 14cc46b19a
			
		
	
	
		14cc46b19a
		
	
	
	
	
		
			
			Introduce h2g_valid to check if a given host address can be converted into a valid guest address. Based on a patch from Jan Kiszka <jan.kiszka@web.de> Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name> Signed-off-by: Aurelien Jarno <aurelien@aurel32.net> git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@5956 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			1127 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1127 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * defines common to all virtual CPUs
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|  */
 | |
| #ifndef CPU_ALL_H
 | |
| #define CPU_ALL_H
 | |
| 
 | |
| #if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
 | |
| #define WORDS_ALIGNED
 | |
| #endif
 | |
| 
 | |
| /* some important defines:
 | |
|  *
 | |
|  * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
 | |
|  * memory accesses.
 | |
|  *
 | |
|  * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
 | |
|  * otherwise little endian.
 | |
|  *
 | |
|  * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
 | |
|  *
 | |
|  * TARGET_WORDS_BIGENDIAN : same for target cpu
 | |
|  */
 | |
| 
 | |
| #include "bswap.h"
 | |
| #include "softfloat.h"
 | |
| 
 | |
| #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
 | |
| #define BSWAP_NEEDED
 | |
| #endif
 | |
| 
 | |
| #ifdef BSWAP_NEEDED
 | |
| 
 | |
| static inline uint16_t tswap16(uint16_t s)
 | |
| {
 | |
|     return bswap16(s);
 | |
| }
 | |
| 
 | |
| static inline uint32_t tswap32(uint32_t s)
 | |
| {
 | |
|     return bswap32(s);
 | |
| }
 | |
| 
 | |
| static inline uint64_t tswap64(uint64_t s)
 | |
| {
 | |
|     return bswap64(s);
 | |
| }
 | |
| 
 | |
| static inline void tswap16s(uint16_t *s)
 | |
| {
 | |
|     *s = bswap16(*s);
 | |
| }
 | |
| 
 | |
| static inline void tswap32s(uint32_t *s)
 | |
| {
 | |
|     *s = bswap32(*s);
 | |
| }
 | |
| 
 | |
| static inline void tswap64s(uint64_t *s)
 | |
| {
 | |
|     *s = bswap64(*s);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline uint16_t tswap16(uint16_t s)
 | |
| {
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| static inline uint32_t tswap32(uint32_t s)
 | |
| {
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| static inline uint64_t tswap64(uint64_t s)
 | |
| {
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| static inline void tswap16s(uint16_t *s)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void tswap32s(uint32_t *s)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void tswap64s(uint64_t *s)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if TARGET_LONG_SIZE == 4
 | |
| #define tswapl(s) tswap32(s)
 | |
| #define tswapls(s) tswap32s((uint32_t *)(s))
 | |
| #define bswaptls(s) bswap32s(s)
 | |
| #else
 | |
| #define tswapl(s) tswap64(s)
 | |
| #define tswapls(s) tswap64s((uint64_t *)(s))
 | |
| #define bswaptls(s) bswap64s(s)
 | |
| #endif
 | |
| 
 | |
| typedef union {
 | |
|     float32 f;
 | |
|     uint32_t l;
 | |
| } CPU_FloatU;
 | |
| 
 | |
| /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
 | |
|    endian ! */
 | |
| typedef union {
 | |
|     float64 d;
 | |
| #if defined(WORDS_BIGENDIAN) \
 | |
|     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
 | |
|     struct {
 | |
|         uint32_t upper;
 | |
|         uint32_t lower;
 | |
|     } l;
 | |
| #else
 | |
|     struct {
 | |
|         uint32_t lower;
 | |
|         uint32_t upper;
 | |
|     } l;
 | |
| #endif
 | |
|     uint64_t ll;
 | |
| } CPU_DoubleU;
 | |
| 
 | |
| #ifdef TARGET_SPARC
 | |
| typedef union {
 | |
|     float128 q;
 | |
| #if defined(WORDS_BIGENDIAN) \
 | |
|     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
 | |
|     struct {
 | |
|         uint32_t upmost;
 | |
|         uint32_t upper;
 | |
|         uint32_t lower;
 | |
|         uint32_t lowest;
 | |
|     } l;
 | |
|     struct {
 | |
|         uint64_t upper;
 | |
|         uint64_t lower;
 | |
|     } ll;
 | |
| #else
 | |
|     struct {
 | |
|         uint32_t lowest;
 | |
|         uint32_t lower;
 | |
|         uint32_t upper;
