a, int n, float_status *s)
 | |
| {
 | |
|     if (unlikely(is_nan(a.cls))) {
 | |
|         return return_nan(a, s);
 | |
|     }
 | |
|     if (a.cls == float_class_normal) {
 | |
|         /* The largest float type (even though not supported by FloatParts)
 | |
|          * is float128, which has a 15 bit exponent.  Bounding N to 16 bits
 | |
|          * still allows rounding to infinity, without allowing overflow
 | |
|          * within the int32_t that backs FloatParts.exp.
 | |
|          */
 | |
|         n = MIN(MAX(n, -0x10000), 0x10000);
 | |
|         a.exp += n;
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| float16 float16_scalbn(float16 a, int n, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float16_unpack_canonical(a, status);
 | |
|     FloatParts pr = scalbn_decomposed(pa, n, status);
 | |
|     return float16_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| float32 float32_scalbn(float32 a, int n, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float32_unpack_canonical(a, status);
 | |
|     FloatParts pr = scalbn_decomposed(pa, n, status);
 | |
|     return float32_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| float64 float64_scalbn(float64 a, int n, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float64_unpack_canonical(a, status);
 | |
|     FloatParts pr = scalbn_decomposed(pa, n, status);
 | |
|     return float64_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Square Root
 | |
|  *
 | |
|  * The old softfloat code did an approximation step before zeroing in
 | |
|  * on the final result. However for simpleness we just compute the
 | |
|  * square root by iterating down from the implicit bit to enough extra
 | |
|  * bits to ensure we get a correctly rounded result.
 | |
|  *
 | |
|  * This does mean however the calculation is slower than before,
 | |
|  * especially for 64 bit floats.
 | |
|  */
 | |
| 
 | |
| static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p)
 | |
| {
 | |
|     uint64_t a_frac, r_frac, s_frac;
 | |
|     int bit, last_bit;
 | |
| 
 | |
|     if (is_nan(a.cls)) {
 | |
|         return return_nan(a, s);
 | |
|     }
 | |
|     if (a.cls == float_class_zero) {
 | |
|         return a;  /* sqrt(+-0) = +-0 */
 | |
|     }
 | |
|     if (a.sign) {
 | |
|         s->float_exception_flags |= float_flag_invalid;
 | |
|         return parts_default_nan(s);
 | |
|     }
 | |
|     if (a.cls == float_class_inf) {
 | |
|         return a;  /* sqrt(+inf) = +inf */
 | |
|     }
 | |
| 
 | |
|     assert(a.cls == float_class_normal);
 | |
| 
 | |
|     /* We need two overflow bits at the top. Adding room for that is a
 | |
|      * right shift. If the exponent is odd, we can discard the low bit
 | |
|      * by multiplying the fraction by 2; that's a left shift. Combine
 | |
|      * those and we shift right if the exponent is even.
 | |
|      */
 | |
|     a_frac = a.frac;
 | |
|     if (!(a.exp & 1)) {
 | |
|         a_frac >>= 1;
 | |
|     }
 | |
|     a.exp >>= 1;
 | |
| 
 | |
|     /* Bit-by-bit computation of sqrt.  */
 | |
|     r_frac = 0;
 | |
|     s_frac = 0;
 | |
| 
 | |
|     /* Iterate from implicit bit down to the 3 extra bits to compute a
 | |
|      * properly rounded result. Remember we've inserted one more bit
 | |
|      * at the top, so these positions are one less.
 | |
|      */
 | |
|     bit = DECOMPOSED_BINARY_POINT - 1;
 | |
|     last_bit = MAX(p->frac_shift - 4, 0);
 | |
|     do {
 | |
|         uint64_t q = 1ULL << bit;
 | |
|         uint64_t t_frac = s_frac + q;
 | |
|         if (t_frac <= a_frac) {
 | |
|             s_frac = t_frac + q;
 | |
|             a_frac -= t_frac;
 | |
|             r_frac += q;
 | |
|         }
 | |
|         a_frac <<= 1;
 | |
|     } while (--bit >= last_bit);
 | |
| 
 | |
|     /* Undo the right shift done above. If there is any remaining
 | |
|      * fraction, the result is inexact. Set the sticky bit.
 | |
|      */
 | |
|     a.frac = (r_frac << 1) + (a_frac != 0);
 | |
| 
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| float16 QEMU_FLATTEN float16_sqrt(float16 a, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float16_unpack_canonical(a, status);
 | |
|     FloatParts pr = sqrt_float(pa, status, &float16_params);
 | |
|     return float16_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| static float32 QEMU_SOFTFLOAT_ATTR
 | |
| soft_f32_sqrt(float32 a, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float32_unpack_canonical(a, status);
 | |
|     FloatParts pr = sqrt_float(pa, status, &float32_params);
 | |
|     return float32_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| static float64 QEMU_SOFTFLOAT_ATTR
 | |
| soft_f64_sqrt(float64 a, float_status *status)
 | |
| {
 | |
|     FloatParts pa = float64_unpack_canonical(a, status);
 | |
|     FloatParts pr = sqrt_float(pa, status, &float64_params);
 | |
|     return float64_round_pack_canonical(pr, status);
 | |
| }
 | |
| 
 | |
| float32 QEMU_FLATTEN float32_sqrt(float32 xa, float_status *s)
 | |
| {
 | |
|     union_float32 ua, ur;
 | |
| 
 | |
|     ua.s = xa;
 | |
|     if (unlikely(!can_use_fpu(s))) {
 | |
|         goto soft;
 | |
|     }
 | |
| 
 | |
|     float32_input_flush1(&ua.s, s);
 | |
|     if (QEMU_HARDFLOAT_1F32_USE_FP) {
 | |
|         if (unlikely(!(fpclassify(ua.h) == FP_NORMAL ||
 | |
|                        fpclassify(ua.h) == FP_ZERO) ||
 | |
|                      signbit(ua.h))) {
 | |
|             goto soft;
 | |
|         }
 | |
|     } else if (unlikely(!float32_is_zero_or_normal(ua.s) ||
 | |
|                         float32_is_neg(ua.s))) {
 | |
|         goto soft;
 | |
|     }
 | |
|     ur.h = sqrtf(ua.h);
 | |
|     return ur.s;
 | |
| 
 | |
|  soft:
 | |
|     return soft_f32_sqrt(ua.s, s);
 | |
| }
 | |
| 
 | |
| float64 QEMU_FLATTEN float64_sqrt(float64 xa, float_status *s)
 | |
| {
 | |
|     union_float64 ua, ur;
 | |
| 
 | |
|     ua.s = xa;
 | |
|     if (unlikely(!can_use_fpu(s))) {
 | |
|         goto soft;
 | |
|     }
 | |
| 
 | |
|     float64_input_flush1(&ua.s, s);
 | |
|     if (QEMU_HARDFLOAT_1F64_USE_FP) {
 | |
|         if (unlikely(!(fpclassify(ua.h) == FP_NORMAL ||
 | |
|                        fpclassify(ua.h) == FP_ZERO) ||
 | |
|                      signbit(ua.h))) {
 | |
|             goto soft;
 | |
|         }
 | |
|     } else if (unlikely(!float64_is_zero_or_normal(ua.s) ||
 | |
|                         float64_is_neg(ua.s))) {
 | |
|         goto soft;
 | |
|     }
 | |
|     ur.h = sqrt(ua.h);
 | |
|     return ur.s;
 | |
| 
 | |
|  soft:
 | |
|     return soft_f64_sqrt(ua.s, s);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | The pattern for a default generated NaN.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float16 float16_default_nan(float_status *status)
 | |
| {
 | |
|     FloatParts p = parts_default_nan(status);
 | |
|     p.frac >>= float16_params.frac_shift;
 | |
|     return float16_pack_raw(p);
 | |
| }
 | |
| 
 | |
| float32 float32_default_nan(float_status *status)
 | |
| {
 | |
|     FloatParts p = parts_default_nan(status);
 | |
|     p.frac >>= float32_params.frac_shift;
 | |
|     return float32_pack_raw(p);
 | |
| }
 | |
| 
 | |
| float64 float64_default_nan(float_status *status)
 | |
| {
 | |
|     FloatParts p = parts_default_nan(status);
 | |
|     p.frac >>= float64_params.frac_shift;
 | |
|     return float64_pack_raw(p);
 | |
| }
 | |
| 
 | |
| float128 float128_default_nan(float_status *status)
 | |
| {
 | |
|     FloatParts p = parts_default_nan(status);
 | |
|     float128 r;
 | |
| 
 | |
|     /* Extrapolate from the choices made by parts_default_nan to fill
 | |
|      * in the quad-floating format.  If the low bit is set, assume we
 | |
|      * want to set all non-snan bits.
 | |
|      */
 | |
|     r.low = -(p.frac & 1);
 | |
|     r.high = p.frac >> (DECOMPOSED_BINARY_POINT - 48);
 | |
|     r.high |= LIT64(0x7FFF000000000000);
 | |
|     r.high |= (uint64_t)p.sign << 63;
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns a quiet NaN from a signalling NaN for the floating point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float16 float16_silence_nan(float16 a, float_status *status)
 | |
| {
 | |
|     FloatParts p = float16_unpack_raw(a);
 | |
|     p.frac <<= float16_params.frac_shift;
 | |
|     p = parts_silence_nan(p, status);
 | |
|     p.frac >>= float16_params.frac_shift;
 | |
|     return float16_pack_raw(p);
 | |
| }
 | |
| 
 | |
| float32 float32_silence_nan(float32 a, float_status *status)
 | |
| {
 | |
|     FloatParts p = float32_unpack_raw(a);
 | |
|     p.frac <<= float32_params.frac_shift;
 | |
|     p = parts_silence_nan(p, status);
 | |
|     p.frac >>= float32_params.frac_shift;
 | |
|     return float32_pack_raw(p);
 | |
| }
 | |
| 
 | |
| float64 float64_silence_nan(float64 a, float_status *status)
 | |
| {
 | |
|     FloatParts p = float64_unpack_raw(a);
 | |
|     p.frac <<= float64_params.frac_shift;
 | |
|     p = parts_silence_nan(p, status);
 | |
|     p.frac >>= float64_params.frac_shift;
 | |
|     return float64_pack_raw(p);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
 | |
| | and 7, and returns the properly rounded 32-bit integer corresponding to the
 | |
| | input.  If `zSign' is 1, the input is negated before being converted to an
 | |
| | integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
 | |
| | is simply rounded to an integer, with the inexact exception raised if the
 | |
| | input cannot be represented exactly as an integer.  However, if the fixed-
 | |
| | point input is too large, the invalid exception is raised and the largest
 | |
| | positive or negative integer is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static int32_t roundAndPackInt32(flag zSign, uint64_t absZ, float_status *status)
 | |
| {
 | |
|     int8_t roundingMode;
 | |
|     flag roundNearestEven;
 | |
|     int8_t roundIncrement, roundBits;
 | |
|     int32_t z;
 | |
| 
 | |
|     roundingMode = status->float_rounding_mode;
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     switch (roundingMode) {
 | |
|     case float_round_nearest_even:
 | |
|     case float_round_ties_away:
 | |
|         roundIncrement = 0x40;
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         roundIncrement = 0;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         roundIncrement = zSign ? 0 : 0x7f;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         roundIncrement = zSign ? 0x7f : 0;
 | |
|         break;
 | |
|     case float_round_to_odd:
 | |
|         roundIncrement = absZ & 0x80 ? 0 : 0x7f;
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     roundBits = absZ & 0x7F;
 | |
|     absZ = ( absZ + roundIncrement )>>7;
 | |
|     absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
 | |
|     z = absZ;
 | |
|     if ( zSign ) z = - z;
 | |
|     if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return zSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
 | |
|     }
 | |
|     if (roundBits) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
 | |
| | `absZ1', with binary point between bits 63 and 64 (between the input words),
 | |
| | and returns the properly rounded 64-bit integer corresponding to the input.
 | |
| | If `zSign' is 1, the input is negated before being converted to an integer.
 | |
| | Ordinarily, the fixed-point input is simply rounded to an integer, with
 | |
| | the inexact exception raised if the input cannot be represented exactly as
 | |
| | an integer.  However, if the fixed-point input is too large, the invalid
 | |
| | exception is raised and the largest positive or negative integer is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static int64_t roundAndPackInt64(flag zSign, uint64_t absZ0, uint64_t absZ1,
 | |
|                                float_status *status)
 | |
| {
 | |
|     int8_t roundingMode;
 | |
|     flag roundNearestEven, increment;
 | |
|     int64_t z;
 | |
| 
 | |
|     roundingMode = status->float_rounding_mode;
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     switch (roundingMode) {
 | |
|     case float_round_nearest_even:
 | |
|     case float_round_ties_away:
 | |
|         increment = ((int64_t) absZ1 < 0);
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         increment = 0;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         increment = !zSign && absZ1;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         increment = zSign && absZ1;
 | |
|         break;
 | |
|     case float_round_to_odd:
 | |
|         increment = !(absZ0 & 1) && absZ1;
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     if ( increment ) {
 | |
|         ++absZ0;
 | |
|         if ( absZ0 == 0 ) goto overflow;
 | |
|         absZ0 &= ~ ( ( (uint64_t) ( absZ1<<1 ) == 0 ) & roundNearestEven );
 | |
|     }
 | |
|     z = absZ0;
 | |
|     if ( zSign ) z = - z;
 | |
|     if ( z && ( ( z < 0 ) ^ zSign ) ) {
 | |
|  overflow:
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return
 | |
|               zSign ? (int64_t) LIT64( 0x8000000000000000 )
 | |
|             : LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|     }
 | |
|     if (absZ1) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
 | |
| | `absZ1', with binary point between bits 63 and 64 (between the input words),
 | |
| | and returns the properly rounded 64-bit unsigned integer corresponding to the
 | |
| | input.  Ordinarily, the fixed-point input is simply rounded to an integer,
 | |
| | with the inexact exception raised if the input cannot be represented exactly
 | |
| | as an integer.  However, if the fixed-point input is too large, the invalid
 | |
| | exception is raised and the largest unsigned integer is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static int64_t roundAndPackUint64(flag zSign, uint64_t absZ0,
 | |
|                                 uint64_t absZ1, float_status *status)
 | |
| {
 | |
|     int8_t roundingMode;
 | |
|     flag roundNearestEven, increment;
 | |
| 
 | |
|     roundingMode = status->float_rounding_mode;
 | |
|     roundNearestEven = (roundingMode == float_round_nearest_even);
 | |
|     switch (roundingMode) {
 | |
|     case float_round_nearest_even:
 | |
|     case float_round_ties_away:
 | |
|         increment = ((int64_t)absZ1 < 0);
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         increment = 0;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         increment = !zSign && absZ1;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         increment = zSign && absZ1;
 | |
|         break;
 | |
|     case float_round_to_odd:
 | |
|         increment = !(absZ0 & 1) && absZ1;
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     if (increment) {
 | |
|         ++absZ0;
 | |
|         if (absZ0 == 0) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return LIT64(0xFFFFFFFFFFFFFFFF);
 | |
|         }
 | |
|         absZ0 &= ~(((uint64_t)(absZ1<<1) == 0) & roundNearestEven);
 | |
|     }
 | |
| 
 | |
|     if (zSign && absZ0) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (absZ1) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return absZ0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | If `a' is denormal and we are in flush-to-zero mode then set the
 | |
| | input-denormal exception and return zero. Otherwise just return the value.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float32 float32_squash_input_denormal(float32 a, float_status *status)
 | |
| {
 | |
|     if (status->flush_inputs_to_zero) {
 | |
|         if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
 | |
|             float_raise(float_flag_input_denormal, status);
 | |
|             return make_float32(float32_val(a) & 0x80000000);
 | |
|         }
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Normalizes the subnormal single-precision floating-point value represented
 | |
| | by the denormalized significand `aSig'.  The normalized exponent and
 | |
| | significand are stored at the locations pointed to by `zExpPtr' and
 | |
| | `zSigPtr', respectively.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static void
 | |
|  normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr)
 | |
| {
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     shiftCount = clz32(aSig) - 8;
 | |
|     *zSigPtr = aSig<<shiftCount;
 | |
|     *zExpPtr = 1 - shiftCount;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper single-precision floating-
 | |
| | point value corresponding to the abstract input.  Ordinarily, the abstract
 | |
| | value is simply rounded and packed into the single-precision format, with
 | |
| | the inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded to
 | |
| | a subnormal number, and the underflow and inexact exceptions are raised if
 | |
| | the abstract input cannot be represented exactly as a subnormal single-
 | |
| | precision floating-point number.
