 9063825538
			
		
	
	
		9063825538
		
	
	
	
	
		
			
			Add obviously missing 'break' statement. Signed-off-by: Blue Swirl <blauwirbel@gmail.com> Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Andreas Färber <afaerber@suse.de> Signed-off-by: Alexander Graf <agraf@suse.de>
		
			
				
	
	
		
			1741 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1741 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  PowerPC floating point and SPE emulation helpers for QEMU.
 | |
|  *
 | |
|  *  Copyright (c) 2003-2007 Jocelyn Mayer
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include "cpu.h"
 | |
| #include "helper.h"
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Floating point operations helpers */
 | |
| uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
 | |
| {
 | |
|     CPU_FloatU f;
 | |
|     CPU_DoubleU d;
 | |
| 
 | |
|     f.l = arg;
 | |
|     d.d = float32_to_float64(f.f, &env->fp_status);
 | |
|     return d.ll;
 | |
| }
 | |
| 
 | |
| uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     CPU_FloatU f;
 | |
|     CPU_DoubleU d;
 | |
| 
 | |
|     d.ll = arg;
 | |
|     f.f = float64_to_float32(d.d, &env->fp_status);
 | |
|     return f.l;
 | |
| }
 | |
| 
 | |
| static inline int isden(float64 d)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.d = d;
 | |
| 
 | |
|     return ((u.ll >> 52) & 0x7FF) == 0;
 | |
| }
 | |
| 
 | |
| uint32_t helper_compute_fprf(CPUPPCState *env, uint64_t arg, uint32_t set_fprf)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
|     int isneg;
 | |
|     int ret;
 | |
| 
 | |
|     farg.ll = arg;
 | |
|     isneg = float64_is_neg(farg.d);
 | |
|     if (unlikely(float64_is_any_nan(farg.d))) {
 | |
|         if (float64_is_signaling_nan(farg.d)) {
 | |
|             /* Signaling NaN: flags are undefined */
 | |
|             ret = 0x00;
 | |
|         } else {
 | |
|             /* Quiet NaN */
 | |
|             ret = 0x11;
 | |
|         }
 | |
|     } else if (unlikely(float64_is_infinity(farg.d))) {
 | |
|         /* +/- infinity */
 | |
|         if (isneg) {
 | |
|             ret = 0x09;
 | |
|         } else {
 | |
|             ret = 0x05;
 | |
|         }
 | |
|     } else {
 | |
|         if (float64_is_zero(farg.d)) {
 | |
|             /* +/- zero */
 | |
|             if (isneg) {
 | |
|                 ret = 0x12;
 | |
|             } else {
 | |
|                 ret = 0x02;
 | |
|             }
 | |
|         } else {
 | |
|             if (isden(farg.d)) {
 | |
|                 /* Denormalized numbers */
 | |
|                 ret = 0x10;
 | |
|             } else {
 | |
|                 /* Normalized numbers */
 | |
|                 ret = 0x00;
 | |
|             }
 | |
|             if (isneg) {
 | |
|                 ret |= 0x08;
 | |
|             } else {
 | |
|                 ret |= 0x04;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (set_fprf) {
 | |
|         /* We update FPSCR_FPRF */
 | |
|         env->fpscr &= ~(0x1F << FPSCR_FPRF);
 | |
|         env->fpscr |= ret << FPSCR_FPRF;
 | |
|     }
 | |
|     /* We just need fpcc to update Rc1 */
 | |
|     return ret & 0xF;
 | |
| }
 | |
| 
 | |
| /* Floating-point invalid operations exception */
 | |
| static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op)
 | |
| {
 | |
|     uint64_t ret = 0;
 | |
|     int ve;
 | |
| 
 | |
|     ve = fpscr_ve;
 | |
|     switch (op) {
 | |
|     case POWERPC_EXCP_FP_VXSNAN:
 | |
|         env->fpscr |= 1 << FPSCR_VXSNAN;
 | |
|         break;
 | |
|     case POWERPC_EXCP_FP_VXSOFT:
 | |
|         env->fpscr |= 1 << FPSCR_VXSOFT;
 | |
|         break;
 | |
|     case POWERPC_EXCP_FP_VXISI:
 | |
|         /* Magnitude subtraction of infinities */
 | |
|         env->fpscr |= 1 << FPSCR_VXISI;
 | |
|         goto update_arith;
 | |
|     case POWERPC_EXCP_FP_VXIDI:
 | |
|         /* Division of infinity by infinity */
 | |
|         env->fpscr |= 1 << FPSCR_VXIDI;
 | |
|         goto update_arith;
 | |
|     case POWERPC_EXCP_FP_VXZDZ:
 | |
|         /* Division of zero by zero */
 | |
|         env->fpscr |= 1 << FPSCR_VXZDZ;
 | |
|         goto update_arith;
 | |
|     case POWERPC_EXCP_FP_VXIMZ:
 | |
|         /* Multiplication of zero by infinity */
 | |
|         env->fpscr |= 1 << FPSCR_VXIMZ;
 | |
|         goto update_arith;
 | |
|     case POWERPC_EXCP_FP_VXVC:
 | |
|         /* Ordered comparison of NaN */
 | |
|         env->fpscr |= 1 << FPSCR_VXVC;
 | |
|         env->fpscr &= ~(0xF << FPSCR_FPCC);
 | |
|         env->fpscr |= 0x11 << FPSCR_FPCC;
 | |
|         /* We must update the target FPR before raising the exception */
 | |
|         if (ve != 0) {
 | |
|             env->exception_index = POWERPC_EXCP_PROGRAM;
 | |
|             env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
 | |
|             /* Update the floating-point enabled exception summary */
 | |
|             env->fpscr |= 1 << FPSCR_FEX;
 | |
|             /* Exception is differed */
 | |
|             ve = 0;
 | |
|         }
 | |
|         break;
 | |
|     case POWERPC_EXCP_FP_VXSQRT:
 | |
|         /* Square root of a negative number */
 | |
|         env->fpscr |= 1 << FPSCR_VXSQRT;
 | |
|     update_arith:
 | |
|         env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 | |
|         if (ve == 0) {
 | |
|             /* Set the result to quiet NaN */
 | |
|             ret = 0x7FF8000000000000ULL;
 | |
|             env->fpscr &= ~(0xF << FPSCR_FPCC);
 | |
|             env->fpscr |= 0x11 << FPSCR_FPCC;
 | |
|         }
 | |
|         break;
 | |
|     case POWERPC_EXCP_FP_VXCVI:
 | |
|         /* Invalid conversion */
 | |
|         env->fpscr |= 1 << FPSCR_VXCVI;
 | |
|         env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 | |
|         if (ve == 0) {
 | |
|             /* Set the result to quiet NaN */
 | |
|             ret = 0x7FF8000000000000ULL;
 | |
|             env->fpscr &= ~(0xF << FPSCR_FPCC);
 | |
|             env->fpscr |= 0x11 << FPSCR_FPCC;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     /* Update the floating-point invalid operation summary */
 | |
|     env->fpscr |= 1 << FPSCR_VX;
 | |
|     /* Update the floating-point exception summary */
 | |
|     env->fpscr |= 1 << FPSCR_FX;
 | |
|     if (ve != 0) {
 | |
|         /* Update the floating-point enabled exception summary */
 | |
|         env->fpscr |= 1 << FPSCR_FEX;
 | |
|         if (msr_fe0 != 0 || msr_fe1 != 0) {
 | |
|             helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
 | |
|                                        POWERPC_EXCP_FP | op);
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static inline void float_zero_divide_excp(CPUPPCState *env)
 | |
| {
 | |
|     env->fpscr |= 1 << FPSCR_ZX;
 | |
|     env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 | |