 | |
|         uint32_t upmost;
 | |
|     } l;
 | |
|     struct {
 | |
|         uint64_t lower;
 | |
|         uint64_t upper;
 | |
|     } ll;
 | |
| #endif
 | |
| } CPU_QuadU;
 | |
| #endif
 | |
| 
 | |
| /* CPU memory access without any memory or io remapping */
 | |
| 
 | |
| /*
 | |
|  * the generic syntax for the memory accesses is:
 | |
|  *
 | |
|  * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
 | |
|  *
 | |
|  * store: st{type}{size}{endian}_{access_type}(ptr, val)
 | |
|  *
 | |
|  * type is:
 | |
|  * (empty): integer access
 | |
|  *   f    : float access
 | |
|  *
 | |
|  * sign is:
 | |
|  * (empty): for floats or 32 bit size
 | |
|  *   u    : unsigned
 | |
|  *   s    : signed
 | |
|  *
 | |
|  * size is:
 | |
|  *   b: 8 bits
 | |
|  *   w: 16 bits
 | |
|  *   l: 32 bits
 | |
|  *   q: 64 bits
 | |
|  *
 | |
|  * endian is:
 | |
|  * (empty): target cpu endianness or 8 bit access
 | |
|  *   r    : reversed target cpu endianness (not implemented yet)
 | |
|  *   be   : big endian (not implemented yet)
 | |
|  *   le   : little endian (not implemented yet)
 | |
|  *
 | |
|  * access_type is:
 | |
|  *   raw    : host memory access
 | |
|  *   user   : user mode access using soft MMU
 | |
|  *   kernel : kernel mode access using soft MMU
 | |
|  */
 | |
| static inline int ldub_p(const void *ptr)
 | |
| {
 | |
|     return *(uint8_t *)ptr;
 | |
| }
 | |
| 
 | |
| static inline int ldsb_p(const void *ptr)
 | |
| {
 | |
|     return *(int8_t *)ptr;
 | |
| }
 | |
| 
 | |
| static inline void stb_p(void *ptr, int v)
 | |
| {
 | |
|     *(uint8_t *)ptr = v;
 | |
| }
 | |
| 
 | |
| /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
 | |
|    kernel handles unaligned load/stores may give better results, but
 | |
|    it is a system wide setting : bad */
 | |
| #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
 | |
| 
 | |
| /* conservative code for little endian unaligned accesses */
 | |
| static inline int lduw_le_p(const void *ptr)
 | |
| {
 | |
| #ifdef __powerpc__
 | |
|     int val;
 | |
|     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
 | |
|     return val;
 | |
| #else
 | |
|     uint8_t *p = ptr;
 | |
|     return p[0] | (p[1] << 8);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int ldsw_le_p(const void *ptr)
 | |
| {
 | |
| #ifdef __powerpc__
 | |
|     int val;
 | |
|     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
 | |
|     return (int16_t)val;
 | |
| #else
 | |
|     uint8_t *p = ptr;
 | |
|     return (int16_t)(p[0] | (p[1] << 8));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int ldl_le_p(const void *ptr)
 | |
| {
 | |
| #ifdef __powerpc__
 | |
|     int val;
 | |
|     __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
 | |
|     return val;
 | |
| #else
 | |
|     uint8_t *p = ptr;
 | |
|     return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline uint64_t ldq_le_p(const void *ptr)
 | |
| {
 | |
|     uint8_t *p = ptr;
 | |
|     uint32_t v1, v2;
 | |
|     v1 = ldl_le_p(p);
 | |
|     v2 = ldl_le_p(p + 4);
 | |
|     return v1 | ((uint64_t)v2 << 32);
 | |
| }
 | |
| 
 | |
| static inline void stw_le_p(void *ptr, int v)
 | |
| {
 | |
| #ifdef __powerpc__
 | |
|     __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
 | |
| #else
 | |
|     uint8_t *p = ptr;
 | |
|     p[0] = v;
 | |
|     p[1] = v >> 8;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void stl_le_p(void *ptr, int v)
 | |
| {
 | |
| #ifdef __powerpc__
 | |
|     __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
 | |
| #else
 | |
|     uint8_t *p = ptr;
 | |
|     p[0] = v;
 | |
|     p[1] = v >> 8;
 | |
|     p[2] = v >> 16;
 | |
|     p[3] = v >> 24;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void stq_le_p(void *ptr, uint64_t v)
 | |
| {
 | |
|     uint8_t *p = ptr;
 | |
|     stl_le_p(p, (uint32_t)v);
 | |
|     stl_le_p(p + 4, v >> 32);
 | |
| }
 | |
| 
 | |
| /* float access */
 | |
| 
 | |
| static inline float32 ldfl_le_p(const void *ptr)
 | |
| {
 | |
|     union {
 | |
|         float32 f;
 | |
|         uint32_t i;
 | |
|     } u;
 | |
|     u.i = ldl_le_p(ptr);