 | |
| |     The input significand `zSig' has its binary point between bits 30
 | |
| | and 29, which is 7 bits to the left of the usual location.  This shifted
 | |
| | significand must be normalized or smaller.  If `zSig' is not normalized,
 | |
| | `zExp' must be 0; in that case, the result returned is a subnormal number,
 | |
| | and it must not require rounding.  In the usual case that `zSig' is
 | |
| | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 | |
| | The handling of underflow and overflow follows the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32 roundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
 | |
|                                    float_status *status)
 | |
| {
 | |
|     int8_t roundingMode;
 | |
|     flag roundNearestEven;
 | |
|     int8_t roundIncrement, roundBits;
 | |
|     flag isTiny;
 | |
| 
 | |
|     roundingMode = status->float_rounding_mode;
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     switch (roundingMode) {
 | |
|     case float_round_nearest_even:
 | |
|     case float_round_ties_away:
 | |
|         roundIncrement = 0x40;
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         roundIncrement = 0;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         roundIncrement = zSign ? 0 : 0x7f;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         roundIncrement = zSign ? 0x7f : 0;
 | |
|         break;
 | |
|     case float_round_to_odd:
 | |
|         roundIncrement = zSig & 0x80 ? 0 : 0x7f;
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|         break;
 | |
|     }
 | |
|     roundBits = zSig & 0x7F;
 | |
|     if ( 0xFD <= (uint16_t) zExp ) {
 | |
|         if (    ( 0xFD < zExp )
 | |
|              || (    ( zExp == 0xFD )
 | |
|                   && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
 | |
|            ) {
 | |
|             bool overflow_to_inf = roundingMode != float_round_to_odd &&
 | |
|                                    roundIncrement != 0;
 | |
|             float_raise(float_flag_overflow | float_flag_inexact, status);
 | |
|             return packFloat32(zSign, 0xFF, -!overflow_to_inf);
 | |
|         }
 | |
|         if ( zExp < 0 ) {
 | |
|             if (status->flush_to_zero) {
 | |
|                 float_raise(float_flag_output_denormal, status);
 | |
|                 return packFloat32(zSign, 0, 0);
 | |
|             }
 | |
|             isTiny =
 | |
|                 (status->float_detect_tininess
 | |
|                  == float_tininess_before_rounding)
 | |
|                 || ( zExp < -1 )
 | |
|                 || ( zSig + roundIncrement < 0x80000000 );
 | |
|             shift32RightJamming( zSig, - zExp, &zSig );
 | |
|             zExp = 0;
 | |
|             roundBits = zSig & 0x7F;
 | |
|             if (isTiny && roundBits) {
 | |
|                 float_raise(float_flag_underflow, status);
 | |
|             }
 | |
|             if (roundingMode == float_round_to_odd) {
 | |
|                 /*
 | |
|                  * For round-to-odd case, the roundIncrement depends on
 | |
|                  * zSig which just changed.
 | |
|                  */
 | |
|                 roundIncrement = zSig & 0x80 ? 0 : 0x7f;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (roundBits) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     zSig = ( zSig + roundIncrement )>>7;
 | |
|     zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
 | |
|     if ( zSig == 0 ) zExp = 0;
 | |
|     return packFloat32( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper single-precision floating-
 | |
| | point value corresponding to the abstract input.  This routine is just like
 | |
| | `roundAndPackFloat32' except that `zSig' does not have to be normalized.
 | |
| | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
 | |
| | floating-point exponent.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32
 | |
|  normalizeRoundAndPackFloat32(flag zSign, int zExp, uint32_t zSig,
 | |
|                               float_status *status)
 | |
| {
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     shiftCount = clz32(zSig) - 1;
 | |
|     return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
 | |
|                                status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | If `a' is denormal and we are in flush-to-zero mode then set the
 | |
| | input-denormal exception and return zero. Otherwise just return the value.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float64 float64_squash_input_denormal(float64 a, float_status *status)
 | |
| {
 | |
|     if (status->flush_inputs_to_zero) {
 | |
|         if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
 | |
|             float_raise(float_flag_input_denormal, status);
 | |
|             return make_float64(float64_val(a) & (1ULL << 63));
 | |
|         }
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Normalizes the subnormal double-precision floating-point value represented
 | |
| | by the denormalized significand `aSig'.  The normalized exponent and
 | |
| | significand are stored at the locations pointed to by `zExpPtr' and
 | |
| | `zSigPtr', respectively.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static void
 | |
|  normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr)
 | |
| {
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     shiftCount = clz64(aSig) - 11;
 | |
|     *zSigPtr = aSig<<shiftCount;
 | |
|     *zExpPtr = 1 - shiftCount;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 | |
| | double-precision floating-point value, returning the result.  After being
 | |
| | shifted into the proper positions, the three fields are simply added
 | |
| | together to form the result.  This means that any integer portion of `zSig'
 | |
| | will be added into the exponent.  Since a properly normalized significand
 | |
| | will have an integer portion equal to 1, the `zExp' input should be 1 less
 | |
| | than the desired result exponent whenever `zSig' is a complete, normalized
 | |
| | significand.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline float64 packFloat64(flag zSign, int zExp, uint64_t zSig)
 | |
| {
 | |
| 
 | |
|     return make_float64(
 | |
|         ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper double-precision floating-
 | |
| | point value corresponding to the abstract input.  Ordinarily, the abstract
 | |
| | value is simply rounded and packed into the double-precision format, with
 | |
| | the inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded to
 | |
| | a subnormal number, and the underflow and inexact exceptions are raised if
 | |
| | the abstract input cannot be represented exactly as a subnormal double-
 | |
| | precision floating-point number.
 | |
| |     The input significand `zSig' has its binary point between bits 62
 | |
| | and 61, which is 10 bits to the left of the usual location.  This shifted
 | |
| | significand must be normalized or smaller.  If `zSig' is not normalized,
 | |
| | `zExp' must be 0; in that case, the result returned is a subnormal number,
 | |
| | and it must not require rounding.  In the usual case that `zSig' is
 | |
| | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 | |
| | The handling of underflow and overflow follows the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64 roundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
 | |
|                                    float_status *status)
 | |
| {
 | |
|     int8_t roundingMode;
 | |
|     flag roundNearestEven;
 | |
|     int roundIncrement, roundBits;
 | |
|     flag isTiny;
 | |
| 
 | |
|     roundingMode = status->float_rounding_mode;
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     switch (roundingMode) {
 | |
|     case float_round_nearest_even:
 | |
|     case float_round_ties_away:
 | |
|         roundIncrement = 0x200;
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         roundIncrement = 0;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         roundIncrement = zSign ? 0 : 0x3ff;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         roundIncrement = zSign ? 0x3ff : 0;
 | |
|         break;
 | |
|     case float_round_to_odd:
 | |
|         roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     roundBits = zSig & 0x3FF;
 | |
|     if ( 0x7FD <= (uint16_t) zExp ) {
 | |
|         if (    ( 0x7FD < zExp )
 | |
|              || (    ( zExp == 0x7FD )
 | |
|                   && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
 | |
|            ) {
 | |
|             bool overflow_to_inf = roundingMode != float_round_to_odd &&
 | |
|                                    roundIncrement != 0;
 | |
|             float_raise(float_flag_overflow | float_flag_inexact, status);
 | |
|             return packFloat64(zSign, 0x7FF, -(!overflow_to_inf));
 | |
|         }
 | |
|         if ( zExp < 0 ) {
 | |
|             if (status->flush_to_zero) {
 | |
|                 float_raise(float_flag_output_denormal, status);
 | |
|                 return packFloat64(zSign, 0, 0);
 | |
|             }
 | |
|             isTiny =
 | |
|                    (status->float_detect_tininess
 | |
|                     == float_tininess_before_rounding)
 | |
|                 || ( zExp < -1 )
 | |
|                 || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
 | |
|             shift64RightJamming( zSig, - zExp, &zSig );
 | |
|             zExp = 0;
 | |
|             roundBits = zSig & 0x3FF;
 | |
|             if (isTiny && roundBits) {
 | |
|                 float_raise(float_flag_underflow, status);
 | |
|             }
 | |
|             if (roundingMode == float_round_to_odd) {
 | |
|                 /*
 | |
|                  * For round-to-odd case, the roundIncrement depends on
 | |
|                  * zSig which just changed.
 | |
|                  */
 | |
|                 roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (roundBits) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     zSig = ( zSig + roundIncrement )>>10;
 | |
|     zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
 | |
|     if ( zSig == 0 ) zExp = 0;
 | |
|     return packFloat64( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper double-precision floating-
 | |
| | point value corresponding to the abstract input.  This routine is just like
 | |
| | `roundAndPackFloat64' except that `zSig' does not have to be normalized.
 | |
| | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
 | |
| | floating-point exponent.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64
 | |
|  normalizeRoundAndPackFloat64(flag zSign, int zExp, uint64_t zSig,
 | |
|                               float_status *status)
 | |
| {
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     shiftCount = clz64(zSig) - 1;
 | |
|     return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
 | |
|                                status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Normalizes the subnormal extended double-precision floating-point value
 | |
| | represented by the denormalized significand `aSig'.  The normalized exponent
 | |
| | and significand are stored at the locations pointed to by `zExpPtr' and
 | |
| | `zSigPtr', respectively.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
 | |
|                                 uint64_t *zSigPtr)
 | |
| {
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     shiftCount = clz64(aSig);
 | |
|     *zSigPtr = aSig<<shiftCount;
 | |
|     *zExpPtr = 1 - shiftCount;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and extended significand formed by the concatenation of `zSig0' and `zSig1',
 | |
| | and returns the proper extended double-precision floating-point value
 | |
| | corresponding to the abstract input.  Ordinarily, the abstract value is
 | |
| | rounded and packed into the extended double-precision format, with the
 | |
| | inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded to
 | |
| | a subnormal number, and the underflow and inexact exceptions are raised if
 | |
| | the abstract input cannot be represented exactly as a subnormal extended
 | |
| | double-precision floating-point number.
 | |
| |     If `roundingPrecision' is 32 or 64, the result is rounded to the same
 | |
| | number of bits as single or double precision, respectively.  Otherwise, the
 | |
| | result is rounded to the full precision of the extended double-precision
 | |
| | format.