|     /* Update the floating-point exception summary */
 | |
|     env->fpscr |= 1 << FPSCR_FX;
 | |
|     if (fpscr_ze != 0) {
 | |
|         /* Update the floating-point enabled exception summary */
 | |
|         env->fpscr |= 1 << FPSCR_FEX;
 | |
|         if (msr_fe0 != 0 || msr_fe1 != 0) {
 | |
|             helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
 | |
|                                        POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void float_overflow_excp(CPUPPCState *env)
 | |
| {
 | |
|     env->fpscr |= 1 << FPSCR_OX;
 | |
|     /* Update the floating-point exception summary */
 | |
|     env->fpscr |= 1 << FPSCR_FX;
 | |
|     if (fpscr_oe != 0) {
 | |
|         /* XXX: should adjust the result */
 | |
|         /* Update the floating-point enabled exception summary */
 | |
|         env->fpscr |= 1 << FPSCR_FEX;
 | |
|         /* We must update the target FPR before raising the exception */
 | |
|         env->exception_index = POWERPC_EXCP_PROGRAM;
 | |
|         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
 | |
|     } else {
 | |
|         env->fpscr |= 1 << FPSCR_XX;
 | |
|         env->fpscr |= 1 << FPSCR_FI;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void float_underflow_excp(CPUPPCState *env)
 | |
| {
 | |
|     env->fpscr |= 1 << FPSCR_UX;
 | |
|     /* Update the floating-point exception summary */
 | |
|     env->fpscr |= 1 << FPSCR_FX;
 | |
|     if (fpscr_ue != 0) {
 | |
|         /* XXX: should adjust the result */
 | |
|         /* Update the floating-point enabled exception summary */
 | |
|         env->fpscr |= 1 << FPSCR_FEX;
 | |
|         /* We must update the target FPR before raising the exception */
 | |
|         env->exception_index = POWERPC_EXCP_PROGRAM;
 | |
|         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void float_inexact_excp(CPUPPCState *env)
 | |
| {
 | |
|     env->fpscr |= 1 << FPSCR_XX;
 | |
|     /* Update the floating-point exception summary */
 | |
|     env->fpscr |= 1 << FPSCR_FX;
 | |
|     if (fpscr_xe != 0) {
 | |
|         /* Update the floating-point enabled exception summary */
 | |
|         env->fpscr |= 1 << FPSCR_FEX;
 | |
|         /* We must update the target FPR before raising the exception */
 | |
|         env->exception_index = POWERPC_EXCP_PROGRAM;
 | |
|         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void fpscr_set_rounding_mode(CPUPPCState *env)
 | |
| {
 | |
|     int rnd_type;
 | |
| 
 | |
|     /* Set rounding mode */
 | |
|     switch (fpscr_rn) {
 | |
|     case 0:
 | |
|         /* Best approximation (round to nearest) */
 | |
|         rnd_type = float_round_nearest_even;
 | |
|         break;
 | |
|     case 1:
 | |
|         /* Smaller magnitude (round toward zero) */
 | |
|         rnd_type = float_round_to_zero;
 | |
|         break;
 | |
|     case 2:
 | |
|         /* Round toward +infinite */
 | |
|         rnd_type = float_round_up;
 | |
|         break;
 | |
|     default:
 | |
|     case 3:
 | |
|         /* Round toward -infinite */
 | |
|         rnd_type = float_round_down;
 | |
|         break;
 | |
|     }
 | |
|     set_float_rounding_mode(rnd_type, &env->fp_status);
 | |
| }
 | |
| 
 | |
| void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
 | |
| {
 | |
|     int prev;
 | |
| 
 | |
|     prev = (env->fpscr >> bit) & 1;
 | |
|     env->fpscr &= ~(1 << bit);
 | |
|     if (prev == 1) {
 | |
|         switch (bit) {
 | |
|         case FPSCR_RN1:
 | |
|         case FPSCR_RN:
 | |
|             fpscr_set_rounding_mode(env);
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
 | |
| {
 | |
|     int prev;
 | |
| 
 | |
|     prev = (env->fpscr >> bit) & 1;
 | |
|     env->fpscr |= 1 << bit;
 | |
|     if (prev == 0) {
 | |
|         switch (bit) {
 | |
|         case FPSCR_VX:
 | |
|             env->fpscr |= 1 << FPSCR_FX;
 | |
|             if (fpscr_ve) {
 | |
|                 goto raise_ve;
 | |
|             }
 | |
|             break;
 | |
|         case FPSCR_OX:
 | |
|             env->fpscr |= 1 << FPSCR_FX;
 | |
|             if (fpscr_oe) {
 | |
|                 goto raise_oe;
 | |
|             }
 | |
|             break;
 | |
|         case FPSCR_UX:
 | |
|             env->fpscr |= 1 << FPSCR_FX;
 | |
|             if (fpscr_ue) {
 | |
|                 goto raise_ue;
 | |
|             }
 | |
|             break;
 | |
|         case FPSCR_ZX:
 | |
|             env->fpscr |= 1 << FPSCR_FX;
 | |
|             if (fpscr_ze) {
 | |
|                 goto raise_ze;
 | |
|             }
 | |
|             break;
 | |
|         case FPSCR_XX:
 | |
|             env->fpscr |= 1 << FPSCR_FX;
 | |
|             if (fpscr_xe) {
 | |
|                 goto raise_xe;
 | |
|             }
 | |
|             break;
 | |
|         case FPSCR_VXSNAN:
 | |
|         case FPSCR_VXISI:
 | |
|         case FPSCR_VXIDI:
 | |
|         case FPSCR_VXZDZ:
 | |
|         case FPSCR_VXIMZ:
 | |
|         case FPSCR_VXVC:
 | |
|         case FPSCR_VXSOFT:
 | |
|         case FPSCR_VXSQRT:
 | |
|         case FPSCR_VXCVI:
 | |
|             env->fpscr |= 1 << FPSCR_VX;
 | |
|             env->fpscr |= 1 << FPSCR_FX;
 | |
|             if (fpscr_ve != 0) {
 | |
|                 goto raise_ve;
 | |
|             }
 | |
|             break;
 | |
|         case FPSCR_VE:
 | |
|             if (fpscr_vx != 0) {
 | |
|             raise_ve:
 | |
|                 env->error_code = POWERPC_EXCP_FP;
 | |
|                 if (fpscr_vxsnan) {
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXSNAN;
 | |
|                 }
 | |
|                 if (fpscr_vxisi) {
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXISI;
 | |
|                 }
 | |
|                 if (fpscr_vxidi) {
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXIDI;
 | |
|                 }
 | |
|                 if (fpscr_vxzdz) {
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXZDZ;
 | |
|                 }
 | |
|                 if (fpscr_vximz) {
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXIMZ;
 | |
|                 }
 | |
|                 if (fpscr_vxvc) {
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXVC;
 | |
|                 }
 | |
|                 if (fpscr_vxsoft) {
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXSOFT;
 | |
|                 }
 | |
|                 if (fpscr_vxsqrt) {
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXSQRT;
 | |
|                 }
 | |
|                 if (fpscr_vxcvi) {
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXCVI;
 | |
|                 }
 | |
|                 goto raise_excp;
 | |
|             }
 | |
|             break;
 | |
|         case FPSCR_OE:
 | |
|             if (fpscr_ox != 0) {
 | |
|             raise_oe:
 | |
|                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
