Make results_to_text a tool to dump results saved in JSON file. Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com> Message-Id: <20201021145859.11201-21-vsementsov@virtuozzo.com> Reviewed-by: Max Reitz <mreitz@redhat.com> Signed-off-by: Max Reitz <mreitz@redhat.com>
		
			
				
	
	
		
			127 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			127 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
#
 | 
						|
# Simple benchmarking framework
 | 
						|
#
 | 
						|
# Copyright (c) 2019 Virtuozzo International GmbH.
 | 
						|
#
 | 
						|
# This program is free software; you can redistribute it and/or modify
 | 
						|
# it under the terms of the GNU General Public License as published by
 | 
						|
# the Free Software Foundation; either version 2 of the License, or
 | 
						|
# (at your option) any later version.
 | 
						|
#
 | 
						|
# This program is distributed in the hope that it will be useful,
 | 
						|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
# GNU General Public License for more details.
 | 
						|
#
 | 
						|
# You should have received a copy of the GNU General Public License
 | 
						|
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
#
 | 
						|
 | 
						|
import math
 | 
						|
import tabulate
 | 
						|
 | 
						|
# We want leading whitespace for difference row cells (see below)
 | 
						|
tabulate.PRESERVE_WHITESPACE = True
 | 
						|
 | 
						|
 | 
						|
def format_value(x, stdev):
 | 
						|
    stdev_pr = stdev / x * 100
 | 
						|
    if stdev_pr < 1.5:
 | 
						|
        # don't care too much
 | 
						|
        return f'{x:.2g}'
 | 
						|
    else:
 | 
						|
        return f'{x:.2g} ± {math.ceil(stdev_pr)}%'
 | 
						|
 | 
						|
 | 
						|
def result_to_text(result):
 | 
						|
    """Return text representation of bench_one() returned dict."""
 | 
						|
    if 'average' in result:
 | 
						|
        s = format_value(result['average'], result['stdev'])
 | 
						|
        if 'n-failed' in result:
 | 
						|
            s += '\n({} failed)'.format(result['n-failed'])
 | 
						|
        return s
 | 
						|
    else:
 | 
						|
        return 'FAILED'
 | 
						|
 | 
						|
 | 
						|
def results_dimension(results):
 | 
						|
    dim = None
 | 
						|
    for case in results['cases']:
 | 
						|
        for env in results['envs']:
 | 
						|
            res = results['tab'][case['id']][env['id']]
 | 
						|
            if dim is None:
 | 
						|
                dim = res['dimension']
 | 
						|
            else:
 | 
						|
                assert dim == res['dimension']
 | 
						|
 | 
						|
    assert dim in ('iops', 'seconds')
 | 
						|
 | 
						|
    return dim
 | 
						|
 | 
						|
 | 
						|
def results_to_text(results):
 | 
						|
    """Return text representation of bench() returned dict."""
 | 
						|
    n_columns = len(results['envs'])
 | 
						|
    named_columns = n_columns > 2
 | 
						|
    dim = results_dimension(results)
 | 
						|
    tab = []
 | 
						|
 | 
						|
    if named_columns:
 | 
						|
        # Environment columns are named A, B, ...
 | 
						|
        tab.append([''] + [chr(ord('A') + i) for i in range(n_columns)])
 | 
						|
 | 
						|
    tab.append([''] + [c['id'] for c in results['envs']])
 | 
						|
 | 
						|
    for case in results['cases']:
 | 
						|
        row = [case['id']]
 | 
						|
        case_results = results['tab'][case['id']]
 | 
						|
        for env in results['envs']:
 | 
						|
            res = case_results[env['id']]
 | 
						|
            row.append(result_to_text(res))
 | 
						|
        tab.append(row)
 | 
						|
 | 
						|
        # Add row of difference between columns. For each column starting from
 | 
						|
        # B we calculate difference with all previous columns.
 | 
						|
        row = ['', '']  # case name and first column
 | 
						|
        for i in range(1, n_columns):
 | 
						|
            cell = ''
 | 
						|
            env = results['envs'][i]
 | 
						|
            res = case_results[env['id']]
 | 
						|
 | 
						|
            if 'average' not in res:
 | 
						|
                # Failed result
 | 
						|
                row.append(cell)
 | 
						|
                continue
 | 
						|
 | 
						|
            for j in range(0, i):
 | 
						|
                env_j = results['envs'][j]
 | 
						|
                res_j = case_results[env_j['id']]
 | 
						|
                cell += ' '
 | 
						|
 | 
						|
                if 'average' not in res_j:
 | 
						|
                    # Failed result
 | 
						|
                    cell += '--'
 | 
						|
                    continue
 | 
						|
 | 
						|
                col_j = tab[0][j + 1] if named_columns else ''
 | 
						|
                diff_pr = round((res['average'] - res_j['average']) /
 | 
						|
                                res_j['average'] * 100)
 | 
						|
                cell += f' {col_j}{diff_pr:+}%'
 | 
						|
            row.append(cell)
 | 
						|
        tab.append(row)
 | 
						|
 | 
						|
    return f'All results are in {dim}\n\n' + tabulate.tabulate(tab)
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    import sys
 | 
						|
    import json
 | 
						|
 | 
						|
    if len(sys.argv) < 2:
 | 
						|
        print(f'USAGE: {sys.argv[0]} results.json')
 | 
						|
        exit(1)
 | 
						|
 | 
						|
    with open(sys.argv[1]) as f:
 | 
						|
        print(results_to_text(json.load(f)))
 |