 | |
|     return u.f;
 | |
| }
 | |
| 
 | |
| static inline void stfl_le_p(void *ptr, float32 v)
 | |
| {
 | |
|     union {
 | |
|         float32 f;
 | |
|         uint32_t i;
 | |
|     } u;
 | |
|     u.f = v;
 | |
|     stl_le_p(ptr, u.i);
 | |
| }
 | |
| 
 | |
| static inline float64 ldfq_le_p(const void *ptr)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     u.l.lower = ldl_le_p(ptr);
 | |
|     u.l.upper = ldl_le_p(ptr + 4);
 | |
|     return u.d;
 | |
| }
 | |
| 
 | |
| static inline void stfq_le_p(void *ptr, float64 v)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     u.d = v;
 | |
|     stl_le_p(ptr, u.l.lower);
 | |
|     stl_le_p(ptr + 4, u.l.upper);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline int lduw_le_p(const void *ptr)
 | |
| {
 | |
|     return *(uint16_t *)ptr;
 | |
| }
 | |
| 
 | |
| static inline int ldsw_le_p(const void *ptr)
 | |
| {
 | |
|     return *(int16_t *)ptr;
 | |
| }
 | |
| 
 | |
| static inline int ldl_le_p(const void *ptr)
 | |
| {
 | |
|     return *(uint32_t *)ptr;
 | |
| }
 | |
| 
 | |
| static inline uint64_t ldq_le_p(const void *ptr)
 | |
| {
 | |
|     return *(uint64_t *)ptr;
 | |
| }
 | |
| 
 | |
| static inline void stw_le_p(void *ptr, int v)
 | |
| {
 | |
|     *(uint16_t *)ptr = v;
 | |
| }
 | |
| 
 | |
| static inline void stl_le_p(void *ptr, int v)
 | |
| {
 | |
|     *(uint32_t *)ptr = v;
 | |
| }
 | |
| 
 | |
| static inline void stq_le_p(void *ptr, uint64_t v)
 | |
| {
 | |
|     *(uint64_t *)ptr = v;
 | |
| }
 | |
| 
 | |
| /* float access */
 | |
| 
 | |
| static inline float32 ldfl_le_p(const void *ptr)
 | |
| {
 | |
|     return *(float32 *)ptr;
 | |
| }
 | |
| 
 | |
| static inline float64 ldfq_le_p(const void *ptr)
 | |
| {
 | |
|     return *(float64 *)ptr;
 | |
| }
 | |
| 
 | |
| static inline void stfl_le_p(void *ptr, float32 v)
 | |
| {
 | |
|     *(float32 *)ptr = v;
 | |
| }
 | |
| 
 | |
| static inline void stfq_le_p(void *ptr, float64 v)
 | |
| {
 | |
|     *(float64 *)ptr = v;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
 | |
| 
 | |
| static inline int lduw_be_p(const void *ptr)
 | |
| {
 | |
| #if defined(__i386__)
 | |
|     int val;
 | |
|     asm volatile ("movzwl %1, %0\n"
 | |
|                   "xchgb %b0, %h0\n"
 | |
|                   : "=q" (val)
 | |
|                   : "m" (*(uint16_t *)ptr));
 | |
|     return val;
 | |
| #else
 | |
|     uint8_t *b = (uint8_t *) ptr;
 | |
|     return ((b[0] << 8) | b[1]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int ldsw_be_p(const void *ptr)
 | |
| {
 | |
| #if defined(__i386__)
 | |
|     int val;
 | |
|     asm volatile ("movzwl %1, %0\n"
 | |
|                   "xchgb %b0, %h0\n"
 | |
|                   : "=q" (val)
 | |
|                   : "m" (*(uint16_t *)ptr));
 | |
|     return (int16_t)val;
 | |
| #else
 | |
|     uint8_t *b = (uint8_t *) ptr;
 | |
|     return (int16_t)((b[0] << 8) | b[1]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int ldl_be_p(const void *ptr)
 | |
| {
 | |
| #if defined(__i386__) || defined(__x86_64__)
 | |
|     int val;
 | |
|     asm volatile ("movl %1, %0\n"
 | |
|                   "bswap %0\n"
 | |
|                   : "=r" (val)
 | |
|                   : "m" (*(uint32_t *)ptr));
 | |
|     return val;
 | |
| #else
 | |
|     uint8_t *b = (uint8_t *) ptr;
 | |
|     return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline uint64_t ldq_be_p(const void *ptr)
 | |
| {
 | |
|     uint32_t a,b;
 | |
|     a = ldl_be_p(ptr);
 | |
|     b = ldl_be_p((uint8_t *)ptr + 4);
 | |
|     return (((uint64_t)a<<32)|b);
 | |
| }
 | |
| 
 | |
| static inline void stw_be_p(void *ptr, int v)
 | |
| {
 | |
| #if defined(__i386__)
 | |
|     asm volatile ("xchgb %b0, %h0\n"
 | |
|                   "movw %w0, %1\n"
 | |
|                   : "=q" (v)
 | |
|                   : "m" (*(uint16_t *)ptr), "0" (v));
 | |
| #else
 | |
|     uint8_t *d = (uint8_t *) ptr;
 | |
|     d[0] = v >> 8;
 | |
|     d[1] = v;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void stl_be_p(void *ptr, int v)
 | |
| {
 | |
| #if defined(__i386__) || defined(__x86_64__)
 | |