 | |
|                 goto raise_excp;
 | |
|             }
 | |
|             break;
 | |
|         case FPSCR_UE:
 | |
|             if (fpscr_ux != 0) {
 | |
|             raise_ue:
 | |
|                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
 | |
|                 goto raise_excp;
 | |
|             }
 | |
|             break;
 | |
|         case FPSCR_ZE:
 | |
|             if (fpscr_zx != 0) {
 | |
|             raise_ze:
 | |
|                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
 | |
|                 goto raise_excp;
 | |
|             }
 | |
|             break;
 | |
|         case FPSCR_XE:
 | |
|             if (fpscr_xx != 0) {
 | |
|             raise_xe:
 | |
|                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
 | |
|                 goto raise_excp;
 | |
|             }
 | |
|             break;
 | |
|         case FPSCR_RN1:
 | |
|         case FPSCR_RN:
 | |
|             fpscr_set_rounding_mode(env);
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         raise_excp:
 | |
|             /* Update the floating-point enabled exception summary */
 | |
|             env->fpscr |= 1 << FPSCR_FEX;
 | |
|             /* We have to update Rc1 before raising the exception */
 | |
|             env->exception_index = POWERPC_EXCP_PROGRAM;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
 | |
| {
 | |
|     /*
 | |
|      * We use only the 32 LSB of the incoming fpr
 | |
|      */
 | |
|     uint32_t prev, new;
 | |
|     int i;
 | |
| 
 | |
|     prev = env->fpscr;
 | |
|     new = (uint32_t)arg;
 | |
|     new &= ~0x60000000;
 | |
|     new |= prev & 0x60000000;
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         if (mask & (1 << i)) {
 | |
|             env->fpscr &= ~(0xF << (4 * i));
 | |
|             env->fpscr |= new & (0xF << (4 * i));
 | |
|         }
 | |
|     }
 | |
|     /* Update VX and FEX */
 | |
|     if (fpscr_ix != 0) {
 | |
|         env->fpscr |= 1 << FPSCR_VX;
 | |
|     } else {
 | |
|         env->fpscr &= ~(1 << FPSCR_VX);
 | |
|     }
 | |
|     if ((fpscr_ex & fpscr_eex) != 0) {
 | |
|         env->fpscr |= 1 << FPSCR_FEX;
 | |
|         env->exception_index = POWERPC_EXCP_PROGRAM;
 | |
|         /* XXX: we should compute it properly */
 | |
|         env->error_code = POWERPC_EXCP_FP;
 | |
|     } else {
 | |
|         env->fpscr &= ~(1 << FPSCR_FEX);
 | |
|     }
 | |
|     fpscr_set_rounding_mode(env);
 | |
| }
 | |
| 
 | |
| void helper_float_check_status(CPUPPCState *env)
 | |
| {
 | |
|     if (env->exception_index == POWERPC_EXCP_PROGRAM &&
 | |
|         (env->error_code & POWERPC_EXCP_FP)) {
 | |
|         /* Differred floating-point exception after target FPR update */
 | |
|         if (msr_fe0 != 0 || msr_fe1 != 0) {
 | |
|             helper_raise_exception_err(env, env->exception_index,
 | |
|                                        env->error_code);
 | |
|         }
 | |
|     } else {
 | |
|         int status = get_float_exception_flags(&env->fp_status);
 | |
|         if (status & float_flag_divbyzero) {
 | |
|             float_zero_divide_excp(env);
 | |
|         } else if (status & float_flag_overflow) {
 | |
|             float_overflow_excp(env);
 | |
|         } else if (status & float_flag_underflow) {
 | |
|             float_underflow_excp(env);
 | |
|         } else if (status & float_flag_inexact) {
 | |
|             float_inexact_excp(env);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_reset_fpstatus(CPUPPCState *env)
 | |
| {
 | |
|     set_float_exception_flags(0, &env->fp_status);
 | |
| }
 | |
| 
 | |
| /* fadd - fadd. */
 | |
| uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
| 
 | |
|     if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
 | |
|                  float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
 | |
|         /* Magnitude subtraction of infinities */
 | |
|         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
 | |
|     } else {
 | |
|         if (unlikely(float64_is_signaling_nan(farg1.d) ||
 | |
|                      float64_is_signaling_nan(farg2.d))) {
 | |
|             /* sNaN addition */
 | |
|             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
 | |
|         }
 | |
|         farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
 | |
|     }
 | |
| 
 | |
|     return farg1.ll;
 | |
| }
 | |
| 
 | |
| /* fsub - fsub. */
 | |
| uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
| 
 | |
|     if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
 | |
|                  float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
 | |
|         /* Magnitude subtraction of infinities */
 | |
|         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
 | |
|     } else {
 | |
|         if (unlikely(float64_is_signaling_nan(farg1.d) ||
 | |
|                      float64_is_signaling_nan(farg2.d))) {
 | |
|             /* sNaN subtraction */
 | |
|             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
 | |
|         }
 | |
|         farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
 | |
|     }
 | |
| 
 | |
|     return farg1.ll;
 | |
| }
 | |
| 
 | |
| /* fmul - fmul. */
 | |
| uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
| 
 | |
|     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 | |
|                  (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 | |
|         /* Multiplication of zero by infinity */
 | |
|         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
 | |
|     } else {
 | |
|         if (unlikely(float64_is_signaling_nan(farg1.d) ||
 | |
|                      float64_is_signaling_nan(farg2.d))) {
 | |
|             /* sNaN multiplication */
 | |
|             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
 | |
|         }
 | |
|         farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
 | |
|     }
 | |
| 
 | |
|     return farg1.ll;
 | |
| }
 | |
| 
 | |
| /* fdiv - fdiv. */
 | |
| uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
| 
 | |
|     if (unlikely(float64_is_infinity(farg1.d) &&
 | |
|                  float64_is_infinity(farg2.d))) {
 | |
|         /* Division of infinity by infinity */
 | |
|         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI);
 | |
|     } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
 | |
|         /* Division of zero by zero */
 | |
|         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ);
 | |
|     } else {
 | |
|         if (unlikely(float64_is_signaling_nan(farg1.d) ||
 | |
|                      float64_is_signaling_nan(farg2.d))) {
 | |
|             /* sNaN division */
 | |
|             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
 | |
|         }
 | |
|         farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
