Signed-off-by: Isaku Yamahata <yamahata@private.email.ne.jp> Signed-off-by: Juan Quintela <quintela@redhat.com>
		
			
				
	
	
		
			3438 lines
		
	
	
		
			105 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3438 lines
		
	
	
		
			105 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * RDMA protocol and interfaces
 | 
						|
 *
 | 
						|
 * Copyright IBM, Corp. 2010-2013
 | 
						|
 *
 | 
						|
 * Authors:
 | 
						|
 *  Michael R. Hines <mrhines@us.ibm.com>
 | 
						|
 *  Jiuxing Liu <jl@us.ibm.com>
 | 
						|
 *
 | 
						|
 * This work is licensed under the terms of the GNU GPL, version 2 or
 | 
						|
 * later.  See the COPYING file in the top-level directory.
 | 
						|
 *
 | 
						|
 */
 | 
						|
#include "qemu-common.h"
 | 
						|
#include "migration/migration.h"
 | 
						|
#include "migration/qemu-file.h"
 | 
						|
#include "exec/cpu-common.h"
 | 
						|
#include "qemu/main-loop.h"
 | 
						|
#include "qemu/sockets.h"
 | 
						|
#include "qemu/bitmap.h"
 | 
						|
#include "block/coroutine.h"
 | 
						|
#include <stdio.h>
 | 
						|
#include <sys/types.h>
 | 
						|
#include <sys/socket.h>
 | 
						|
#include <netdb.h>
 | 
						|
#include <arpa/inet.h>
 | 
						|
#include <string.h>
 | 
						|
#include <rdma/rdma_cma.h>
 | 
						|
 | 
						|
//#define DEBUG_RDMA
 | 
						|
//#define DEBUG_RDMA_VERBOSE
 | 
						|
//#define DEBUG_RDMA_REALLY_VERBOSE
 | 
						|
 | 
						|
#ifdef DEBUG_RDMA
 | 
						|
#define DPRINTF(fmt, ...) \
 | 
						|
    do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
 | 
						|
#else
 | 
						|
#define DPRINTF(fmt, ...) \
 | 
						|
    do { } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef DEBUG_RDMA_VERBOSE
 | 
						|
#define DDPRINTF(fmt, ...) \
 | 
						|
    do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
 | 
						|
#else
 | 
						|
#define DDPRINTF(fmt, ...) \
 | 
						|
    do { } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef DEBUG_RDMA_REALLY_VERBOSE
 | 
						|
#define DDDPRINTF(fmt, ...) \
 | 
						|
    do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
 | 
						|
#else
 | 
						|
#define DDDPRINTF(fmt, ...) \
 | 
						|
    do { } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Print and error on both the Monitor and the Log file.
 | 
						|
 */
 | 
						|
#define ERROR(errp, fmt, ...) \
 | 
						|
    do { \
 | 
						|
        fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
 | 
						|
        if (errp && (*(errp) == NULL)) { \
 | 
						|
            error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
 | 
						|
        } \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
#define RDMA_RESOLVE_TIMEOUT_MS 10000
 | 
						|
 | 
						|
/* Do not merge data if larger than this. */
 | 
						|
#define RDMA_MERGE_MAX (2 * 1024 * 1024)
 | 
						|
#define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
 | 
						|
 | 
						|
#define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
 | 
						|
 | 
						|
/*
 | 
						|
 * This is only for non-live state being migrated.
 | 
						|
 * Instead of RDMA_WRITE messages, we use RDMA_SEND
 | 
						|
 * messages for that state, which requires a different
 | 
						|
 * delivery design than main memory.
 | 
						|
 */
 | 
						|
#define RDMA_SEND_INCREMENT 32768
 | 
						|
 | 
						|
/*
 | 
						|
 * Maximum size infiniband SEND message
 | 
						|
 */
 | 
						|
#define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
 | 
						|
#define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
 | 
						|
 | 
						|
#define RDMA_CONTROL_VERSION_CURRENT 1
 | 
						|
/*
 | 
						|
 * Capabilities for negotiation.
 | 
						|
 */
 | 
						|
#define RDMA_CAPABILITY_PIN_ALL 0x01
 | 
						|
 | 
						|
/*
 | 
						|
 * Add the other flags above to this list of known capabilities
 | 
						|
 * as they are introduced.
 | 
						|
 */
 | 
						|
static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
 | 
						|
 | 
						|
#define CHECK_ERROR_STATE() \
 | 
						|
    do { \
 | 
						|
        if (rdma->error_state) { \
 | 
						|
            if (!rdma->error_reported) { \
 | 
						|
                fprintf(stderr, "RDMA is in an error state waiting migration" \
 | 
						|
                                " to abort!\n"); \
 | 
						|
                rdma->error_reported = 1; \
 | 
						|
            } \
 | 
						|
            return rdma->error_state; \
 | 
						|
        } \
 | 
						|
    } while (0);
 | 
						|
 | 
						|
/*
 | 
						|
 * A work request ID is 64-bits and we split up these bits
 | 
						|
 * into 3 parts:
 | 
						|
 *
 | 
						|
 * bits 0-15 : type of control message, 2^16
 | 
						|
 * bits 16-29: ram block index, 2^14
 | 
						|
 * bits 30-63: ram block chunk number, 2^34
 | 
						|
 *
 | 
						|
 * The last two bit ranges are only used for RDMA writes,
 | 
						|
 * in order to track their completion and potentially
 | 
						|
 * also track unregistration status of the message.
 | 
						|
 */
 | 
						|
#define RDMA_WRID_TYPE_SHIFT  0UL
 | 
						|
#define RDMA_WRID_BLOCK_SHIFT 16UL
 | 
						|
#define RDMA_WRID_CHUNK_SHIFT 30UL
 | 
						|
 | 
						|
#define RDMA_WRID_TYPE_MASK \
 | 
						|
    ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
 | 
						|
 | 
						|
#define RDMA_WRID_BLOCK_MASK \
 | 
						|
    (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
 | 
						|
 | 
						|
#define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
 | 
						|
 | 
						|
/*
 | 
						|
 * RDMA migration protocol:
 | 
						|
 * 1. RDMA Writes (data messages, i.e. RAM)
 | 
						|
 * 2. IB Send/Recv (control channel messages)
 | 
						|
 */
 | 
						|
enum {
 | 
						|
    RDMA_WRID_NONE = 0,
 | 
						|
    RDMA_WRID_RDMA_WRITE = 1,
 | 
						|
    RDMA_WRID_SEND_CONTROL = 2000,
 | 
						|
    RDMA_WRID_RECV_CONTROL = 4000,
 | 
						|
};
 | 
						|
 | 
						|
const char *wrid_desc[] = {
 | 
						|
    [RDMA_WRID_NONE] = "NONE",
 | 
						|
    [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
 | 
						|
    [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
 | 
						|
    [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Work request IDs for IB SEND messages only (not RDMA writes).
 | 
						|
 * This is used by the migration protocol to transmit
 | 
						|
 * control messages (such as device state and registration commands)
 | 
						|
 *
 | 
						|
 * We could use more WRs, but we have enough for now.
 | 
						|
 */
 | 
						|
enum {
 | 
						|
    RDMA_WRID_READY = 0,
 | 
						|
    RDMA_WRID_DATA,
 | 
						|
    RDMA_WRID_CONTROL,
 | 
						|
    RDMA_WRID_MAX,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * SEND/RECV IB Control Messages.
 | 
						|
 */
 | 
						|
enum {
 | 
						|
    RDMA_CONTROL_NONE = 0,
 | 
						|
    RDMA_CONTROL_ERROR,
 | 
						|
    RDMA_CONTROL_READY,               /* ready to receive */
 | 
						|
    RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
 | 
						|
    RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
 | 
						|
    RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
 | 
						|
    RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
 | 
						|
    RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
 | 
						|
    RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
 | 
						|
    RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
 | 
						|
    RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
 | 
						|
    RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
 | 
						|
};
 | 
						|
 | 
						|
const char *control_desc[] = {
 | 
						|
    [RDMA_CONTROL_NONE] = "NONE",
 | 
						|
    [RDMA_CONTROL_ERROR] = "ERROR",
 | 
						|
    [RDMA_CONTROL_READY] = "READY",
 | 
						|
    [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
 | 
						|
    [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
 | 
						|
    [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
 | 
						|
    [RDMA_CONTROL_COMPRESS] = "COMPRESS",
 | 
						|
    [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
 | 
						|
    [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
 | 
						|
    [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
 | 
						|
    [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
 | 
						|
    [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Memory and MR structures used to represent an IB Send/Recv work request.
 | 
						|
 * This is *not* used for RDMA writes, only IB Send/Recv.
 | 
						|
 */
 | 
						|
typedef struct {
 | 
						|
    uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
 | 
						|
    struct   ibv_mr *control_mr;               /* registration metadata */
 | 
						|
    size_t   control_len;                      /* length of the message */
 | 
						|
    uint8_t *control_curr;                     /* start of unconsumed bytes */
 | 
						|
} RDMAWorkRequestData;
 | 
						|
 | 
						|
/*
 | 
						|
 * Negotiate RDMA capabilities during connection-setup time.
 | 
						|
 */
 | 
						|
typedef struct {
 | 
						|
    uint32_t version;
 | 
						|
    uint32_t flags;
 | 
						|
} RDMACapabilities;
 | 
						|
 | 
						|
static void caps_to_network(RDMACapabilities *cap)
 | 
						|
{
 | 
						|
    cap->version = htonl(cap->version);
 | 
						|
    cap->flags = htonl(cap->flags);
 | 
						|
}
 | 
						|
 | 
						|
static void network_to_caps(RDMACapabilities *cap)
 | 
						|
{
 | 
						|
    cap->version = ntohl(cap->version);
 | 
						|
    cap->flags = ntohl(cap->flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Representation of a RAMBlock from an RDMA perspective.
 | 
						|
 * This is not transmitted, only local.
 | 
						|
 * This and subsequent structures cannot be linked lists
 | 
						|
 * because we're using a single IB message to transmit
 | 
						|
 * the information. It's small anyway, so a list is overkill.
 | 
						|
 */
 | 
						|
typedef struct RDMALocalBlock {
 | 
						|
    uint8_t  *local_host_addr; /* local virtual address */
 | 
						|
    uint64_t remote_host_addr; /* remote virtual address */
 | 
						|
    uint64_t offset;
 | 
						|
    uint64_t length;
 | 
						|
    struct   ibv_mr **pmr;     /* MRs for chunk-level registration */
 | 
						|
    struct   ibv_mr *mr;       /* MR for non-chunk-level registration */
 | 
						|
    uint32_t *remote_keys;     /* rkeys for chunk-level registration */
 | 
						|
    uint32_t remote_rkey;      /* rkeys for non-chunk-level registration */
 | 
						|
    int      index;            /* which block are we */
 | 
						|
    bool     is_ram_block;
 | 
						|
    int      nb_chunks;
 | 
						|
    unsigned long *transit_bitmap;
 | 
						|
    unsigned long *unregister_bitmap;
 | 
						|
} RDMALocalBlock;
 | 
						|
 | 
						|
/*
 | 
						|
 * Also represents a RAMblock, but only on the dest.
 | 
						|
 * This gets transmitted by the dest during connection-time
 | 
						|
 * to the source VM and then is used to populate the
 | 
						|
 * corresponding RDMALocalBlock with
 | 
						|
 * the information needed to perform the actual RDMA.
 | 
						|
 */
 | 
						|
typedef struct QEMU_PACKED RDMARemoteBlock {
 | 
						|
    uint64_t remote_host_addr;
 | 
						|
    uint64_t offset;
 | 
						|
    uint64_t length;
 | 
						|
    uint32_t remote_rkey;
 | 
						|
    uint32_t padding;
 | 
						|
} RDMARemoteBlock;
 | 
						|
 | 
						|
static uint64_t htonll(uint64_t v)
 | 
						|
{
 | 
						|
    union { uint32_t lv[2]; uint64_t llv; } u;
 | 
						|
    u.lv[0] = htonl(v >> 32);
 | 
						|
    u.lv[1] = htonl(v & 0xFFFFFFFFULL);
 | 
						|
    return u.llv;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t ntohll(uint64_t v) {
 | 
						|
    union { uint32_t lv[2]; uint64_t llv; } u;
 | 
						|
    u.llv = v;
 | 
						|
    return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
 | 
						|
}
 | 
						|
 | 
						|
static void remote_block_to_network(RDMARemoteBlock *rb)
 | 
						|
{
 | 
						|
    rb->remote_host_addr = htonll(rb->remote_host_addr);
 | 
						|
    rb->offset = htonll(rb->offset);
 | 
						|
    rb->length = htonll(rb->length);
 | 
						|
    rb->remote_rkey = htonl(rb->remote_rkey);
 | 
						|
}
 | 
						|
 | 
						|
static void network_to_remote_block(RDMARemoteBlock *rb)
 | 
						|
{
 | 
						|
    rb->remote_host_addr = ntohll(rb->remote_host_addr);
 | 
						|
    rb->offset = ntohll(rb->offset);
 | 
						|
    rb->length = ntohll(rb->length);
 | 
						|
    rb->remote_rkey = ntohl(rb->remote_rkey);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Virtual address of the above structures used for transmitting
 | 
						|
 * the RAMBlock descriptions at connection-time.
 | 
						|
 * This structure is *not* transmitted.
 | 
						|
 */
 | 
						|
typedef struct RDMALocalBlocks {
 | 
						|
    int nb_blocks;
 | 
						|
    bool     init;             /* main memory init complete */
 | 
						|
    RDMALocalBlock *block;
 | 
						|
} RDMALocalBlocks;
 | 
						|
 | 
						|
/*
 | 
						|
 * Main data structure for RDMA state.
 | 
						|
 * While there is only one copy of this structure being allocated right now,
 | 
						|
 * this is the place where one would start if you wanted to consider
 | 
						|
 * having more than one RDMA connection open at the same time.
 | 
						|
 */
 | 
						|
typedef struct RDMAContext {
 | 
						|
    char *host;
 | 
						|
    int port;
 | 
						|
 | 
						|
    RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
 | 
						|
 | 
						|
    /*
 | 
						|
     * This is used by *_exchange_send() to figure out whether or not
 | 
						|
     * the initial "READY" message has already been received or not.
 | 
						|
     * This is because other functions may potentially poll() and detect
 | 
						|
     * the READY message before send() does, in which case we need to
 | 
						|
     * know if it completed.
 | 
						|
     */
 | 
						|
    int control_ready_expected;
 | 
						|
 | 
						|
    /* number of outstanding writes */
 | 
						|
    int nb_sent;
 | 
						|
 | 
						|
    /* store info about current buffer so that we can
 | 
						|
       merge it with future sends */
 | 
						|
    uint64_t current_addr;
 | 
						|
    uint64_t current_length;
 | 
						|
    /* index of ram block the current buffer belongs to */
 | 
						|
    int current_index;
 | 
						|
    /* index of the chunk in the current ram block */
 | 
						|
    int current_chunk;
 | 
						|
 | 
						|
    bool pin_all;
 | 
						|
 | 
						|
    /*
 | 
						|
     * infiniband-specific variables for opening the device
 | 
						|
     * and maintaining connection state and so forth.
 | 
						|
     *
 | 
						|
     * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
 | 
						|
     * cm_id->verbs, cm_id->channel, and cm_id->qp.
 | 
						|
     */
 | 
						|
    struct rdma_cm_id *cm_id;               /* connection manager ID */
 | 
						|
    struct rdma_cm_id *listen_id;
 | 
						|
    bool connected;
 | 
						|
 | 
						|
    struct ibv_context          *verbs;
 | 
						|
    struct rdma_event_channel   *channel;
 | 
						|
    struct ibv_qp *qp;                      /* queue pair */
 | 
						|
    struct ibv_comp_channel *comp_channel;  /* completion channel */
 | 
						|
    struct ibv_pd *pd;                      /* protection domain */
 | 
						|
    struct ibv_cq *cq;                      /* completion queue */
 | 
						|
 | 
						|
    /*
 | 
						|
     * If a previous write failed (perhaps because of a failed
 | 
						|
     * memory registration, then do not attempt any future work
 | 
						|
     * and remember the error state.
 | 
						|
     */
 | 
						|
    int error_state;
 | 
						|
    int error_reported;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Description of ram blocks used throughout the code.