|     asm volatile ("bswap %0\n"
 | |
|                   "movl %0, %1\n"
 | |
|                   : "=r" (v)
 | |
|                   : "m" (*(uint32_t *)ptr), "0" (v));
 | |
| #else
 | |
|     uint8_t *d = (uint8_t *) ptr;
 | |
|     d[0] = v >> 24;
 | |
|     d[1] = v >> 16;
 | |
|     d[2] = v >> 8;
 | |
|     d[3] = v;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void stq_be_p(void *ptr, uint64_t v)
 | |
| {
 | |
|     stl_be_p(ptr, v >> 32);
 | |
|     stl_be_p((uint8_t *)ptr + 4, v);
 | |
| }
 | |
| 
 | |
| /* float access */
 | |
| 
 | |
| static inline float32 ldfl_be_p(const void *ptr)
 | |
| {
 | |
|     union {
 | |
|         float32 f;
 | |
|         uint32_t i;
 | |
|     } u;
 | |
|     u.i = ldl_be_p(ptr);
 | |
|     return u.f;
 | |
| }
 | |
| 
 | |
| static inline void stfl_be_p(void *ptr, float32 v)
 | |
| {
 | |
|     union {
 | |
|         float32 f;
 | |
|         uint32_t i;
 | |
|     } u;
 | |
|     u.f = v;
 | |
|     stl_be_p(ptr, u.i);
 | |
| }
 | |
| 
 | |
| static inline float64 ldfq_be_p(const void *ptr)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     u.l.upper = ldl_be_p(ptr);
 | |
|     u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
 | |
|     return u.d;
 | |
| }
 | |
| 
 | |
| static inline void stfq_be_p(void *ptr, float64 v)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     u.d = v;
 | |
|     stl_be_p(ptr, u.l.upper);
 | |
|     stl_be_p((uint8_t *)ptr + 4, u.l.lower);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline int lduw_be_p(const void *ptr)
 | |
| {
 | |
|     return *(uint16_t *)ptr;
 | |
| }
 | |
| 
 | |
| static inline int ldsw_be_p(const void *ptr)
 | |
| {
 | |
|     return *(int16_t *)ptr;
 | |
| }
 | |
| 
 | |
| static inline int ldl_be_p(const void *ptr)
 | |
| {
 | |
|     return *(uint32_t *)ptr;
 | |
| }
 | |
| 
 | |
| static inline uint64_t ldq_be_p(const void *ptr)
 | |
| {
 | |
|     return *(uint64_t *)ptr;
 | |
| }
 | |
| 
 | |
| static inline void stw_be_p(void *ptr, int v)
 | |
| {
 | |
|     *(uint16_t *)ptr = v;
 | |
| }
 | |
| 
 | |
| static inline void stl_be_p(void *ptr, int v)
 | |
| {
 | |
|     *(uint32_t *)ptr = v;
 | |
| }
 | |
| 
 | |
| static inline void stq_be_p(void *ptr, uint64_t v)
 | |
| {
 | |
|     *(uint64_t *)ptr = v;
 | |
| }
 | |
| 
 | |
| /* float access */
 | |
| 
 | |
| static inline float32 ldfl_be_p(const void *ptr)
 | |
| {
 | |
|     return *(float32 *)ptr;
 | |
| }
 | |
| 
 | |
| static inline float64 ldfq_be_p(const void *ptr)
 | |
| {
 | |
|     return *(float64 *)ptr;
 | |
| }
 | |
| 
 | |
| static inline void stfl_be_p(void *ptr, float32 v)
 | |
| {
 | |
|     *(float32 *)ptr = v;
 | |
| }
 | |
| 
 | |
| static inline void stfq_be_p(void *ptr, float64 v)
 | |
| {
 | |
|     *(float64 *)ptr = v;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* target CPU memory access functions */
 | |
| #if defined(TARGET_WORDS_BIGENDIAN)
 | |
| #define lduw_p(p) lduw_be_p(p)
 | |
| #define ldsw_p(p) ldsw_be_p(p)
 | |
| #define ldl_p(p) ldl_be_p(p)
 | |
| #define ldq_p(p) ldq_be_p(p)
 | |
| #define ldfl_p(p) ldfl_be_p(p)
 | |
| #define ldfq_p(p) ldfq_be_p(p)
 | |
| #define stw_p(p, v) stw_be_p(p, v)
 | |
| #define stl_p(p, v) stl_be_p(p, v)
 | |
| #define stq_p(p, v) stq_be_p(p, v)
 | |
| #define stfl_p(p, v) stfl_be_p(p, v)
 | |
| #define stfq_p(p, v) stfq_be_p(p, v)
 | |
| #else
 | |
| #define lduw_p(p) lduw_le_p(p)
 | |
| #define ldsw_p(p) ldsw_le_p(p)
 | |
| #define ldl_p(p) ldl_le_p(p)
 | |
| #define ldq_p(p) ldq_le_p(p)
 | |
| #define ldfl_p(p) ldfl_le_p(p)
 | |
| #define ldfq_p(p) ldfq_le_p(p)
 | |
| #define stw_p(p, v) stw_le_p(p, v)
 | |
| #define stl_p(p, v) stl_le_p(p, v)
 | |
| #define stq_p(p, v) stq_le_p(p, v)
 | |
| #define stfl_p(p, v) stfl_le_p(p, v)
 | |
| #define stfq_p(p, v) stfq_le_p(p, v)
 | |
| #endif
 | |
| 
 | |
| /* MMU memory access macros */
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| #include <assert.h>
 | |
| #include "qemu-types.h"
 | |
| 
 | |
| /* On some host systems the guest address space is reserved on the host.
 | |
|  * This allows the guest address space to be offset to a convenient location.