 | |
| |     The input significand must be normalized or smaller.  If the input
 | |
| | significand is not normalized, `zExp' must be 0; in that case, the result
 | |
| | returned is a subnormal number, and it must not require rounding.  The
 | |
| | handling of underflow and overflow follows the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 roundAndPackFloatx80(int8_t roundingPrecision, flag zSign,
 | |
|                               int32_t zExp, uint64_t zSig0, uint64_t zSig1,
 | |
|                               float_status *status)
 | |
| {
 | |
|     int8_t roundingMode;
 | |
|     flag roundNearestEven, increment, isTiny;
 | |
|     int64_t roundIncrement, roundMask, roundBits;
 | |
| 
 | |
|     roundingMode = status->float_rounding_mode;
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     if ( roundingPrecision == 80 ) goto precision80;
 | |
|     if ( roundingPrecision == 64 ) {
 | |
|         roundIncrement = LIT64( 0x0000000000000400 );
 | |
|         roundMask = LIT64( 0x00000000000007FF );
 | |
|     }
 | |
|     else if ( roundingPrecision == 32 ) {
 | |
|         roundIncrement = LIT64( 0x0000008000000000 );
 | |
|         roundMask = LIT64( 0x000000FFFFFFFFFF );
 | |
|     }
 | |
|     else {
 | |
|         goto precision80;
 | |
|     }
 | |
|     zSig0 |= ( zSig1 != 0 );
 | |
|     switch (roundingMode) {
 | |
|     case float_round_nearest_even:
 | |
|     case float_round_ties_away:
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         roundIncrement = 0;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         roundIncrement = zSign ? 0 : roundMask;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         roundIncrement = zSign ? roundMask : 0;
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     roundBits = zSig0 & roundMask;
 | |
|     if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
 | |
|         if (    ( 0x7FFE < zExp )
 | |
|              || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
 | |
|            ) {
 | |
|             goto overflow;
 | |
|         }
 | |
|         if ( zExp <= 0 ) {
 | |
|             if (status->flush_to_zero) {
 | |
|                 float_raise(float_flag_output_denormal, status);
 | |
|                 return packFloatx80(zSign, 0, 0);
 | |
|             }
 | |
|             isTiny =
 | |
|                    (status->float_detect_tininess
 | |
|                     == float_tininess_before_rounding)
 | |
|                 || ( zExp < 0 )
 | |
|                 || ( zSig0 <= zSig0 + roundIncrement );
 | |
|             shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
 | |
|             zExp = 0;
 | |
|             roundBits = zSig0 & roundMask;
 | |
|             if (isTiny && roundBits) {
 | |
|                 float_raise(float_flag_underflow, status);
 | |
|             }
 | |
|             if (roundBits) {
 | |
|                 status->float_exception_flags |= float_flag_inexact;
 | |
|             }
 | |
|             zSig0 += roundIncrement;
 | |
|             if ( (int64_t) zSig0 < 0 ) zExp = 1;
 | |
|             roundIncrement = roundMask + 1;
 | |
|             if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
 | |
|                 roundMask |= roundIncrement;
 | |
|             }
 | |
|             zSig0 &= ~ roundMask;
 | |
|             return packFloatx80( zSign, zExp, zSig0 );
 | |
|         }
 | |
|     }
 | |
|     if (roundBits) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     zSig0 += roundIncrement;
 | |
|     if ( zSig0 < roundIncrement ) {
 | |
|         ++zExp;
 | |
|         zSig0 = LIT64( 0x8000000000000000 );
 | |
|     }
 | |
|     roundIncrement = roundMask + 1;
 | |
|     if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
 | |
|         roundMask |= roundIncrement;
 | |
|     }
 | |
|     zSig0 &= ~ roundMask;
 | |
|     if ( zSig0 == 0 ) zExp = 0;
 | |
|     return packFloatx80( zSign, zExp, zSig0 );
 | |
|  precision80:
 | |
|     switch (roundingMode) {
 | |
|     case float_round_nearest_even:
 | |
|     case float_round_ties_away:
 | |
|         increment = ((int64_t)zSig1 < 0);
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         increment = 0;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         increment = !zSign && zSig1;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         increment = zSign && zSig1;
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
 | |
|         if (    ( 0x7FFE < zExp )
 | |
|              || (    ( zExp == 0x7FFE )
 | |
|                   && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
 | |
|                   && increment
 | |
|                 )
 | |
|            ) {
 | |
|             roundMask = 0;
 | |
|  overflow:
 | |
|             float_raise(float_flag_overflow | float_flag_inexact, status);
 | |
|             if (    ( roundingMode == float_round_to_zero )
 | |
|                  || ( zSign && ( roundingMode == float_round_up ) )
 | |
|                  || ( ! zSign && ( roundingMode == float_round_down ) )
 | |
|                ) {
 | |
|                 return packFloatx80( zSign, 0x7FFE, ~ roundMask );
 | |
|             }
 | |
|             return packFloatx80(zSign,
 | |
|                                 floatx80_infinity_high,
 | |
|                                 floatx80_infinity_low);
 | |
|         }
 | |
|         if ( zExp <= 0 ) {
 | |
|             isTiny =
 | |
|                    (status->float_detect_tininess
 | |
|                     == float_tininess_before_rounding)
 | |
|                 || ( zExp < 0 )
 | |
|                 || ! increment
 | |
|                 || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
 | |
|             shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
 | |
|             zExp = 0;
 | |
|             if (isTiny && zSig1) {
 | |
|                 float_raise(float_flag_underflow, status);
 | |
|             }
 | |
|             if (zSig1) {
 | |
|                 status->float_exception_flags |= float_flag_inexact;
 | |
|             }
 | |
|             switch (roundingMode) {
 | |
|             case float_round_nearest_even:
 | |
|             case float_round_ties_away:
 | |
|                 increment = ((int64_t)zSig1 < 0);
 | |
|                 break;
 | |
|             case float_round_to_zero:
 | |
|                 increment = 0;
 | |
|                 break;
 | |
|             case float_round_up:
 | |
|                 increment = !zSign && zSig1;
 | |
|                 break;
 | |
|             case float_round_down:
 | |
|                 increment = zSign && zSig1;
 | |
|                 break;
 | |
|             default:
 | |
|                 abort();
 | |
|             }
 | |
|             if ( increment ) {
 | |
|                 ++zSig0;
 | |
|                 zSig0 &=
 | |
|                     ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
 | |
|                 if ( (int64_t) zSig0 < 0 ) zExp = 1;
 | |
|             }
 | |
|             return packFloatx80( zSign, zExp, zSig0 );
 | |
|         }
 | |
|     }
 | |
|     if (zSig1) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     if ( increment ) {
 | |
|         ++zSig0;
 | |
|         if ( zSig0 == 0 ) {
 | |
|             ++zExp;
 | |
|             zSig0 = LIT64( 0x8000000000000000 );
 | |
|         }
 | |
|         else {
 | |
|             zSig0 &= ~ ( ( (uint64_t) ( zSig1<<1 ) == 0 ) & roundNearestEven );
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         if ( zSig0 == 0 ) zExp = 0;
 | |
|     }
 | |
|     return packFloatx80( zSign, zExp, zSig0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent
 | |
| | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
 | |
| | and returns the proper extended double-precision floating-point value
 | |
| | corresponding to the abstract input.  This routine is just like
 | |
| | `roundAndPackFloatx80' except that the input significand does not have to be
 | |
| | normalized.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
 | |
|                                        flag zSign, int32_t zExp,
 | |
|                                        uint64_t zSig0, uint64_t zSig1,
 | |
|                                        float_status *status)
 | |
| {
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     if ( zSig0 == 0 ) {
 | |
|         zSig0 = zSig1;
 | |
|         zSig1 = 0;
 | |
|         zExp -= 64;
 | |
|     }
 | |
|     shiftCount = clz64(zSig0);
 | |
|     shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | |
|     zExp -= shiftCount;
 | |
|     return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
 | |
|                                 zSig0, zSig1, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the least-significant 64 fraction bits of the quadruple-precision
 | |
| | floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline uint64_t extractFloat128Frac1( float128 a )
 | |
| {
 | |
| 
 | |
|     return a.low;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the most-significant 48 fraction bits of the quadruple-precision
 | |
| | floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline uint64_t extractFloat128Frac0( float128 a )
 | |
| {
 | |
| 
 | |
|     return a.high & LIT64( 0x0000FFFFFFFFFFFF );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the exponent bits of the quadruple-precision floating-point value
 | |
| | `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline int32_t extractFloat128Exp( float128 a )
 | |
| {
 | |
| 
 | |
|     return ( a.high>>48 ) & 0x7FFF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the sign bit of the quadruple-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline flag extractFloat128Sign( float128 a )
 | |
| {
 | |
| 
 | |
|     return a.high>>63;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Normalizes the subnormal quadruple-precision floating-point value
 | |
| | represented by the denormalized significand formed by the concatenation of
 | |
| | `aSig0' and `aSig1'.  The normalized exponent is stored at the location
 | |
| | pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
 | |
| | significand are stored at the location pointed to by `zSig0Ptr', and the
 | |
| | least significant 64 bits of the normalized significand are stored at the
 | |
| | location pointed to by `zSig1Ptr'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static void
 | |
|  normalizeFloat128Subnormal(
 | |
|      uint64_t aSig0,
 | |
|      uint64_t aSig1,
 | |
|      int32_t *zExpPtr,
 | |
|      uint64_t *zSig0Ptr,
 | |
|      uint64_t *zSig1Ptr
 | |
|  )
 | |
| {
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     if ( aSig0 == 0 ) {
 | |
|         shiftCount = clz64(aSig1) - 15;
 | |
|         if ( shiftCount < 0 ) {
 | |
|             *zSig0Ptr = aSig1>>( - shiftCount );
 | |
|             *zSig1Ptr = aSig1<<( shiftCount & 63 );
 | |
|         }
 | |
|         else {
 | |
|             *zSig0Ptr = aSig1<<shiftCount;
 | |
|             *zSig1Ptr = 0;
 | |
|         }
 | |
|         *zExpPtr = - shiftCount - 63;
 | |
|     }
 | |
|     else {
 | |
|         shiftCount = clz64(aSig0) - 15;
 | |
|         shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
 | |
|         *zExpPtr = 1 - shiftCount;
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Packs the sign `zSign', the exponent `zExp', and the significand formed
 | |
| | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
 | |
| | floating-point value, returning the result.  After being shifted into the
 | |
| | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
 | |
| | added together to form the most significant 32 bits of the result.  This
 | |
| | means that any integer portion of `zSig0' will be added into the exponent.
 | |
| | Since a properly normalized significand will have an integer portion equal
 | |
| | to 1, the `zExp' input should be 1 less than the desired result exponent
 | |
| | whenever `zSig0' and `zSig1' concatenated form a complete, normalized
 | |
| | significand.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline float128
 | |
|  packFloat128( flag zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1 )
 | |
| {
 | |
|     float128 z;
 | |
| 
 | |
|     z.low = zSig1;
 | |
|     z.high = ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<48 ) + zSig0;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and extended significand formed by the concatenation of `zSig0', `zSig1',
 | |
| | and `zSig2', and returns the proper quadruple-precision floating-point value
 | |
| | corresponding to the abstract input.  Ordinarily, the abstract value is
 | |
| | simply rounded and packed into the quadruple-precision format, with the
 | |
| | inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded to
 | |
| | a subnormal number, and the underflow and inexact exceptions are raised if
 | |
| | the abstract input cannot be represented exactly as a subnormal quadruple-
 | |
| | precision floating-point number.
 | |
| |     The input significand must be normalized or smaller.  If the input
 | |
| | significand is not normalized, `zExp' must be 0; in that case, the result
 | |
| | returned is a subnormal number, and it must not require rounding.  In the
 | |
| | usual case that the input significand is normalized, `zExp' must be 1 less
 | |
| | than the ``true'' floating-point exponent.  The handling of underflow and
 | |
| | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128 roundAndPackFloat128(flag zSign, int32_t zExp,
 | |
|                                      uint64_t zSig0, uint64_t zSig1,
 | |
|                                      uint64_t zSig2, float_status *status)
 | |
| {
 | |
|     int8_t roundingMode;
 | |
|     flag roundNearestEven, increment, isTiny;
 | |
| 
 | |
|     roundingMode = status->float_rounding_mode;
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     switch (roundingMode) {
 | |
|     case float_round_nearest_even:
 | |
|     case float_round_ties_away:
 | |
|         increment = ((int64_t)zSig2 < 0);
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         increment = 0;
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         increment = !zSign && zSig2;
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         increment = zSign && zSig2;
 | |
|         break;
 | |
|     case float_round_to_odd:
 | |
|         increment = !(zSig1 & 0x1) && zSig2;
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     if ( 0x7FFD <= (uint32_t) zExp ) {
 | |
|         if (    ( 0x7FFD < zExp )
 | |
|              || (    ( zExp == 0x7FFD )
 | |
|                   && eq128(
 | |
|                          LIT64( 0x0001FFFFFFFFFFFF ),
 | |
|                          LIT64( 0xFFFFFFFFFFFFFFFF ),
 | |
|                          zSig0,
 | |
|                          zSig1
 | |
|                      )
 | |
|                   && increment
 | |
|                 )
 | |
|            ) {
 | |
|             float_raise(float_flag_overflow | float_flag_inexact, status);
 | |
|             if (    ( roundingMode == float_round_to_zero )
 | |
|                  || ( zSign && ( roundingMode == float_round_up ) )
 | |
|                  || ( ! zSign && ( roundingMode == float_round_down ) )
 | |
|                  || (roundingMode == float_round_to_odd)
 | |
|                ) {
 | |
|                 return
 | |
|                     packFloat128(
 | |
|                         zSign,
 | |
|                         0x7FFE,
 | |
|                         LIT64( 0x0000FFFFFFFFFFFF ),
 | |
|                         LIT64( 0xFFFFFFFFFFFFFFFF )
 | |
|                     );
 | |
|             }
 | |
|             return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|         }
 | |
|         if ( zExp < 0 ) {
 | |
|             if (status->flush_to_zero) {
 | |
|                 float_raise(float_flag_output_denormal, status);
 | |
|                 return packFloat128(zSign, 0, 0, 0);
 | |
|             }
 | |
|             isTiny =
 | |
|                    (status->float_detect_tininess
 | |
|                     == float_tininess_before_rounding)
 | |
|                 || ( zExp < -1 )
 | |
|                 || ! increment
 | |
|                 || lt128(
 | |
|                        zSig0,
 | |
|                        zSig1,
 | |
|                        LIT64( 0x0001FFFFFFFFFFFF ),
 | |
|                        LIT64( 0xFFFFFFFFFFFFFFFF )
 | |
|                    );
 | |
|             shift128ExtraRightJamming(
 | |
|                 zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
 | |
|             zExp = 0;
 | |
|             if (isTiny && zSig2) {
 | |
|                 float_raise(float_flag_underflow, status);
 | |
|             }
 | |
|             switch (roundingMode) {
 | |
|             case float_round_nearest_even:
 | |
|             case float_round_ties_away:
 | |
|                 increment = ((int64_t)zSig2 < 0);
 | |
|                 break;
 | |
|             case float_round_to_zero:
 | |
|                 increment = 0;
 | |
|                 break;
 | |
|             case float_round_up:
 | |
|                 increment = !zSign && zSig2;
 | |
|                 break;
 | |
|             case float_round_down:
 | |
|                 increment = zSign && zSig2;
 | |
|                 break;
 | |
|             case float_round_to_odd:
 | |
|                 increment = !(zSig1 & 0x1) && zSig2;
 | |
|                 break;
 | |
|             default:
 | |
|                 abort();
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (zSig2) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     if ( increment ) {
 | |
|         add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
 | |
|         zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
 | |
|     }
 | |
|     else {
 | |
|         if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
 | |
|     }
 | |
|     return packFloat128( zSign, zExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand formed by the concatenation of `zSig0' and `zSig1', and
 | |
| | returns the proper quadruple-precision floating-point value corresponding
 | |
| | to the abstract input.  This routine is just like `roundAndPackFloat128'
 | |
| | except that the input significand has fewer bits and does not have to be
 | |
| | normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
 | |
| | point exponent.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128 normalizeRoundAndPackFloat128(flag zSign, int32_t zExp,
 | |
|                                               uint64_t zSig0, uint64_t zSig1,
 | |
|                                               float_status *status)
 | |
| {
 | |
|     int8_t shiftCount;
 | |
|     uint64_t zSig2;
 | |
| 
 | |
|     if ( zSig0 == 0 ) {
 | |
|         zSig0 = zSig1;
 | |
|         zSig1 = 0;
 | |
|         zExp -= 64;
 | |
|     }
 | |
|     shiftCount = clz64(zSig0) - 15;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         zSig2 = 0;
 | |
|         shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | |
|     }
 | |
|     else {
 | |
|         shift128ExtraRightJamming(
 | |
|             zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
 | |
|     }
 | |
|     zExp -= shiftCount;
 | |
|     return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 32-bit two's complement integer `a'
 | |
| | to the extended double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 int32_to_floatx80(int32_t a, float_status *status)
 | |
| {
 | |
|     flag zSign;
 | |
|     uint32_t absA;
 | |
|     int8_t shiftCount;
 | |
|     uint64_t zSig;
 | |
| 
 | |
|     if ( a == 0 ) return packFloatx80( 0, 0, 0 );
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = clz32(absA) + 32;
 | |
|     zSig = absA;
 | |
|     return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 32-bit two's complement integer `a' to
 | |
| | the quadruple-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 int32_to_float128(int32_t a, float_status *status)
 | |
| {
 | |
|     flag zSign;
 | |
|     uint32_t absA;
 | |
|     int8_t shiftCount;
 | |
|     uint64_t zSig0;
 | |
| 
 | |
|     if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = clz32(absA) + 17;
 | |
|     zSig0 = absA;
 | |
|     return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit two's complement integer `a'
 | |
| | to the extended double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 int64_to_floatx80(int64_t a, float_status *status)
 | |
| {
 | |
|     flag zSign;
 | |
|     uint64_t absA;
 | |
|     int8_t shiftCount;
 | |
| 
 | |
|     if ( a == 0 ) return packFloatx80( 0, 0, 0 );
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = clz64(absA);
 | |
|     return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit two's complement integer `a' to
 | |
| | the quadruple-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 int64_to_float128(int64_t a, float_status *status)
 | |
| {
 | |
|     flag zSign;
 | |
|     uint64_t absA;
 | |
|     int8_t shiftCount;
 | |
|     int32_t zExp;
 | |
|     uint64_t zSig0, zSig1;
 | |
| 
 | |
|     if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = clz64(absA) + 49;
 | |
|     zExp = 0x406E - shiftCount;
 | |
|     if ( 64 <= shiftCount ) {
 | |
|         zSig1 = 0;
 | |
|         zSig0 = absA;
 | |
|         shiftCount -= 64;
 | |
|     }
 | |
|     else {
 | |
|         zSig1 = absA;
 | |
|         zSig0 = 0;
 | |
|     }
 | |
|     shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | |
|     return packFloat128( zSign, zExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit unsigned integer `a'
 | |
| | to the quadruple-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 uint64_to_float128(uint64_t a, float_status *status)