 | 
						|
     */
 | 
						|
    RDMALocalBlocks local_ram_blocks;
 | 
						|
    RDMARemoteBlock *block;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Migration on *destination* started.
 | 
						|
     * Then use coroutine yield function.
 | 
						|
     * Source runs in a thread, so we don't care.
 | 
						|
     */
 | 
						|
    int migration_started_on_destination;
 | 
						|
 | 
						|
    int total_registrations;
 | 
						|
    int total_writes;
 | 
						|
 | 
						|
    int unregister_current, unregister_next;
 | 
						|
    uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
 | 
						|
 | 
						|
    GHashTable *blockmap;
 | 
						|
} RDMAContext;
 | 
						|
 | 
						|
/*
 | 
						|
 * Interface to the rest of the migration call stack.
 | 
						|
 */
 | 
						|
typedef struct QEMUFileRDMA {
 | 
						|
    RDMAContext *rdma;
 | 
						|
    size_t len;
 | 
						|
    void *file;
 | 
						|
} QEMUFileRDMA;
 | 
						|
 | 
						|
/*
 | 
						|
 * Main structure for IB Send/Recv control messages.
 | 
						|
 * This gets prepended at the beginning of every Send/Recv.
 | 
						|
 */
 | 
						|
typedef struct QEMU_PACKED {
 | 
						|
    uint32_t len;     /* Total length of data portion */
 | 
						|
    uint32_t type;    /* which control command to perform */
 | 
						|
    uint32_t repeat;  /* number of commands in data portion of same type */
 | 
						|
    uint32_t padding;
 | 
						|
} RDMAControlHeader;
 | 
						|
 | 
						|
static void control_to_network(RDMAControlHeader *control)
 | 
						|
{
 | 
						|
    control->type = htonl(control->type);
 | 
						|
    control->len = htonl(control->len);
 | 
						|
    control->repeat = htonl(control->repeat);
 | 
						|
}
 | 
						|
 | 
						|
static void network_to_control(RDMAControlHeader *control)
 | 
						|
{
 | 
						|
    control->type = ntohl(control->type);
 | 
						|
    control->len = ntohl(control->len);
 | 
						|
    control->repeat = ntohl(control->repeat);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Register a single Chunk.
 | 
						|
 * Information sent by the source VM to inform the dest
 | 
						|
 * to register an single chunk of memory before we can perform
 | 
						|
 * the actual RDMA operation.
 | 
						|
 */
 | 
						|
typedef struct QEMU_PACKED {
 | 
						|
    union QEMU_PACKED {
 | 
						|
        uint64_t current_addr;  /* offset into the ramblock of the chunk */
 | 
						|
        uint64_t chunk;         /* chunk to lookup if unregistering */
 | 
						|
    } key;
 | 
						|
    uint32_t current_index; /* which ramblock the chunk belongs to */
 | 
						|
    uint32_t padding;
 | 
						|
    uint64_t chunks;            /* how many sequential chunks to register */
 | 
						|
} RDMARegister;
 | 
						|
 | 
						|
static void register_to_network(RDMARegister *reg)
 | 
						|
{
 | 
						|
    reg->key.current_addr = htonll(reg->key.current_addr);
 | 
						|
    reg->current_index = htonl(reg->current_index);
 | 
						|
    reg->chunks = htonll(reg->chunks);
 | 
						|
}
 | 
						|
 | 
						|
static void network_to_register(RDMARegister *reg)
 | 
						|
{
 | 
						|
    reg->key.current_addr = ntohll(reg->key.current_addr);
 | 
						|
    reg->current_index = ntohl(reg->current_index);
 | 
						|
    reg->chunks = ntohll(reg->chunks);
 | 
						|
}
 | 
						|
 | 
						|
typedef struct QEMU_PACKED {
 | 
						|
    uint32_t value;     /* if zero, we will madvise() */
 | 
						|
    uint32_t block_idx; /* which ram block index */
 | 
						|
    uint64_t offset;    /* where in the remote ramblock this chunk */
 | 
						|
    uint64_t length;    /* length of the chunk */
 | 
						|
} RDMACompress;
 | 
						|
 | 
						|
static void compress_to_network(RDMACompress *comp)
 | 
						|
{
 | 
						|
    comp->value = htonl(comp->value);
 | 
						|
    comp->block_idx = htonl(comp->block_idx);
 | 
						|
    comp->offset = htonll(comp->offset);
 | 
						|
    comp->length = htonll(comp->length);
 | 
						|
}
 | 
						|
 | 
						|
static void network_to_compress(RDMACompress *comp)
 | 
						|
{
 | 
						|
    comp->value = ntohl(comp->value);
 | 
						|
    comp->block_idx = ntohl(comp->block_idx);
 | 
						|
    comp->offset = ntohll(comp->offset);
 | 
						|
    comp->length = ntohll(comp->length);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The result of the dest's memory registration produces an "rkey"
 | 
						|
 * which the source VM must reference in order to perform
 | 
						|
 * the RDMA operation.
 | 
						|
 */
 | 
						|
typedef struct QEMU_PACKED {
 | 
						|
    uint32_t rkey;
 | 
						|
    uint32_t padding;
 | 
						|
    uint64_t host_addr;
 | 
						|
} RDMARegisterResult;
 | 
						|
 | 
						|
static void result_to_network(RDMARegisterResult *result)
 | 
						|
{
 | 
						|
    result->rkey = htonl(result->rkey);
 | 
						|
    result->host_addr = htonll(result->host_addr);
 | 
						|
};
 | 
						|
 | 
						|
static void network_to_result(RDMARegisterResult *result)
 | 
						|
{
 | 
						|
    result->rkey = ntohl(result->rkey);
 | 
						|
    result->host_addr = ntohll(result->host_addr);
 | 
						|
};
 | 
						|
 | 
						|
const char *print_wrid(int wrid);
 | 
						|
static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
 | 
						|
                                   uint8_t *data, RDMAControlHeader *resp,
 | 
						|
                                   int *resp_idx,
 | 
						|
                                   int (*callback)(RDMAContext *rdma));
 | 
						|
 | 
						|
static inline uint64_t ram_chunk_index(const uint8_t *start,
 | 
						|
                                       const uint8_t *host)
 | 
						|
{
 | 
						|
    return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
 | 
						|
}
 | 
						|
 | 
						|
static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
 | 
						|
                                       uint64_t i)
 | 
						|
{
 | 
						|
    return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr)
 | 
						|
                                    + (i << RDMA_REG_CHUNK_SHIFT));
 | 
						|
}
 | 
						|
 | 
						|
static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
 | 
						|
                                     uint64_t i)
 | 
						|
{
 | 
						|
    uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
 | 
						|
                                         (1UL << RDMA_REG_CHUNK_SHIFT);
 | 
						|
 | 
						|
    if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
 | 
						|
        result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr,
 | 
						|
                         ram_addr_t block_offset, uint64_t length)
 | 
						|
{
 | 
						|
    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 | 
						|
    RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
 | 
						|
        (void *) block_offset);
 | 
						|
    RDMALocalBlock *old = local->block;
 | 
						|
 | 
						|
    assert(block == NULL);
 | 
						|
 | 
						|
    local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
 | 
						|
 | 
						|
    if (local->nb_blocks) {
 | 
						|
        int x;
 | 
						|
 | 
						|
        for (x = 0; x < local->nb_blocks; x++) {
 | 
						|
            g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
 | 
						|
            g_hash_table_insert(rdma->blockmap, (void *)old[x].offset,
 | 
						|
                                                &local->block[x]);
 | 
						|
        }
 | 
						|
        memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
 | 
						|
        g_free(old);
 | 
						|
    }
 | 
						|
 | 
						|
    block = &local->block[local->nb_blocks];
 | 
						|
 | 
						|
    block->local_host_addr = host_addr;
 | 
						|
    block->offset = block_offset;
 | 
						|
    block->length = length;
 | 
						|
    block->index = local->nb_blocks;
 | 
						|
    block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
 | 
						|
    block->transit_bitmap = bitmap_new(block->nb_chunks);
 | 
						|
    bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
 | 
						|
    block->unregister_bitmap = bitmap_new(block->nb_chunks);
 | 
						|
    bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
 | 
						|
    block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
 | 
						|
 | 
						|
    block->is_ram_block = local->init ? false : true;
 | 
						|
 | 
						|
    g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
 | 
						|
 | 
						|
    DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
 | 
						|
           " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
 | 
						|
            local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
 | 
						|
            block->length, (uint64_t) (block->local_host_addr + block->length),
 | 
						|
                BITS_TO_LONGS(block->nb_chunks) *
 | 
						|
                    sizeof(unsigned long) * 8, block->nb_chunks);
 | 
						|
 | 
						|
    local->nb_blocks++;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Memory regions need to be registered with the device and queue pairs setup
 | 
						|
 * in advanced before the migration starts. This tells us where the RAM blocks
 | 
						|
 * are so that we can register them individually.
 | 
						|
 */
 | 
						|
static void qemu_rdma_init_one_block(void *host_addr,
 | 
						|
    ram_addr_t block_offset, ram_addr_t length, void *opaque)
 | 
						|
{
 | 
						|
    __qemu_rdma_add_block(opaque, host_addr, block_offset, length);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Identify the RAMBlocks and their quantity. They will be references to
 | 
						|
 * identify chunk boundaries inside each RAMBlock and also be referenced
 | 
						|
 * during dynamic page registration.
 | 
						|
 */
 | 
						|
static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
 | 
						|
{
 | 
						|
    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 | 
						|
 | 
						|
    assert(rdma->blockmap == NULL);
 | 
						|
    rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
 | 
						|
    memset(local, 0, sizeof *local);
 | 
						|
    qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
 | 
						|
    DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks);
 | 
						|
    rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
 | 
						|
                        rdma->local_ram_blocks.nb_blocks);
 | 
						|
    local->init = true;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
 | 
						|
{
 | 
						|
    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 | 
						|
    RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
 | 
						|
        (void *) block_offset);
 | 
						|
    RDMALocalBlock *old = local->block;
 | 
						|
    int x;
 | 
						|
 | 
						|
    assert(block);
 | 
						|
 | 
						|
    if (block->pmr) {
 | 
						|
        int j;
 | 
						|
 | 
						|
        for (j = 0; j < block->nb_chunks; j++) {
 | 
						|
            if (!block->pmr[j]) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            ibv_dereg_mr(block->pmr[j]);
 | 
						|
            rdma->total_registrations--;
 | 
						|
        }
 | 
						|
        g_free(block->pmr);
 | 
						|
        block->pmr = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (block->mr) {
 | 
						|
        ibv_dereg_mr(block->mr);
 | 
						|
        rdma->total_registrations--;
 | 
						|
        block->mr = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    g_free(block->transit_bitmap);
 | 
						|
    block->transit_bitmap = NULL;
 | 
						|
 | 
						|
    g_free(block->unregister_bitmap);
 | 
						|
    block->unregister_bitmap = NULL;
 | 
						|
 | 
						|
    g_free(block->remote_keys);
 | 
						|
    block->remote_keys = NULL;
 | 
						|
 | 
						|
    for (x = 0; x < local->nb_blocks; x++) {
 | 
						|
        g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
 | 
						|
    }
 | 
						|
 | 
						|
    if (local->nb_blocks > 1) {
 | 
						|
 | 
						|
        local->block = g_malloc0(sizeof(RDMALocalBlock) *
 | 
						|
                                    (local->nb_blocks - 1));
 | 
						|
 | 
						|
        if (block->index) {
 | 
						|
            memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
 | 
						|
        }
 | 
						|
 | 
						|
        if (block->index < (local->nb_blocks - 1)) {
 | 
						|
            memcpy(local->block + block->index, old + (block->index + 1),
 | 
						|
                sizeof(RDMALocalBlock) *
 | 
						|
                    (local->nb_blocks - (block->index + 1)));
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        assert(block == local->block);
 | 
						|
        local->block = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
 | 
						|
           " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
 | 
						|
            local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
 | 
						|
            block->length, (uint64_t) (block->local_host_addr + block->length),
 | 
						|
                BITS_TO_LONGS(block->nb_chunks) *
 | 
						|
                    sizeof(unsigned long) * 8, block->nb_chunks);
 | 
						|
 | 
						|
    g_free(old);
 | 
						|
 | 
						|
    local->nb_blocks--;
 | 
						|
 | 
						|
    if (local->nb_blocks) {
 | 
						|
        for (x = 0; x < local->nb_blocks; x++) {
 | 
						|
            g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset,
 | 
						|
                                                &local->block[x]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Put in the log file which RDMA device was opened and the details
 | 
						|
 * associated with that device.
 | 
						|
 */
 | 
						|
static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
 | 
						|
{
 | 
						|
    struct ibv_port_attr port;
 | 
						|
 | 
						|
    if (ibv_query_port(verbs, 1, &port)) {
 | 
						|
        fprintf(stderr, "FAILED TO QUERY PORT INFORMATION!\n");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    printf("%s RDMA Device opened: kernel name %s "
 | 
						|
           "uverbs device name %s, "
 | 
						|
           "infiniband_verbs class device path %s, "
 | 
						|
           "infiniband class device path %s, "
 | 
						|
           "transport: (%d) %s\n",
 | 
						|
                who,
 | 
						|
                verbs->device->name,
 | 
						|
                verbs->device->dev_name,
 | 
						|
                verbs->device->dev_path,
 | 
						|
                verbs->device->ibdev_path,
 | 
						|
                port.link_layer,
 | 
						|
                (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
 | 
						|
                 ((port.link_layer == IBV_LINK_LAYER_ETHERNET) 
 | 
						|
                    ? "Ethernet" : "Unknown"));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Put in the log file the RDMA gid addressing information,
 | 
						|
 * useful for folks who have trouble understanding the
 | 
						|
 * RDMA device hierarchy in the kernel.
 | 
						|
 */
 | 
						|
static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
 | 
						|
{
 | 
						|
    char sgid[33];
 | 
						|
    char dgid[33];
 | 
						|
    inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
 | 
						|
    inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
 | 
						|
    DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
 | 
						|
 * We will try the next addrinfo struct, and fail if there are
 | 
						|
 * no other valid addresses to bind against.
 | 
						|
 *
 | 
						|
 * If user is listening on '[::]', then we will not have a opened a device
 | 
						|
 * yet and have no way of verifying if the device is RoCE or not.
 | 
						|
 *
 | 
						|
 * In this case, the source VM will throw an error for ALL types of
 | 
						|
 * connections (both IPv4 and IPv6) if the destination machine does not have
 | 
						|
 * a regular infiniband network available for use.
 | 
						|
 *
 | 
						|
 * The only way to guarantee that an error is thrown for broken kernels is
 | 
						|
 * for the management software to choose a *specific* interface at bind time
 | 
						|
 * and validate what time of hardware it is.
 | 
						|
 *
 | 
						|
 * Unfortunately, this puts the user in a fix:
 | 
						|
 * 
 | 
						|
 *  If the source VM connects with an IPv4 address without knowing that the
 | 
						|
 *  destination has bound to '[::]' the migration will unconditionally fail
 | 
						|
 *  unless the management software is explicitly listening on the the IPv4
 | 
						|
 *  address while using a RoCE-based device.
 | 
						|
 *
 | 
						|
 *  If the source VM connects with an IPv6 address, then we're OK because we can
 | 
						|
 *  throw an error on the source (and similarly on the destination).
 | 
						|
 * 
 | 
						|
 *  But in mixed environments, this will be broken for a while until it is fixed
 | 
						|
 *  inside linux.
 | 
						|
 *
 | 
						|
 * We do provide a *tiny* bit of help in this function: We can list all of the
 | 
						|
 * devices in the system and check to see if all the devices are RoCE or
 | 
						|
 * Infiniband. 
 | 
						|
 *
 | 
						|
 * If we detect that we have a *pure* RoCE environment, then we can safely
 | 
						|
 * thrown an error even if the management software has specified '[::]' as the
 | 
						|
 * bind address.
 | 
						|
 *
 | 
						|
 * However, if there is are multiple hetergeneous devices, then we cannot make
 | 
						|
 * this assumption and the user just has to be sure they know what they are
 | 
						|
 * doing.
 | 
						|
 *
 | 
						|
 * Patches are being reviewed on linux-rdma.
