 dc54e25253
			
		
	
	
		dc54e25253
		
	
	
	
	
		
			
			If kvm_arch_remove_sw_breakpoint() in CPU_FOREACH() always be fail, it will let 'cpu' NULL. And the next kvm_arch_remove_sw_breakpoint() in QTAILQ_FOREACH_SAFE() will get NULL parameter for 'cpu'. And kvm_arch_remove_sw_breakpoint() can assumes 'cpu' must never be NULL, so need define additional temporary variable for 'cpu' to avoid the case. Cc: qemu-stable@nongnu.org Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			2202 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2202 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU KVM support
 | |
|  *
 | |
|  * Copyright IBM, Corp. 2008
 | |
|  *           Red Hat, Inc. 2008
 | |
|  *
 | |
|  * Authors:
 | |
|  *  Anthony Liguori   <aliguori@us.ibm.com>
 | |
|  *  Glauber Costa     <gcosta@redhat.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <sys/types.h>
 | |
| #include <sys/ioctl.h>
 | |
| #include <sys/mman.h>
 | |
| #include <stdarg.h>
 | |
| 
 | |
| #include <linux/kvm.h>
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "qemu/atomic.h"
 | |
| #include "qemu/option.h"
 | |
| #include "qemu/config-file.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "hw/hw.h"
 | |
| #include "hw/pci/msi.h"
 | |
| #include "hw/s390x/adapter.h"
 | |
| #include "exec/gdbstub.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "qemu/bswap.h"
 | |
| #include "exec/memory.h"
 | |
| #include "exec/ram_addr.h"
 | |
| #include "exec/address-spaces.h"
 | |
| #include "qemu/event_notifier.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| #include "hw/boards.h"
 | |
| 
 | |
| /* This check must be after config-host.h is included */
 | |
| #ifdef CONFIG_EVENTFD
 | |
| #include <sys/eventfd.h>
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_VALGRIND_H
 | |
| #include <valgrind/memcheck.h>
 | |
| #endif
 | |
| 
 | |
| /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
 | |
| #define PAGE_SIZE TARGET_PAGE_SIZE
 | |
| 
 | |
| //#define DEBUG_KVM
 | |
| 
 | |
| #ifdef DEBUG_KVM
 | |
| #define DPRINTF(fmt, ...) \
 | |
|     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
 | |
| #else
 | |
| #define DPRINTF(fmt, ...) \
 | |
|     do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #define KVM_MSI_HASHTAB_SIZE    256
 | |
| 
 | |
| typedef struct KVMSlot
 | |
| {
 | |
|     hwaddr start_addr;
 | |
|     ram_addr_t memory_size;
 | |
|     void *ram;
 | |
|     int slot;
 | |
|     int flags;
 | |
| } KVMSlot;
 | |
| 
 | |
| typedef struct kvm_dirty_log KVMDirtyLog;
 | |
| 
 | |
| struct KVMState
 | |
| {
 | |
|     KVMSlot *slots;
 | |
|     int nr_slots;
 | |
|     int fd;
 | |
|     int vmfd;
 | |
|     int coalesced_mmio;
 | |
|     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
 | |
|     bool coalesced_flush_in_progress;
 | |
|     int broken_set_mem_region;
 | |
|     int migration_log;
 | |
|     int vcpu_events;
 | |
|     int robust_singlestep;
 | |
|     int debugregs;
 | |
| #ifdef KVM_CAP_SET_GUEST_DEBUG
 | |
|     struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
 | |
| #endif
 | |
|     int pit_state2;
 | |
|     int xsave, xcrs;
 | |
|     int many_ioeventfds;
 | |
|     int intx_set_mask;
 | |
|     /* The man page (and posix) say ioctl numbers are signed int, but
 | |
|      * they're not.  Linux, glibc and *BSD all treat ioctl numbers as
 | |
|      * unsigned, and treating them as signed here can break things */
 | |
|     unsigned irq_set_ioctl;
 | |
|     unsigned int sigmask_len;
 | |
| #ifdef KVM_CAP_IRQ_ROUTING
 | |
|     struct kvm_irq_routing *irq_routes;
 | |
|     int nr_allocated_irq_routes;
 | |
|     uint32_t *used_gsi_bitmap;
 | |
|     unsigned int gsi_count;
 | |
|     QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
 | |
|     bool direct_msi;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| KVMState *kvm_state;
 | |
| bool kvm_kernel_irqchip;
 | |
| bool kvm_async_interrupts_allowed;
 | |
| bool kvm_halt_in_kernel_allowed;
 | |
| bool kvm_eventfds_allowed;
 | |
| bool kvm_irqfds_allowed;
 | |
| bool kvm_msi_via_irqfd_allowed;
 | |
| bool kvm_gsi_routing_allowed;
 | |
| bool kvm_gsi_direct_mapping;
 | |
| bool kvm_allowed;
 | |
| bool kvm_readonly_mem_allowed;
 | |
| 
 | |
| static const KVMCapabilityInfo kvm_required_capabilites[] = {
 | |
|     KVM_CAP_INFO(USER_MEMORY),
 | |
|     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
 | |
|     KVM_CAP_LAST_INFO
 | |
| };
 | |
| 
 | |