 | |
|     }
 | |
| 
 | |
|     return farg1.ll;
 | |
| }
 | |
| 
 | |
| /* fabs */
 | |
| uint64_t helper_fabs(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
| 
 | |
|     farg.ll = arg;
 | |
|     farg.d = float64_abs(farg.d);
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fnabs */
 | |
| uint64_t helper_fnabs(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
| 
 | |
|     farg.ll = arg;
 | |
|     farg.d = float64_abs(farg.d);
 | |
|     farg.d = float64_chs(farg.d);
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fneg */
 | |
| uint64_t helper_fneg(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
| 
 | |
|     farg.ll = arg;
 | |
|     farg.d = float64_chs(farg.d);
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fctiw - fctiw. */
 | |
| uint64_t helper_fctiw(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
| 
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN conversion */
 | |
|         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
 | |
|                                         POWERPC_EXCP_FP_VXCVI);
 | |
|     } else if (unlikely(float64_is_quiet_nan(farg.d) ||
 | |
|                         float64_is_infinity(farg.d))) {
 | |
|         /* qNan / infinity conversion */
 | |
|         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
 | |
|     } else {
 | |
|         farg.ll = float64_to_int32(farg.d, &env->fp_status);
 | |
|         /* XXX: higher bits are not supposed to be significant.
 | |
|          *     to make tests easier, return the same as a real PowerPC 750
 | |
|          */
 | |
|         farg.ll |= 0xFFF80000ULL << 32;
 | |
|     }
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fctiwz - fctiwz. */
 | |
| uint64_t helper_fctiwz(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
| 
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN conversion */
 | |
|         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
 | |
|                                         POWERPC_EXCP_FP_VXCVI);
 | |
|     } else if (unlikely(float64_is_quiet_nan(farg.d) ||
 | |
|                         float64_is_infinity(farg.d))) {
 | |
|         /* qNan / infinity conversion */
 | |
|         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
 | |
|     } else {
 | |
|         farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status);
 | |
|         /* XXX: higher bits are not supposed to be significant.
 | |
|          *     to make tests easier, return the same as a real PowerPC 750
 | |
|          */
 | |
|         farg.ll |= 0xFFF80000ULL << 32;
 | |
|     }
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_PPC64)
 | |
| /* fcfid - fcfid. */
 | |
| uint64_t helper_fcfid(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
| 
 | |
|     farg.d = int64_to_float64(arg, &env->fp_status);
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fctid - fctid. */
 | |
| uint64_t helper_fctid(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
| 
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN conversion */
 | |
|         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
 | |
|                                         POWERPC_EXCP_FP_VXCVI);
 | |
|     } else if (unlikely(float64_is_quiet_nan(farg.d) ||
 | |
|                         float64_is_infinity(farg.d))) {
 | |
|         /* qNan / infinity conversion */
 | |
|         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
 | |
|     } else {
 | |
|         farg.ll = float64_to_int64(farg.d, &env->fp_status);
 | |
|     }
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fctidz - fctidz. */
 | |
| uint64_t helper_fctidz(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
| 
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN conversion */
 | |
|         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
 | |
|                                         POWERPC_EXCP_FP_VXCVI);
 | |
|     } else if (unlikely(float64_is_quiet_nan(farg.d) ||
 | |
|                         float64_is_infinity(farg.d))) {
 | |
|         /* qNan / infinity conversion */
 | |
|         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
 | |
|     } else {
 | |
|         farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status);
 | |
|     }
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
 | |
|                               int rounding_mode)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
| 
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN round */
 | |
|         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
 | |
|                                         POWERPC_EXCP_FP_VXCVI);
 | |
|     } else if (unlikely(float64_is_quiet_nan(farg.d) ||
 | |
|                         float64_is_infinity(farg.d))) {
 | |
|         /* qNan / infinity round */
 | |
|         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
 | |
|     } else {
 | |
|         set_float_rounding_mode(rounding_mode, &env->fp_status);
 | |
|         farg.ll = float64_round_to_int(farg.d, &env->fp_status);
 | |
|         /* Restore rounding mode from FPSCR */
 | |
|         fpscr_set_rounding_mode(env);
 | |
|     }
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     return do_fri(env, arg, float_round_nearest_even);
 | |
| }
 | |
| 
 | |
| uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     return do_fri(env, arg, float_round_to_zero);
 | |
| }
 | |
| 
 | |
| uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     return do_fri(env, arg, float_round_up);
 | |
| }
 | |
| 
 | |
| uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     return do_fri(env, arg, float_round_down);
 | |
| }
 | |
| 
 | |
| /* fmadd - fmadd. */
 | |
| uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 | |
|                       uint64_t arg3)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2, farg3;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
|     farg3.ll = arg3;
 | |
| 
 | |
|     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 | |
|                  (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 | |
|         /* Multiplication of zero by infinity */
 | |
|         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
 | |
|     } else {
 | |
|         if (unlikely(float64_is_signaling_nan(farg1.d) ||
 | |
|                      float64_is_signaling_nan(farg2.d) ||
 | |
|                      float64_is_signaling_nan(farg3.d))) {
 | |
|             /* sNaN operation */
 | |
|             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
 | |
|         }
 | |
|         /* This is the way the PowerPC specification defines it */
 | |
|         float128 ft0_128, ft1_128;
 | |
| 
 | |
|         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 | |
|         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 | |