 | 
						|
 */
 | 
						|
static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
 | 
						|
{
 | 
						|
    struct ibv_port_attr port_attr;
 | 
						|
 | 
						|
    /* This bug only exists in linux, to our knowledge. */
 | 
						|
#ifdef CONFIG_LINUX
 | 
						|
 | 
						|
    /* 
 | 
						|
     * Verbs are only NULL if management has bound to '[::]'.
 | 
						|
     * 
 | 
						|
     * Let's iterate through all the devices and see if there any pure IB
 | 
						|
     * devices (non-ethernet).
 | 
						|
     * 
 | 
						|
     * If not, then we can safely proceed with the migration.
 | 
						|
     * Otherwise, there are no guarantees until the bug is fixed in linux.
 | 
						|
     */
 | 
						|
    if (!verbs) {
 | 
						|
	    int num_devices, x;
 | 
						|
        struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
 | 
						|
        bool roce_found = false;
 | 
						|
        bool ib_found = false;
 | 
						|
 | 
						|
        for (x = 0; x < num_devices; x++) {
 | 
						|
            verbs = ibv_open_device(dev_list[x]);
 | 
						|
 | 
						|
            if (ibv_query_port(verbs, 1, &port_attr)) {
 | 
						|
                ibv_close_device(verbs);
 | 
						|
                ERROR(errp, "Could not query initial IB port");
 | 
						|
                return -EINVAL;
 | 
						|
            }
 | 
						|
 | 
						|
            if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
 | 
						|
                ib_found = true;
 | 
						|
            } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
 | 
						|
                roce_found = true;
 | 
						|
            }
 | 
						|
 | 
						|
            ibv_close_device(verbs);
 | 
						|
 | 
						|
        }
 | 
						|
 | 
						|
        if (roce_found) {
 | 
						|
            if (ib_found) {
 | 
						|
                fprintf(stderr, "WARN: migrations may fail:"
 | 
						|
                                " IPv6 over RoCE / iWARP in linux"
 | 
						|
                                " is broken. But since you appear to have a"
 | 
						|
                                " mixed RoCE / IB environment, be sure to only"
 | 
						|
                                " migrate over the IB fabric until the kernel "
 | 
						|
                                " fixes the bug.\n");
 | 
						|
            } else {
 | 
						|
                ERROR(errp, "You only have RoCE / iWARP devices in your systems"
 | 
						|
                            " and your management software has specified '[::]'"
 | 
						|
                            ", but IPv6 over RoCE / iWARP is not supported in Linux.");
 | 
						|
                return -ENONET;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * If we have a verbs context, that means that some other than '[::]' was
 | 
						|
     * used by the management software for binding. In which case we can actually 
 | 
						|
     * warn the user about a potential broken kernel;
 | 
						|
     */
 | 
						|
 | 
						|
    /* IB ports start with 1, not 0 */
 | 
						|
    if (ibv_query_port(verbs, 1, &port_attr)) {
 | 
						|
        ERROR(errp, "Could not query initial IB port");
 | 
						|
        return -EINVAL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
 | 
						|
        ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
 | 
						|
                    "(but patches on linux-rdma in progress)");
 | 
						|
        return -ENONET;
 | 
						|
    }
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Figure out which RDMA device corresponds to the requested IP hostname
 | 
						|
 * Also create the initial connection manager identifiers for opening
 | 
						|
 * the connection.
 | 
						|
 */
 | 
						|
static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    struct rdma_addrinfo *res;
 | 
						|
    char port_str[16];
 | 
						|
    struct rdma_cm_event *cm_event;
 | 
						|
    char ip[40] = "unknown";
 | 
						|
    struct rdma_addrinfo *e;
 | 
						|
 | 
						|
    if (rdma->host == NULL || !strcmp(rdma->host, "")) {
 | 
						|
        ERROR(errp, "RDMA hostname has not been set");
 | 
						|
        return -EINVAL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* create CM channel */
 | 
						|
    rdma->channel = rdma_create_event_channel();
 | 
						|
    if (!rdma->channel) {
 | 
						|
        ERROR(errp, "could not create CM channel");
 | 
						|
        return -EINVAL;
 | 
						|
    }
 | 
						|
 | 
						|
    /* create CM id */
 | 
						|
    ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
 | 
						|
    if (ret) {
 | 
						|
        ERROR(errp, "could not create channel id");
 | 
						|
        goto err_resolve_create_id;
 | 
						|
    }
 | 
						|
 | 
						|
    snprintf(port_str, 16, "%d", rdma->port);
 | 
						|
    port_str[15] = '\0';
 | 
						|
 | 
						|
    ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
 | 
						|
    if (ret < 0) {
 | 
						|
        ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
 | 
						|
        goto err_resolve_get_addr;
 | 
						|
    }
 | 
						|
 | 
						|
    for (e = res; e != NULL; e = e->ai_next) {
 | 
						|
        inet_ntop(e->ai_family,
 | 
						|
            &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
 | 
						|
        DPRINTF("Trying %s => %s\n", rdma->host, ip);
 | 
						|
 | 
						|
        ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
 | 
						|
                RDMA_RESOLVE_TIMEOUT_MS);
 | 
						|
        if (!ret) {
 | 
						|
            if (e->ai_family == AF_INET6) {
 | 
						|
                ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
 | 
						|
                if (ret) {
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            goto route;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    ERROR(errp, "could not resolve address %s", rdma->host);
 | 
						|
    goto err_resolve_get_addr;
 | 
						|
 | 
						|
route:
 | 
						|
    qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
 | 
						|
 | 
						|
    ret = rdma_get_cm_event(rdma->channel, &cm_event);
 | 
						|
    if (ret) {
 | 
						|
        ERROR(errp, "could not perform event_addr_resolved");
 | 
						|
        goto err_resolve_get_addr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
 | 
						|
        ERROR(errp, "result not equal to event_addr_resolved %s",
 | 
						|
                rdma_event_str(cm_event->event));
 | 
						|
        perror("rdma_resolve_addr");
 | 
						|
        ret = -EINVAL;
 | 
						|
        goto err_resolve_get_addr;
 | 
						|
    }
 | 
						|
    rdma_ack_cm_event(cm_event);
 | 
						|
 | 
						|
    /* resolve route */
 | 
						|
    ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
 | 
						|
    if (ret) {
 | 
						|
        ERROR(errp, "could not resolve rdma route");
 | 
						|
        goto err_resolve_get_addr;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = rdma_get_cm_event(rdma->channel, &cm_event);
 | 
						|
    if (ret) {
 | 
						|
        ERROR(errp, "could not perform event_route_resolved");
 | 
						|
        goto err_resolve_get_addr;
 | 
						|
    }
 | 
						|
    if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
 | 
						|
        ERROR(errp, "result not equal to event_route_resolved: %s",
 | 
						|
                        rdma_event_str(cm_event->event));
 | 
						|
        rdma_ack_cm_event(cm_event);
 | 
						|
        ret = -EINVAL;
 | 
						|
        goto err_resolve_get_addr;
 | 
						|
    }
 | 
						|
    rdma_ack_cm_event(cm_event);
 | 
						|
    rdma->verbs = rdma->cm_id->verbs;
 | 
						|
    qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
 | 
						|
    qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
 | 
						|
    return 0;
 | 
						|
 | 
						|
err_resolve_get_addr:
 | 
						|
    rdma_destroy_id(rdma->cm_id);
 | 
						|
    rdma->cm_id = NULL;
 | 
						|
err_resolve_create_id:
 | 
						|
    rdma_destroy_event_channel(rdma->channel);
 | 
						|
    rdma->channel = NULL;
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Create protection domain and completion queues
 | 
						|
 */
 | 
						|
static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
 | 
						|
{
 | 
						|
    /* allocate pd */
 | 
						|
    rdma->pd = ibv_alloc_pd(rdma->verbs);
 | 
						|
    if (!rdma->pd) {
 | 
						|
        fprintf(stderr, "failed to allocate protection domain\n");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* create completion channel */
 | 
						|
    rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
 | 
						|
    if (!rdma->comp_channel) {
 | 
						|
        fprintf(stderr, "failed to allocate completion channel\n");
 | 
						|
        goto err_alloc_pd_cq;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Completion queue can be filled by both read and write work requests,
 | 
						|
     * so must reflect the sum of both possible queue sizes.
 | 
						|
     */
 | 
						|
    rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
 | 
						|
            NULL, rdma->comp_channel, 0);
 | 
						|
    if (!rdma->cq) {
 | 
						|
        fprintf(stderr, "failed to allocate completion queue\n");
 | 
						|
        goto err_alloc_pd_cq;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
err_alloc_pd_cq:
 | 
						|
    if (rdma->pd) {
 | 
						|
        ibv_dealloc_pd(rdma->pd);
 | 
						|
    }
 | 
						|
    if (rdma->comp_channel) {
 | 
						|
        ibv_destroy_comp_channel(rdma->comp_channel);
 | 
						|
    }
 | 
						|
    rdma->pd = NULL;
 | 
						|
    rdma->comp_channel = NULL;
 | 
						|
    return -1;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Create queue pairs.
 | 
						|
 */
 | 
						|
static int qemu_rdma_alloc_qp(RDMAContext *rdma)
 | 
						|
{
 | 
						|
    struct ibv_qp_init_attr attr = { 0 };
 | 
						|
    int ret;
 | 
						|
 | 
						|
    attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
 | 
						|
    attr.cap.max_recv_wr = 3;
 | 
						|
    attr.cap.max_send_sge = 1;
 | 
						|
    attr.cap.max_recv_sge = 1;
 | 
						|
    attr.send_cq = rdma->cq;
 | 
						|
    attr.recv_cq = rdma->cq;
 | 
						|
    attr.qp_type = IBV_QPT_RC;
 | 
						|
 | 
						|
    ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
 | 
						|
    if (ret) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    rdma->qp = rdma->cm_id->qp;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 | 
						|
 | 
						|
    for (i = 0; i < local->nb_blocks; i++) {
 | 
						|
        local->block[i].mr =
 | 
						|
            ibv_reg_mr(rdma->pd,
 | 
						|
                    local->block[i].local_host_addr,
 | 
						|
                    local->block[i].length,
 | 
						|
                    IBV_ACCESS_LOCAL_WRITE |
 | 
						|
                    IBV_ACCESS_REMOTE_WRITE
 | 
						|
                    );
 | 
						|
        if (!local->block[i].mr) {
 | 
						|
            perror("Failed to register local dest ram block!\n");
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        rdma->total_registrations++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (i >= local->nb_blocks) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i--; i >= 0; i--) {
 | 
						|
        ibv_dereg_mr(local->block[i].mr);
 | 
						|
        rdma->total_registrations--;
 | 
						|
    }
 | 
						|
 | 
						|
    return -1;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find the ram block that corresponds to the page requested to be
 | 
						|
 * transmitted by QEMU.
 | 
						|
 *
 | 
						|
 * Once the block is found, also identify which 'chunk' within that
 | 
						|
 * block that the page belongs to.
 | 
						|
 *
 | 
						|
 * This search cannot fail or the migration will fail.
 | 
						|
 */
 | 
						|
static int qemu_rdma_search_ram_block(RDMAContext *rdma,
 | 
						|
                                      uint64_t block_offset,
 | 
						|
                                      uint64_t offset,
 | 
						|
                                      uint64_t length,
 | 
						|
                                      uint64_t *block_index,
 | 
						|
                                      uint64_t *chunk_index)
 | 
						|
{
 | 
						|
    uint64_t current_addr = block_offset + offset;
 | 
						|
    RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
 | 
						|
                                                (void *) block_offset);
 | 
						|
    assert(block);
 | 
						|
    assert(current_addr >= block->offset);
 | 
						|
    assert((current_addr + length) <= (block->offset + block->length));
 | 
						|
 | 
						|
    *block_index = block->index;
 | 
						|
    *chunk_index = ram_chunk_index(block->local_host_addr,
 | 
						|
                block->local_host_addr + (current_addr - block->offset));
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Register a chunk with IB. If the chunk was already registered
 | 
						|
 * previously, then skip.
 | 
						|
 *
 | 
						|
 * Also return the keys associated with the registration needed
 | 
						|
 * to perform the actual RDMA operation.
 | 
						|
 */
 | 
						|
static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
 | 
						|
        RDMALocalBlock *block, uint8_t *host_addr,
 | 
						|
        uint32_t *lkey, uint32_t *rkey, int chunk,
 | 
						|
        uint8_t *chunk_start, uint8_t *chunk_end)
 | 
						|
{
 | 
						|
    if (block->mr) {
 | 
						|
        if (lkey) {
 | 
						|
            *lkey = block->mr->lkey;
 | 
						|
        }
 | 
						|
        if (rkey) {
 | 
						|
            *rkey = block->mr->rkey;
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* allocate memory to store chunk MRs */
 | 
						|
    if (!block->pmr) {
 | 
						|
        block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
 | 
						|
        if (!block->pmr) {
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * If 'rkey', then we're the destination, so grant access to the source.
 | 
						|
     *
 | 
						|
     * If 'lkey', then we're the source VM, so grant access only to ourselves.
 | 
						|
     */
 | 
						|
    if (!block->pmr[chunk]) {
 | 
						|
        uint64_t len = chunk_end - chunk_start;
 | 
						|
 | 
						|
        DDPRINTF("Registering %" PRIu64 " bytes @ %p\n",
 | 
						|
                 len, chunk_start);
 | 
						|
 | 
						|
        block->pmr[chunk] = ibv_reg_mr(rdma->pd,
 | 
						|
                chunk_start, len,
 | 
						|
                (rkey ? (IBV_ACCESS_LOCAL_WRITE |
 | 
						|
                        IBV_ACCESS_REMOTE_WRITE) : 0));
 | 
						|
 | 
						|
        if (!block->pmr[chunk]) {
 | 
						|
            perror("Failed to register chunk!");
 | 
						|
            fprintf(stderr, "Chunk details: block: %d chunk index %d"
 | 
						|
                            " start %" PRIu64 " end %" PRIu64 " host %" PRIu64
 | 
						|
                            " local %" PRIu64 " registrations: %d\n",
 | 
						|
                            block->index, chunk, (uint64_t) chunk_start,
 | 
						|
                            (uint64_t) chunk_end, (uint64_t) host_addr,
 | 
						|
                            (uint64_t) block->local_host_addr,
 | 
						|
                            rdma->total_registrations);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        rdma->total_registrations++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lkey) {
 | 
						|
        *lkey = block->pmr[chunk]->lkey;
 | 
						|
    }
 | 
						|
    if (rkey) {
 | 
						|
        *rkey = block->pmr[chunk]->rkey;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Register (at connection time) the memory used for control
 | 
						|
 * channel messages.
 | 
						|
 */
 | 
						|
static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
 | 
						|
{
 | 
						|
    rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
 | 
						|
            rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
 | 
						|
            IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
 | 
						|
    if (rdma->wr_data[idx].control_mr) {
 | 
						|
        rdma->total_registrations++;
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    fprintf(stderr, "qemu_rdma_reg_control failed!\n");
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
const char *print_wrid(int wrid)
 | 
						|
{
 | 
						|
    if (wrid >= RDMA_WRID_RECV_CONTROL) {
 | 
						|
        return wrid_desc[RDMA_WRID_RECV_CONTROL];
 | 
						|
    }
 | 
						|
    return wrid_desc[wrid];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * RDMA requires memory registration (mlock/pinning), but this is not good for
 | 
						|
 * overcommitment.
 | 
						|
 *
 | 
						|
 * In preparation for the future where LRU information or workload-specific
 | 
						|
 * writable writable working set memory access behavior is available to QEMU
 | 
						|
 * it would be nice to have in place the ability to UN-register/UN-pin
 | 
						|
 * particular memory regions from the RDMA hardware when it is determine that
 | 
						|
 * those regions of memory will likely not be accessed again in the near future.
 | 
						|
 *
 | 
						|
 * While we do not yet have such information right now, the following
 | 
						|
 * compile-time option allows us to perform a non-optimized version of this
 | 
						|
 * behavior.
 | 
						|
 *
 | 
						|
 * By uncommenting this option, you will cause *all* RDMA transfers to be
 | 
						|
 * unregistered immediately after the transfer completes on both sides of the
 | 
						|
 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
 | 
						|
 *
 | 
						|
 * This will have a terrible impact on migration performance, so until future
 | 
						|
 * workload information or LRU information is available, do not attempt to use
 | 
						|
 * this feature except for basic testing.