| static KVMSlot *kvm_alloc_slot(KVMState *s)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < s->nr_slots; i++) {
 | |
|         if (s->slots[i].memory_size == 0) {
 | |
|             return &s->slots[i];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: no free slot available\n", __func__);
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
 | |
|                                          hwaddr start_addr,
 | |
|                                          hwaddr end_addr)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < s->nr_slots; i++) {
 | |
|         KVMSlot *mem = &s->slots[i];
 | |
| 
 | |
|         if (start_addr == mem->start_addr &&
 | |
|             end_addr == mem->start_addr + mem->memory_size) {
 | |
|             return mem;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find overlapping slot with lowest start address
 | |
|  */
 | |
| static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
 | |
|                                             hwaddr start_addr,
 | |
|                                             hwaddr end_addr)
 | |
| {
 | |
|     KVMSlot *found = NULL;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < s->nr_slots; i++) {
 | |
|         KVMSlot *mem = &s->slots[i];
 | |
| 
 | |
|         if (mem->memory_size == 0 ||
 | |
|             (found && found->start_addr < mem->start_addr)) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (end_addr > mem->start_addr &&
 | |
|             start_addr < mem->start_addr + mem->memory_size) {
 | |
|             found = mem;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return found;
 | |
| }
 | |
| 
 | |
| int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
 | |
|                                        hwaddr *phys_addr)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < s->nr_slots; i++) {
 | |
|         KVMSlot *mem = &s->slots[i];
 | |
| 
 | |
|         if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
 | |
|             *phys_addr = mem->start_addr + (ram - mem->ram);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
 | |
| {
 | |
|     struct kvm_userspace_memory_region mem;
 | |
| 
 | |
|     mem.slot = slot->slot;
 | |
|     mem.guest_phys_addr = slot->start_addr;
 | |
|     mem.userspace_addr = (unsigned long)slot->ram;
 | |
|     mem.flags = slot->flags;
 | |
|     if (s->migration_log) {
 | |
|         mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
 | |
|     }
 | |
| 
 | |
|     if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
 | |
|         /* Set the slot size to 0 before setting the slot to the desired
 | |
|          * value. This is needed based on KVM commit 75d61fbc. */
 | |
|         mem.memory_size = 0;
 | |
|         kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 | |
|     }
 | |
|     mem.memory_size = slot->memory_size;
 | |
|     return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 | |
| }
 | |
| 
 | |
| int kvm_init_vcpu(CPUState *cpu)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     long mmap_size;
 | |
|     int ret;
 | |
| 
 | |
|     DPRINTF("kvm_init_vcpu\n");
 | |
| 
 | |
|     ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
 | |
|     if (ret < 0) {
 | |
|         DPRINTF("kvm_create_vcpu failed\n");
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     cpu->kvm_fd = ret;
 | |
|     cpu->kvm_state = s;
 | |
|     cpu->kvm_vcpu_dirty = true;
 | |
| 
 | |
|     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 | |
|     if (mmap_size < 0) {
 | |
|         ret = mmap_size;
 | |
|         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
 | |
|                         cpu->kvm_fd, 0);
 | |
|     if (cpu->kvm_run == MAP_FAILED) {
 | |
|         ret = -errno;
 | |
|         DPRINTF("mmap'ing vcpu state failed\n");
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
 | |
|         s->coalesced_mmio_ring =
 | |
|             (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_arch_init_vcpu(cpu);
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * dirty pages logging control
 | |
|  */
 | |
| 
 | |
| static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
 | |
| {
 | |
|     int flags = 0;
 | |
|     flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
 | |
|     if (readonly && kvm_readonly_mem_allowed) {
 | |
|         flags |= KVM_MEM_READONLY;
 | |
|     }
 | |
|     return flags;
 | |
| }
 | |
| 
 | |
| static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
 | |
|     int old_flags;
 | |
| 
 | |