 | |
| {
 | |
|     if (a == 0) {
 | |
|         return float128_zero;
 | |
|     }
 | |
|     return normalizeRoundAndPackFloat128(0, 0x406E, 0, a, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the extended double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 float32_to_floatx80(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint32_t aSig;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if (aSig) {
 | |
|             return commonNaNToFloatx80(float32ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloatx80(aSign,
 | |
|                             floatx80_infinity_high,
 | |
|                             floatx80_infinity_low);
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     aSig |= 0x00800000;
 | |
|     return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the double-precision floating-point format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float32_to_float128(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint32_t aSig;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if (aSig) {
 | |
|             return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloat128( aSign, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|         --aExp;
 | |
|     }
 | |
|     return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the remainder of the single-precision floating-point value `a'
 | |
| | with respect to the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_rem(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int aExp, bExp, expDiff;
 | |
|     uint32_t aSig, bSig;
 | |
|     uint32_t q;
 | |
|     uint64_t aSig64, bSig64, q64;
 | |
|     uint32_t alternateASig;
 | |
|     int32_t sigMean;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSig = extractFloat32Frac( b );
 | |
|     bExp = extractFloat32Exp( b );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 | |
|             return propagateFloat32NaN(a, b, status);
 | |
|         }
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float32_default_nan(status);
 | |
|     }
 | |
|     if ( bExp == 0xFF ) {
 | |
|         if (bSig) {
 | |
|             return propagateFloat32NaN(a, b, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return float32_default_nan(status);
 | |
|         }
 | |
|         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return a;
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig |= 0x00800000;
 | |
|     bSig |= 0x00800000;
 | |
|     if ( expDiff < 32 ) {
 | |
|         aSig <<= 8;
 | |
|         bSig <<= 8;
 | |
|         if ( expDiff < 0 ) {
 | |
|             if ( expDiff < -1 ) return a;
 | |
|             aSig >>= 1;
 | |
|         }
 | |
|         q = ( bSig <= aSig );
 | |
|         if ( q ) aSig -= bSig;
 | |
|         if ( 0 < expDiff ) {
 | |
|             q = ( ( (uint64_t) aSig )<<32 ) / bSig;
 | |
|             q >>= 32 - expDiff;
 | |
|             bSig >>= 2;
 | |
|             aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
 | |
|         }
 | |
|         else {
 | |
|             aSig >>= 2;
 | |
|             bSig >>= 2;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         if ( bSig <= aSig ) aSig -= bSig;
 | |
|         aSig64 = ( (uint64_t) aSig )<<40;
 | |
|         bSig64 = ( (uint64_t) bSig )<<40;
 | |
|         expDiff -= 64;
 | |
|         while ( 0 < expDiff ) {
 | |
|             q64 = estimateDiv128To64( aSig64, 0, bSig64 );
 | |
|             q64 = ( 2 < q64 ) ? q64 - 2 : 0;
 | |
|             aSig64 = - ( ( bSig * q64 )<<38 );
 | |
|             expDiff -= 62;
 | |
|         }
 | |
|         expDiff += 64;
 | |
|         q64 = estimateDiv128To64( aSig64, 0, bSig64 );
 | |
|         q64 = ( 2 < q64 ) ? q64 - 2 : 0;
 | |
|         q = q64>>( 64 - expDiff );
 | |
|         bSig <<= 6;
 | |
|         aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
 | |
|     }
 | |
|     do {
 | |
|         alternateASig = aSig;
 | |
|         ++q;
 | |
|         aSig -= bSig;
 | |
|     } while ( 0 <= (int32_t) aSig );
 | |
|     sigMean = aSig + alternateASig;
 | |
|     if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
 | |
|         aSig = alternateASig;
 | |
|     }
 | |
|     zSign = ( (int32_t) aSig < 0 );
 | |
|     if ( zSign ) aSig = - aSig;
 | |
|     return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the binary exponential of the single-precision floating-point value
 | |
| | `a'. The operation is performed according to the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| |
 | |
| | Uses the following identities:
 | |
| |
 | |
| | 1. -------------------------------------------------------------------------
 | |
| |      x    x*ln(2)
 | |
| |     2  = e
 | |
| |
 | |
| | 2. -------------------------------------------------------------------------
 | |
| |                      2     3     4     5           n
 | |
| |      x        x     x     x     x     x           x
 | |
| |     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
 | |
| |               1!    2!    3!    4!    5!          n!
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static const float64 float32_exp2_coefficients[15] =
 | |
| {
 | |
|     const_float64( 0x3ff0000000000000ll ), /*  1 */
 | |
|     const_float64( 0x3fe0000000000000ll ), /*  2 */
 | |
|     const_float64( 0x3fc5555555555555ll ), /*  3 */
 | |
|     const_float64( 0x3fa5555555555555ll ), /*  4 */
 | |
|     const_float64( 0x3f81111111111111ll ), /*  5 */
 | |
|     const_float64( 0x3f56c16c16c16c17ll ), /*  6 */
 | |
|     const_float64( 0x3f2a01a01a01a01all ), /*  7 */
 | |
|     const_float64( 0x3efa01a01a01a01all ), /*  8 */
 | |
|     const_float64( 0x3ec71de3a556c734ll ), /*  9 */
 | |
|     const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
 | |
|     const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
 | |
|     const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
 | |
|     const_float64( 0x3de6124613a86d09ll ), /* 13 */
 | |
|     const_float64( 0x3da93974a8c07c9dll ), /* 14 */
 | |
|     const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
 | |
| };
 | |
| 
 | |
| float32 float32_exp2(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint32_t aSig;
 | |
|     float64 r, x, xn;
 | |
|     int i;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
| 
 | |
|     if ( aExp == 0xFF) {
 | |
|         if (aSig) {
 | |
|             return propagateFloat32NaN(a, float32_zero, status);
 | |
|         }
 | |
|         return (aSign) ? float32_zero : a;
 | |
|     }
 | |
|     if (aExp == 0) {
 | |
|         if (aSig == 0) return float32_one;
 | |
|     }
 | |
| 
 | |
|     float_raise(float_flag_inexact, status);
 | |
| 
 | |
|     /* ******************************* */
 | |
|     /* using float64 for approximation */
 | |
|     /* ******************************* */
 | |
|     x = float32_to_float64(a, status);
 | |
|     x = float64_mul(x, float64_ln2, status);
 | |
| 
 | |
|     xn = x;
 | |
|     r = float64_one;
 | |
|     for (i = 0 ; i < 15 ; i++) {
 | |
|         float64 f;
 | |
| 
 | |
|         f = float64_mul(xn, float32_exp2_coefficients[i], status);
 | |
|         r = float64_add(r, f, status);
 | |
| 
 | |
|         xn = float64_mul(xn, x, status);
 | |
|     }
 | |
| 
 | |
|     return float64_to_float32(r, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the binary log of the single-precision floating-point value `a'.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float32 float32_log2(float32 a, float_status *status)
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int aExp;
 | |
|     uint32_t aSig, zSig, i;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
| 
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float32_default_nan(status);
 | |
|     }
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if (aSig) {
 | |
|             return propagateFloat32NaN(a, float32_zero, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
| 
 | |
|     aExp -= 0x7F;
 | |
|     aSig |= 0x00800000;
 | |
|     zSign = aExp < 0;
 | |
|     zSig = aExp << 23;
 | |
| 
 | |
|     for (i = 1 << 22; i > 0; i >>= 1) {
 | |
|         aSig = ( (uint64_t)aSig * aSig ) >> 23;
 | |
|         if ( aSig & 0x01000000 ) {
 | |
|             aSig >>= 1;
 | |
|             zSig |= i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ( zSign )
 | |
|         zSig = -zSig;
 | |
| 
 | |
|     return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is equal to
 | |
| | the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_eq(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     uint32_t av, bv;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
|     return ( av == bv ) || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is less than
 | |
| | or equal to the corresponding value `b', and 0 otherwise.  The invalid
 | |
| | exception is raised if either operand is a NaN.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_le(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     uint32_t av, bv;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
|     if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
 | |
|     return ( av == bv ) || ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  The comparison is performed according
 | |
| | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_lt(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     uint32_t av, bv;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
|     if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
 | |
|     return ( av != bv ) && ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point values `a' and `b' cannot
 | |
| | be compared, and 0 otherwise.  The invalid exception is raised if either
 | |
| | operand is a NaN.  The comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_unordered(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is equal to
 | |
| | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.  The comparison is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_eq_quiet(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         if (float32_is_signaling_nan(a, status)
 | |
|          || float32_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     return ( float32_val(a) == float32_val(b) ) ||
 | |
|             ( (uint32_t) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is less than or
 | |
| | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | |
| | cause an exception.  Otherwise, the comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_le_quiet(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     uint32_t av, bv;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         if (float32_is_signaling_nan(a, status)
 | |
|          || float32_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
|     if ( aSign != bSign ) return aSign || ( (uint32_t) ( ( av | bv )<<1 ) == 0 );
 | |
|     return ( av == bv ) || ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_lt_quiet(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     uint32_t av, bv;
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         if (float32_is_signaling_nan(a, status)
 | |
|          || float32_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
|     if ( aSign != bSign ) return aSign && ( (uint32_t) ( ( av | bv )<<1 ) != 0 );
 | |
|     return ( av != bv ) && ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point values `a' and `b' cannot
 | |
| | be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
 | |
| | comparison is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_unordered_quiet(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     a = float32_squash_input_denormal(a, status);
 | |
|     b = float32_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         if (float32_is_signaling_nan(a, status)
 | |
|          || float32_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | If `a' is denormal and we are in flush-to-zero mode then set the
 | |
| | input-denormal exception and return zero. Otherwise just return the value.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float16 float16_squash_input_denormal(float16 a, float_status *status)
 | |
| {
 | |
|     if (status->flush_inputs_to_zero) {
 | |
|         if (extractFloat16Exp(a) == 0 && extractFloat16Frac(a) != 0) {
 | |
|             float_raise(float_flag_input_denormal, status);
 | |
|             return make_float16(float16_val(a) & 0x8000);
 | |
|         }
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the extended double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 float64_to_floatx80(float64 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint64_t aSig;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if (aSig) {
 | |
|             return commonNaNToFloatx80(float64ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloatx80(aSign,
 | |
|                             floatx80_infinity_high,
 | |
|                             floatx80_infinity_low);
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     return
 | |
|         packFloatx80(
 | |
|             aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the quadruple-precision floating-point format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float64_to_float128(float64 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint64_t aSig, zSig0, zSig1;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if (aSig) {
 | |
|             return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloat128( aSign, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|         --aExp;
 | |
|     }
 | |
|     shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
 | |
|     return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the remainder of the double-precision floating-point value `a'
 | |
| | with respect to the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_rem(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int aExp, bExp, expDiff;
 | |
|     uint64_t aSig, bSig;
 | |
|     uint64_t q, alternateASig;
 | |
|     int64_t sigMean;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSig = extractFloat64Frac( b );
 | |
|     bExp = extractFloat64Exp( b );
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
 | |
|             return propagateFloat64NaN(a, b, status);
 | |
|         }
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float64_default_nan(status);
 | |
|     }
 | |
|     if ( bExp == 0x7FF ) {
 | |
|         if (bSig) {
 | |
|             return propagateFloat64NaN(a, b, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return float64_default_nan(status);
 | |
|         }
 | |
|         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return a;
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
 | |
|     bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 | |
|     if ( expDiff < 0 ) {
 | |
|         if ( expDiff < -1 ) return a;
 | |
|         aSig >>= 1;
 | |
|     }
 | |
|     q = ( bSig <= aSig );
 | |
|     if ( q ) aSig -= bSig;
 | |
|     expDiff -= 64;
 | |
|     while ( 0 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig, 0, bSig );
 | |
|         q = ( 2 < q ) ? q - 2 : 0;
 | |
|         aSig = - ( ( bSig>>2 ) * q );
 | |
|         expDiff -= 62;
 | |
|     }
 | |
|     expDiff += 64;
 | |
|     if ( 0 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig, 0, bSig );
 | |
|         q = ( 2 < q ) ? q - 2 : 0;
 | |
|         q >>= 64 - expDiff;
 | |
|         bSig >>= 2;
 | |
|         aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
 | |
|     }
 | |
|     else {
 | |
|         aSig >>= 2;
 | |
|         bSig >>= 2;
 | |
|     }
 | |
|     do {
 | |
|         alternateASig = aSig;
 | |
|         ++q;
 | |
|         aSig -= bSig;
 | |
|     } while ( 0 <= (int64_t) aSig );
 | |
|     sigMean = aSig + alternateASig;
 | |
|     if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
 | |
|         aSig = alternateASig;
 | |
|     }
 | |
|     zSign = ( (int64_t) aSig < 0 );
 | |
|     if ( zSign ) aSig = - aSig;
 | |
|     return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the binary log of the double-precision floating-point value `a'.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float64 float64_log2(float64 a, float_status *status)
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int aExp;
 | |
|     uint64_t aSig, aSig0, aSig1, zSig, i;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
| 
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float64_default_nan(status);
 | |
|     }
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if (aSig) {
 | |
|             return propagateFloat64NaN(a, float64_zero, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
| 
 | |
|     aExp -= 0x3FF;
 | |
|     aSig |= LIT64( 0x0010000000000000 );
 | |
|     zSign = aExp < 0;
 | |
|     zSig = (uint64_t)aExp << 52;
 | |
|     for (i = 1LL << 51; i > 0; i >>= 1) {
 | |
|         mul64To128( aSig, aSig, &aSig0, &aSig1 );
 | |
|         aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
 | |
|         if ( aSig & LIT64( 0x0020000000000000 ) ) {
 | |
|             aSig >>= 1;
 | |
|             zSig |= i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ( zSign )
 | |
|         zSig = -zSig;
 | |
|     return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is equal to the
 | |
| | corresponding value `b', and 0 otherwise.  The invalid exception is raised
 | |
| | if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_eq(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     uint64_t av, bv;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is less than or
 | |
| | equal to the corresponding value `b', and 0 otherwise.  The invalid
 | |
| | exception is raised if either operand is a NaN.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_le(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     uint64_t av, bv;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
 | |
|     return ( av == bv ) || ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  The comparison is performed according
 | |
| | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_lt(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     uint64_t av, bv;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
 | |
|     return ( av != bv ) && ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point values `a' and `b' cannot
 | |
| | be compared, and 0 otherwise.  The invalid exception is raised if either
 | |
| | operand is a NaN.  The comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_unordered(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is equal to the
 | |
| | corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.The comparison is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_eq_quiet(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     uint64_t av, bv;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         if (float64_is_signaling_nan(a, status)
 | |
|          || float64_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     return ( av == bv ) || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is less than or
 | |
| | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | |
| | cause an exception.  Otherwise, the comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_le_quiet(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     uint64_t av, bv;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         if (float64_is_signaling_nan(a, status)
 | |
|          || float64_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     if ( aSign != bSign ) return aSign || ( (uint64_t) ( ( av | bv )<<1 ) == 0 );
 | |
|     return ( av == bv ) || ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_lt_quiet(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     uint64_t av, bv;
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         if (float64_is_signaling_nan(a, status)
 | |
|          || float64_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     if ( aSign != bSign ) return aSign && ( (uint64_t) ( ( av | bv )<<1 ) != 0 );
 | |
|     return ( av != bv ) && ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point values `a' and `b' cannot
 | |
| | be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
 | |
| | comparison is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_unordered_quiet(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     a = float64_squash_input_denormal(a, status);
 | |
|     b = float64_squash_input_denormal(b, status);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         if (float64_is_signaling_nan(a, status)
 | |
|          || float64_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the 32-bit two's complement integer format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic---which means in particular that the conversion
 | |
| | is rounded according to the current rounding mode.  If `a' is a NaN, the
 | |
| | largest positive integer is returned.  Otherwise, if the conversion
 | |
| | overflows, the largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32_t floatx80_to_int32(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, shiftCount;
 | |
|     uint64_t aSig;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1 << 31;
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
 | |
|     shiftCount = 0x4037 - aExp;
 | |
|     if ( shiftCount <= 0 ) shiftCount = 1;
 | |
|     shift64RightJamming( aSig, shiftCount, &aSig );
 | |
|     return roundAndPackInt32(aSign, aSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the 32-bit two's complement integer format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic, except that the conversion is always rounded
 | |
| | toward zero.  If `a' is a NaN, the largest positive integer is returned.