 | 
						|
 */
 | 
						|
//#define RDMA_UNREGISTRATION_EXAMPLE
 | 
						|
 | 
						|
/*
 | 
						|
 * Perform a non-optimized memory unregistration after every transfer
 | 
						|
 * for demonsration purposes, only if pin-all is not requested.
 | 
						|
 *
 | 
						|
 * Potential optimizations:
 | 
						|
 * 1. Start a new thread to run this function continuously
 | 
						|
        - for bit clearing
 | 
						|
        - and for receipt of unregister messages
 | 
						|
 * 2. Use an LRU.
 | 
						|
 * 3. Use workload hints.
 | 
						|
 */
 | 
						|
static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
 | 
						|
{
 | 
						|
    while (rdma->unregistrations[rdma->unregister_current]) {
 | 
						|
        int ret;
 | 
						|
        uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
 | 
						|
        uint64_t chunk =
 | 
						|
            (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
 | 
						|
        uint64_t index =
 | 
						|
            (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
 | 
						|
        RDMALocalBlock *block =
 | 
						|
            &(rdma->local_ram_blocks.block[index]);
 | 
						|
        RDMARegister reg = { .current_index = index };
 | 
						|
        RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
 | 
						|
                                 };
 | 
						|
        RDMAControlHeader head = { .len = sizeof(RDMARegister),
 | 
						|
                                   .type = RDMA_CONTROL_UNREGISTER_REQUEST,
 | 
						|
                                   .repeat = 1,
 | 
						|
                                 };
 | 
						|
 | 
						|
        DDPRINTF("Processing unregister for chunk: %" PRIu64
 | 
						|
                 " at position %d\n", chunk, rdma->unregister_current);
 | 
						|
 | 
						|
        rdma->unregistrations[rdma->unregister_current] = 0;
 | 
						|
        rdma->unregister_current++;
 | 
						|
 | 
						|
        if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
 | 
						|
            rdma->unregister_current = 0;
 | 
						|
        }
 | 
						|
 | 
						|
 | 
						|
        /*
 | 
						|
         * Unregistration is speculative (because migration is single-threaded
 | 
						|
         * and we cannot break the protocol's inifinband message ordering).
 | 
						|
         * Thus, if the memory is currently being used for transmission,
 | 
						|
         * then abort the attempt to unregister and try again
 | 
						|
         * later the next time a completion is received for this memory.
 | 
						|
         */
 | 
						|
        clear_bit(chunk, block->unregister_bitmap);
 | 
						|
 | 
						|
        if (test_bit(chunk, block->transit_bitmap)) {
 | 
						|
            DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk);
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk);
 | 
						|
 | 
						|
        ret = ibv_dereg_mr(block->pmr[chunk]);
 | 
						|
        block->pmr[chunk] = NULL;
 | 
						|
        block->remote_keys[chunk] = 0;
 | 
						|
 | 
						|
        if (ret != 0) {
 | 
						|
            perror("unregistration chunk failed");
 | 
						|
            return -ret;
 | 
						|
        }
 | 
						|
        rdma->total_registrations--;
 | 
						|
 | 
						|
        reg.key.chunk = chunk;
 | 
						|
        register_to_network(®);
 | 
						|
        ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®,
 | 
						|
                                &resp, NULL, NULL);
 | 
						|
        if (ret < 0) {
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
 | 
						|
        DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
 | 
						|
                                         uint64_t chunk)
 | 
						|
{
 | 
						|
    uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
 | 
						|
 | 
						|
    result |= (index << RDMA_WRID_BLOCK_SHIFT);
 | 
						|
    result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set bit for unregistration in the next iteration.
 | 
						|
 * We cannot transmit right here, but will unpin later.
 | 
						|
 */
 | 
						|
static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
 | 
						|
                                        uint64_t chunk, uint64_t wr_id)
 | 
						|
{
 | 
						|
    if (rdma->unregistrations[rdma->unregister_next] != 0) {
 | 
						|
        fprintf(stderr, "rdma migration: queue is full!\n");
 | 
						|
    } else {
 | 
						|
        RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
 | 
						|
 | 
						|
        if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
 | 
						|
            DDPRINTF("Appending unregister chunk %" PRIu64
 | 
						|
                    " at position %d\n", chunk, rdma->unregister_next);
 | 
						|
 | 
						|
            rdma->unregistrations[rdma->unregister_next++] =
 | 
						|
                    qemu_rdma_make_wrid(wr_id, index, chunk);
 | 
						|
 | 
						|
            if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
 | 
						|
                rdma->unregister_next = 0;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n",
 | 
						|
                    chunk);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Consult the connection manager to see a work request
 | 
						|
 * (of any kind) has completed.
 | 
						|
 * Return the work request ID that completed.
 | 
						|
 */
 | 
						|
static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
 | 
						|
                               uint32_t *byte_len)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    struct ibv_wc wc;
 | 
						|
    uint64_t wr_id;
 | 
						|
 | 
						|
    ret = ibv_poll_cq(rdma->cq, 1, &wc);
 | 
						|
 | 
						|
    if (!ret) {
 | 
						|
        *wr_id_out = RDMA_WRID_NONE;
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ret < 0) {
 | 
						|
        fprintf(stderr, "ibv_poll_cq return %d!\n", ret);
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
 | 
						|
 | 
						|
    if (wc.status != IBV_WC_SUCCESS) {
 | 
						|
        fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
 | 
						|
                        wc.status, ibv_wc_status_str(wc.status));
 | 
						|
        fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
 | 
						|
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (rdma->control_ready_expected &&
 | 
						|
        (wr_id >= RDMA_WRID_RECV_CONTROL)) {
 | 
						|
        DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")"
 | 
						|
                  " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL],
 | 
						|
                  wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
 | 
						|
        rdma->control_ready_expected = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (wr_id == RDMA_WRID_RDMA_WRITE) {
 | 
						|
        uint64_t chunk =
 | 
						|
            (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
 | 
						|
        uint64_t index =
 | 
						|
            (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
 | 
						|
        RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
 | 
						|
 | 
						|
        DDDPRINTF("completions %s (%" PRId64 ") left %d, "
 | 
						|
                 "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n",
 | 
						|
                 print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk,
 | 
						|
                 block->local_host_addr, (void *)block->remote_host_addr);
 | 
						|
 | 
						|
        clear_bit(chunk, block->transit_bitmap);
 | 
						|
 | 
						|
        if (rdma->nb_sent > 0) {
 | 
						|
            rdma->nb_sent--;
 | 
						|
        }
 | 
						|
 | 
						|
        if (!rdma->pin_all) {
 | 
						|
            /*
 | 
						|
             * FYI: If one wanted to signal a specific chunk to be unregistered
 | 
						|
             * using LRU or workload-specific information, this is the function
 | 
						|
             * you would call to do so. That chunk would then get asynchronously
 | 
						|
             * unregistered later.
 | 
						|
             */
 | 
						|
#ifdef RDMA_UNREGISTRATION_EXAMPLE
 | 
						|
            qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
 | 
						|
#endif
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n",
 | 
						|
            print_wrid(wr_id), wr_id, rdma->nb_sent);
 | 
						|
    }
 | 
						|
 | 
						|
    *wr_id_out = wc.wr_id;
 | 
						|
    if (byte_len) {
 | 
						|
        *byte_len = wc.byte_len;
 | 
						|
    }
 | 
						|
 | 
						|
    return  0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Block until the next work request has completed.
 | 
						|
 *
 | 
						|
 * First poll to see if a work request has already completed,
 | 
						|
 * otherwise block.
 | 
						|
 *
 | 
						|
 * If we encounter completed work requests for IDs other than
 | 
						|
 * the one we're interested in, then that's generally an error.
 | 
						|
 *
 | 
						|
 * The only exception is actual RDMA Write completions. These
 | 
						|
 * completions only need to be recorded, but do not actually
 | 
						|
 * need further processing.
 | 
						|
 */
 | 
						|
static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
 | 
						|
                                    uint32_t *byte_len)
 | 
						|
{
 | 
						|
    int num_cq_events = 0, ret = 0;
 | 
						|
    struct ibv_cq *cq;
 | 
						|
    void *cq_ctx;
 | 
						|
    uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
 | 
						|
 | 
						|
    if (ibv_req_notify_cq(rdma->cq, 0)) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    /* poll cq first */
 | 
						|
    while (wr_id != wrid_requested) {
 | 
						|
        ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
 | 
						|
        if (ret < 0) {
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
 | 
						|
        wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
 | 
						|
 | 
						|
        if (wr_id == RDMA_WRID_NONE) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        if (wr_id != wrid_requested) {
 | 
						|
            DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
 | 
						|
                print_wrid(wrid_requested),
 | 
						|
                wrid_requested, print_wrid(wr_id), wr_id);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (wr_id == wrid_requested) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    while (1) {
 | 
						|
        /*
 | 
						|
         * Coroutine doesn't start until process_incoming_migration()
 | 
						|
         * so don't yield unless we know we're running inside of a coroutine.
 | 
						|
         */
 | 
						|
        if (rdma->migration_started_on_destination) {
 | 
						|
            yield_until_fd_readable(rdma->comp_channel->fd);
 | 
						|
        }
 | 
						|
 | 
						|
        if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
 | 
						|
            perror("ibv_get_cq_event");
 | 
						|
            goto err_block_for_wrid;
 | 
						|
        }
 | 
						|
 | 
						|
        num_cq_events++;
 | 
						|
 | 
						|
        if (ibv_req_notify_cq(cq, 0)) {
 | 
						|
            goto err_block_for_wrid;
 | 
						|
        }
 | 
						|
 | 
						|
        while (wr_id != wrid_requested) {
 | 
						|
            ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
 | 
						|
            if (ret < 0) {
 | 
						|
                goto err_block_for_wrid;
 | 
						|
            }
 | 
						|
 | 
						|
            wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
 | 
						|
 | 
						|
            if (wr_id == RDMA_WRID_NONE) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            if (wr_id != wrid_requested) {
 | 
						|
                DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
 | 
						|
                    print_wrid(wrid_requested), wrid_requested,
 | 
						|
                    print_wrid(wr_id), wr_id);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (wr_id == wrid_requested) {
 | 
						|
            goto success_block_for_wrid;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
success_block_for_wrid:
 | 
						|
    if (num_cq_events) {
 | 
						|
        ibv_ack_cq_events(cq, num_cq_events);
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
 | 
						|
err_block_for_wrid:
 | 
						|
    if (num_cq_events) {
 | 
						|
        ibv_ack_cq_events(cq, num_cq_events);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Post a SEND message work request for the control channel
 | 
						|
 * containing some data and block until the post completes.
 | 
						|
 */
 | 
						|
static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
 | 
						|
                                       RDMAControlHeader *head)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
 | 
						|
    struct ibv_send_wr *bad_wr;
 | 
						|
    struct ibv_sge sge = {
 | 
						|
                           .addr = (uint64_t)(wr->control),
 | 
						|
                           .length = head->len + sizeof(RDMAControlHeader),
 | 
						|
                           .lkey = wr->control_mr->lkey,
 | 
						|
                         };
 | 
						|
    struct ibv_send_wr send_wr = {
 | 
						|
                                   .wr_id = RDMA_WRID_SEND_CONTROL,
 | 
						|
                                   .opcode = IBV_WR_SEND,
 | 
						|
                                   .send_flags = IBV_SEND_SIGNALED,
 | 
						|
                                   .sg_list = &sge,
 | 
						|
                                   .num_sge = 1,
 | 
						|
                                };
 | 
						|
 | 
						|
    DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]);
 | 
						|
 | 
						|
    /*
 | 
						|
     * We don't actually need to do a memcpy() in here if we used
 | 
						|
     * the "sge" properly, but since we're only sending control messages
 | 
						|
     * (not RAM in a performance-critical path), then its OK for now.
 | 
						|
     *
 | 
						|
     * The copy makes the RDMAControlHeader simpler to manipulate
 | 
						|
     * for the time being.
 | 
						|
     */
 | 
						|
    assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
 | 
						|
    memcpy(wr->control, head, sizeof(RDMAControlHeader));
 | 
						|
    control_to_network((void *) wr->control);
 | 
						|
 | 
						|
    if (buf) {
 | 
						|
        memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    if (ibv_post_send(rdma->qp, &send_wr, &bad_wr)) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ret < 0) {
 | 
						|
        fprintf(stderr, "Failed to use post IB SEND for control!\n");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
 | 
						|
    if (ret < 0) {
 | 
						|
        fprintf(stderr, "rdma migration: send polling control error!\n");
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Post a RECV work request in anticipation of some future receipt
 | 
						|
 * of data on the control channel.
 | 
						|
 */
 | 
						|
static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
 | 
						|
{
 | 
						|
    struct ibv_recv_wr *bad_wr;
 | 
						|
    struct ibv_sge sge = {
 | 
						|
                            .addr = (uint64_t)(rdma->wr_data[idx].control),
 | 
						|
                            .length = RDMA_CONTROL_MAX_BUFFER,
 | 
						|
                            .lkey = rdma->wr_data[idx].control_mr->lkey,
 | 
						|
                         };
 | 
						|
 | 
						|
    struct ibv_recv_wr recv_wr = {
 | 
						|
                                    .wr_id = RDMA_WRID_RECV_CONTROL + idx,
 | 
						|
                                    .sg_list = &sge,
 | 
						|
                                    .num_sge = 1,
 | 
						|
                                 };
 | 
						|
 | 
						|
 | 
						|
    if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Block and wait for a RECV control channel message to arrive.
 | 
						|
 */
 | 
						|
static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
 | 
						|
                RDMAControlHeader *head, int expecting, int idx)
 | 
						|
{
 | 
						|
    uint32_t byte_len;
 | 
						|
    int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
 | 
						|
                                       &byte_len);
 | 
						|
 | 
						|
    if (ret < 0) {
 | 
						|
        fprintf(stderr, "rdma migration: recv polling control error!\n");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    network_to_control((void *) rdma->wr_data[idx].control);
 | 
						|
    memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
 | 
						|
 | 
						|
    DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]);
 | 
						|
 | 
						|
    if (expecting == RDMA_CONTROL_NONE) {
 | 
						|
        DDDPRINTF("Surprise: got %s (%d)\n",
 | 
						|
                  control_desc[head->type], head->type);
 | 
						|
    } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
 | 
						|
        fprintf(stderr, "Was expecting a %s (%d) control message"
 | 
						|
                ", but got: %s (%d), length: %d\n",
 | 
						|
                control_desc[expecting], expecting,
 | 
						|
                control_desc[head->type], head->type, head->len);
 | 
						|
        return -EIO;
 | 
						|
    }
 | 
						|
    if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
 | 
						|
        fprintf(stderr, "too long length: %d\n", head->len);
 | 
						|
        return -EINVAL;
 | 
						|
    }
 | 
						|
    if (sizeof(*head) + head->len != byte_len) {
 | 
						|
        fprintf(stderr, "Malformed length: %d byte_len %d\n",
 | 
						|
                head->len, byte_len);
 | 
						|
        return -EINVAL;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * When a RECV work request has completed, the work request's
 | 
						|
 * buffer is pointed at the header.
 | 
						|
 *
 | 
						|
 * This will advance the pointer to the data portion
 | 
						|
 * of the control message of the work request's buffer that
 | 
						|
 * was populated after the work request finished.
 | 
						|
 */
 | 
						|
static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
 | 
						|
                                  RDMAControlHeader *head)
 | 
						|
{
 | 
						|
    rdma->wr_data[idx].control_len = head->len;
 | 
						|
    rdma->wr_data[idx].control_curr =
 | 
						|
        rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is an 'atomic' high-level operation to deliver a single, unified
 | 
						|
 * control-channel message.
 | 
						|
 *
 | 
						|
 * Additionally, if the user is expecting some kind of reply to this message,
 | 
						|
 * they can request a 'resp' response message be filled in by posting an
 | 
						|
 * additional work request on behalf of the user and waiting for an additional
 | 
						|
 * completion.
 | 
						|
 *
 | 
						|
 * The extra (optional) response is used during registration to us from having
 | 
						|
 * to perform an *additional* exchange of message just to provide a response by
 | 
						|
 * instead piggy-backing on the acknowledgement.