 | |
|  */
 | |
| //#define GUEST_BASE 0x20000000
 | |
| #define GUEST_BASE 0
 | |
| 
 | |
| /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
 | |
| #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
 | |
| #define h2g(x) ({ \
 | |
|     unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
 | |
|     /* Check if given address fits target address space */ \
 | |
|     assert(__ret == (abi_ulong)__ret); \
 | |
|     (abi_ulong)__ret; \
 | |
| })
 | |
| #define h2g_valid(x) ({ \
 | |
|     unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
 | |
|     (__guest == (abi_ulong)__guest); \
 | |
| })
 | |
| 
 | |
| #define saddr(x) g2h(x)
 | |
| #define laddr(x) g2h(x)
 | |
| 
 | |
| #else /* !CONFIG_USER_ONLY */
 | |
| /* NOTE: we use double casts if pointers and target_ulong have
 | |
|    different sizes */
 | |
| #define saddr(x) (uint8_t *)(long)(x)
 | |
| #define laddr(x) (uint8_t *)(long)(x)
 | |
| #endif
 | |
| 
 | |
| #define ldub_raw(p) ldub_p(laddr((p)))
 | |
| #define ldsb_raw(p) ldsb_p(laddr((p)))
 | |
| #define lduw_raw(p) lduw_p(laddr((p)))
 | |
| #define ldsw_raw(p) ldsw_p(laddr((p)))
 | |
| #define ldl_raw(p) ldl_p(laddr((p)))
 | |
| #define ldq_raw(p) ldq_p(laddr((p)))
 | |
| #define ldfl_raw(p) ldfl_p(laddr((p)))
 | |
| #define ldfq_raw(p) ldfq_p(laddr((p)))
 | |
| #define stb_raw(p, v) stb_p(saddr((p)), v)
 | |
| #define stw_raw(p, v) stw_p(saddr((p)), v)
 | |
| #define stl_raw(p, v) stl_p(saddr((p)), v)
 | |
| #define stq_raw(p, v) stq_p(saddr((p)), v)
 | |
| #define stfl_raw(p, v) stfl_p(saddr((p)), v)
 | |
| #define stfq_raw(p, v) stfq_p(saddr((p)), v)
 | |
| 
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| /* if user mode, no other memory access functions */
 | |
| #define ldub(p) ldub_raw(p)
 | |
| #define ldsb(p) ldsb_raw(p)
 | |
| #define lduw(p) lduw_raw(p)
 | |
| #define ldsw(p) ldsw_raw(p)
 | |
| #define ldl(p) ldl_raw(p)
 | |
| #define ldq(p) ldq_raw(p)
 | |
| #define ldfl(p) ldfl_raw(p)
 | |
| #define ldfq(p) ldfq_raw(p)
 | |
| #define stb(p, v) stb_raw(p, v)
 | |
| #define stw(p, v) stw_raw(p, v)
 | |
| #define stl(p, v) stl_raw(p, v)
 | |
| #define stq(p, v) stq_raw(p, v)
 | |
| #define stfl(p, v) stfl_raw(p, v)
 | |
| #define stfq(p, v) stfq_raw(p, v)
 | |
| 
 | |
| #define ldub_code(p) ldub_raw(p)
 | |
| #define ldsb_code(p) ldsb_raw(p)
 | |
| #define lduw_code(p) lduw_raw(p)
 | |
| #define ldsw_code(p) ldsw_raw(p)
 | |
| #define ldl_code(p) ldl_raw(p)
 | |
| #define ldq_code(p) ldq_raw(p)
 | |
| 
 | |
| #define ldub_kernel(p) ldub_raw(p)
 | |
| #define ldsb_kernel(p) ldsb_raw(p)
 | |
| #define lduw_kernel(p) lduw_raw(p)
 | |
| #define ldsw_kernel(p) ldsw_raw(p)
 | |
| #define ldl_kernel(p) ldl_raw(p)
 | |
| #define ldq_kernel(p) ldq_raw(p)
 | |
| #define ldfl_kernel(p) ldfl_raw(p)
 | |
| #define ldfq_kernel(p) ldfq_raw(p)
 | |
| #define stb_kernel(p, v) stb_raw(p, v)
 | |
| #define stw_kernel(p, v) stw_raw(p, v)
 | |
| #define stl_kernel(p, v) stl_raw(p, v)
 | |
| #define stq_kernel(p, v) stq_raw(p, v)
 | |
| #define stfl_kernel(p, v) stfl_raw(p, v)
 | |
| #define stfq_kernel(p, vt) stfq_raw(p, v)
 | |
| 
 | |
| #endif /* defined(CONFIG_USER_ONLY) */
 | |
| 
 | |
| /* page related stuff */
 | |
| 
 | |
| #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
 | |
| #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
 | |
| #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
 | |
| 
 | |
| /* ??? These should be the larger of unsigned long and target_ulong.  */
 | |
| extern unsigned long qemu_real_host_page_size;
 | |
| extern unsigned long qemu_host_page_bits;
 | |
| extern unsigned long qemu_host_page_size;
 | |
| extern unsigned long qemu_host_page_mask;
 | |
| 
 | |
| #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
 | |
| 
 | |
| /* same as PROT_xxx */
 | |
| #define PAGE_READ      0x0001
 | |
| #define PAGE_WRITE     0x0002
 | |
| #define PAGE_EXEC      0x0004
 | |
| #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
 | |
| #define PAGE_VALID     0x0008
 | |
| /* original state of the write flag (used when tracking self-modifying
 | |
|    code */
 | |
| #define PAGE_WRITE_ORG 0x0010
 | |
| #define PAGE_RESERVED  0x0020
 | |
| 
 | |
| void page_dump(FILE *f);
 | |
| int page_get_flags(target_ulong address);
 | |
| void page_set_flags(target_ulong start, target_ulong end, int flags);
 | |
| int page_check_range(target_ulong start, target_ulong len, int flags);
 | |
| 
 | |
| void cpu_exec_init_all(unsigned long tb_size);
 | |
| CPUState *cpu_copy(CPUState *env);
 | |
| 
 | |
| void cpu_dump_state(CPUState *env, FILE *f,
 | |
|                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
 | |
|                     int flags);
 | |
| void cpu_dump_statistics (CPUState *env, FILE *f,
 | |
|                           int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
 | |
|                           int flags);
 | |
| 
 | |
| void cpu_abort(CPUState *env, const char *fmt, ...)