|         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 | |
|         if (unlikely(float128_is_infinity(ft0_128) &&
 | |
|                      float64_is_infinity(farg3.d) &&
 | |
|                      float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
 | |
|             /* Magnitude subtraction of infinities */
 | |
|             farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
 | |
|         } else {
 | |
|             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 | |
|             ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
 | |
|             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return farg1.ll;
 | |
| }
 | |
| 
 | |
| /* fmsub - fmsub. */
 | |
| uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 | |
|                       uint64_t arg3)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2, farg3;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
|     farg3.ll = arg3;
 | |
| 
 | |
|     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 | |
|                  (float64_is_zero(farg1.d) &&
 | |
|                   float64_is_infinity(farg2.d)))) {
 | |
|         /* Multiplication of zero by infinity */
 | |
|         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
 | |
|     } else {
 | |
|         if (unlikely(float64_is_signaling_nan(farg1.d) ||
 | |
|                      float64_is_signaling_nan(farg2.d) ||
 | |
|                      float64_is_signaling_nan(farg3.d))) {
 | |
|             /* sNaN operation */
 | |
|             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
 | |
|         }
 | |
|         /* This is the way the PowerPC specification defines it */
 | |
|         float128 ft0_128, ft1_128;
 | |
| 
 | |
|         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 | |
|         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 | |
|         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 | |
|         if (unlikely(float128_is_infinity(ft0_128) &&
 | |
|                      float64_is_infinity(farg3.d) &&
 | |
|                      float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
 | |
|             /* Magnitude subtraction of infinities */
 | |
|             farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
 | |
|         } else {
 | |
|             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 | |
|             ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
 | |
|             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 | |
|         }
 | |
|     }
 | |
|     return farg1.ll;
 | |
| }
 | |
| 
 | |
| /* fnmadd - fnmadd. */
 | |
| uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 | |
|                        uint64_t arg3)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2, farg3;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
|     farg3.ll = arg3;
 | |
| 
 | |
|     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 | |
|                  (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 | |
|         /* Multiplication of zero by infinity */
 | |
|         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
 | |
|     } else {
 | |
|         if (unlikely(float64_is_signaling_nan(farg1.d) ||
 | |
|                      float64_is_signaling_nan(farg2.d) ||
 | |
|                      float64_is_signaling_nan(farg3.d))) {
 | |
|             /* sNaN operation */
 | |
|             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
 | |
|         }
 | |
|         /* This is the way the PowerPC specification defines it */
 | |
|         float128 ft0_128, ft1_128;
 | |
| 
 | |
|         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 | |
|         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 | |
|         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 | |
|         if (unlikely(float128_is_infinity(ft0_128) &&
 | |
|                      float64_is_infinity(farg3.d) &&
 | |
|                      float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
 | |
|             /* Magnitude subtraction of infinities */
 | |
|             farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
 | |
|         } else {
 | |
|             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 | |
|             ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
 | |
|             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 | |
|         }
 | |
|         if (likely(!float64_is_any_nan(farg1.d))) {
 | |
|             farg1.d = float64_chs(farg1.d);
 | |
|         }
 | |
|     }
 | |
|     return farg1.ll;
 | |
| }
 | |
| 
 | |
| /* fnmsub - fnmsub. */
 | |
| uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 | |
|                        uint64_t arg3)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2, farg3;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
|     farg3.ll = arg3;
 | |
| 
 | |
|     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 | |
|                  (float64_is_zero(farg1.d) &&
 | |
|                   float64_is_infinity(farg2.d)))) {
 | |
|         /* Multiplication of zero by infinity */
 | |
|         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
 | |
|     } else {
 | |
|         if (unlikely(float64_is_signaling_nan(farg1.d) ||
 | |
|                      float64_is_signaling_nan(farg2.d) ||
 | |
|                      float64_is_signaling_nan(farg3.d))) {
 | |
|             /* sNaN operation */
 | |
|             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
 | |
|         }
 | |
|         /* This is the way the PowerPC specification defines it */
 | |
|         float128 ft0_128, ft1_128;
 | |
| 
 | |
|         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 | |
|         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 | |
|         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 | |
|         if (unlikely(float128_is_infinity(ft0_128) &&
 | |
|                      float64_is_infinity(farg3.d) &&
 | |
|                      float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
 | |
|             /* Magnitude subtraction of infinities */
 | |
|             farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
 | |
|         } else {
 | |
|             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 | |
|             ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
 | |
|             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 | |
|         }
 | |
|         if (likely(!float64_is_any_nan(farg1.d))) {
 | |
|             farg1.d = float64_chs(farg1.d);
 | |
|         }
 | |
|     }
 | |
|     return farg1.ll;
 | |
| }
 | |
| 
 | |
| /* frsp - frsp. */
 | |
| uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
|     float32 f32;
 | |
| 
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN square root */