 | 
						|
 */
 | 
						|
static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
 | 
						|
                                   uint8_t *data, RDMAControlHeader *resp,
 | 
						|
                                   int *resp_idx,
 | 
						|
                                   int (*callback)(RDMAContext *rdma))
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Wait until the dest is ready before attempting to deliver the message
 | 
						|
     * by waiting for a READY message.
 | 
						|
     */
 | 
						|
    if (rdma->control_ready_expected) {
 | 
						|
        RDMAControlHeader resp;
 | 
						|
        ret = qemu_rdma_exchange_get_response(rdma,
 | 
						|
                                    &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
 | 
						|
        if (ret < 0) {
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * If the user is expecting a response, post a WR in anticipation of it.
 | 
						|
     */
 | 
						|
    if (resp) {
 | 
						|
        ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
 | 
						|
        if (ret) {
 | 
						|
            fprintf(stderr, "rdma migration: error posting"
 | 
						|
                    " extra control recv for anticipated result!");
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Post a WR to replace the one we just consumed for the READY message.
 | 
						|
     */
 | 
						|
    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
 | 
						|
    if (ret) {
 | 
						|
        fprintf(stderr, "rdma migration: error posting first control recv!");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Deliver the control message that was requested.
 | 
						|
     */
 | 
						|
    ret = qemu_rdma_post_send_control(rdma, data, head);
 | 
						|
 | 
						|
    if (ret < 0) {
 | 
						|
        fprintf(stderr, "Failed to send control buffer!\n");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * If we're expecting a response, block and wait for it.
 | 
						|
     */
 | 
						|
    if (resp) {
 | 
						|
        if (callback) {
 | 
						|
            DDPRINTF("Issuing callback before receiving response...\n");
 | 
						|
            ret = callback(rdma);
 | 
						|
            if (ret < 0) {
 | 
						|
                return ret;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        DDPRINTF("Waiting for response %s\n", control_desc[resp->type]);
 | 
						|
        ret = qemu_rdma_exchange_get_response(rdma, resp,
 | 
						|
                                              resp->type, RDMA_WRID_DATA);
 | 
						|
 | 
						|
        if (ret < 0) {
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
 | 
						|
        qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
 | 
						|
        if (resp_idx) {
 | 
						|
            *resp_idx = RDMA_WRID_DATA;
 | 
						|
        }
 | 
						|
        DDPRINTF("Response %s received.\n", control_desc[resp->type]);
 | 
						|
    }
 | 
						|
 | 
						|
    rdma->control_ready_expected = 1;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is an 'atomic' high-level operation to receive a single, unified
 | 
						|
 * control-channel message.
 | 
						|
 */
 | 
						|
static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
 | 
						|
                                int expecting)
 | 
						|
{
 | 
						|
    RDMAControlHeader ready = {
 | 
						|
                                .len = 0,
 | 
						|
                                .type = RDMA_CONTROL_READY,
 | 
						|
                                .repeat = 1,
 | 
						|
                              };
 | 
						|
    int ret;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Inform the source that we're ready to receive a message.
 | 
						|
     */
 | 
						|
    ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
 | 
						|
 | 
						|
    if (ret < 0) {
 | 
						|
        fprintf(stderr, "Failed to send control buffer!\n");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Block and wait for the message.
 | 
						|
     */
 | 
						|
    ret = qemu_rdma_exchange_get_response(rdma, head,
 | 
						|
                                          expecting, RDMA_WRID_READY);
 | 
						|
 | 
						|
    if (ret < 0) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Post a new RECV work request to replace the one we just consumed.
 | 
						|
     */
 | 
						|
    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
 | 
						|
    if (ret) {
 | 
						|
        fprintf(stderr, "rdma migration: error posting second control recv!");
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Write an actual chunk of memory using RDMA.
 | 
						|
 *
 | 
						|
 * If we're using dynamic registration on the dest-side, we have to
 | 
						|
 * send a registration command first.
 | 
						|
 */
 | 
						|
static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
 | 
						|
                               int current_index, uint64_t current_addr,
 | 
						|
                               uint64_t length)
 | 
						|
{
 | 
						|
    struct ibv_sge sge;
 | 
						|
    struct ibv_send_wr send_wr = { 0 };
 | 
						|
    struct ibv_send_wr *bad_wr;
 | 
						|
    int reg_result_idx, ret, count = 0;
 | 
						|
    uint64_t chunk, chunks;
 | 
						|
    uint8_t *chunk_start, *chunk_end;
 | 
						|
    RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
 | 
						|
    RDMARegister reg;
 | 
						|
    RDMARegisterResult *reg_result;
 | 
						|
    RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
 | 
						|
    RDMAControlHeader head = { .len = sizeof(RDMARegister),
 | 
						|
                               .type = RDMA_CONTROL_REGISTER_REQUEST,
 | 
						|
                               .repeat = 1,
 | 
						|
                             };
 | 
						|
 | 
						|
retry:
 | 
						|
    sge.addr = (uint64_t)(block->local_host_addr +
 | 
						|
                            (current_addr - block->offset));
 | 
						|
    sge.length = length;
 | 
						|
 | 
						|
    chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr);
 | 
						|
    chunk_start = ram_chunk_start(block, chunk);
 | 
						|
 | 
						|
    if (block->is_ram_block) {
 | 
						|
        chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
 | 
						|
 | 
						|
        if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
 | 
						|
            chunks--;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
 | 
						|
 | 
						|
        if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
 | 
						|
            chunks--;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n",
 | 
						|
        chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
 | 
						|
 | 
						|
    chunk_end = ram_chunk_end(block, chunk + chunks);
 | 
						|
 | 
						|
    if (!rdma->pin_all) {
 | 
						|
#ifdef RDMA_UNREGISTRATION_EXAMPLE
 | 
						|
        qemu_rdma_unregister_waiting(rdma);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    while (test_bit(chunk, block->transit_bitmap)) {
 | 
						|
        (void)count;
 | 
						|
        DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
 | 
						|
                " current %" PRIu64 " len %" PRIu64 " %d %d\n",
 | 
						|
                count++, current_index, chunk,
 | 
						|
                sge.addr, length, rdma->nb_sent, block->nb_chunks);
 | 
						|
 | 
						|
        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
 | 
						|
 | 
						|
        if (ret < 0) {
 | 
						|
            fprintf(stderr, "Failed to Wait for previous write to complete "
 | 
						|
                    "block %d chunk %" PRIu64
 | 
						|
                    " current %" PRIu64 " len %" PRIu64 " %d\n",
 | 
						|
                    current_index, chunk, sge.addr, length, rdma->nb_sent);
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!rdma->pin_all || !block->is_ram_block) {
 | 
						|
        if (!block->remote_keys[chunk]) {
 | 
						|
            /*
 | 
						|
             * This chunk has not yet been registered, so first check to see
 | 
						|
             * if the entire chunk is zero. If so, tell the other size to
 | 
						|
             * memset() + madvise() the entire chunk without RDMA.
 | 
						|
             */
 | 
						|
 | 
						|
            if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length)
 | 
						|
                   && buffer_find_nonzero_offset((void *)sge.addr,
 | 
						|
                                                    length) == length) {
 | 
						|
                RDMACompress comp = {
 | 
						|
                                        .offset = current_addr,
 | 
						|
                                        .value = 0,
 | 
						|
                                        .block_idx = current_index,
 | 
						|
                                        .length = length,
 | 
						|
                                    };
 | 
						|
 | 
						|
                head.len = sizeof(comp);
 | 
						|
                head.type = RDMA_CONTROL_COMPRESS;
 | 
						|
 | 
						|
                DDPRINTF("Entire chunk is zero, sending compress: %"
 | 
						|
                    PRIu64 " for %d "
 | 
						|
                    "bytes, index: %d, offset: %" PRId64 "...\n",
 | 
						|
                    chunk, sge.length, current_index, current_addr);
 | 
						|
 | 
						|
                compress_to_network(&comp);
 | 
						|
                ret = qemu_rdma_exchange_send(rdma, &head,
 | 
						|
                                (uint8_t *) &comp, NULL, NULL, NULL);
 | 
						|
 | 
						|
                if (ret < 0) {
 | 
						|
                    return -EIO;
 | 
						|
                }
 | 
						|
 | 
						|
                acct_update_position(f, sge.length, true);
 | 
						|
 | 
						|
                return 1;
 | 
						|
            }
 | 
						|
 | 
						|
            /*
 | 
						|
             * Otherwise, tell other side to register.
 | 
						|
             */
 | 
						|
            reg.current_index = current_index;
 | 
						|
            if (block->is_ram_block) {
 | 
						|
                reg.key.current_addr = current_addr;
 | 
						|
            } else {
 | 
						|
                reg.key.chunk = chunk;
 | 
						|
            }
 | 
						|
            reg.chunks = chunks;
 | 
						|
 | 
						|
            DDPRINTF("Sending registration request chunk %" PRIu64 " for %d "
 | 
						|
                    "bytes, index: %d, offset: %" PRId64 "...\n",
 | 
						|
                    chunk, sge.length, current_index, current_addr);
 | 
						|
 | 
						|
            register_to_network(®);
 | 
						|
            ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®,
 | 
						|
                                    &resp, ®_result_idx, NULL);
 | 
						|
            if (ret < 0) {
 | 
						|
                return ret;
 | 
						|
            }
 | 
						|
 | 
						|
            /* try to overlap this single registration with the one we sent. */
 | 
						|
            if (qemu_rdma_register_and_get_keys(rdma, block,
 | 
						|
                                                (uint8_t *) sge.addr,
 | 
						|
                                                &sge.lkey, NULL, chunk,
 | 
						|
                                                chunk_start, chunk_end)) {
 | 
						|
                fprintf(stderr, "cannot get lkey!\n");
 | 
						|
                return -EINVAL;
 | 
						|
            }
 | 
						|
 | 
						|
            reg_result = (RDMARegisterResult *)
 | 
						|
                    rdma->wr_data[reg_result_idx].control_curr;
 | 
						|
 | 
						|
            network_to_result(reg_result);
 | 
						|
 | 
						|
            DDPRINTF("Received registration result:"
 | 
						|
                    " my key: %x their key %x, chunk %" PRIu64 "\n",
 | 
						|
                    block->remote_keys[chunk], reg_result->rkey, chunk);
 | 
						|
 | 
						|
            block->remote_keys[chunk] = reg_result->rkey;
 | 
						|
            block->remote_host_addr = reg_result->host_addr;
 | 
						|
        } else {
 | 
						|
            /* already registered before */
 | 
						|
            if (qemu_rdma_register_and_get_keys(rdma, block,
 | 
						|
                                                (uint8_t *)sge.addr,
 | 
						|
                                                &sge.lkey, NULL, chunk,
 | 
						|
                                                chunk_start, chunk_end)) {
 | 
						|
                fprintf(stderr, "cannot get lkey!\n");
 | 
						|
                return -EINVAL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        send_wr.wr.rdma.rkey = block->remote_keys[chunk];
 | 
						|
    } else {
 | 
						|
        send_wr.wr.rdma.rkey = block->remote_rkey;
 | 
						|
 | 
						|
        if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr,
 | 
						|
                                                     &sge.lkey, NULL, chunk,
 | 
						|
                                                     chunk_start, chunk_end)) {
 | 
						|
            fprintf(stderr, "cannot get lkey!\n");
 | 
						|
            return -EINVAL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Encode the ram block index and chunk within this wrid.
 | 
						|
     * We will use this information at the time of completion
 | 
						|
     * to figure out which bitmap to check against and then which
 | 
						|
     * chunk in the bitmap to look for.
 | 
						|
     */
 | 
						|
    send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
 | 
						|
                                        current_index, chunk);
 | 
						|
 | 
						|
    send_wr.opcode = IBV_WR_RDMA_WRITE;
 | 
						|
    send_wr.send_flags = IBV_SEND_SIGNALED;
 | 
						|
    send_wr.sg_list = &sge;
 | 
						|
    send_wr.num_sge = 1;
 | 
						|
    send_wr.wr.rdma.remote_addr = block->remote_host_addr +
 | 
						|
                                (current_addr - block->offset);
 | 
						|
 | 
						|
    DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx"
 | 
						|
              " remote: %lx, bytes %" PRIu32 "\n",
 | 
						|
              chunk, sge.addr, send_wr.wr.rdma.remote_addr,
 | 
						|
              sge.length);
 | 
						|
 | 
						|
    /*
 | 
						|
     * ibv_post_send() does not return negative error numbers,
 | 
						|
     * per the specification they are positive - no idea why.
 | 
						|
     */
 | 
						|
    ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
 | 
						|
 | 
						|
    if (ret == ENOMEM) {
 | 
						|
        DDPRINTF("send queue is full. wait a little....\n");
 | 
						|
        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
 | 
						|
        if (ret < 0) {
 | 
						|
            fprintf(stderr, "rdma migration: failed to make "
 | 
						|
                            "room in full send queue! %d\n", ret);
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
 | 
						|
        goto retry;
 | 
						|
 | 
						|
    } else if (ret > 0) {
 | 
						|
        perror("rdma migration: post rdma write failed");
 | 
						|
        return -ret;
 | 
						|
    }
 | 
						|
 | 
						|
    set_bit(chunk, block->transit_bitmap);
 | 
						|
    acct_update_position(f, sge.length, false);
 | 
						|
    rdma->total_writes++;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Push out any unwritten RDMA operations.
 | 
						|
 *
 | 
						|
 * We support sending out multiple chunks at the same time.
 | 
						|
 * Not all of them need to get signaled in the completion queue.
 | 
						|
 */
 | 
						|
static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
 | 
						|
    if (!rdma->current_length) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = qemu_rdma_write_one(f, rdma,
 | 
						|
            rdma->current_index, rdma->current_addr, rdma->current_length);
 | 
						|
 | 
						|
    if (ret < 0) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ret == 0) {
 | 
						|
        rdma->nb_sent++;
 | 
						|
        DDDPRINTF("sent total: %d\n", rdma->nb_sent);
 | 
						|
    }
 | 
						|
 | 
						|
    rdma->current_length = 0;
 | 
						|
    rdma->current_addr = 0;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
 | 
						|
                    uint64_t offset, uint64_t len)
 | 
						|
{
 | 
						|
    RDMALocalBlock *block;
 | 
						|
    uint8_t *host_addr;
 | 
						|
    uint8_t *chunk_end;
 | 
						|
 | 
						|
    if (rdma->current_index < 0) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (rdma->current_chunk < 0) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    block = &(rdma->local_ram_blocks.block[rdma->current_index]);
 | 
						|
    host_addr = block->local_host_addr + (offset - block->offset);
 | 
						|
    chunk_end = ram_chunk_end(block, rdma->current_chunk);
 | 
						|
 | 
						|
    if (rdma->current_length == 0) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Only merge into chunk sequentially.
 | 
						|
     */
 | 
						|
    if (offset != (rdma->current_addr + rdma->current_length)) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (offset < block->offset) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((offset + len) > (block->offset + block->length)) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((host_addr + len) > chunk_end) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We're not actually writing here, but doing three things:
 | 
						|
 *
 | 
						|
 * 1. Identify the chunk the buffer belongs to.
 | 
						|
 * 2. If the chunk is full or the buffer doesn't belong to the current
 | 
						|
 *    chunk, then start a new chunk and flush() the old chunk.
 | 
						|
 * 3. To keep the hardware busy, we also group chunks into batches
 | 
						|
 *    and only require that a batch gets acknowledged in the completion
 | 
						|
 *    qeueue instead of each individual chunk.