 | |
| | Otherwise, if the conversion overflows, the largest integer with the same
 | |
| | sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, shiftCount;
 | |
|     uint64_t aSig, savedASig;
 | |
|     int32_t z;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1 << 31;
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( 0x401E < aExp ) {
 | |
|         if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
 | |
|         goto invalid;
 | |
|     }
 | |
|     else if ( aExp < 0x3FFF ) {
 | |
|         if (aExp || aSig) {
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     shiftCount = 0x403E - aExp;
 | |
|     savedASig = aSig;
 | |
|     aSig >>= shiftCount;
 | |
|     z = aSig;
 | |
|     if ( aSign ) z = - z;
 | |
|     if ( ( z < 0 ) ^ aSign ) {
 | |
|  invalid:
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
 | |
|     }
 | |
|     if ( ( aSig<<shiftCount ) != savedASig ) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the 64-bit two's complement integer format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic---which means in particular that the conversion
 | |
| | is rounded according to the current rounding mode.  If `a' is a NaN,
 | |
| | the largest positive integer is returned.  Otherwise, if the conversion
 | |
| | overflows, the largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64_t floatx80_to_int64(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, shiftCount;
 | |
|     uint64_t aSig, aSigExtra;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1ULL << 63;
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     shiftCount = 0x403E - aExp;
 | |
|     if ( shiftCount <= 0 ) {
 | |
|         if ( shiftCount ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             if (!aSign || floatx80_is_any_nan(a)) {
 | |
|                 return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|             }
 | |
|             return (int64_t) LIT64( 0x8000000000000000 );
 | |
|         }
 | |
|         aSigExtra = 0;
 | |
|     }
 | |
|     else {
 | |
|         shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
 | |
|     }
 | |
|     return roundAndPackInt64(aSign, aSig, aSigExtra, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the 64-bit two's complement integer format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic, except that the conversion is always rounded
 | |
| | toward zero.  If `a' is a NaN, the largest positive integer is returned.
 | |
| | Otherwise, if the conversion overflows, the largest integer with the same
 | |
| | sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, shiftCount;
 | |
|     uint64_t aSig;
 | |
|     int64_t z;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1ULL << 63;
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     shiftCount = aExp - 0x403E;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|         if ( ( a.high != 0xC03E ) || aSig ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
 | |
|                 return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|             }
 | |
|         }
 | |
|         return (int64_t) LIT64( 0x8000000000000000 );
 | |
|     }
 | |
|     else if ( aExp < 0x3FFF ) {
 | |
|         if (aExp | aSig) {
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     z = aSig>>( - shiftCount );
 | |
|     if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     if ( aSign ) z = - z;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the single-precision floating-point format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 floatx80_to_float32(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t aSig;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float32_default_nan(status);
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( (uint64_t) ( aSig<<1 ) ) {
 | |
|             return commonNaNToFloat32(floatx80ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloat32( aSign, 0xFF, 0 );
 | |
|     }
 | |
|     shift64RightJamming( aSig, 33, &aSig );
 | |
|     if ( aExp || aSig ) aExp -= 0x3F81;
 | |
|     return roundAndPackFloat32(aSign, aExp, aSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the double-precision floating-point format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 floatx80_to_float64(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t aSig, zSig;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float64_default_nan(status);
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( (uint64_t) ( aSig<<1 ) ) {
 | |
|             return commonNaNToFloat64(floatx80ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloat64( aSign, 0x7FF, 0 );
 | |
|     }
 | |
|     shift64RightJamming( aSig, 1, &zSig );
 | |
|     if ( aExp || aSig ) aExp -= 0x3C01;
 | |
|     return roundAndPackFloat64(aSign, aExp, zSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the quadruple-precision floating-point format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 floatx80_to_float128(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     uint64_t aSig, zSig0, zSig1;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float128_default_nan(status);
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
 | |
|         return commonNaNToFloat128(floatx80ToCommonNaN(a, status), status);
 | |
|     }
 | |
|     shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
 | |
|     return packFloat128( aSign, aExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Rounds the extended double-precision floating-point value `a'
 | |
| | to the precision provided by floatx80_rounding_precision and returns the
 | |
| | result as an extended double-precision floating-point value.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_round(floatx80 a, float_status *status)
 | |
| {
 | |
|     return roundAndPackFloatx80(status->floatx80_rounding_precision,
 | |
|                                 extractFloatx80Sign(a),
 | |
|                                 extractFloatx80Exp(a),
 | |
|                                 extractFloatx80Frac(a), 0, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Rounds the extended double-precision floating-point value `a' to an integer,
 | |
| | and returns the result as an extended quadruple-precision floating-point
 | |
| | value.  The operation is performed according to the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t lastBitMask, roundBitsMask;
 | |
|     floatx80 z;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     if ( 0x403E <= aExp ) {
 | |
|         if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
 | |
|             return propagateFloatx80NaN(a, a, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( aExp < 0x3FFF ) {
 | |
|         if (    ( aExp == 0 )
 | |
|              && ( (uint64_t) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
 | |
|             return a;
 | |
|         }
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|         aSign = extractFloatx80Sign( a );
 | |
|         switch (status->float_rounding_mode) {
 | |
|          case float_round_nearest_even:
 | |
|             if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
 | |
|                ) {
 | |
|                 return
 | |
|                     packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
 | |
|             }
 | |
|             break;
 | |
|         case float_round_ties_away:
 | |
|             if (aExp == 0x3FFE) {
 | |
|                 return packFloatx80(aSign, 0x3FFF, LIT64(0x8000000000000000));
 | |
|             }
 | |
|             break;
 | |
|          case float_round_down:
 | |
|             return
 | |
|                   aSign ?
 | |
|                       packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
 | |
|                 : packFloatx80( 0, 0, 0 );
 | |
|          case float_round_up:
 | |
|             return
 | |
|                   aSign ? packFloatx80( 1, 0, 0 )
 | |
|                 : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
 | |
|         }
 | |
|         return packFloatx80( aSign, 0, 0 );
 | |
|     }
 | |
|     lastBitMask = 1;
 | |
|     lastBitMask <<= 0x403E - aExp;
 | |
|     roundBitsMask = lastBitMask - 1;
 | |
|     z = a;
 | |
|     switch (status->float_rounding_mode) {
 | |
|     case float_round_nearest_even:
 | |
|         z.low += lastBitMask>>1;
 | |
|         if ((z.low & roundBitsMask) == 0) {
 | |
|             z.low &= ~lastBitMask;
 | |
|         }
 | |
|         break;
 | |
|     case float_round_ties_away:
 | |
|         z.low += lastBitMask >> 1;
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         if (!extractFloatx80Sign(z)) {
 | |
|             z.low += roundBitsMask;
 | |
|         }
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         if (extractFloatx80Sign(z)) {
 | |
|             z.low += roundBitsMask;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
|     z.low &= ~ roundBitsMask;
 | |
|     if ( z.low == 0 ) {
 | |
|         ++z.high;
 | |
|         z.low = LIT64( 0x8000000000000000 );
 | |
|     }
 | |
|     if (z.low != a.low) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the absolute values of the extended double-
 | |
| | precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
 | |
| | negated before being returned.  `zSign' is ignored if the result is a NaN.
 | |
| | The addition is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
 | |
|                                 float_status *status)
 | |
| {
 | |
|     int32_t aExp, bExp, zExp;
 | |
|     uint64_t aSig, bSig, zSig0, zSig1;
 | |
|     int32_t expDiff;
 | |
| 
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     bSig = extractFloatx80Frac( b );
 | |
|     bExp = extractFloatx80Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     if ( 0 < expDiff ) {
 | |
|         if ( aExp == 0x7FFF ) {
 | |
|             if ((uint64_t)(aSig << 1)) {
 | |
|                 return propagateFloatx80NaN(a, b, status);
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         if ( bExp == 0 ) --expDiff;
 | |
|         shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 | |
|         zExp = aExp;
 | |
|     }
 | |
|     else if ( expDiff < 0 ) {
 | |
|         if ( bExp == 0x7FFF ) {
 | |
|             if ((uint64_t)(bSig << 1)) {
 | |
|                 return propagateFloatx80NaN(a, b, status);
 | |
|             }
 | |
|             return packFloatx80(zSign,
 | |
|                                 floatx80_infinity_high,
 | |
|                                 floatx80_infinity_low);
 | |
|         }
 | |
|         if ( aExp == 0 ) ++expDiff;
 | |
|         shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 | |
|         zExp = bExp;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp == 0x7FFF ) {
 | |
|             if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
 | |
|                 return propagateFloatx80NaN(a, b, status);
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         zSig1 = 0;
 | |
|         zSig0 = aSig + bSig;
 | |
|         if ( aExp == 0 ) {
 | |
|             normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
 | |
|             goto roundAndPack;
 | |
|         }
 | |
|         zExp = aExp;
 | |
|         goto shiftRight1;
 | |
|     }
 | |
|     zSig0 = aSig + bSig;
 | |
|     if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
 | |
|  shiftRight1:
 | |
|     shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
 | |
|     zSig0 |= LIT64( 0x8000000000000000 );
 | |
|     ++zExp;
 | |
|  roundAndPack:
 | |
|     return roundAndPackFloatx80(status->floatx80_rounding_precision,
 | |
|                                 zSign, zExp, zSig0, zSig1, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the absolute values of the extended
 | |
| | double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | |
| | difference is negated before being returned.  `zSign' is ignored if the
 | |
| | result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, flag zSign,
 | |
|                                 float_status *status)
 | |
| {
 | |
|     int32_t aExp, bExp, zExp;
 | |
|     uint64_t aSig, bSig, zSig0, zSig1;
 | |
|     int32_t expDiff;
 | |
| 
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     bSig = extractFloatx80Frac( b );
 | |
|     bExp = extractFloatx80Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     if ( 0 < expDiff ) goto aExpBigger;
 | |
|     if ( expDiff < 0 ) goto bExpBigger;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         aExp = 1;
 | |
|         bExp = 1;
 | |
|     }
 | |
|     zSig1 = 0;
 | |
|     if ( bSig < aSig ) goto aBigger;
 | |
|     if ( aSig < bSig ) goto bBigger;
 | |
|     return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
 | |
|  bExpBigger:
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if ((uint64_t)(bSig << 1)) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         return packFloatx80(zSign ^ 1, floatx80_infinity_high,
 | |
|                             floatx80_infinity_low);
 | |
|     }
 | |
|     if ( aExp == 0 ) ++expDiff;
 | |
|     shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 | |
|  bBigger:
 | |
|     sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
 | |
|     zExp = bExp;
 | |
|     zSign ^= 1;
 | |
|     goto normalizeRoundAndPack;
 | |
|  aExpBigger:
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ((uint64_t)(aSig << 1)) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) --expDiff;
 | |
|     shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 | |
|  aBigger:
 | |
|     sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
 | |
|     zExp = aExp;
 | |
|  normalizeRoundAndPack:
 | |
|     return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
 | |
|                                          zSign, zExp, zSig0, zSig1, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the extended double-precision floating-point
 | |
| | values `a' and `b'.  The operation is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return addFloatx80Sigs(a, b, aSign, status);
 | |
|     }
 | |
|     else {
 | |
|         return subFloatx80Sigs(a, b, aSign, status);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the extended double-precision floating-
 | |
| | point values `a' and `b'.  The operation is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return subFloatx80Sigs(a, b, aSign, status);
 | |
|     }
 | |
|     else {
 | |
|         return addFloatx80Sigs(a, b, aSign, status);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of multiplying the extended double-precision floating-
 | |
| | point values `a' and `b'.  The operation is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int32_t aExp, bExp, zExp;
 | |
|     uint64_t aSig, bSig, zSig0, zSig1;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSig = extractFloatx80Frac( b );
 | |
|     bExp = extractFloatx80Exp( b );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (    (uint64_t) ( aSig<<1 )
 | |
|              || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         if ( ( bExp | bSig ) == 0 ) goto invalid;
 | |
|         return packFloatx80(zSign, floatx80_infinity_high,
 | |
|                                    floatx80_infinity_low);
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if ((uint64_t)(bSig << 1)) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         if ( ( aExp | aSig ) == 0 ) {
 | |
|  invalid:
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return floatx80_default_nan(status);
 | |
|         }
 | |
|         return packFloatx80(zSign, floatx80_infinity_high,
 | |
|                                    floatx80_infinity_low);
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | |
|         normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | |
|         normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     zExp = aExp + bExp - 0x3FFE;
 | |
|     mul64To128( aSig, bSig, &zSig0, &zSig1 );
 | |
|     if ( 0 < (int64_t) zSig0 ) {
 | |
|         shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
 | |
|         --zExp;
 | |
|     }
 | |
|     return roundAndPackFloatx80(status->floatx80_rounding_precision,
 | |
|                                 zSign, zExp, zSig0, zSig1, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of dividing the extended double-precision floating-point
 | |
| | value `a' by the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int32_t aExp, bExp, zExp;
 | |
|     uint64_t aSig, bSig, zSig0, zSig1;
 | |
|     uint64_t rem0, rem1, rem2, term0, term1, term2;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSig = extractFloatx80Frac( b );
 | |
|     bExp = extractFloatx80Exp( b );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ((uint64_t)(aSig << 1)) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         if ( bExp == 0x7FFF ) {
 | |
|             if ((uint64_t)(bSig << 1)) {
 | |
|                 return propagateFloatx80NaN(a, b, status);
 | |
|             }
 | |
|             goto invalid;
 | |
|         }
 | |
|         return packFloatx80(zSign, floatx80_infinity_high,
 | |
|                                    floatx80_infinity_low);
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if ((uint64_t)(bSig << 1)) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         return packFloatx80( zSign, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|             if ( ( aExp | aSig ) == 0 ) {
 | |
|  invalid:
 | |
|                 float_raise(float_flag_invalid, status);
 | |
|                 return floatx80_default_nan(status);
 | |
|             }
 | |
|             float_raise(float_flag_divbyzero, status);
 | |
|             return packFloatx80(zSign, floatx80_infinity_high,
 | |
|                                        floatx80_infinity_low);
 | |
|         }
 | |
|         normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | |
|         normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     zExp = aExp - bExp + 0x3FFE;
 | |
|     rem1 = 0;
 | |
|     if ( bSig <= aSig ) {
 | |
|         shift128Right( aSig, 0, 1, &aSig, &rem1 );
 | |
|         ++zExp;
 | |
|     }
 | |
|     zSig0 = estimateDiv128To64( aSig, rem1, bSig );
 | |
|     mul64To128( bSig, zSig0, &term0, &term1 );
 | |
|     sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
 | |
|     while ( (int64_t) rem0 < 0 ) {
 | |
|         --zSig0;
 | |
|         add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
 | |
|     }
 | |
|     zSig1 = estimateDiv128To64( rem1, 0, bSig );
 | |
|     if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
 | |
|         mul64To128( bSig, zSig1, &term1, &term2 );
 | |