 | |
|         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
 | |
|     }
 | |
|     f32 = float64_to_float32(farg.d, &env->fp_status);
 | |
|     farg.d = float32_to_float64(f32, &env->fp_status);
 | |
| 
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fsqrt - fsqrt. */
 | |
| uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
| 
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
 | |
|         /* Square root of a negative nonzero number */
 | |
|         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT);
 | |
|     } else {
 | |
|         if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|             /* sNaN square root */
 | |
|             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
 | |
|         }
 | |
|         farg.d = float64_sqrt(farg.d, &env->fp_status);
 | |
|     }
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fre - fre. */
 | |
| uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
| 
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN reciprocal */
 | |
|         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
 | |
|     }
 | |
|     farg.d = float64_div(float64_one, farg.d, &env->fp_status);
 | |
|     return farg.d;
 | |
| }
 | |
| 
 | |
| /* fres - fres. */
 | |
| uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
|     float32 f32;
 | |
| 
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN reciprocal */
 | |
|         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
 | |
|     }
 | |
|     farg.d = float64_div(float64_one, farg.d, &env->fp_status);
 | |
|     f32 = float64_to_float32(farg.d, &env->fp_status);
 | |
|     farg.d = float32_to_float64(f32, &env->fp_status);
 | |
| 
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* frsqrte  - frsqrte. */
 | |
| uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
|     float32 f32;
 | |
| 
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
 | |
|         /* Reciprocal square root of a negative nonzero number */
 | |
|         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT);
 | |
|     } else {
 | |
|         if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|             /* sNaN reciprocal square root */
 | |
|             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
 | |
|         }
 | |
|         farg.d = float64_sqrt(farg.d, &env->fp_status);
 | |
|         farg.d = float64_div(float64_one, farg.d, &env->fp_status);
 | |
|         f32 = float64_to_float32(farg.d, &env->fp_status);
 | |
|         farg.d = float32_to_float64(f32, &env->fp_status);
 | |
|     }
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fsel - fsel. */
 | |
| uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 | |
|                      uint64_t arg3)
 | |
| {
 | |
|     CPU_DoubleU farg1;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
| 
 | |
|     if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
 | |
|         !float64_is_any_nan(farg1.d)) {
 | |
|         return arg2;
 | |
|     } else {
 | |
|         return arg3;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 | |
|                   uint32_t crfD)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2;
 | |
|     uint32_t ret = 0;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
| 
 | |
|     if (unlikely(float64_is_any_nan(farg1.d) ||
 | |
|                  float64_is_any_nan(farg2.d))) {
 | |
|         ret = 0x01UL;
 | |
|     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
 | |
|         ret = 0x08UL;
 | |
|     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
 | |
|         ret = 0x04UL;
 | |
|     } else {
 | |
|         ret = 0x02UL;
 | |
|     }
 | |
| 
 | |
|     env->fpscr &= ~(0x0F << FPSCR_FPRF);
 | |
|     env->fpscr |= ret << FPSCR_FPRF;
 | |
|     env->crf[crfD] = ret;
 | |
|     if (unlikely(ret == 0x01UL
 | |
|                  && (float64_is_signaling_nan(farg1.d) ||
 | |
|                      float64_is_signaling_nan(farg2.d)))) {
 | |
|         /* sNaN comparison */
 | |
|         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
 | |
|                   uint32_t crfD)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2;
 | |
|     uint32_t ret = 0;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
| 
 | |
|     if (unlikely(float64_is_any_nan(farg1.d) ||
 | |
|                  float64_is_any_nan(farg2.d))) {
 | |
|         ret = 0x01UL;
 | |
|     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
 | |
|         ret = 0x08UL;
 | |
|     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
 | |
|         ret = 0x04UL;
 | |
|     } else {
 | |
|         ret = 0x02UL;
 | |
|     }
 | |
| 
 | |
|     env->fpscr &= ~(0x0F << FPSCR_FPRF);
 | |
|     env->fpscr |= ret << FPSCR_FPRF;
 | |
|     env->crf[crfD] = ret;
 | |
|     if (unlikely(ret == 0x01UL)) {
 | |
|         if (float64_is_signaling_nan(farg1.d) ||
 | |
|             float64_is_signaling_nan(farg2.d)) {
 | |
|             /* sNaN comparison */
 | |
|             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
 | |
|                                   POWERPC_EXCP_FP_VXVC);
 | |
|         } else {
 | |
|             /* qNaN comparison */
 | |
|             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Single-precision floating-point conversions */
 | |
| static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
| 
 | |
|     u.f = int32_to_float32(val, &env->vec_status);
 | |
| 
 | |
|     return u.l;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
| 
 | |
|     u.f = uint32_to_float32(val, &env->vec_status);
 | |
| 
 | |
|     return u.l;
 | |
| }
 | |
| 
 | |
| static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
| 
 | |
|     u.l = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float32_is_quiet_nan(u.f))) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return float32_to_int32(u.f, &env->vec_status);
 | |
| }
 | |
| 
 | |
| static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
| 
 | |
|     u.l = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float32_is_quiet_nan(u.f))) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return float32_to_uint32(u.f, &env->vec_status);
 | |
| }
 | |
| 
 | |
| static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
| 
 | |
|     u.l = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float32_is_quiet_nan(u.f))) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return float32_to_int32_round_to_zero(u.f, &env->vec_status);
 | |
| }
 | |
| 
 | |
| static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
| 
 | |
|     u.l = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float32_is_quiet_nan(u.f))) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
 | |
| }
 | |
| 
 | |
| static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
|     float32 tmp;
 | |
| 
 | |