 | |
|     __attribute__ ((__format__ (__printf__, 2, 3)))
 | |
|     __attribute__ ((__noreturn__));
 | |
| extern CPUState *first_cpu;
 | |
| extern CPUState *cpu_single_env;
 | |
| extern int64_t qemu_icount;
 | |
| extern int use_icount;
 | |
| 
 | |
| #define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
 | |
| #define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
 | |
| #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
 | |
| #define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
 | |
| #define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
 | |
| #define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
 | |
| #define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
 | |
| #define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
 | |
| #define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
 | |
| #define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
 | |
| 
 | |
| void cpu_interrupt(CPUState *s, int mask);
 | |
| void cpu_reset_interrupt(CPUState *env, int mask);
 | |
| 
 | |
| /* Breakpoint/watchpoint flags */
 | |
| #define BP_MEM_READ           0x01
 | |
| #define BP_MEM_WRITE          0x02
 | |
| #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
 | |
| #define BP_STOP_BEFORE_ACCESS 0x04
 | |
| #define BP_WATCHPOINT_HIT     0x08
 | |
| #define BP_GDB                0x10
 | |
| #define BP_CPU                0x20
 | |
| 
 | |
| int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
 | |
|                           CPUBreakpoint **breakpoint);
 | |
| int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
 | |
| void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
 | |
| void cpu_breakpoint_remove_all(CPUState *env, int mask);
 | |
| int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
 | |
|                           int flags, CPUWatchpoint **watchpoint);
 | |
| int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
 | |
|                           target_ulong len, int flags);
 | |
| void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
 | |
| void cpu_watchpoint_remove_all(CPUState *env, int mask);
 | |
| 
 | |
| #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
 | |
| #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
 | |
| #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
 | |
| 
 | |
| void cpu_single_step(CPUState *env, int enabled);
 | |
| void cpu_reset(CPUState *s);
 | |
| 
 | |
| /* Return the physical page corresponding to a virtual one. Use it
 | |
|    only for debugging because no protection checks are done. Return -1
 | |
|    if no page found. */
 | |
| target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
 | |
| 
 | |
| #define CPU_LOG_TB_OUT_ASM (1 << 0)
 | |
| #define CPU_LOG_TB_IN_ASM  (1 << 1)
 | |
| #define CPU_LOG_TB_OP      (1 << 2)
 | |
| #define CPU_LOG_TB_OP_OPT  (1 << 3)
 | |
| #define CPU_LOG_INT        (1 << 4)
 | |
| #define CPU_LOG_EXEC       (1 << 5)
 | |
| #define CPU_LOG_PCALL      (1 << 6)
 | |
| #define CPU_LOG_IOPORT     (1 << 7)
 | |
| #define CPU_LOG_TB_CPU     (1 << 8)
 | |
| 
 | |
| /* define log items */
 | |
| typedef struct CPULogItem {
 | |
|     int mask;
 | |
|     const char *name;
 | |
|     const char *help;
 | |
| } CPULogItem;
 | |
| 
 | |
| extern const CPULogItem cpu_log_items[];
 | |
| 
 | |
| void cpu_set_log(int log_flags);
 | |
| void cpu_set_log_filename(const char *filename);
 | |
| int cpu_str_to_log_mask(const char *str);
 | |
| 
 | |
| /* IO ports API */
 | |
| 
 | |
| /* NOTE: as these functions may be even used when there is an isa
 | |
|    brige on non x86 targets, we always defined them */
 | |
| #ifndef NO_CPU_IO_DEFS
 | |
| void cpu_outb(CPUState *env, int addr, int val);
 | |
| void cpu_outw(CPUState *env, int addr, int val);
 | |
| void cpu_outl(CPUState *env, int addr, int val);
 | |
| int cpu_inb(CPUState *env, int addr);
 | |
| int cpu_inw(CPUState *env, int addr);
 | |
| int cpu_inl(CPUState *env, int addr);
 | |
| #endif
 | |
| 
 | |
| /* address in the RAM (different from a physical address) */
 | |
| #ifdef USE_KQEMU
 | |
| typedef uint32_t ram_addr_t;
 | |
| #else
 | |
| typedef unsigned long ram_addr_t;
 | |
| #endif
 | |
| 
 | |
| /* memory API */
 | |
| 
 | |
| extern ram_addr_t phys_ram_size;
 | |
| extern int phys_ram_fd;
 | |
| extern uint8_t *phys_ram_base;
 | |
| extern uint8_t *phys_ram_dirty;
 | |
| extern ram_addr_t ram_size;
 | |
| 
 | |
| /* physical memory access */
 | |
| 
 | |
| /* MMIO pages are identified by a combination of an IO device index and
 | |
|    3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
 | |
|    so only a limited number of ids are avaiable.  */