|     old_flags = mem->flags;
 | |
| 
 | |
|     flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
 | |
|     mem->flags = flags;
 | |
| 
 | |
|     /* If nothing changed effectively, no need to issue ioctl */
 | |
|     if (s->migration_log) {
 | |
|         flags |= KVM_MEM_LOG_DIRTY_PAGES;
 | |
|     }
 | |
| 
 | |
|     if (flags == old_flags) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return kvm_set_user_memory_region(s, mem);
 | |
| }
 | |
| 
 | |
| static int kvm_dirty_pages_log_change(hwaddr phys_addr,
 | |
|                                       ram_addr_t size, bool log_dirty)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
 | |
| 
 | |
|     if (mem == NULL)  {
 | |
|         fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
 | |
|                 TARGET_FMT_plx "\n", __func__, phys_addr,
 | |
|                 (hwaddr)(phys_addr + size - 1));
 | |
|         return -EINVAL;
 | |
|     }
 | |
|     return kvm_slot_dirty_pages_log_change(mem, log_dirty);
 | |
| }
 | |
| 
 | |
| static void kvm_log_start(MemoryListener *listener,
 | |
|                           MemoryRegionSection *section)
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     r = kvm_dirty_pages_log_change(section->offset_within_address_space,
 | |
|                                    int128_get64(section->size), true);
 | |
|     if (r < 0) {
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_log_stop(MemoryListener *listener,
 | |
|                           MemoryRegionSection *section)
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     r = kvm_dirty_pages_log_change(section->offset_within_address_space,
 | |
|                                    int128_get64(section->size), false);
 | |
|     if (r < 0) {
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int kvm_set_migration_log(int enable)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     KVMSlot *mem;
 | |
|     int i, err;
 | |
| 
 | |
|     s->migration_log = enable;
 | |
| 
 | |
|     for (i = 0; i < s->nr_slots; i++) {
 | |
|         mem = &s->slots[i];
 | |
| 
 | |
|         if (!mem->memory_size) {
 | |
|             continue;
 | |
|         }
 | |
|         if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
 | |
|             continue;
 | |
|         }
 | |
|         err = kvm_set_user_memory_region(s, mem);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* get kvm's dirty pages bitmap and update qemu's */
 | |
| static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
 | |
|                                          unsigned long *bitmap)
 | |
| {
 | |
|     ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
 | |
|     ram_addr_t pages = int128_get64(section->size) / getpagesize();
 | |
| 
 | |
|     cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
 | |
| 
 | |
| /**
 | |
|  * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
 | |
|  * This function updates qemu's dirty bitmap using
 | |
|  * memory_region_set_dirty().  This means all bits are set
 | |
|  * to dirty.
 | |
|  *
 | |
|  * @start_add: start of logged region.
 | |
|  * @end_addr: end of logged region.
 | |
|  */
 | |
| static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     unsigned long size, allocated_size = 0;
 | |
|     KVMDirtyLog d;
 | |
|     KVMSlot *mem;
 | |
|     int ret = 0;
 | |
|     hwaddr start_addr = section->offset_within_address_space;
 | |
|     hwaddr end_addr = start_addr + int128_get64(section->size);
 | |
| 
 | |
|     d.dirty_bitmap = NULL;
 | |
|     while (start_addr < end_addr) {
 | |
|         mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
 | |
|         if (mem == NULL) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /* XXX bad kernel interface alert
 | |
|          * For dirty bitmap, kernel allocates array of size aligned to
 | |
|          * bits-per-long.  But for case when the kernel is 64bits and
 | |
|          * the userspace is 32bits, userspace can't align to the same
 | |
|          * bits-per-long, since sizeof(long) is different between kernel
 | |
|          * and user space.  This way, userspace will provide buffer which
 | |
|          * may be 4 bytes less than the kernel will use, resulting in
 | |
|          * userspace memory corruption (which is not detectable by valgrind
 | |
|          * too, in most cases).
 | |
|          * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
 | |
|          * a hope that sizeof(long) wont become >8 any time soon.