|         sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | |
|         while ( (int64_t) rem1 < 0 ) {
 | |
|             --zSig1;
 | |
|             add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
 | |
|         }
 | |
|         zSig1 |= ( ( rem1 | rem2 ) != 0 );
 | |
|     }
 | |
|     return roundAndPackFloatx80(status->floatx80_rounding_precision,
 | |
|                                 zSign, zExp, zSig0, zSig1, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the remainder of the extended double-precision floating-point value
 | |
| | `a' with respect to the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int32_t aExp, bExp, expDiff;
 | |
|     uint64_t aSig0, aSig1, bSig;
 | |
|     uint64_t q, term0, term1, alternateASig0, alternateASig1;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     aSig0 = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSig = extractFloatx80Frac( b );
 | |
|     bExp = extractFloatx80Exp( b );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (    (uint64_t) ( aSig0<<1 )
 | |
|              || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         goto invalid;
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if ((uint64_t)(bSig << 1)) {
 | |
|             return propagateFloatx80NaN(a, b, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|  invalid:
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return floatx80_default_nan(status);
 | |
|         }
 | |
|         normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( (uint64_t) ( aSig0<<1 ) == 0 ) return a;
 | |
|         normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
 | |
|     }
 | |
|     bSig |= LIT64( 0x8000000000000000 );
 | |
|     zSign = aSign;
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig1 = 0;
 | |
|     if ( expDiff < 0 ) {
 | |
|         if ( expDiff < -1 ) return a;
 | |
|         shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
 | |
|         expDiff = 0;
 | |
|     }
 | |
|     q = ( bSig <= aSig0 );
 | |
|     if ( q ) aSig0 -= bSig;
 | |
|     expDiff -= 64;
 | |
|     while ( 0 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig0, aSig1, bSig );
 | |
|         q = ( 2 < q ) ? q - 2 : 0;
 | |
|         mul64To128( bSig, q, &term0, &term1 );
 | |
|         sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | |
|         shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
 | |
|         expDiff -= 62;
 | |
|     }
 | |
|     expDiff += 64;
 | |
|     if ( 0 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig0, aSig1, bSig );
 | |
|         q = ( 2 < q ) ? q - 2 : 0;
 | |
|         q >>= 64 - expDiff;
 | |
|         mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
 | |
|         sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | |
|         shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
 | |
|         while ( le128( term0, term1, aSig0, aSig1 ) ) {
 | |
|             ++q;
 | |
|             sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         term1 = 0;
 | |
|         term0 = bSig;
 | |
|     }
 | |
|     sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
 | |
|     if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
 | |
|          || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
 | |
|               && ( q & 1 ) )
 | |
|        ) {
 | |
|         aSig0 = alternateASig0;
 | |
|         aSig1 = alternateASig1;
 | |
|         zSign = ! zSign;
 | |
|     }
 | |
|     return
 | |
|         normalizeRoundAndPackFloatx80(
 | |
|             80, zSign, bExp + expDiff, aSig0, aSig1, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the square root of the extended double-precision floating-point
 | |
| | value `a'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_sqrt(floatx80 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, zExp;
 | |
|     uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
 | |
|     uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     aSig0 = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ((uint64_t)(aSig0 << 1)) {
 | |
|             return propagateFloatx80NaN(a, a, status);
 | |
|         }
 | |
|         if ( ! aSign ) return a;
 | |
|         goto invalid;
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         if ( ( aExp | aSig0 ) == 0 ) return a;
 | |
|  invalid:
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
 | |
|         normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
 | |
|     }
 | |
|     zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
 | |
|     zSig0 = estimateSqrt32( aExp, aSig0>>32 );
 | |
|     shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
 | |
|     zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
 | |
|     doubleZSig0 = zSig0<<1;
 | |
|     mul64To128( zSig0, zSig0, &term0, &term1 );
 | |
|     sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
 | |
|     while ( (int64_t) rem0 < 0 ) {
 | |
|         --zSig0;
 | |
|         doubleZSig0 -= 2;
 | |
|         add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
 | |
|     }
 | |
|     zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
 | |
|     if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
 | |
|         if ( zSig1 == 0 ) zSig1 = 1;
 | |
|         mul64To128( doubleZSig0, zSig1, &term1, &term2 );
 | |
|         sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | |
|         mul64To128( zSig1, zSig1, &term2, &term3 );
 | |
|         sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         while ( (int64_t) rem1 < 0 ) {
 | |
|             --zSig1;
 | |
|             shortShift128Left( 0, zSig1, 1, &term2, &term3 );
 | |
|             term3 |= 1;
 | |
|             term2 |= doubleZSig0;
 | |
|             add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         }
 | |
|         zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | |
|     }
 | |
|     shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
 | |
|     zSig0 |= doubleZSig0;
 | |
|     return roundAndPackFloatx80(status->floatx80_rounding_precision,
 | |
|                                 0, zExp, zSig0, zSig1, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is equal
 | |
| | to the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_eq(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
 | |
|         || (extractFloatx80Exp(a) == 0x7FFF
 | |
|             && (uint64_t) (extractFloatx80Frac(a) << 1))
 | |
|         || (extractFloatx80Exp(b) == 0x7FFF
 | |
|             && (uint64_t) (extractFloatx80Frac(b) << 1))
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     return
 | |
|            ( a.low == b.low )
 | |
|         && (    ( a.high == b.high )
 | |
|              || (    ( a.low == 0 )
 | |
|                   && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
 | |
|            );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is
 | |
| | less than or equal to the corresponding value `b', and 0 otherwise.  The
 | |
| | invalid exception is raised if either operand is a NaN.  The comparison is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_le(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
 | |
|         || (extractFloatx80Exp(a) == 0x7FFF
 | |
|             && (uint64_t) (extractFloatx80Frac(a) << 1))
 | |
|         || (extractFloatx80Exp(b) == 0x7FFF
 | |
|             && (uint64_t) (extractFloatx80Frac(b) << 1))
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  == 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? le128( b.high, b.low, a.high, a.low )
 | |
|         : le128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is
 | |
| | less than the corresponding value `b', and 0 otherwise.  The invalid
 | |
| | exception is raised if either operand is a NaN.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_lt(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
 | |
|         || (extractFloatx80Exp(a) == 0x7FFF
 | |
|             && (uint64_t) (extractFloatx80Frac(a) << 1))
 | |
|         || (extractFloatx80Exp(b) == 0x7FFF
 | |
|             && (uint64_t) (extractFloatx80Frac(b) << 1))
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  != 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? lt128( b.high, b.low, a.high, a.low )
 | |
|         : lt128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point values `a' and `b'
 | |
| | cannot be compared, and 0 otherwise.  The invalid exception is raised if
 | |
| | either operand is a NaN.   The comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int floatx80_unordered(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)
 | |
|         || (extractFloatx80Exp(a) == 0x7FFF
 | |
|             && (uint64_t) (extractFloatx80Frac(a) << 1))
 | |
|         || (extractFloatx80Exp(b) == 0x7FFF
 | |
|             && (uint64_t) (extractFloatx80Frac(b) << 1))
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is
 | |
| | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | |
| | cause an exception.  The comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
|               && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
 | |
|          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
|               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
 | |
|        ) {
 | |
|         if (floatx80_is_signaling_nan(a, status)
 | |
|          || floatx80_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     return
 | |
|            ( a.low == b.low )
 | |
|         && (    ( a.high == b.high )
 | |
|              || (    ( a.low == 0 )
 | |
|                   && ( (uint16_t) ( ( a.high | b.high )<<1 ) == 0 ) )
 | |
|            );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is less
 | |
| | than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
 | |
| | do not cause an exception.  Otherwise, the comparison is performed according
 | |
| | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_le_quiet(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
|               && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
 | |
|          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
|               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
 | |
|        ) {
 | |
|         if (floatx80_is_signaling_nan(a, status)
 | |
|          || floatx80_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             || (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  == 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? le128( b.high, b.low, a.high, a.low )
 | |
|         : le128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is less
 | |
| | than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
 | |
| | an exception.  Otherwise, the comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
|               && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
 | |
|          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
|               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
 | |
|        ) {
 | |
|         if (floatx80_is_signaling_nan(a, status)
 | |
|          || floatx80_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             && (    ( ( (uint16_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  != 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? lt128( b.high, b.low, a.high, a.low )
 | |
|         : lt128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point values `a' and `b'
 | |
| | cannot be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.
 | |
| | The comparison is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int floatx80_unordered_quiet(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1;
 | |
|     }
 | |
|     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
|               && (uint64_t) ( extractFloatx80Frac( a )<<1 ) )
 | |
|          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
|               && (uint64_t) ( extractFloatx80Frac( b )<<1 ) )
 | |
|        ) {
 | |
|         if (floatx80_is_signaling_nan(a, status)
 | |
|          || floatx80_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 32-bit two's complement integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32_t float128_to_int32(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, shiftCount;
 | |
|     uint64_t aSig0, aSig1;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
 | |
|     if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     aSig0 |= ( aSig1 != 0 );
 | |
|     shiftCount = 0x4028 - aExp;
 | |
|     if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
 | |
|     return roundAndPackInt32(aSign, aSig0, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 32-bit two's complement integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.  If
 | |
| | `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
 | |
| | conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, shiftCount;
 | |
|     uint64_t aSig0, aSig1, savedASig;
 | |
|     int32_t z;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     aSig0 |= ( aSig1 != 0 );
 | |
|     if ( 0x401E < aExp ) {
 | |
|         if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
 | |
|         goto invalid;
 | |
|     }
 | |
|     else if ( aExp < 0x3FFF ) {
 | |
|         if (aExp || aSig0) {
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     shiftCount = 0x402F - aExp;
 | |
|     savedASig = aSig0;
 | |
|     aSig0 >>= shiftCount;
 | |
|     z = aSig0;
 | |
|     if ( aSign ) z = - z;
 | |
|     if ( ( z < 0 ) ^ aSign ) {
 | |
|  invalid:
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
 | |
|     }
 | |
|     if ( ( aSig0<<shiftCount ) != savedASig ) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 64-bit two's complement integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64_t float128_to_int64(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, shiftCount;
 | |
|     uint64_t aSig0, aSig1;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     shiftCount = 0x402F - aExp;
 | |
|     if ( shiftCount <= 0 ) {
 | |
|         if ( 0x403E < aExp ) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             if (    ! aSign
 | |
|                  || (    ( aExp == 0x7FFF )
 | |
|                       && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
 | |
|                     )
 | |
|                ) {
 | |
|                 return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|             }
 | |
|             return (int64_t) LIT64( 0x8000000000000000 );
 | |
|         }
 | |
|         shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
 | |
|     }
 | |
|     else {
 | |
|         shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
 | |
|     }
 | |
|     return roundAndPackInt64(aSign, aSig0, aSig1, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 64-bit two's complement integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, shiftCount;
 | |
|     uint64_t aSig0, aSig1;
 | |
|     int64_t z;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     shiftCount = aExp - 0x402F;
 | |
|     if ( 0 < shiftCount ) {
 | |
|         if ( 0x403E <= aExp ) {
 | |
|             aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
 | |
|             if (    ( a.high == LIT64( 0xC03E000000000000 ) )
 | |
|                  && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
 | |
|                 if (aSig1) {
 | |
|                     status->float_exception_flags |= float_flag_inexact;
 | |
|                 }
 | |
|             }
 | |
|             else {
 | |
|                 float_raise(float_flag_invalid, status);
 | |
|                 if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
 | |
|                     return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|                 }
 | |
|             }
 | |
|             return (int64_t) LIT64( 0x8000000000000000 );
 | |
|         }
 | |
|         z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
 | |
|         if ( (uint64_t) ( aSig1<<shiftCount ) ) {
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp < 0x3FFF ) {
 | |
|             if ( aExp | aSig0 | aSig1 ) {
 | |
|                 status->float_exception_flags |= float_flag_inexact;
 | |
|             }
 | |
|             return 0;
 | |
|         }
 | |
|         z = aSig0>>( - shiftCount );
 | |
|         if (    aSig1
 | |
|              || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|         }
 | |
|     }
 | |
|     if ( aSign ) z = - z;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point value
 | |
| | `a' to the 64-bit unsigned integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  If the conversion overflows, the
 | |
| | largest unsigned integer is returned.  If 'a' is negative, the value is
 | |
| | rounded and zero is returned; negative values that do not round to zero
 | |
| | will raise the inexact exception.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| uint64_t float128_to_uint64(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int aExp;
 | |
|     int shiftCount;
 | |
|     uint64_t aSig0, aSig1;
 | |
| 
 | |
|     aSig0 = extractFloat128Frac0(a);
 | |
|     aSig1 = extractFloat128Frac1(a);
 | |
|     aExp = extractFloat128Exp(a);
 | |
|     aSign = extractFloat128Sign(a);
 | |
|     if (aSign && (aExp > 0x3FFE)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         if (float128_is_any_nan(a)) {
 | |
|             return LIT64(0xFFFFFFFFFFFFFFFF);
 | |
|         } else {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     if (aExp) {
 | |
|         aSig0 |= LIT64(0x0001000000000000);
 | |
|     }
 | |
|     shiftCount = 0x402F - aExp;
 | |
|     if (shiftCount <= 0) {
 | |
|         if (0x403E < aExp) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return LIT64(0xFFFFFFFFFFFFFFFF);
 | |
|         }
 | |
|         shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1);
 | |
|     } else {
 | |
|         shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1);
 | |
|     }
 | |
|     return roundAndPackUint64(aSign, aSig0, aSig1, status);
 | |
| }
 | |
| 
 | |
| uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status)
 | |
| {
 | |
|     uint64_t v;
 | |
|     signed char current_rounding_mode = status->float_rounding_mode;
 | |
| 
 | |
|     set_float_rounding_mode(float_round_to_zero, status);
 | |
|     v = float128_to_uint64(a, status);
 | |
|     set_float_rounding_mode(current_rounding_mode, status);
 | |
| 
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 32-bit unsigned integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise,
 | |
| | if the conversion overflows, the largest unsigned integer is returned.