 | |
| 
 | |
| #define IO_MEM_SHIFT       3
 | |
| #define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
 | |
| 
 | |
| #define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
 | |
| #define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
 | |
| #define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
 | |
| #define IO_MEM_NOTDIRTY    (3 << IO_MEM_SHIFT)
 | |
| 
 | |
| /* Acts like a ROM when read and like a device when written.  */
 | |
| #define IO_MEM_ROMD        (1)
 | |
| #define IO_MEM_SUBPAGE     (2)
 | |
| #define IO_MEM_SUBWIDTH    (4)
 | |
| 
 | |
| /* Flags stored in the low bits of the TLB virtual address.  These are
 | |
|    defined so that fast path ram access is all zeros.  */
 | |
| /* Zero if TLB entry is valid.  */
 | |
| #define TLB_INVALID_MASK   (1 << 3)
 | |
| /* Set if TLB entry references a clean RAM page.  The iotlb entry will
 | |
|    contain the page physical address.  */
 | |
| #define TLB_NOTDIRTY    (1 << 4)
 | |
| /* Set if TLB entry is an IO callback.  */
 | |
| #define TLB_MMIO        (1 << 5)
 | |
| 
 | |
| typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
 | |
| typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
 | |
| 
 | |
| void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
 | |
|                                          ram_addr_t size,
 | |
|                                          ram_addr_t phys_offset,
 | |
|                                          ram_addr_t region_offset);
 | |
| static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
 | |
|                                                 ram_addr_t size,
 | |
|                                                 ram_addr_t phys_offset)
 | |
| {
 | |
|     cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
 | |
| }
 | |
| 
 | |
| ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
 | |
| ram_addr_t qemu_ram_alloc(ram_addr_t);
 | |
| void qemu_ram_free(ram_addr_t addr);
 | |
| int cpu_register_io_memory(int io_index,
 | |
|                            CPUReadMemoryFunc **mem_read,
 | |
|                            CPUWriteMemoryFunc **mem_write,
 | |
|                            void *opaque);
 | |
| CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
 | |
| CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
 | |
| 
 | |
| void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
 | |
|                             int len, int is_write);
 | |
| static inline void cpu_physical_memory_read(target_phys_addr_t addr,
 | |
|                                             uint8_t *buf, int len)
 | |
| {
 | |
|     cpu_physical_memory_rw(addr, buf, len, 0);
 | |
| }
 | |
| static inline void cpu_physical_memory_write(target_phys_addr_t addr,
 | |
|                                              const uint8_t *buf, int len)
 | |
| {
 | |
|     cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
 | |
| }
 | |
| uint32_t ldub_phys(target_phys_addr_t addr);
 | |
| uint32_t lduw_phys(target_phys_addr_t addr);
 | |
| uint32_t ldl_phys(target_phys_addr_t addr);
 | |
| uint64_t ldq_phys(target_phys_addr_t addr);
 | |
| void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
 | |
| void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
 | |
| void stb_phys(target_phys_addr_t addr, uint32_t val);
 | |
| void stw_phys(target_phys_addr_t addr, uint32_t val);
 | |
| void stl_phys(target_phys_addr_t addr, uint32_t val);
 | |
| void stq_phys(target_phys_addr_t addr, uint64_t val);
 | |
| 
 | |
| void cpu_physical_memory_write_rom(target_phys_addr_t addr,
 | |
|                                    const uint8_t *buf, int len);
 | |
| int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
 | |
|                         uint8_t *buf, int len, int is_write);
 | |
| 
 | |
| #define VGA_DIRTY_FLAG       0x01
 | |
| #define CODE_DIRTY_FLAG      0x02
 | |
| #define KQEMU_DIRTY_FLAG     0x04
 | |
| #define MIGRATION_DIRTY_FLAG 0x08
 | |
| 
 | |
| /* read dirty bit (return 0 or 1) */
 | |
| static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
 | |
| {
 | |
|     return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
 | |
| }
 | |
| 
 | |
| static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
 | |
|                                                 int dirty_flags)
 | |
| {
 | |
|     return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
 | |
| }
 | |
| 
 | |
| static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
 | |
| {
 | |
|     phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
 | |
| }
 | |
| 
 | |
| void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
 | |