|     u.f = int32_to_float32(val, &env->vec_status);
 | |
|     tmp = int64_to_float32(1ULL << 32, &env->vec_status);
 | |
|     u.f = float32_div(u.f, tmp, &env->vec_status);
 | |
| 
 | |
|     return u.l;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
|     float32 tmp;
 | |
| 
 | |
|     u.f = uint32_to_float32(val, &env->vec_status);
 | |
|     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
 | |
|     u.f = float32_div(u.f, tmp, &env->vec_status);
 | |
| 
 | |
|     return u.l;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
|     float32 tmp;
 | |
| 
 | |
|     u.l = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float32_is_quiet_nan(u.f))) {
 | |
|         return 0;
 | |
|     }
 | |
|     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
 | |
|     u.f = float32_mul(u.f, tmp, &env->vec_status);
 | |
| 
 | |
|     return float32_to_int32(u.f, &env->vec_status);
 | |
| }
 | |
| 
 | |
| static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
|     float32 tmp;
 | |
| 
 | |
|     u.l = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float32_is_quiet_nan(u.f))) {
 | |
|         return 0;
 | |
|     }
 | |
|     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
 | |
|     u.f = float32_mul(u.f, tmp, &env->vec_status);
 | |
| 
 | |
|     return float32_to_uint32(u.f, &env->vec_status);
 | |
| }
 | |
| 
 | |
| #define HELPER_SPE_SINGLE_CONV(name)                              \
 | |
|     uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \
 | |
|     {                                                             \
 | |
|         return e##name(env, val);                                 \
 | |
|     }
 | |
| /* efscfsi */
 | |
| HELPER_SPE_SINGLE_CONV(fscfsi);
 | |
| /* efscfui */
 | |
| HELPER_SPE_SINGLE_CONV(fscfui);
 | |
| /* efscfuf */
 | |
| HELPER_SPE_SINGLE_CONV(fscfuf);
 | |
| /* efscfsf */
 | |
| HELPER_SPE_SINGLE_CONV(fscfsf);
 | |
| /* efsctsi */
 | |
| HELPER_SPE_SINGLE_CONV(fsctsi);
 | |
| /* efsctui */
 | |
| HELPER_SPE_SINGLE_CONV(fsctui);
 | |
| /* efsctsiz */
 | |
| HELPER_SPE_SINGLE_CONV(fsctsiz);
 | |
| /* efsctuiz */
 | |
| HELPER_SPE_SINGLE_CONV(fsctuiz);
 | |
| /* efsctsf */
 | |
| HELPER_SPE_SINGLE_CONV(fsctsf);
 | |
| /* efsctuf */
 | |
| HELPER_SPE_SINGLE_CONV(fsctuf);
 | |
| 
 | |
| #define HELPER_SPE_VECTOR_CONV(name)                            \
 | |
|     uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \
 | |
|     {                                                           \
 | |
|         return ((uint64_t)e##name(env, val >> 32) << 32) |      \
 | |
|             (uint64_t)e##name(env, val);                        \
 | |
|     }
 | |
| /* evfscfsi */
 | |
| HELPER_SPE_VECTOR_CONV(fscfsi);
 | |
| /* evfscfui */
 | |
| HELPER_SPE_VECTOR_CONV(fscfui);
 | |
| /* evfscfuf */
 | |
| HELPER_SPE_VECTOR_CONV(fscfuf);
 | |
| /* evfscfsf */
 | |
| HELPER_SPE_VECTOR_CONV(fscfsf);
 | |
| /* evfsctsi */
 | |
| HELPER_SPE_VECTOR_CONV(fsctsi);
 | |
| /* evfsctui */
 | |
| HELPER_SPE_VECTOR_CONV(fsctui);
 | |
| /* evfsctsiz */
 | |
| HELPER_SPE_VECTOR_CONV(fsctsiz);
 | |
| /* evfsctuiz */
 | |
| HELPER_SPE_VECTOR_CONV(fsctuiz);
 | |
| /* evfsctsf */
 | |
| HELPER_SPE_VECTOR_CONV(fsctsf);
 | |
| /* evfsctuf */
 | |
| HELPER_SPE_VECTOR_CONV(fsctuf);
 | |
| 
 | |
| /* Single-precision floating-point arithmetic */
 | |
| static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     CPU_FloatU u1, u2;
 | |
| 
 | |
|     u1.l = op1;
 | |
|     u2.l = op2;
 | |
|     u1.f = float32_add(u1.f, u2.f, &env->vec_status);
 | |
|     return u1.l;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     CPU_FloatU u1, u2;
 | |
| 
 | |
|     u1.l = op1;
 | |
|     u2.l = op2;
 | |
|     u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
 | |
|     return u1.l;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     CPU_FloatU u1, u2;
 | |
| 
 | |
|     u1.l = op1;
 | |
|     u2.l = op2;
 | |
|     u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
 | |
|     return u1.l;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     CPU_FloatU u1, u2;
 | |
| 
 | |
|     u1.l = op1;
 | |
|     u2.l = op2;
 | |
|     u1.f = float32_div(u1.f, u2.f, &env->vec_status);
 | |
|     return u1.l;
 | |
| }
 | |
| 
 | |
| #define HELPER_SPE_SINGLE_ARITH(name)                                   \
 | |
|     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
 | |
|     {                                                                   \
 | |
|         return e##name(env, op1, op2);                                  \
 | |
|     }
 | |
| /* efsadd */
 | |
| HELPER_SPE_SINGLE_ARITH(fsadd);
 | |
| /* efssub */
 | |
| HELPER_SPE_SINGLE_ARITH(fssub);
 | |
| /* efsmul */
 | |
| HELPER_SPE_SINGLE_ARITH(fsmul);
 | |
| /* efsdiv */
 | |
| HELPER_SPE_SINGLE_ARITH(fsdiv);
 | |
| 
 | |
| #define HELPER_SPE_VECTOR_ARITH(name)                                   \
 | |
|     uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
 | |
|     {                                                                   \
 | |
|         return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \
 | |
|             (uint64_t)e##name(env, op1, op2);                           \
 | |
|     }
 | |
| /* evfsadd */
 | |
| HELPER_SPE_VECTOR_ARITH(fsadd);
 | |
| /* evfssub */
 | |
| HELPER_SPE_VECTOR_ARITH(fssub);
 | |
| /* evfsmul */
 | |
| HELPER_SPE_VECTOR_ARITH(fsmul);
 | |
| /* evfsdiv */
 | |
| HELPER_SPE_VECTOR_ARITH(fsdiv);
 | |
| 
 | |
| /* Single-precision floating-point comparisons */
 | |
| static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     CPU_FloatU u1, u2;
 | |
| 
 | |
|     u1.l = op1;
 | |
|     u2.l = op2;
 | |
|     return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     CPU_FloatU u1, u2;
 | |
| 
 | |
|     u1.l = op1;
 | |
|     u2.l = op2;
 | |
|     return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     CPU_FloatU u1, u2;
 | |
| 
 | |
|     u1.l = op1;
 | |
|     u2.l = op2;
 | |
|     return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
 | |
|     return efscmplt(env, op1, op2);
 | |
| }
 | |
| 
 | |
| static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
 | |
|     return efscmpgt(env, op1, op2);
 | |
| }
 | |
| 
 | |
| static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
 | |
|     return efscmpeq(env, op1, op2);
 | |
| }
 | |
| 
 | |
| #define HELPER_SINGLE_SPE_CMP(name)                                     \
 | |
|     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
 | |
|     {                                                                   \
 | |
|         return e##name(env, op1, op2) << 2;                             \
 | |
|     }
 | |
| /* efststlt */
 | |
| HELPER_SINGLE_SPE_CMP(fststlt);
 | |
| /* efststgt */
 | |
| HELPER_SINGLE_SPE_CMP(fststgt);
 | |
| /* efststeq */
 | |
| HELPER_SINGLE_SPE_CMP(fststeq);