 | |
|          */
 | |
|         size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
 | |
|                      /*HOST_LONG_BITS*/ 64) / 8;
 | |
|         if (!d.dirty_bitmap) {
 | |
|             d.dirty_bitmap = g_malloc(size);
 | |
|         } else if (size > allocated_size) {
 | |
|             d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
 | |
|         }
 | |
|         allocated_size = size;
 | |
|         memset(d.dirty_bitmap, 0, allocated_size);
 | |
| 
 | |
|         d.slot = mem->slot;
 | |
| 
 | |
|         if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
 | |
|             DPRINTF("ioctl failed %d\n", errno);
 | |
|             ret = -1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
 | |
|         start_addr = mem->start_addr + mem->memory_size;
 | |
|     }
 | |
|     g_free(d.dirty_bitmap);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void kvm_coalesce_mmio_region(MemoryListener *listener,
 | |
|                                      MemoryRegionSection *secion,
 | |
|                                      hwaddr start, hwaddr size)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
| 
 | |
|     if (s->coalesced_mmio) {
 | |
|         struct kvm_coalesced_mmio_zone zone;
 | |
| 
 | |
|         zone.addr = start;
 | |
|         zone.size = size;
 | |
|         zone.pad = 0;
 | |
| 
 | |
|         (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
 | |
|                                        MemoryRegionSection *secion,
 | |
|                                        hwaddr start, hwaddr size)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
| 
 | |
|     if (s->coalesced_mmio) {
 | |
|         struct kvm_coalesced_mmio_zone zone;
 | |
| 
 | |
|         zone.addr = start;
 | |
|         zone.size = size;
 | |
|         zone.pad = 0;
 | |
| 
 | |
|         (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int kvm_check_extension(KVMState *s, unsigned int extension)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
 | |
|     if (ret < 0) {
 | |
|         ret = 0;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
 | |
|                                   bool assign, uint32_t size, bool datamatch)
 | |
| {
 | |
|     int ret;
 | |
|     struct kvm_ioeventfd iofd;
 | |
| 
 | |
|     iofd.datamatch = datamatch ? val : 0;
 | |
|     iofd.addr = addr;
 | |
|     iofd.len = size;
 | |
|     iofd.flags = 0;
 | |
|     iofd.fd = fd;
 | |
| 
 | |
|     if (!kvm_enabled()) {
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| 
 | |
|     if (datamatch) {
 | |
|         iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
 | |
|     }
 | |
|     if (!assign) {
 | |
|         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         return -errno;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
 | |
|                                  bool assign, uint32_t size, bool datamatch)
 | |
| {
 | |
|     struct kvm_ioeventfd kick = {
 | |
|         .datamatch = datamatch ? val : 0,
 | |
|         .addr = addr,
 | |
|         .flags = KVM_IOEVENTFD_FLAG_PIO,
 | |
|         .len = size,
 | |
|         .fd = fd,
 | |
|     };
 | |
|     int r;
 | |
|     if (!kvm_enabled()) {
 | |
|         return -ENOSYS;
 | |
|     }
 | |
|     if (datamatch) {
 | |
|         kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
 | |
|     }
 | |
|     if (!assign) {
 | |
|         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
 | |
|     }
 | |
|     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
 | |
|     if (r < 0) {
 | |
|         return r;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int kvm_check_many_ioeventfds(void)
 | |
| {
 | |
|     /* Userspace can use ioeventfd for io notification.  This requires a host
 | |
|      * that supports eventfd(2) and an I/O thread; since eventfd does not
 | |
|      * support SIGIO it cannot interrupt the vcpu.
 | |
|      *
 | |
|      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
 | |
|      * can avoid creating too many ioeventfds.