 | |
| | If 'a' is negative, the value is rounded and zero is returned; negative
 | |
| | values that do not round to zero will raise the inexact exception.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status)
 | |
| {
 | |
|     uint64_t v;
 | |
|     uint32_t res;
 | |
|     int old_exc_flags = get_float_exception_flags(status);
 | |
| 
 | |
|     v = float128_to_uint64_round_to_zero(a, status);
 | |
|     if (v > 0xffffffff) {
 | |
|         res = 0xffffffff;
 | |
|     } else {
 | |
|         return v;
 | |
|     }
 | |
|     set_float_exception_flags(old_exc_flags, status);
 | |
|     float_raise(float_flag_invalid, status);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point value
 | |
| | `a' to the 32-bit unsigned integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  If the conversion overflows, the
 | |
| | largest unsigned integer is returned.  If 'a' is negative, the value is
 | |
| | rounded and zero is returned; negative values that do not round to zero
 | |
| | will raise the inexact exception.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| uint32_t float128_to_uint32(float128 a, float_status *status)
 | |
| {
 | |
|     uint64_t v;
 | |
|     uint32_t res;
 | |
|     int old_exc_flags = get_float_exception_flags(status);
 | |
| 
 | |
|     v = float128_to_uint64(a, status);
 | |
|     if (v > 0xffffffff) {
 | |
|         res = 0xffffffff;
 | |
|     } else {
 | |
|         return v;
 | |
|     }
 | |
|     set_float_exception_flags(old_exc_flags, status);
 | |
|     float_raise(float_flag_invalid, status);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the single-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float128_to_float32(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t aSig0, aSig1;
 | |
|     uint32_t zSig;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 ) {
 | |
|             return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloat32( aSign, 0xFF, 0 );
 | |
|     }
 | |
|     aSig0 |= ( aSig1 != 0 );
 | |
|     shift64RightJamming( aSig0, 18, &aSig0 );
 | |
|     zSig = aSig0;
 | |
|     if ( aExp || zSig ) {
 | |
|         zSig |= 0x40000000;
 | |
|         aExp -= 0x3F81;
 | |
|     }
 | |
|     return roundAndPackFloat32(aSign, aExp, zSig, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float128_to_float64(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t aSig0, aSig1;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 ) {
 | |
|             return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloat64( aSign, 0x7FF, 0 );
 | |
|     }
 | |
|     shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
 | |
|     aSig0 |= ( aSig1 != 0 );
 | |
|     if ( aExp || aSig0 ) {
 | |
|         aSig0 |= LIT64( 0x4000000000000000 );
 | |
|         aExp -= 0x3C01;
 | |
|     }
 | |
|     return roundAndPackFloat64(aSign, aExp, aSig0, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the extended double-precision floating-point format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 float128_to_floatx80(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t aSig0, aSig1;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 ) {
 | |
|             return commonNaNToFloatx80(float128ToCommonNaN(a, status), status);
 | |
|         }
 | |
|         return packFloatx80(aSign, floatx80_infinity_high,
 | |
|                                    floatx80_infinity_low);
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
 | |
|         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     else {
 | |
|         aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     }
 | |
|     shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
 | |
|     return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Rounds the quadruple-precision floating-point value `a' to an integer, and
 | |
| | returns the result as a quadruple-precision floating-point value.  The
 | |
| | operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_round_to_int(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t lastBitMask, roundBitsMask;
 | |
|     float128 z;
 | |
| 
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     if ( 0x402F <= aExp ) {
 | |
|         if ( 0x406F <= aExp ) {
 | |
|             if (    ( aExp == 0x7FFF )
 | |
|                  && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
 | |
|                ) {
 | |
|                 return propagateFloat128NaN(a, a, status);
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         lastBitMask = 1;
 | |
|         lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
 | |
|         roundBitsMask = lastBitMask - 1;
 | |
|         z = a;
 | |
|         switch (status->float_rounding_mode) {
 | |
|         case float_round_nearest_even:
 | |
|             if ( lastBitMask ) {
 | |
|                 add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
 | |
|                 if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
 | |
|             }
 | |
|             else {
 | |
|                 if ( (int64_t) z.low < 0 ) {
 | |
|                     ++z.high;
 | |
|                     if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case float_round_ties_away:
 | |
|             if (lastBitMask) {
 | |
|                 add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
 | |
|             } else {
 | |
|                 if ((int64_t) z.low < 0) {
 | |
|                     ++z.high;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case float_round_to_zero:
 | |
|             break;
 | |
|         case float_round_up:
 | |
|             if (!extractFloat128Sign(z)) {
 | |
|                 add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
 | |
|             }
 | |
|             break;
 | |
|         case float_round_down:
 | |
|             if (extractFloat128Sign(z)) {
 | |
|                 add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
 | |
|             }
 | |
|             break;
 | |
|         case float_round_to_odd:
 | |
|             /*
 | |
|              * Note that if lastBitMask == 0, the last bit is the lsb
 | |
|              * of high, and roundBitsMask == -1.
 | |
|              */
 | |
|             if ((lastBitMask ? z.low & lastBitMask : z.high & 1) == 0) {
 | |
|                 add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             abort();
 | |
|         }
 | |
|         z.low &= ~ roundBitsMask;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp < 0x3FFF ) {
 | |
|             if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
 | |
|             status->float_exception_flags |= float_flag_inexact;
 | |
|             aSign = extractFloat128Sign( a );
 | |
|             switch (status->float_rounding_mode) {
 | |
|             case float_round_nearest_even:
 | |
|                 if (    ( aExp == 0x3FFE )
 | |
|                      && (   extractFloat128Frac0( a )
 | |
|                           | extractFloat128Frac1( a ) )
 | |
|                    ) {
 | |
|                     return packFloat128( aSign, 0x3FFF, 0, 0 );
 | |
|                 }
 | |
|                 break;
 | |
|             case float_round_ties_away:
 | |
|                 if (aExp == 0x3FFE) {
 | |
|                     return packFloat128(aSign, 0x3FFF, 0, 0);
 | |
|                 }
 | |
|                 break;
 | |
|             case float_round_down:
 | |
|                 return
 | |
|                       aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
 | |
|                     : packFloat128( 0, 0, 0, 0 );
 | |
|             case float_round_up:
 | |
|                 return
 | |
|                       aSign ? packFloat128( 1, 0, 0, 0 )
 | |
|                     : packFloat128( 0, 0x3FFF, 0, 0 );
 | |
| 
 | |
|             case float_round_to_odd:
 | |
|                 return packFloat128(aSign, 0x3FFF, 0, 0);
 | |
|             }
 | |
|             return packFloat128( aSign, 0, 0, 0 );
 | |
|         }
 | |
|         lastBitMask = 1;
 | |
|         lastBitMask <<= 0x402F - aExp;
 | |
|         roundBitsMask = lastBitMask - 1;
 | |
|         z.low = 0;
 | |
|         z.high = a.high;
 | |
|         switch (status->float_rounding_mode) {
 | |
|         case float_round_nearest_even:
 | |
|             z.high += lastBitMask>>1;
 | |
|             if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
 | |
|                 z.high &= ~ lastBitMask;
 | |
|             }
 | |
|             break;
 | |
|         case float_round_ties_away:
 | |
|             z.high += lastBitMask>>1;
 | |
|             break;
 | |
|         case float_round_to_zero:
 | |
|             break;
 | |
|         case float_round_up:
 | |
|             if (!extractFloat128Sign(z)) {
 | |
|                 z.high |= ( a.low != 0 );
 | |
|                 z.high += roundBitsMask;
 | |
|             }
 | |
|             break;
 | |
|         case float_round_down:
 | |
|             if (extractFloat128Sign(z)) {
 | |
|                 z.high |= (a.low != 0);
 | |
|                 z.high += roundBitsMask;
 | |
|             }
 | |
|             break;
 | |
|         case float_round_to_odd:
 | |
|             if ((z.high & lastBitMask) == 0) {
 | |
|                 z.high |= (a.low != 0);
 | |
|                 z.high += roundBitsMask;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             abort();
 | |
|         }
 | |
|         z.high &= ~ roundBitsMask;
 | |
|     }
 | |
|     if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
 | |
|         status->float_exception_flags |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the absolute values of the quadruple-precision
 | |
| | floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
 | |
| | before being returned.  `zSign' is ignored if the result is a NaN.
 | |
| | The addition is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128 addFloat128Sigs(float128 a, float128 b, flag zSign,
 | |
|                                 float_status *status)
 | |
| {
 | |
|     int32_t aExp, bExp, zExp;
 | |
|     uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
 | |
|     int32_t expDiff;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     bSig1 = extractFloat128Frac1( b );
 | |
|     bSig0 = extractFloat128Frac0( b );
 | |
|     bExp = extractFloat128Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     if ( 0 < expDiff ) {
 | |
|         if ( aExp == 0x7FFF ) {
 | |
|             if (aSig0 | aSig1) {
 | |
|                 return propagateFloat128NaN(a, b, status);
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         if ( bExp == 0 ) {
 | |
|             --expDiff;
 | |
|         }
 | |
|         else {
 | |
|             bSig0 |= LIT64( 0x0001000000000000 );
 | |
|         }
 | |
|         shift128ExtraRightJamming(
 | |
|             bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
 | |
|         zExp = aExp;
 | |
|     }
 | |
|     else if ( expDiff < 0 ) {
 | |
|         if ( bExp == 0x7FFF ) {
 | |
|             if (bSig0 | bSig1) {
 | |
|                 return propagateFloat128NaN(a, b, status);
 | |
|             }
 | |
|             return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|         }
 | |
|         if ( aExp == 0 ) {
 | |
|             ++expDiff;
 | |
|         }
 | |
|         else {
 | |
|             aSig0 |= LIT64( 0x0001000000000000 );
 | |
|         }
 | |
|         shift128ExtraRightJamming(
 | |
|             aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
 | |
|         zExp = bExp;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp == 0x7FFF ) {
 | |
|             if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
 | |
|                 return propagateFloat128NaN(a, b, status);
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | |
|         if ( aExp == 0 ) {
 | |
|             if (status->flush_to_zero) {
 | |
|                 if (zSig0 | zSig1) {
 | |
|                     float_raise(float_flag_output_denormal, status);
 | |
|                 }
 | |
|                 return packFloat128(zSign, 0, 0, 0);
 | |
|             }
 | |
|             return packFloat128( zSign, 0, zSig0, zSig1 );
 | |
|         }
 | |
|         zSig2 = 0;
 | |
|         zSig0 |= LIT64( 0x0002000000000000 );
 | |
|         zExp = aExp;
 | |
|         goto shiftRight1;
 | |
|     }
 | |
|     aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | |
|     --zExp;
 | |
|     if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
 | |
|     ++zExp;
 | |
|  shiftRight1:
 | |
|     shift128ExtraRightJamming(
 | |
|         zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 | |
|  roundAndPack:
 | |
|     return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the absolute values of the quadruple-
 | |
| | precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | |
| | difference is negated before being returned.  `zSign' is ignored if the
 | |
| | result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128 subFloat128Sigs(float128 a, float128 b, flag zSign,
 | |
|                                 float_status *status)
 | |
| {
 | |
|     int32_t aExp, bExp, zExp;
 | |
|     uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
 | |
|     int32_t expDiff;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     bSig1 = extractFloat128Frac1( b );
 | |
|     bSig0 = extractFloat128Frac0( b );
 | |
|     bExp = extractFloat128Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
 | |
|     shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
 | |
|     if ( 0 < expDiff ) goto aExpBigger;
 | |
|     if ( expDiff < 0 ) goto bExpBigger;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float128_default_nan(status);
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         aExp = 1;
 | |
|         bExp = 1;
 | |
|     }
 | |
|     if ( bSig0 < aSig0 ) goto aBigger;
 | |
|     if ( aSig0 < bSig0 ) goto bBigger;
 | |
|     if ( bSig1 < aSig1 ) goto aBigger;
 | |
|     if ( aSig1 < bSig1 ) goto bBigger;
 | |
|     return packFloat128(status->float_rounding_mode == float_round_down,
 | |
|                         0, 0, 0);
 | |
|  bExpBigger:
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if (bSig0 | bSig1) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         ++expDiff;
 | |
|     }
 | |
|     else {
 | |
|         aSig0 |= LIT64( 0x4000000000000000 );
 | |
|     }
 | |
|     shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
 | |
|     bSig0 |= LIT64( 0x4000000000000000 );
 | |
|  bBigger:
 | |
|     sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
 | |
|     zExp = bExp;
 | |
|     zSign ^= 1;
 | |
|     goto normalizeRoundAndPack;
 | |
|  aExpBigger:
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (aSig0 | aSig1) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         --expDiff;
 | |
|     }
 | |
|     else {
 | |
|         bSig0 |= LIT64( 0x4000000000000000 );
 | |
|     }
 | |
|     shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
 | |
|     aSig0 |= LIT64( 0x4000000000000000 );
 | |
|  aBigger:
 | |
|     sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | |
|     zExp = aExp;
 | |
|  normalizeRoundAndPack:
 | |
|     --zExp;
 | |
|     return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
 | |
|                                          status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the quadruple-precision floating-point values
 | |
| | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_add(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return addFloat128Sigs(a, b, aSign, status);
 | |
|     }
 | |
|     else {
 | |
|         return subFloat128Sigs(a, b, aSign, status);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the quadruple-precision floating-point
 | |
| | values `a' and `b'.  The operation is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_sub(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return subFloat128Sigs(a, b, aSign, status);
 | |
|     }
 | |
|     else {
 | |
|         return addFloat128Sigs(a, b, aSign, status);
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of multiplying the quadruple-precision floating-point
 | |
| | values `a' and `b'.  The operation is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_mul(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int32_t aExp, bExp, zExp;
 | |
|     uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSig1 = extractFloat128Frac1( b );
 | |
|     bSig0 = extractFloat128Frac0( b );
 | |
|     bExp = extractFloat128Exp( b );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (    ( aSig0 | aSig1 )
 | |
|              || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
 | |
|         return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if (bSig0 | bSig1) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 | |
|  invalid:
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return float128_default_nan(status);
 | |
|         }
 | |
|         return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 | |
|         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 | |
|         normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | |
|     }
 | |
|     zExp = aExp + bExp - 0x4000;
 | |
|     aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
 | |
|     mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
 | |
|     add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
 | |
|     zSig2 |= ( zSig3 != 0 );
 | |
|     if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
 | |
|         shift128ExtraRightJamming(
 | |
|             zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 | |
|         ++zExp;
 | |
|     }
 | |
|     return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of dividing the quadruple-precision floating-point value
 | |
| | `a' by the corresponding value `b'.  The operation is performed according to
 | |
| | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_div(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int32_t aExp, bExp, zExp;