 | 
						|
 */
 | 
						|
static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
 | 
						|
                           uint64_t block_offset, uint64_t offset,
 | 
						|
                           uint64_t len)
 | 
						|
{
 | 
						|
    uint64_t current_addr = block_offset + offset;
 | 
						|
    uint64_t index = rdma->current_index;
 | 
						|
    uint64_t chunk = rdma->current_chunk;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    /* If we cannot merge it, we flush the current buffer first. */
 | 
						|
    if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
 | 
						|
        ret = qemu_rdma_write_flush(f, rdma);
 | 
						|
        if (ret) {
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
        rdma->current_length = 0;
 | 
						|
        rdma->current_addr = current_addr;
 | 
						|
 | 
						|
        ret = qemu_rdma_search_ram_block(rdma, block_offset,
 | 
						|
                                         offset, len, &index, &chunk);
 | 
						|
        if (ret) {
 | 
						|
            fprintf(stderr, "ram block search failed\n");
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
        rdma->current_index = index;
 | 
						|
        rdma->current_chunk = chunk;
 | 
						|
    }
 | 
						|
 | 
						|
    /* merge it */
 | 
						|
    rdma->current_length += len;
 | 
						|
 | 
						|
    /* flush it if buffer is too large */
 | 
						|
    if (rdma->current_length >= RDMA_MERGE_MAX) {
 | 
						|
        return qemu_rdma_write_flush(f, rdma);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void qemu_rdma_cleanup(RDMAContext *rdma)
 | 
						|
{
 | 
						|
    struct rdma_cm_event *cm_event;
 | 
						|
    int ret, idx;
 | 
						|
 | 
						|
    if (rdma->cm_id && rdma->connected) {
 | 
						|
        if (rdma->error_state) {
 | 
						|
            RDMAControlHeader head = { .len = 0,
 | 
						|
                                       .type = RDMA_CONTROL_ERROR,
 | 
						|
                                       .repeat = 1,
 | 
						|
                                     };
 | 
						|
            fprintf(stderr, "Early error. Sending error.\n");
 | 
						|
            qemu_rdma_post_send_control(rdma, NULL, &head);
 | 
						|
        }
 | 
						|
 | 
						|
        ret = rdma_disconnect(rdma->cm_id);
 | 
						|
        if (!ret) {
 | 
						|
            DDPRINTF("waiting for disconnect\n");
 | 
						|
            ret = rdma_get_cm_event(rdma->channel, &cm_event);
 | 
						|
            if (!ret) {
 | 
						|
                rdma_ack_cm_event(cm_event);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        DDPRINTF("Disconnected.\n");
 | 
						|
        rdma->connected = false;
 | 
						|
    }
 | 
						|
 | 
						|
    g_free(rdma->block);
 | 
						|
    rdma->block = NULL;
 | 
						|
 | 
						|
    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
 | 
						|
        if (rdma->wr_data[idx].control_mr) {
 | 
						|
            rdma->total_registrations--;
 | 
						|
            ibv_dereg_mr(rdma->wr_data[idx].control_mr);
 | 
						|
        }
 | 
						|
        rdma->wr_data[idx].control_mr = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (rdma->local_ram_blocks.block) {
 | 
						|
        while (rdma->local_ram_blocks.nb_blocks) {
 | 
						|
            __qemu_rdma_delete_block(rdma,
 | 
						|
                    rdma->local_ram_blocks.block->offset);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (rdma->qp) {
 | 
						|
        rdma_destroy_qp(rdma->cm_id);
 | 
						|
        rdma->qp = NULL;
 | 
						|
    }
 | 
						|
    if (rdma->cq) {
 | 
						|
        ibv_destroy_cq(rdma->cq);
 | 
						|
        rdma->cq = NULL;
 | 
						|
    }
 | 
						|
    if (rdma->comp_channel) {
 | 
						|
        ibv_destroy_comp_channel(rdma->comp_channel);
 | 
						|
        rdma->comp_channel = NULL;
 | 
						|
    }
 | 
						|
    if (rdma->pd) {
 | 
						|
        ibv_dealloc_pd(rdma->pd);
 | 
						|
        rdma->pd = NULL;
 | 
						|
    }
 | 
						|
    if (rdma->listen_id) {
 | 
						|
        rdma_destroy_id(rdma->listen_id);
 | 
						|
        rdma->listen_id = NULL;
 | 
						|
    }
 | 
						|
    if (rdma->cm_id) {
 | 
						|
        rdma_destroy_id(rdma->cm_id);
 | 
						|
        rdma->cm_id = NULL;
 | 
						|
    }
 | 
						|
    if (rdma->channel) {
 | 
						|
        rdma_destroy_event_channel(rdma->channel);
 | 
						|
        rdma->channel = NULL;
 | 
						|
    }
 | 
						|
    g_free(rdma->host);
 | 
						|
    rdma->host = NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
 | 
						|
{
 | 
						|
    int ret, idx;
 | 
						|
    Error *local_err = NULL, **temp = &local_err;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Will be validated against destination's actual capabilities
 | 
						|
     * after the connect() completes.
 | 
						|
     */
 | 
						|
    rdma->pin_all = pin_all;
 | 
						|
 | 
						|
    ret = qemu_rdma_resolve_host(rdma, temp);
 | 
						|
    if (ret) {
 | 
						|
        goto err_rdma_source_init;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = qemu_rdma_alloc_pd_cq(rdma);
 | 
						|
    if (ret) {
 | 
						|
        ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
 | 
						|
                    " limits may be too low. Please check $ ulimit -a # and "
 | 
						|
                    "search for 'ulimit -l' in the output");
 | 
						|
        goto err_rdma_source_init;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = qemu_rdma_alloc_qp(rdma);
 | 
						|
    if (ret) {
 | 
						|
        ERROR(temp, "rdma migration: error allocating qp!");
 | 
						|
        goto err_rdma_source_init;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = qemu_rdma_init_ram_blocks(rdma);
 | 
						|
    if (ret) {
 | 
						|
        ERROR(temp, "rdma migration: error initializing ram blocks!");
 | 
						|
        goto err_rdma_source_init;
 | 
						|
    }
 | 
						|
 | 
						|
    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
 | 
						|
        ret = qemu_rdma_reg_control(rdma, idx);
 | 
						|
        if (ret) {
 | 
						|
            ERROR(temp, "rdma migration: error registering %d control!",
 | 
						|
                                                            idx);
 | 
						|
            goto err_rdma_source_init;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
err_rdma_source_init:
 | 
						|
    error_propagate(errp, local_err);
 | 
						|
    qemu_rdma_cleanup(rdma);
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
 | 
						|
{
 | 
						|
    RDMACapabilities cap = {
 | 
						|
                                .version = RDMA_CONTROL_VERSION_CURRENT,
 | 
						|
                                .flags = 0,
 | 
						|
                           };
 | 
						|
    struct rdma_conn_param conn_param = { .initiator_depth = 2,
 | 
						|
                                          .retry_count = 5,
 | 
						|
                                          .private_data = &cap,
 | 
						|
                                          .private_data_len = sizeof(cap),
 | 
						|
                                        };
 | 
						|
    struct rdma_cm_event *cm_event;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Only negotiate the capability with destination if the user
 | 
						|
     * on the source first requested the capability.
 | 
						|
     */
 | 
						|
    if (rdma->pin_all) {
 | 
						|
        DPRINTF("Server pin-all memory requested.\n");
 | 
						|
        cap.flags |= RDMA_CAPABILITY_PIN_ALL;
 | 
						|
    }
 | 
						|
 | 
						|
    caps_to_network(&cap);
 | 
						|
 | 
						|
    ret = rdma_connect(rdma->cm_id, &conn_param);
 | 
						|
    if (ret) {
 | 
						|
        perror("rdma_connect");
 | 
						|
        ERROR(errp, "connecting to destination!");
 | 
						|
        rdma_destroy_id(rdma->cm_id);
 | 
						|
        rdma->cm_id = NULL;
 | 
						|
        goto err_rdma_source_connect;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = rdma_get_cm_event(rdma->channel, &cm_event);
 | 
						|
    if (ret) {
 | 
						|
        perror("rdma_get_cm_event after rdma_connect");
 | 
						|
        ERROR(errp, "connecting to destination!");
 | 
						|
        rdma_ack_cm_event(cm_event);
 | 
						|
        rdma_destroy_id(rdma->cm_id);
 | 
						|
        rdma->cm_id = NULL;
 | 
						|
        goto err_rdma_source_connect;
 | 
						|
    }
 | 
						|
 | 
						|
    if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
 | 
						|
        perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
 | 
						|
        ERROR(errp, "connecting to destination!");
 | 
						|
        rdma_ack_cm_event(cm_event);
 | 
						|
        rdma_destroy_id(rdma->cm_id);
 | 
						|
        rdma->cm_id = NULL;
 | 
						|
        goto err_rdma_source_connect;
 | 
						|
    }
 | 
						|
    rdma->connected = true;
 | 
						|
 | 
						|
    memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
 | 
						|
    network_to_caps(&cap);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Verify that the *requested* capabilities are supported by the destination
 | 
						|
     * and disable them otherwise.
 | 
						|
     */
 | 
						|
    if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
 | 
						|
        ERROR(errp, "Server cannot support pinning all memory. "
 | 
						|
                        "Will register memory dynamically.");
 | 
						|
        rdma->pin_all = false;
 | 
						|
    }
 | 
						|
 | 
						|
    DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled");
 | 
						|
 | 
						|
    rdma_ack_cm_event(cm_event);
 | 
						|
 | 
						|
    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
 | 
						|
    if (ret) {
 | 
						|
        ERROR(errp, "posting second control recv!");
 | 
						|
        goto err_rdma_source_connect;
 | 
						|
    }
 | 
						|
 | 
						|
    rdma->control_ready_expected = 1;
 | 
						|
    rdma->nb_sent = 0;
 | 
						|
    return 0;
 | 
						|
 | 
						|
err_rdma_source_connect:
 | 
						|
    qemu_rdma_cleanup(rdma);
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
 | 
						|
{
 | 
						|
    int ret = -EINVAL, idx;
 | 
						|
    struct rdma_cm_id *listen_id;
 | 
						|
    char ip[40] = "unknown";
 | 
						|
    struct rdma_addrinfo *res;
 | 
						|
    char port_str[16];
 | 
						|
 | 
						|
    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
 | 
						|
        rdma->wr_data[idx].control_len = 0;
 | 
						|
        rdma->wr_data[idx].control_curr = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (rdma->host == NULL) {
 | 
						|
        ERROR(errp, "RDMA host is not set!");
 | 
						|
        rdma->error_state = -EINVAL;
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    /* create CM channel */
 | 
						|
    rdma->channel = rdma_create_event_channel();
 | 
						|
    if (!rdma->channel) {
 | 
						|
        ERROR(errp, "could not create rdma event channel");
 | 
						|
        rdma->error_state = -EINVAL;
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* create CM id */
 | 
						|
    ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
 | 
						|
    if (ret) {
 | 
						|
        ERROR(errp, "could not create cm_id!");
 | 
						|
        goto err_dest_init_create_listen_id;
 | 
						|
    }
 | 
						|
 | 
						|
    snprintf(port_str, 16, "%d", rdma->port);
 | 
						|
    port_str[15] = '\0';
 | 
						|
 | 
						|
    if (rdma->host && strcmp("", rdma->host)) {
 | 
						|
        struct rdma_addrinfo *e;
 | 
						|
 | 
						|
        ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
 | 
						|
        if (ret < 0) {
 | 
						|
            ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
 | 
						|
            goto err_dest_init_bind_addr;
 | 
						|
        }
 | 
						|
 | 
						|
        for (e = res; e != NULL; e = e->ai_next) {
 | 
						|
            inet_ntop(e->ai_family,
 | 
						|
                &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
 | 
						|
            DPRINTF("Trying %s => %s\n", rdma->host, ip);
 | 
						|
            ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
 | 
						|
            if (!ret) {
 | 
						|
                if (e->ai_family == AF_INET6) {
 | 
						|
                    ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
 | 
						|
                    if (ret) {
 | 
						|
                        continue;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                    
 | 
						|
                goto listen;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        ERROR(errp, "Error: could not rdma_bind_addr!");
 | 
						|
        goto err_dest_init_bind_addr;
 | 
						|
    } else {
 | 
						|
        ERROR(errp, "migration host and port not specified!");
 | 
						|
        ret = -EINVAL;
 | 
						|
        goto err_dest_init_bind_addr;
 | 
						|
    }
 | 
						|
listen:
 | 
						|
 | 
						|
    rdma->listen_id = listen_id;
 | 
						|
    qemu_rdma_dump_gid("dest_init", listen_id);
 | 
						|
    return 0;
 | 
						|
 | 
						|
err_dest_init_bind_addr:
 | 
						|
    rdma_destroy_id(listen_id);
 | 
						|
err_dest_init_create_listen_id:
 | 
						|
    rdma_destroy_event_channel(rdma->channel);
 | 
						|
    rdma->channel = NULL;
 | 
						|
    rdma->error_state = ret;
 | 
						|
    return ret;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static void *qemu_rdma_data_init(const char *host_port, Error **errp)
 | 
						|
{
 | 
						|
    RDMAContext *rdma = NULL;
 | 
						|
    InetSocketAddress *addr;
 | 
						|
 | 
						|
    if (host_port) {
 | 
						|
        rdma = g_malloc0(sizeof(RDMAContext));
 | 
						|
        memset(rdma, 0, sizeof(RDMAContext));
 | 
						|
        rdma->current_index = -1;
 | 
						|
        rdma->current_chunk = -1;
 | 
						|
 | 
						|
        addr = inet_parse(host_port, NULL);
 | 
						|
        if (addr != NULL) {
 | 
						|
            rdma->port = atoi(addr->port);
 | 
						|
            rdma->host = g_strdup(addr->host);
 | 
						|
        } else {
 | 
						|
            ERROR(errp, "bad RDMA migration address '%s'", host_port);
 | 
						|
            g_free(rdma);
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return rdma;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * QEMUFile interface to the control channel.
 | 
						|
 * SEND messages for control only.
 | 
						|
 * pc.ram is handled with regular RDMA messages.
 | 
						|
 */
 | 
						|
static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
 | 
						|
                                int64_t pos, int size)
 | 
						|
{
 | 
						|
    QEMUFileRDMA *r = opaque;
 | 
						|
    QEMUFile *f = r->file;
 | 
						|
    RDMAContext *rdma = r->rdma;
 | 
						|
    size_t remaining = size;
 | 
						|
    uint8_t * data = (void *) buf;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    CHECK_ERROR_STATE();
 | 
						|
 | 
						|
    /*
 | 
						|
     * Push out any writes that
 | 
						|
     * we're queued up for pc.ram.
 | 
						|
     */
 | 
						|
    ret = qemu_rdma_write_flush(f, rdma);
 | 
						|
    if (ret < 0) {
 | 
						|
        rdma->error_state = ret;
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    while (remaining) {
 | 
						|
        RDMAControlHeader head;
 | 
						|
 | 
						|
        r->len = MIN(remaining, RDMA_SEND_INCREMENT);
 | 
						|
        remaining -= r->len;
 | 
						|
 | 
						|
        head.len = r->len;
 | 
						|
        head.type = RDMA_CONTROL_QEMU_FILE;
 | 
						|
 | 
						|
        ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
 | 
						|
 | 
						|
        if (ret < 0) {
 | 
						|
            rdma->error_state = ret;
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
 | 
						|
        data += r->len;
 | 
						|
    }
 | 
						|
 | 
						|
    return size;
 | 
						|
}
 | 
						|
 | 
						|
static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
 | 
						|
                             int size, int idx)
 | 
						|
{
 | 
						|
    size_t len = 0;
 | 
						|
 | 
						|
    if (rdma->wr_data[idx].control_len) {
 | 
						|
        DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n",
 | 
						|
                    rdma->wr_data[idx].control_len, size);
 | 
						|
 | 
						|
        len = MIN(size, rdma->wr_data[idx].control_len);
 | 
						|
        memcpy(buf, rdma->wr_data[idx].control_curr, len);
 | 
						|
        rdma->wr_data[idx].control_curr += len;
 | 
						|
        rdma->wr_data[idx].control_len -= len;
 | 
						|
    }
 | 
						|
 | 
						|
    return len;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * QEMUFile interface to the control channel.
 | 
						|
 * RDMA links don't use bytestreams, so we have to
 | 
						|
 * return bytes to QEMUFile opportunistically.
 | 
						|
 */
 | 
						|
static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
 | 
						|
                                int64_t pos, int size)
 | 
						|
{
 | 
						|
    QEMUFileRDMA *r = opaque;
 | 
						|
    RDMAContext *rdma = r->rdma;
 | 
						|
    RDMAControlHeader head;
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    CHECK_ERROR_STATE();
 | 
						|
 | 
						|
    /*
 | 
						|
     * First, we hold on to the last SEND message we
 | 
						|
     * were given and dish out the bytes until we run
 | 
						|
     * out of bytes.