 | |
| /* efscmplt */
 | |
| HELPER_SINGLE_SPE_CMP(fscmplt);
 | |
| /* efscmpgt */
 | |
| HELPER_SINGLE_SPE_CMP(fscmpgt);
 | |
| /* efscmpeq */
 | |
| HELPER_SINGLE_SPE_CMP(fscmpeq);
 | |
| 
 | |
| static inline uint32_t evcmp_merge(int t0, int t1)
 | |
| {
 | |
|     return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
 | |
| }
 | |
| 
 | |
| #define HELPER_VECTOR_SPE_CMP(name)                                     \
 | |
|     uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
 | |
|     {                                                                   \
 | |
|         return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \
 | |
|                            e##name(env, op1, op2));                     \
 | |
|     }
 | |
| /* evfststlt */
 | |
| HELPER_VECTOR_SPE_CMP(fststlt);
 | |
| /* evfststgt */
 | |
| HELPER_VECTOR_SPE_CMP(fststgt);
 | |
| /* evfststeq */
 | |
| HELPER_VECTOR_SPE_CMP(fststeq);
 | |
| /* evfscmplt */
 | |
| HELPER_VECTOR_SPE_CMP(fscmplt);
 | |
| /* evfscmpgt */
 | |
| HELPER_VECTOR_SPE_CMP(fscmpgt);
 | |
| /* evfscmpeq */
 | |
| HELPER_VECTOR_SPE_CMP(fscmpeq);
 | |
| 
 | |
| /* Double-precision floating-point conversion */
 | |
| uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.d = int32_to_float64(val, &env->vec_status);
 | |
| 
 | |
|     return u.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.d = int64_to_float64(val, &env->vec_status);
 | |
| 
 | |
|     return u.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.d = uint32_to_float64(val, &env->vec_status);
 | |
| 
 | |
|     return u.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.d = uint64_to_float64(val, &env->vec_status);
 | |
| 
 | |
|     return u.ll;
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.ll = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float64_is_any_nan(u.d))) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return float64_to_int32(u.d, &env->vec_status);
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.ll = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float64_is_any_nan(u.d))) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return float64_to_uint32(u.d, &env->vec_status);
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.ll = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float64_is_any_nan(u.d))) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return float64_to_int32_round_to_zero(u.d, &env->vec_status);
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.ll = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float64_is_any_nan(u.d))) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return float64_to_int64_round_to_zero(u.d, &env->vec_status);
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.ll = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float64_is_any_nan(u.d))) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.ll = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float64_is_any_nan(u.d))) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     float64 tmp;
 | |
| 
 | |
|     u.d = int32_to_float64(val, &env->vec_status);
 | |
|     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
 | |
|     u.d = float64_div(u.d, tmp, &env->vec_status);
 | |
| 
 | |
|     return u.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     float64 tmp;
 | |
| 
 | |
|     u.d = uint32_to_float64(val, &env->vec_status);
 | |
|     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
 | |
|     u.d = float64_div(u.d, tmp, &env->vec_status);
 | |
| 
 | |
|     return u.ll;
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     float64 tmp;
 | |
| 
 | |
|     u.ll = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float64_is_any_nan(u.d))) {
 | |
|         return 0;
 | |
|     }
 | |
|     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
 | |
|     u.d = float64_mul(u.d, tmp, &env->vec_status);
 | |
| 
 | |
|     return float64_to_int32(u.d, &env->vec_status);
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     float64 tmp;
 | |
| 
 | |
|     u.ll = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float64_is_any_nan(u.d))) {
 | |
|         return 0;
 | |
|     }
 | |
|     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
 | |
|     u.d = float64_mul(u.d, tmp, &env->vec_status);
 | |
| 
 | |
|     return float64_to_uint32(u.d, &env->vec_status);
 | |
| }
 | |
| 
 | |
| uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u1;
 | |
|     CPU_FloatU u2;
 | |
| 
 | |
|     u1.ll = val;
 | |
|     u2.f = float64_to_float32(u1.d, &env->vec_status);
 | |
| 
 | |
|     return u2.l;
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
 | |
| {
 | |
|     CPU_DoubleU u2;
 | |
|     CPU_FloatU u1;
 | |
| 
 | |
|     u1.l = val;
 | |
|     u2.d = float32_to_float64(u1.f, &env->vec_status);
 | |
| 
 | |
|     return u2.ll;
 | |
| }
 | |
| 
 | |
| /* Double precision fixed-point arithmetic */
 | |
| uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     CPU_DoubleU u1, u2;
 | |
| 
 | |
|     u1.ll = op1;
 | |
|     u2.ll = op2;
 | |
|     u1.d = float64_add(u1.d, u2.d, &env->vec_status);
 | |
|     return u1.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     CPU_DoubleU u1, u2;
 | |
| 
 | |
|     u1.ll = op1;
 | |
|     u2.ll = op2;
 | |
|     u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
 | |
|     return u1.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     CPU_DoubleU u1, u2;
 | |
| 
 | |
|     u1.ll = op1;
 | |
|     u2.ll = op2;
 | |
|     u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
 | |
|     return u1.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     CPU_DoubleU u1, u2;
 | |
| 
 | |
|     u1.ll = op1;
 | |
|     u2.ll = op2;
 | |
|     u1.d = float64_div(u1.d, u2.d, &env->vec_status);
 | |
|     return u1.ll;
 | |
| }
 | |
| 
 | |
| /* Double precision floating point helpers */
 | |
| uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     CPU_DoubleU u1, u2;
 | |
| 
 | |
|     u1.ll = op1;
 | |
|     u2.ll = op2;
 | |
|     return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     CPU_DoubleU u1, u2;
 | |
| 
 | |
|     u1.ll = op1;
 | |
|     u2.ll = op2;
 | |
|     return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     CPU_DoubleU u1, u2;
 | |
| 
 | |
|     u1.ll = op1;
 | |
|     u2.ll = op2;
 | |
|     return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     /* XXX: TODO: test special values (NaN, infinites, ...) */
 | |
|     return helper_efdtstlt(env, op1, op2);
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     /* XXX: TODO: test special values (NaN, infinites, ...) */
 | |
|     return helper_efdtstgt(env, op1, op2);
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     /* XXX: TODO: test special values (NaN, infinites, ...) */
 | |
|     return helper_efdtsteq(env, op1, op2);
 | |
| }
 |