 | |
|     uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
 | |
|     uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSig1 = extractFloat128Frac1( b );
 | |
|     bSig0 = extractFloat128Frac0( b );
 | |
|     bExp = extractFloat128Exp( b );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (aSig0 | aSig1) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         if ( bExp == 0x7FFF ) {
 | |
|             if (bSig0 | bSig1) {
 | |
|                 return propagateFloat128NaN(a, b, status);
 | |
|             }
 | |
|             goto invalid;
 | |
|         }
 | |
|         return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if (bSig0 | bSig1) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         return packFloat128( zSign, 0, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( ( bSig0 | bSig1 ) == 0 ) {
 | |
|             if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 | |
|  invalid:
 | |
|                 float_raise(float_flag_invalid, status);
 | |
|                 return float128_default_nan(status);
 | |
|             }
 | |
|             float_raise(float_flag_divbyzero, status);
 | |
|             return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|         }
 | |
|         normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 | |
|         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     zExp = aExp - bExp + 0x3FFD;
 | |
|     shortShift128Left(
 | |
|         aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
 | |
|     shortShift128Left(
 | |
|         bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
 | |
|     if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
 | |
|         shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
 | |
|         ++zExp;
 | |
|     }
 | |
|     zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
 | |
|     mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
 | |
|     sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
 | |
|     while ( (int64_t) rem0 < 0 ) {
 | |
|         --zSig0;
 | |
|         add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
 | |
|     }
 | |
|     zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
 | |
|     if ( ( zSig1 & 0x3FFF ) <= 4 ) {
 | |
|         mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
 | |
|         sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         while ( (int64_t) rem1 < 0 ) {
 | |
|             --zSig1;
 | |
|             add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
 | |
|         }
 | |
|         zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | |
|     }
 | |
|     shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
 | |
|     return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the remainder of the quadruple-precision floating-point value `a'
 | |
| | with respect to the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_rem(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int32_t aExp, bExp, expDiff;
 | |
|     uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
 | |
|     uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
 | |
|     int64_t sigMean0;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSig1 = extractFloat128Frac1( b );
 | |
|     bSig0 = extractFloat128Frac0( b );
 | |
|     bExp = extractFloat128Exp( b );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (    ( aSig0 | aSig1 )
 | |
|              || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         goto invalid;
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if (bSig0 | bSig1) {
 | |
|             return propagateFloat128NaN(a, b, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( ( bSig0 | bSig1 ) == 0 ) {
 | |
|  invalid:
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return float128_default_nan(status);
 | |
|         }
 | |
|         normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return a;
 | |
|         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     expDiff = aExp - bExp;
 | |
|     if ( expDiff < -1 ) return a;
 | |
|     shortShift128Left(
 | |
|         aSig0 | LIT64( 0x0001000000000000 ),
 | |
|         aSig1,
 | |
|         15 - ( expDiff < 0 ),
 | |
|         &aSig0,
 | |
|         &aSig1
 | |
|     );
 | |
|     shortShift128Left(
 | |
|         bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
 | |
|     q = le128( bSig0, bSig1, aSig0, aSig1 );
 | |
|     if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
 | |
|     expDiff -= 64;
 | |
|     while ( 0 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig0, aSig1, bSig0 );
 | |
|         q = ( 4 < q ) ? q - 4 : 0;
 | |
|         mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
 | |
|         shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
 | |
|         shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
 | |
|         sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
 | |
|         expDiff -= 61;
 | |
|     }
 | |
|     if ( -64 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig0, aSig1, bSig0 );
 | |
|         q = ( 4 < q ) ? q - 4 : 0;
 | |
|         q >>= - expDiff;
 | |
|         shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
 | |
|         expDiff += 52;
 | |
|         if ( expDiff < 0 ) {
 | |
|             shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
 | |
|         }
 | |
|         else {
 | |
|             shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
 | |
|         }
 | |
|         mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
 | |
|         sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
 | |
|     }
 | |
|     else {
 | |
|         shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
 | |
|         shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
 | |
|     }
 | |
|     do {
 | |
|         alternateASig0 = aSig0;
 | |
|         alternateASig1 = aSig1;
 | |
|         ++q;
 | |
|         sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
 | |
|     } while ( 0 <= (int64_t) aSig0 );
 | |
|     add128(
 | |
|         aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
 | |
|     if (    ( sigMean0 < 0 )
 | |
|          || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
 | |
|         aSig0 = alternateASig0;
 | |
|         aSig1 = alternateASig1;
 | |
|     }
 | |
|     zSign = ( (int64_t) aSig0 < 0 );
 | |
|     if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
 | |
|     return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
 | |
|                                          status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the square root of the quadruple-precision floating-point value `a'.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_sqrt(float128 a, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp, zExp;
 | |
|     uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
 | |
|     uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (aSig0 | aSig1) {
 | |
|             return propagateFloat128NaN(a, a, status);
 | |
|         }
 | |
|         if ( ! aSign ) return a;
 | |
|         goto invalid;
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 | |
|  invalid:
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float128_default_nan(status);
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
 | |
|         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
 | |
|     aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     zSig0 = estimateSqrt32( aExp, aSig0>>17 );
 | |
|     shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
 | |
|     zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
 | |
|     doubleZSig0 = zSig0<<1;
 | |
|     mul64To128( zSig0, zSig0, &term0, &term1 );
 | |
|     sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
 | |
|     while ( (int64_t) rem0 < 0 ) {
 | |
|         --zSig0;
 | |
|         doubleZSig0 -= 2;
 | |
|         add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
 | |
|     }
 | |
|     zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
 | |
|     if ( ( zSig1 & 0x1FFF ) <= 5 ) {
 | |
|         if ( zSig1 == 0 ) zSig1 = 1;
 | |
|         mul64To128( doubleZSig0, zSig1, &term1, &term2 );
 | |
|         sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | |
|         mul64To128( zSig1, zSig1, &term2, &term3 );
 | |
|         sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         while ( (int64_t) rem1 < 0 ) {
 | |
|             --zSig1;
 | |
|             shortShift128Left( 0, zSig1, 1, &term2, &term3 );
 | |
|             term3 |= 1;
 | |
|             term2 |= doubleZSig0;
 | |
|             add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         }
 | |
|         zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | |
|     }
 | |
|     shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
 | |
|     return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is equal to
 | |
| | the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_eq(float128 a, float128 b, float_status *status)
 | |
| {
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     return
 | |
|            ( a.low == b.low )
 | |
|         && (    ( a.high == b.high )
 | |
|              || (    ( a.low == 0 )
 | |
|                   && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
 | |
|            );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than
 | |
| | or equal to the corresponding value `b', and 0 otherwise.  The invalid
 | |
| | exception is raised if either operand is a NaN.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_le(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  == 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? le128( b.high, b.low, a.high, a.low )
 | |
|         : le128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  The comparison is performed according
 | |
| | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_lt(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  != 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? lt128( b.high, b.low, a.high, a.low )
 | |
|         : lt128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
 | |
| | be compared, and 0 otherwise.  The invalid exception is raised if either
 | |
| | operand is a NaN. The comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_unordered(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is equal to
 | |
| | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.  The comparison is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_eq_quiet(float128 a, float128 b, float_status *status)
 | |
| {
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         if (float128_is_signaling_nan(a, status)
 | |
|          || float128_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     return
 | |
|            ( a.low == b.low )
 | |
|         && (    ( a.high == b.high )
 | |
|              || (    ( a.low == 0 )
 | |
|                   && ( (uint64_t) ( ( a.high | b.high )<<1 ) == 0 ) )
 | |
|            );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than
 | |
| | or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | |
| | cause an exception.  Otherwise, the comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_le_quiet(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         if (float128_is_signaling_nan(a, status)
 | |
|          || float128_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             || (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  == 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? le128( b.high, b.low, a.high, a.low )
 | |
|         : le128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_lt_quiet(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         if (float128_is_signaling_nan(a, status)
 | |
|          || float128_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             && (    ( ( (uint64_t) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  != 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? lt128( b.high, b.low, a.high, a.low )
 | |
|         : lt128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point values `a' and `b' cannot
 | |
| | be compared, and 0 otherwise.  Quiet NaNs do not cause an exception.  The
 | |
| | comparison is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_unordered_quiet(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         if (float128_is_signaling_nan(a, status)
 | |
|          || float128_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline int floatx80_compare_internal(floatx80 a, floatx80 b,
 | |
|                                             int is_quiet, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return float_relation_unordered;
 | |
|     }
 | |
|     if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
 | |
|           ( extractFloatx80Frac( a )<<1 ) ) ||
 | |
|         ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
 | |
|           ( extractFloatx80Frac( b )<<1 ) )) {
 | |
|         if (!is_quiet ||
 | |
|             floatx80_is_signaling_nan(a, status) ||
 | |
|             floatx80_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return float_relation_unordered;
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
| 
 | |
|         if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
 | |
|              ( ( a.low | b.low ) == 0 ) ) {
 | |
|             /* zero case */
 | |
|             return float_relation_equal;
 | |
|         } else {
 | |
|             return 1 - (2 * aSign);
 | |
|         }
 | |
|     } else {
 | |
|         if (a.low == b.low && a.high == b.high) {
 | |
|             return float_relation_equal;
 | |
|         } else {
 | |
|             return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int floatx80_compare(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     return floatx80_compare_internal(a, b, 0, status);
 | |
| }
 | |
| 
 | |
| int floatx80_compare_quiet(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     return floatx80_compare_internal(a, b, 1, status);
 | |
| }
 | |
| 
 | |
| static inline int float128_compare_internal(float128 a, float128 b,
 | |
|                                             int is_quiet, float_status *status)
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
 | |
|           ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
 | |
|         ( ( extractFloat128Exp( b ) == 0x7fff ) &&
 | |
|           ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
 | |
|         if (!is_quiet ||
 | |
|             float128_is_signaling_nan(a, status) ||
 | |
|             float128_is_signaling_nan(b, status)) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|         }
 | |
|         return float_relation_unordered;
 | |
|     }
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
 | |
|             /* zero case */
 | |
|             return float_relation_equal;
 | |
|         } else {
 | |
|             return 1 - (2 * aSign);
 | |
|         }
 | |
|     } else {
 | |
|         if (a.low == b.low && a.high == b.high) {
 | |
|             return float_relation_equal;
 | |
|         } else {
 | |
|             return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int float128_compare(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     return float128_compare_internal(a, b, 0, status);
 | |
| }
 | |
| 
 | |
| int float128_compare_quiet(float128 a, float128 b, float_status *status)
 | |
| {
 | |
|     return float128_compare_internal(a, b, 1, status);
 | |
| }
 | |
| 
 | |
| floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t aSig;
 | |
| 
 | |
|     if (floatx80_invalid_encoding(a)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
| 
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig<<1 ) {
 | |
|             return propagateFloatx80NaN(a, a, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
| 
 | |
|     if (aExp == 0) {
 | |
|         if (aSig == 0) {
 | |
|             return a;
 | |
|         }
 | |
|         aExp++;
 | |
|     }
 | |
| 
 | |
|     if (n > 0x10000) {
 | |
|         n = 0x10000;
 | |
|     } else if (n < -0x10000) {
 | |
|         n = -0x10000;
 | |
|     }
 | |
| 
 | |
|     aExp += n;
 | |
|     return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
 | |
|                                          aSign, aExp, aSig, 0, status);
 | |
| }
 | |
| 
 | |
| float128 float128_scalbn(float128 a, int n, float_status *status)
 | |
| {
 | |
|     flag aSign;
 | |
|     int32_t aExp;
 | |
|     uint64_t aSig0, aSig1;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 ) {
 | |
|             return propagateFloat128NaN(a, a, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if (aExp != 0) {
 | |
|         aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     } else if (aSig0 == 0 && aSig1 == 0) {
 | |
|         return a;
 | |
|     } else {
 | |
|         aExp++;
 | |
|     }
 | |
| 
 | |
|     if (n > 0x10000) {
 | |
|         n = 0x10000;
 | |
|     } else if (n < -0x10000) {
 | |
|         n = -0x10000;
 | |
|     }
 | |
| 
 | |
|     aExp += n - 1;
 | |
|     return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
 | |
|                                          , status);
 | |
| 
 | |
| }
 | |
| 
 | |
| static void __attribute__((constructor)) softfloat_init(void)
 | |
| {
 | |
|     union_float64 ua, ub, uc, ur;
 | |
| 
 | |
|     if (QEMU_NO_HARDFLOAT) {
 | |
|         return;
 | |
|     }
 | |
|     /*
 | |
|      * Test that the host's FMA is not obviously broken. For example,
 | |
|      * glibc < 2.23 can perform an incorrect FMA on certain hosts; see
 | |
|      *   https://sourceware.org/bugzilla/show_bug.cgi?id=13304
 | |
|      */
 | |
|     ua.s = 0x0020000000000001ULL;
 | |
|     ub.s = 0x3ca0000000000000ULL;
 | |
|     uc.s = 0x0020000000000000ULL;
 | |
|     ur.h = fma(ua.h, ub.h, uc.h);
 | |
|     if (ur.s != 0x0020000000000001ULL) {
 | |
|         force_soft_fma = true;
 | |
|     }
 | |
| }
 |