 | 
						|
     */
 | 
						|
    r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
 | 
						|
    if (r->len) {
 | 
						|
        return r->len;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Once we run out, we block and wait for another
 | 
						|
     * SEND message to arrive.
 | 
						|
     */
 | 
						|
    ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
 | 
						|
 | 
						|
    if (ret < 0) {
 | 
						|
        rdma->error_state = ret;
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * SEND was received with new bytes, now try again.
 | 
						|
     */
 | 
						|
    return qemu_rdma_fill(r->rdma, buf, size, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Block until all the outstanding chunks have been delivered by the hardware.
 | 
						|
 */
 | 
						|
static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
 | 
						|
    if (qemu_rdma_write_flush(f, rdma) < 0) {
 | 
						|
        return -EIO;
 | 
						|
    }
 | 
						|
 | 
						|
    while (rdma->nb_sent) {
 | 
						|
        ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
 | 
						|
        if (ret < 0) {
 | 
						|
            fprintf(stderr, "rdma migration: complete polling error!\n");
 | 
						|
            return -EIO;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    qemu_rdma_unregister_waiting(rdma);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int qemu_rdma_close(void *opaque)
 | 
						|
{
 | 
						|
    DPRINTF("Shutting down connection.\n");
 | 
						|
    QEMUFileRDMA *r = opaque;
 | 
						|
    if (r->rdma) {
 | 
						|
        qemu_rdma_cleanup(r->rdma);
 | 
						|
        g_free(r->rdma);
 | 
						|
    }
 | 
						|
    g_free(r);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Parameters:
 | 
						|
 *    @offset == 0 :
 | 
						|
 *        This means that 'block_offset' is a full virtual address that does not
 | 
						|
 *        belong to a RAMBlock of the virtual machine and instead
 | 
						|
 *        represents a private malloc'd memory area that the caller wishes to
 | 
						|
 *        transfer.
 | 
						|
 *
 | 
						|
 *    @offset != 0 :
 | 
						|
 *        Offset is an offset to be added to block_offset and used
 | 
						|
 *        to also lookup the corresponding RAMBlock.
 | 
						|
 *
 | 
						|
 *    @size > 0 :
 | 
						|
 *        Initiate an transfer this size.
 | 
						|
 *
 | 
						|
 *    @size == 0 :
 | 
						|
 *        A 'hint' or 'advice' that means that we wish to speculatively
 | 
						|
 *        and asynchronously unregister this memory. In this case, there is no
 | 
						|
 *        guarantee that the unregister will actually happen, for example,
 | 
						|
 *        if the memory is being actively transmitted. Additionally, the memory
 | 
						|
 *        may be re-registered at any future time if a write within the same
 | 
						|
 *        chunk was requested again, even if you attempted to unregister it
 | 
						|
 *        here.
 | 
						|
 *
 | 
						|
 *    @size < 0 : TODO, not yet supported
 | 
						|
 *        Unregister the memory NOW. This means that the caller does not
 | 
						|
 *        expect there to be any future RDMA transfers and we just want to clean
 | 
						|
 *        things up. This is used in case the upper layer owns the memory and
 | 
						|
 *        cannot wait for qemu_fclose() to occur.
 | 
						|
 *
 | 
						|
 *    @bytes_sent : User-specificed pointer to indicate how many bytes were
 | 
						|
 *                  sent. Usually, this will not be more than a few bytes of
 | 
						|
 *                  the protocol because most transfers are sent asynchronously.
 | 
						|
 */
 | 
						|
static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
 | 
						|
                                  ram_addr_t block_offset, ram_addr_t offset,
 | 
						|
                                  size_t size, int *bytes_sent)
 | 
						|
{
 | 
						|
    QEMUFileRDMA *rfile = opaque;
 | 
						|
    RDMAContext *rdma = rfile->rdma;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    CHECK_ERROR_STATE();
 | 
						|
 | 
						|
    qemu_fflush(f);
 | 
						|
 | 
						|
    if (size > 0) {
 | 
						|
        /*
 | 
						|
         * Add this page to the current 'chunk'. If the chunk
 | 
						|
         * is full, or the page doen't belong to the current chunk,
 | 
						|
         * an actual RDMA write will occur and a new chunk will be formed.
 | 
						|
         */
 | 
						|
        ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
 | 
						|
        if (ret < 0) {
 | 
						|
            fprintf(stderr, "rdma migration: write error! %d\n", ret);
 | 
						|
            goto err;
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         * We always return 1 bytes because the RDMA
 | 
						|
         * protocol is completely asynchronous. We do not yet know
 | 
						|
         * whether an  identified chunk is zero or not because we're
 | 
						|
         * waiting for other pages to potentially be merged with
 | 
						|
         * the current chunk. So, we have to call qemu_update_position()
 | 
						|
         * later on when the actual write occurs.
 | 
						|
         */
 | 
						|
        if (bytes_sent) {
 | 
						|
            *bytes_sent = 1;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        uint64_t index, chunk;
 | 
						|
 | 
						|
        /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
 | 
						|
        if (size < 0) {
 | 
						|
            ret = qemu_rdma_drain_cq(f, rdma);
 | 
						|
            if (ret < 0) {
 | 
						|
                fprintf(stderr, "rdma: failed to synchronously drain"
 | 
						|
                                " completion queue before unregistration.\n");
 | 
						|
                goto err;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        */
 | 
						|
 | 
						|
        ret = qemu_rdma_search_ram_block(rdma, block_offset,
 | 
						|
                                         offset, size, &index, &chunk);
 | 
						|
 | 
						|
        if (ret) {
 | 
						|
            fprintf(stderr, "ram block search failed\n");
 | 
						|
            goto err;
 | 
						|
        }
 | 
						|
 | 
						|
        qemu_rdma_signal_unregister(rdma, index, chunk, 0);
 | 
						|
 | 
						|
        /*
 | 
						|
         * TODO: Synchronous, guaranteed unregistration (should not occur during
 | 
						|
         * fast-path). Otherwise, unregisters will process on the next call to
 | 
						|
         * qemu_rdma_drain_cq()
 | 
						|
        if (size < 0) {
 | 
						|
            qemu_rdma_unregister_waiting(rdma);
 | 
						|
        }
 | 
						|
        */
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Drain the Completion Queue if possible, but do not block,
 | 
						|
     * just poll.
 | 
						|
     *
 | 
						|
     * If nothing to poll, the end of the iteration will do this
 | 
						|
     * again to make sure we don't overflow the request queue.
 | 
						|
     */
 | 
						|
    while (1) {
 | 
						|
        uint64_t wr_id, wr_id_in;
 | 
						|
        int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
 | 
						|
        if (ret < 0) {
 | 
						|
            fprintf(stderr, "rdma migration: polling error! %d\n", ret);
 | 
						|
            goto err;
 | 
						|
        }
 | 
						|
 | 
						|
        wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
 | 
						|
 | 
						|
        if (wr_id == RDMA_WRID_NONE) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return RAM_SAVE_CONTROL_DELAYED;
 | 
						|
err:
 | 
						|
    rdma->error_state = ret;
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int qemu_rdma_accept(RDMAContext *rdma)
 | 
						|
{
 | 
						|
    RDMACapabilities cap;
 | 
						|
    struct rdma_conn_param conn_param = {
 | 
						|
                                            .responder_resources = 2,
 | 
						|
                                            .private_data = &cap,
 | 
						|
                                            .private_data_len = sizeof(cap),
 | 
						|
                                         };
 | 
						|
    struct rdma_cm_event *cm_event;
 | 
						|
    struct ibv_context *verbs;
 | 
						|
    int ret = -EINVAL;
 | 
						|
    int idx;
 | 
						|
 | 
						|
    ret = rdma_get_cm_event(rdma->channel, &cm_event);
 | 
						|
    if (ret) {
 | 
						|
        goto err_rdma_dest_wait;
 | 
						|
    }
 | 
						|
 | 
						|
    if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
 | 
						|
        rdma_ack_cm_event(cm_event);
 | 
						|
        goto err_rdma_dest_wait;
 | 
						|
    }
 | 
						|
 | 
						|
    memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
 | 
						|
 | 
						|
    network_to_caps(&cap);
 | 
						|
 | 
						|
    if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
 | 
						|
            fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n",
 | 
						|
                            cap.version);
 | 
						|
            rdma_ack_cm_event(cm_event);
 | 
						|
            goto err_rdma_dest_wait;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Respond with only the capabilities this version of QEMU knows about.
 | 
						|
     */
 | 
						|
    cap.flags &= known_capabilities;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Enable the ones that we do know about.
 | 
						|
     * Add other checks here as new ones are introduced.
 | 
						|
     */
 | 
						|
    if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
 | 
						|
        rdma->pin_all = true;
 | 
						|
    }
 | 
						|
 | 
						|
    rdma->cm_id = cm_event->id;
 | 
						|
    verbs = cm_event->id->verbs;
 | 
						|
 | 
						|
    rdma_ack_cm_event(cm_event);
 | 
						|
 | 
						|
    DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled");
 | 
						|
 | 
						|
    caps_to_network(&cap);
 | 
						|
 | 
						|
    DPRINTF("verbs context after listen: %p\n", verbs);
 | 
						|
 | 
						|
    if (!rdma->verbs) {
 | 
						|
        rdma->verbs = verbs;
 | 
						|
    } else if (rdma->verbs != verbs) {
 | 
						|
            fprintf(stderr, "ibv context not matching %p, %p!\n",
 | 
						|
                    rdma->verbs, verbs);
 | 
						|
            goto err_rdma_dest_wait;
 | 
						|
    }
 | 
						|
 | 
						|
    qemu_rdma_dump_id("dest_init", verbs);
 | 
						|
 | 
						|
    ret = qemu_rdma_alloc_pd_cq(rdma);
 | 
						|
    if (ret) {
 | 
						|
        fprintf(stderr, "rdma migration: error allocating pd and cq!\n");
 | 
						|
        goto err_rdma_dest_wait;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = qemu_rdma_alloc_qp(rdma);
 | 
						|
    if (ret) {
 | 
						|
        fprintf(stderr, "rdma migration: error allocating qp!\n");
 | 
						|
        goto err_rdma_dest_wait;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = qemu_rdma_init_ram_blocks(rdma);
 | 
						|
    if (ret) {
 | 
						|
        fprintf(stderr, "rdma migration: error initializing ram blocks!\n");
 | 
						|
        goto err_rdma_dest_wait;
 | 
						|
    }
 | 
						|
 | 
						|
    for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
 | 
						|
        ret = qemu_rdma_reg_control(rdma, idx);
 | 
						|
        if (ret) {
 | 
						|
            fprintf(stderr, "rdma: error registering %d control!\n", idx);
 | 
						|
            goto err_rdma_dest_wait;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
 | 
						|
 | 
						|
    ret = rdma_accept(rdma->cm_id, &conn_param);
 | 
						|
    if (ret) {
 | 
						|
        fprintf(stderr, "rdma_accept returns %d!\n", ret);
 | 
						|
        goto err_rdma_dest_wait;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = rdma_get_cm_event(rdma->channel, &cm_event);
 | 
						|
    if (ret) {
 | 
						|
        fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret);
 | 
						|
        goto err_rdma_dest_wait;
 | 
						|
    }
 | 
						|
 | 
						|
    if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
 | 
						|
        fprintf(stderr, "rdma_accept not event established!\n");
 | 
						|
        rdma_ack_cm_event(cm_event);
 | 
						|
        goto err_rdma_dest_wait;
 | 
						|
    }
 | 
						|
 | 
						|
    rdma_ack_cm_event(cm_event);
 | 
						|
    rdma->connected = true;
 | 
						|
 | 
						|
    ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
 | 
						|
    if (ret) {
 | 
						|
        fprintf(stderr, "rdma migration: error posting second control recv!\n");
 | 
						|
        goto err_rdma_dest_wait;
 | 
						|
    }
 | 
						|
 | 
						|
    qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
err_rdma_dest_wait:
 | 
						|
    rdma->error_state = ret;
 | 
						|
    qemu_rdma_cleanup(rdma);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * During each iteration of the migration, we listen for instructions
 | 
						|
 * by the source VM to perform dynamic page registrations before they
 | 
						|
 * can perform RDMA operations.
 | 
						|
 *
 | 
						|
 * We respond with the 'rkey'.
 | 
						|
 *
 | 
						|
 * Keep doing this until the source tells us to stop.
 | 
						|
 */
 | 
						|
static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
 | 
						|
                                         uint64_t flags)
 | 
						|
{
 | 
						|
    RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
 | 
						|
                               .type = RDMA_CONTROL_REGISTER_RESULT,
 | 
						|
                               .repeat = 0,
 | 
						|
                             };
 | 
						|
    RDMAControlHeader unreg_resp = { .len = 0,
 | 
						|
                               .type = RDMA_CONTROL_UNREGISTER_FINISHED,
 | 
						|
                               .repeat = 0,
 | 
						|
                             };
 | 
						|
    RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
 | 
						|
                                 .repeat = 1 };
 | 
						|
    QEMUFileRDMA *rfile = opaque;
 | 
						|
    RDMAContext *rdma = rfile->rdma;
 | 
						|
    RDMALocalBlocks *local = &rdma->local_ram_blocks;
 | 
						|
    RDMAControlHeader head;
 | 
						|
    RDMARegister *reg, *registers;
 | 
						|
    RDMACompress *comp;
 | 
						|
    RDMARegisterResult *reg_result;
 | 
						|
    static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
 | 
						|
    RDMALocalBlock *block;
 | 
						|
    void *host_addr;
 | 
						|
    int ret = 0;
 | 
						|
    int idx = 0;
 | 
						|
    int count = 0;
 | 
						|
    int i = 0;
 | 
						|
 | 
						|
    CHECK_ERROR_STATE();
 | 
						|
 | 
						|
    do {
 | 
						|
        DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags);
 | 
						|
 | 
						|
        ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
 | 
						|
 | 
						|
        if (ret < 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
 | 
						|
            fprintf(stderr, "rdma: Too many requests in this message (%d)."
 | 
						|
                            "Bailing.\n", head.repeat);
 | 
						|
            ret = -EIO;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        switch (head.type) {
 | 
						|
        case RDMA_CONTROL_COMPRESS:
 | 
						|
            comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
 | 
						|
            network_to_compress(comp);
 | 
						|
 | 
						|
            DDPRINTF("Zapping zero chunk: %" PRId64
 | 
						|
                    " bytes, index %d, offset %" PRId64 "\n",
 | 
						|
                    comp->length, comp->block_idx, comp->offset);
 | 
						|
            block = &(rdma->local_ram_blocks.block[comp->block_idx]);
 | 
						|
 | 
						|
            host_addr = block->local_host_addr +
 | 
						|
                            (comp->offset - block->offset);
 | 
						|
 | 
						|
            ram_handle_compressed(host_addr, comp->value, comp->length);
 | 
						|
            break;
 | 
						|
 | 
						|
        case RDMA_CONTROL_REGISTER_FINISHED:
 | 
						|
            DDDPRINTF("Current registrations complete.\n");
 | 
						|
            goto out;
 | 
						|
 | 
						|
        case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
 | 
						|
            DPRINTF("Initial setup info requested.\n");
 | 
						|
 | 
						|
            if (rdma->pin_all) {
 | 
						|
                ret = qemu_rdma_reg_whole_ram_blocks(rdma);
 | 
						|
                if (ret) {
 | 
						|
                    fprintf(stderr, "rdma migration: error dest "
 | 
						|
                                    "registering ram blocks!\n");
 | 
						|
                    goto out;
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            /*
 | 
						|
             * Dest uses this to prepare to transmit the RAMBlock descriptions
 | 
						|
             * to the source VM after connection setup.
 | 
						|
             * Both sides use the "remote" structure to communicate and update
 | 
						|
             * their "local" descriptions with what was sent.