|                                      int dirty_flags);
 | |
| void cpu_tlb_update_dirty(CPUState *env);
 | |
| 
 | |
| int cpu_physical_memory_set_dirty_tracking(int enable);
 | |
| 
 | |
| int cpu_physical_memory_get_dirty_tracking(void);
 | |
| 
 | |
| void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
 | |
| 
 | |
| void dump_exec_info(FILE *f,
 | |
|                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
 | |
| 
 | |
| /*******************************************/
 | |
| /* host CPU ticks (if available) */
 | |
| 
 | |
| #if defined(__powerpc__)
 | |
| 
 | |
| static inline uint32_t get_tbl(void)
 | |
| {
 | |
|     uint32_t tbl;
 | |
|     asm volatile("mftb %0" : "=r" (tbl));
 | |
|     return tbl;
 | |
| }
 | |
| 
 | |
| static inline uint32_t get_tbu(void)
 | |
| {
 | |
| 	uint32_t tbl;
 | |
| 	asm volatile("mftbu %0" : "=r" (tbl));
 | |
| 	return tbl;
 | |
| }
 | |
| 
 | |
| static inline int64_t cpu_get_real_ticks(void)
 | |
| {
 | |
|     uint32_t l, h, h1;
 | |
|     /* NOTE: we test if wrapping has occurred */
 | |
|     do {
 | |
|         h = get_tbu();
 | |
|         l = get_tbl();
 | |
|         h1 = get_tbu();
 | |
|     } while (h != h1);
 | |
|     return ((int64_t)h << 32) | l;
 | |
| }
 | |
| 
 | |
| #elif defined(__i386__)
 | |
| 
 | |
| static inline int64_t cpu_get_real_ticks(void)
 | |
| {
 | |
|     int64_t val;
 | |
|     asm volatile ("rdtsc" : "=A" (val));
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| #elif defined(__x86_64__)
 | |
| 
 | |
| static inline int64_t cpu_get_real_ticks(void)
 | |
| {
 | |
|     uint32_t low,high;
 | |
|     int64_t val;
 | |
|     asm volatile("rdtsc" : "=a" (low), "=d" (high));
 | |
|     val = high;
 | |
|     val <<= 32;
 | |
|     val |= low;
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| #elif defined(__hppa__)
 | |
| 
 | |
| static inline int64_t cpu_get_real_ticks(void)
 | |
| {
 | |
|     int val;
 | |
|     asm volatile ("mfctl %%cr16, %0" : "=r"(val));
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| #elif defined(__ia64)
 | |
| 
 | |
| static inline int64_t cpu_get_real_ticks(void)
 | |
| {
 | |
| 	int64_t val;
 | |
| 	asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| #elif defined(__s390__)
 | |
| 
 | |
| static inline int64_t cpu_get_real_ticks(void)
 | |
| {
 | |
|     int64_t val;
 | |
|     asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
 | |
| 
 | |
| static inline int64_t cpu_get_real_ticks (void)
 | |
| {
 | |
| #if     defined(_LP64)
 | |
|         uint64_t        rval;
 | |
|         asm volatile("rd %%tick,%0" : "=r"(rval));
 | |
|         return rval;
 | |
| #else
 | |
|         union {
 | |
|                 uint64_t i64;
 | |
|                 struct {
 | |
|                         uint32_t high;
 | |
|                         uint32_t low;
 | |
|                 }       i32;
 | |
|         } rval;
 | |
|         asm volatile("rd %%tick,%1; srlx %1,32,%0"
 | |
|                 : "=r"(rval.i32.high), "=r"(rval.i32.low));
 | |
|         return rval.i64;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #elif defined(__mips__)
 | |
| 
 | |
| static inline int64_t cpu_get_real_ticks(void)
 | |
| {
 | |
| #if __mips_isa_rev >= 2
 | |
|     uint32_t count;
 | |
|     static uint32_t cyc_per_count = 0;
 | |
| 
 | |
|     if (!cyc_per_count)
 | |
|         __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
 | |
| 
 | |
|     __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
 | |
|     return (int64_t)(count * cyc_per_count);
 | |
| #else
 | |
|     /* FIXME */
 | |
|     static int64_t ticks = 0;
 | |
|     return ticks++;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #else
 | |
| /* The host CPU doesn't have an easily accessible cycle counter.
 | |
|    Just return a monotonically increasing value.  This will be
 | |
|    totally wrong, but hopefully better than nothing.  */
 | |
| static inline int64_t cpu_get_real_ticks (void)
 | |
| {
 | |
|     static int64_t ticks = 0;
 | |
|     return ticks++;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* profiling */
 | |
| #ifdef CONFIG_PROFILER
 | |
| static inline int64_t profile_getclock(void)
 | |
| {
 | |
|     return cpu_get_real_ticks();
 | |
| }
 | |
| 
 | |
| extern int64_t kqemu_time, kqemu_time_start;
 | |
| extern int64_t qemu_time, qemu_time_start;
 | |
| extern int64_t tlb_flush_time;
 | |
| extern int64_t kqemu_exec_count;
 | |
| extern int64_t dev_time;
 | |
| extern int64_t kqemu_ret_int_count;
 | |
| extern int64_t kqemu_ret_excp_count;
 | |
| extern int64_t kqemu_ret_intr_count;
 | |
| #endif
 | |
| 
 | |
| #endif /* CPU_ALL_H */
 |