 | 
						|
             */
 | 
						|
            for (i = 0; i < local->nb_blocks; i++) {
 | 
						|
                rdma->block[i].remote_host_addr =
 | 
						|
                    (uint64_t)(local->block[i].local_host_addr);
 | 
						|
 | 
						|
                if (rdma->pin_all) {
 | 
						|
                    rdma->block[i].remote_rkey = local->block[i].mr->rkey;
 | 
						|
                }
 | 
						|
 | 
						|
                rdma->block[i].offset = local->block[i].offset;
 | 
						|
                rdma->block[i].length = local->block[i].length;
 | 
						|
 | 
						|
                remote_block_to_network(&rdma->block[i]);
 | 
						|
            }
 | 
						|
 | 
						|
            blocks.len = rdma->local_ram_blocks.nb_blocks
 | 
						|
                                                * sizeof(RDMARemoteBlock);
 | 
						|
 | 
						|
 | 
						|
            ret = qemu_rdma_post_send_control(rdma,
 | 
						|
                                        (uint8_t *) rdma->block, &blocks);
 | 
						|
 | 
						|
            if (ret < 0) {
 | 
						|
                fprintf(stderr, "rdma migration: error sending remote info!\n");
 | 
						|
                goto out;
 | 
						|
            }
 | 
						|
 | 
						|
            break;
 | 
						|
        case RDMA_CONTROL_REGISTER_REQUEST:
 | 
						|
            DDPRINTF("There are %d registration requests\n", head.repeat);
 | 
						|
 | 
						|
            reg_resp.repeat = head.repeat;
 | 
						|
            registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
 | 
						|
 | 
						|
            for (count = 0; count < head.repeat; count++) {
 | 
						|
                uint64_t chunk;
 | 
						|
                uint8_t *chunk_start, *chunk_end;
 | 
						|
 | 
						|
                reg = ®isters[count];
 | 
						|
                network_to_register(reg);
 | 
						|
 | 
						|
                reg_result = &results[count];
 | 
						|
 | 
						|
                DDPRINTF("Registration request (%d): index %d, current_addr %"
 | 
						|
                         PRIu64 " chunks: %" PRIu64 "\n", count,
 | 
						|
                         reg->current_index, reg->key.current_addr, reg->chunks);
 | 
						|
 | 
						|
                block = &(rdma->local_ram_blocks.block[reg->current_index]);
 | 
						|
                if (block->is_ram_block) {
 | 
						|
                    host_addr = (block->local_host_addr +
 | 
						|
                                (reg->key.current_addr - block->offset));
 | 
						|
                    chunk = ram_chunk_index(block->local_host_addr,
 | 
						|
                                            (uint8_t *) host_addr);
 | 
						|
                } else {
 | 
						|
                    chunk = reg->key.chunk;
 | 
						|
                    host_addr = block->local_host_addr +
 | 
						|
                        (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
 | 
						|
                }
 | 
						|
                chunk_start = ram_chunk_start(block, chunk);
 | 
						|
                chunk_end = ram_chunk_end(block, chunk + reg->chunks);
 | 
						|
                if (qemu_rdma_register_and_get_keys(rdma, block,
 | 
						|
                            (uint8_t *)host_addr, NULL, ®_result->rkey,
 | 
						|
                            chunk, chunk_start, chunk_end)) {
 | 
						|
                    fprintf(stderr, "cannot get rkey!\n");
 | 
						|
                    ret = -EINVAL;
 | 
						|
                    goto out;
 | 
						|
                }
 | 
						|
 | 
						|
                reg_result->host_addr = (uint64_t) block->local_host_addr;
 | 
						|
 | 
						|
                DDPRINTF("Registered rkey for this request: %x\n",
 | 
						|
                                reg_result->rkey);
 | 
						|
 | 
						|
                result_to_network(reg_result);
 | 
						|
            }
 | 
						|
 | 
						|
            ret = qemu_rdma_post_send_control(rdma,
 | 
						|
                            (uint8_t *) results, ®_resp);
 | 
						|
 | 
						|
            if (ret < 0) {
 | 
						|
                fprintf(stderr, "Failed to send control buffer!\n");
 | 
						|
                goto out;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case RDMA_CONTROL_UNREGISTER_REQUEST:
 | 
						|
            DDPRINTF("There are %d unregistration requests\n", head.repeat);
 | 
						|
            unreg_resp.repeat = head.repeat;
 | 
						|
            registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
 | 
						|
 | 
						|
            for (count = 0; count < head.repeat; count++) {
 | 
						|
                reg = ®isters[count];
 | 
						|
                network_to_register(reg);
 | 
						|
 | 
						|
                DDPRINTF("Unregistration request (%d): "
 | 
						|
                         " index %d, chunk %" PRIu64 "\n",
 | 
						|
                         count, reg->current_index, reg->key.chunk);
 | 
						|
 | 
						|
                block = &(rdma->local_ram_blocks.block[reg->current_index]);
 | 
						|
 | 
						|
                ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
 | 
						|
                block->pmr[reg->key.chunk] = NULL;
 | 
						|
 | 
						|
                if (ret != 0) {
 | 
						|
                    perror("rdma unregistration chunk failed");
 | 
						|
                    ret = -ret;
 | 
						|
                    goto out;
 | 
						|
                }
 | 
						|
 | 
						|
                rdma->total_registrations--;
 | 
						|
 | 
						|
                DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n",
 | 
						|
                            reg->key.chunk);
 | 
						|
            }
 | 
						|
 | 
						|
            ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
 | 
						|
 | 
						|
            if (ret < 0) {
 | 
						|
                fprintf(stderr, "Failed to send control buffer!\n");
 | 
						|
                goto out;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case RDMA_CONTROL_REGISTER_RESULT:
 | 
						|
            fprintf(stderr, "Invalid RESULT message at dest.\n");
 | 
						|
            ret = -EIO;
 | 
						|
            goto out;
 | 
						|
        default:
 | 
						|
            fprintf(stderr, "Unknown control message %s\n",
 | 
						|
                                control_desc[head.type]);
 | 
						|
            ret = -EIO;
 | 
						|
            goto out;
 | 
						|
        }
 | 
						|
    } while (1);
 | 
						|
out:
 | 
						|
    if (ret < 0) {
 | 
						|
        rdma->error_state = ret;
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
 | 
						|
                                        uint64_t flags)
 | 
						|
{
 | 
						|
    QEMUFileRDMA *rfile = opaque;
 | 
						|
    RDMAContext *rdma = rfile->rdma;
 | 
						|
 | 
						|
    CHECK_ERROR_STATE();
 | 
						|
 | 
						|
    DDDPRINTF("start section: %" PRIu64 "\n", flags);
 | 
						|
    qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
 | 
						|
    qemu_fflush(f);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Inform dest that dynamic registrations are done for now.
 | 
						|
 * First, flush writes, if any.
 | 
						|
 */
 | 
						|
static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
 | 
						|
                                       uint64_t flags)
 | 
						|
{
 | 
						|
    Error *local_err = NULL, **errp = &local_err;
 | 
						|
    QEMUFileRDMA *rfile = opaque;
 | 
						|
    RDMAContext *rdma = rfile->rdma;
 | 
						|
    RDMAControlHeader head = { .len = 0, .repeat = 1 };
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    CHECK_ERROR_STATE();
 | 
						|
 | 
						|
    qemu_fflush(f);
 | 
						|
    ret = qemu_rdma_drain_cq(f, rdma);
 | 
						|
 | 
						|
    if (ret < 0) {
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    if (flags == RAM_CONTROL_SETUP) {
 | 
						|
        RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
 | 
						|
        RDMALocalBlocks *local = &rdma->local_ram_blocks;
 | 
						|
        int reg_result_idx, i, j, nb_remote_blocks;
 | 
						|
 | 
						|
        head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
 | 
						|
        DPRINTF("Sending registration setup for ram blocks...\n");
 | 
						|
 | 
						|
        /*
 | 
						|
         * Make sure that we parallelize the pinning on both sides.
 | 
						|
         * For very large guests, doing this serially takes a really
 | 
						|
         * long time, so we have to 'interleave' the pinning locally
 | 
						|
         * with the control messages by performing the pinning on this
 | 
						|
         * side before we receive the control response from the other
 | 
						|
         * side that the pinning has completed.
 | 
						|
         */
 | 
						|
        ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
 | 
						|
                    ®_result_idx, rdma->pin_all ?
 | 
						|
                    qemu_rdma_reg_whole_ram_blocks : NULL);
 | 
						|
        if (ret < 0) {
 | 
						|
            ERROR(errp, "receiving remote info!");
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
 | 
						|
        nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
 | 
						|
 | 
						|
        /*
 | 
						|
         * The protocol uses two different sets of rkeys (mutually exclusive):
 | 
						|
         * 1. One key to represent the virtual address of the entire ram block.
 | 
						|
         *    (dynamic chunk registration disabled - pin everything with one rkey.)
 | 
						|
         * 2. One to represent individual chunks within a ram block.
 | 
						|
         *    (dynamic chunk registration enabled - pin individual chunks.)
 | 
						|
         *
 | 
						|
         * Once the capability is successfully negotiated, the destination transmits
 | 
						|
         * the keys to use (or sends them later) including the virtual addresses
 | 
						|
         * and then propagates the remote ram block descriptions to his local copy.
 | 
						|
         */
 | 
						|
 | 
						|
        if (local->nb_blocks != nb_remote_blocks) {
 | 
						|
            ERROR(errp, "ram blocks mismatch #1! "
 | 
						|
                        "Your QEMU command line parameters are probably "
 | 
						|
                        "not identical on both the source and destination.");
 | 
						|
            return -EINVAL;
 | 
						|
        }
 | 
						|
 | 
						|
        qemu_rdma_move_header(rdma, reg_result_idx, &resp);
 | 
						|
        memcpy(rdma->block,
 | 
						|
            rdma->wr_data[reg_result_idx].control_curr, resp.len);
 | 
						|
        for (i = 0; i < nb_remote_blocks; i++) {
 | 
						|
            network_to_remote_block(&rdma->block[i]);
 | 
						|
 | 
						|
            /* search local ram blocks */
 | 
						|
            for (j = 0; j < local->nb_blocks; j++) {
 | 
						|
                if (rdma->block[i].offset != local->block[j].offset) {
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
 | 
						|
                if (rdma->block[i].length != local->block[j].length) {
 | 
						|
                    ERROR(errp, "ram blocks mismatch #2! "
 | 
						|
                        "Your QEMU command line parameters are probably "
 | 
						|
                        "not identical on both the source and destination.");
 | 
						|
                    return -EINVAL;
 | 
						|
                }
 | 
						|
                local->block[j].remote_host_addr =
 | 
						|
                        rdma->block[i].remote_host_addr;
 | 
						|
                local->block[j].remote_rkey = rdma->block[i].remote_rkey;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            if (j >= local->nb_blocks) {
 | 
						|
                ERROR(errp, "ram blocks mismatch #3! "
 | 
						|
                        "Your QEMU command line parameters are probably "
 | 
						|
                        "not identical on both the source and destination.");
 | 
						|
                return -EINVAL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags);
 | 
						|
 | 
						|
    head.type = RDMA_CONTROL_REGISTER_FINISHED;
 | 
						|
    ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
 | 
						|
 | 
						|
    if (ret < 0) {
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
err:
 | 
						|
    rdma->error_state = ret;
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int qemu_rdma_get_fd(void *opaque)
 | 
						|
{
 | 
						|
    QEMUFileRDMA *rfile = opaque;
 | 
						|
    RDMAContext *rdma = rfile->rdma;
 | 
						|
 | 
						|
    return rdma->comp_channel->fd;
 | 
						|
}
 | 
						|
 | 
						|
const QEMUFileOps rdma_read_ops = {
 | 
						|
    .get_buffer    = qemu_rdma_get_buffer,
 | 
						|
    .get_fd        = qemu_rdma_get_fd,
 | 
						|
    .close         = qemu_rdma_close,
 | 
						|
    .hook_ram_load = qemu_rdma_registration_handle,
 | 
						|
};
 | 
						|
 | 
						|
const QEMUFileOps rdma_write_ops = {
 | 
						|
    .put_buffer         = qemu_rdma_put_buffer,
 | 
						|
    .close              = qemu_rdma_close,
 | 
						|
    .before_ram_iterate = qemu_rdma_registration_start,
 | 
						|
    .after_ram_iterate  = qemu_rdma_registration_stop,
 | 
						|
    .save_page          = qemu_rdma_save_page,
 | 
						|
};
 | 
						|
 | 
						|
static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
 | 
						|
{
 | 
						|
    QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
 | 
						|
 | 
						|
    if (qemu_file_mode_is_not_valid(mode)) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    r->rdma = rdma;
 | 
						|
 | 
						|
    if (mode[0] == 'w') {
 | 
						|
        r->file = qemu_fopen_ops(r, &rdma_write_ops);
 | 
						|
    } else {
 | 
						|
        r->file = qemu_fopen_ops(r, &rdma_read_ops);
 | 
						|
    }
 | 
						|
 | 
						|
    return r->file;
 | 
						|
}
 | 
						|
 | 
						|
static void rdma_accept_incoming_migration(void *opaque)
 | 
						|
{
 | 
						|
    RDMAContext *rdma = opaque;
 | 
						|
    int ret;
 | 
						|
    QEMUFile *f;
 | 
						|
    Error *local_err = NULL, **errp = &local_err;
 | 
						|
 | 
						|
    DPRINTF("Accepting rdma connection...\n");
 | 
						|
    ret = qemu_rdma_accept(rdma);
 | 
						|
 | 
						|
    if (ret) {
 | 
						|
        ERROR(errp, "RDMA Migration initialization failed!");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    DPRINTF("Accepted migration\n");
 | 
						|
 | 
						|
    f = qemu_fopen_rdma(rdma, "rb");
 | 
						|
    if (f == NULL) {
 | 
						|
        ERROR(errp, "could not qemu_fopen_rdma!");
 | 
						|
        qemu_rdma_cleanup(rdma);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    rdma->migration_started_on_destination = 1;
 | 
						|
    process_incoming_migration(f);
 | 
						|
}
 | 
						|
 | 
						|
void rdma_start_incoming_migration(const char *host_port, Error **errp)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
    RDMAContext *rdma;
 | 
						|
    Error *local_err = NULL;
 | 
						|
 | 
						|
    DPRINTF("Starting RDMA-based incoming migration\n");
 | 
						|
    rdma = qemu_rdma_data_init(host_port, &local_err);
 | 
						|
 | 
						|
    if (rdma == NULL) {
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = qemu_rdma_dest_init(rdma, &local_err);
 | 
						|
 | 
						|
    if (ret) {
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    DPRINTF("qemu_rdma_dest_init success\n");
 | 
						|
 | 
						|
    ret = rdma_listen(rdma->listen_id, 5);
 | 
						|
 | 
						|
    if (ret) {
 | 
						|
        ERROR(errp, "listening on socket!");
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    DPRINTF("rdma_listen success\n");
 | 
						|
 | 
						|
    qemu_set_fd_handler2(rdma->channel->fd, NULL,
 | 
						|
                         rdma_accept_incoming_migration, NULL,
 | 
						|
                            (void *)(intptr_t) rdma);
 | 
						|
    return;
 | 
						|
err:
 | 
						|
    error_propagate(errp, local_err);
 | 
						|
    g_free(rdma);
 | 
						|
}
 | 
						|
 | 
						|
void rdma_start_outgoing_migration(void *opaque,
 | 
						|
                            const char *host_port, Error **errp)
 | 
						|
{
 | 
						|
    MigrationState *s = opaque;
 | 
						|
    Error *local_err = NULL, **temp = &local_err;
 | 
						|
    RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    if (rdma == NULL) {
 | 
						|
        ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = qemu_rdma_source_init(rdma, &local_err,
 | 
						|
        s->enabled_capabilities[MIGRATION_CAPABILITY_X_RDMA_PIN_ALL]);
 | 
						|
 | 
						|
    if (ret) {
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    DPRINTF("qemu_rdma_source_init success\n");
 | 
						|
    ret = qemu_rdma_connect(rdma, &local_err);
 | 
						|
 | 
						|
    if (ret) {
 | 
						|
        goto err;
 | 
						|
    }
 | 
						|
 | 
						|
    DPRINTF("qemu_rdma_source_connect success\n");
 | 
						|
 | 
						|
    s->file = qemu_fopen_rdma(rdma, "wb");
 | 
						|
    migrate_fd_connect(s);
 | 
						|
    return;
 | 
						|
err:
 | 
						|
    error_propagate(errp, local_err);
 | 
						|
    g_free(rdma);
 | 
						|
    migrate_fd_error(s);
 | 
						|
}
 |