 | |
|      */
 | |
| #if defined(CONFIG_EVENTFD)
 | |
|     int ioeventfds[7];
 | |
|     int i, ret = 0;
 | |
|     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
 | |
|         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
 | |
|         if (ioeventfds[i] < 0) {
 | |
|             break;
 | |
|         }
 | |
|         ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
 | |
|         if (ret < 0) {
 | |
|             close(ioeventfds[i]);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Decide whether many devices are supported or not */
 | |
|     ret = i == ARRAY_SIZE(ioeventfds);
 | |
| 
 | |
|     while (i-- > 0) {
 | |
|         kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
 | |
|         close(ioeventfds[i]);
 | |
|     }
 | |
|     return ret;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static const KVMCapabilityInfo *
 | |
| kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
 | |
| {
 | |
|     while (list->name) {
 | |
|         if (!kvm_check_extension(s, list->value)) {
 | |
|             return list;
 | |
|         }
 | |
|         list++;
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     KVMSlot *mem, old;
 | |
|     int err;
 | |
|     MemoryRegion *mr = section->mr;
 | |
|     bool log_dirty = memory_region_is_logging(mr);
 | |
|     bool writeable = !mr->readonly && !mr->rom_device;
 | |
|     bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
 | |
|     hwaddr start_addr = section->offset_within_address_space;
 | |
|     ram_addr_t size = int128_get64(section->size);
 | |
|     void *ram = NULL;
 | |
|     unsigned delta;
 | |
| 
 | |
|     /* kvm works in page size chunks, but the function may be called
 | |
|        with sub-page size and unaligned start address. */
 | |
|     delta = TARGET_PAGE_ALIGN(size) - size;
 | |
|     if (delta > size) {
 | |
|         return;
 | |
|     }
 | |
|     start_addr += delta;
 | |
|     size -= delta;
 | |
|     size &= TARGET_PAGE_MASK;
 | |
|     if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!memory_region_is_ram(mr)) {
 | |
|         if (writeable || !kvm_readonly_mem_allowed) {
 | |
|             return;
 | |
|         } else if (!mr->romd_mode) {
 | |
|             /* If the memory device is not in romd_mode, then we actually want
 | |
|              * to remove the kvm memory slot so all accesses will trap. */
 | |
|             add = false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
 | |
| 
 | |
|     while (1) {
 | |
|         mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
 | |
|         if (!mem) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (add && start_addr >= mem->start_addr &&
 | |
|             (start_addr + size <= mem->start_addr + mem->memory_size) &&
 | |
|             (ram - start_addr == mem->ram - mem->start_addr)) {
 | |
|             /* The new slot fits into the existing one and comes with
 | |
|              * identical parameters - update flags and done. */
 | |
|             kvm_slot_dirty_pages_log_change(mem, log_dirty);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         old = *mem;
 | |
| 
 | |
|         if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
 | |
|             kvm_physical_sync_dirty_bitmap(section);
 | |
|         }
 | |
| 
 | |
|         /* unregister the overlapping slot */
 | |
|         mem->memory_size = 0;
 | |
|         err = kvm_set_user_memory_region(s, mem);
 | |
|         if (err) {
 | |
|             fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
 | |
|                     __func__, strerror(-err));
 | |
|             abort();
 | |
|         }
 | |
| 
 | |
|         /* Workaround for older KVM versions: we can't join slots, even not by
 | |
|          * unregistering the previous ones and then registering the larger
 | |
|          * slot. We have to maintain the existing fragmentation. Sigh.
 | |
|          *
 | |
|          * This workaround assumes that the new slot starts at the same
 | |
|          * address as the first existing one. If not or if some overlapping
 | |
|          * slot comes around later, we will fail (not seen in practice so far)
 | |
|          * - and actually require a recent KVM version. */
 | |
|         if (s->broken_set_mem_region &&
 | |
|             old.start_addr == start_addr && old.memory_size < size && add) {
 | |
|             mem = kvm_alloc_slot(s);
 | |
|             mem->memory_size = old.memory_size;
 | |
|             mem->start_addr = old.start_addr;
 | |
|             mem->ram = old.ram;
 | |
|             mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
 | |
| 
 | |
|             err = kvm_set_user_memory_region(s, mem);
 | |
|             if (err) {
 | |
|                 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
 | |
|                         strerror(-err));
 | |
|                 abort();
 | |
|             }
 | |
| 
 | |
|             start_addr += old.memory_size;
 | |
|             ram += old.memory_size;
 | |
|             size -= old.memory_size;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /* register prefix slot */
 | |
|         if (old.start_addr < start_addr) {
 | |
|             mem = kvm_alloc_slot(s);
 | |
|             mem->memory_size = start_addr - old.start_addr;
 | |
|             mem->start_addr = old.start_addr;
 | |
|             mem->ram = old.ram;
 | |
|             mem->flags =  kvm_mem_flags(s, log_dirty, readonly_flag);
 | |
| 
 | |
|             err = kvm_set_user_memory_region(s, mem);
 | |
|             if (err) {
 | |
|                 fprintf(stderr, "%s: error registering prefix slot: %s\n",
 | |
|                         __func__, strerror(-err));
 | |
| #ifdef TARGET_PPC
 | |
|                 fprintf(stderr, "%s: This is probably because your kernel's " \
 | |
|                                 "PAGE_SIZE is too big. Please try to use 4k " \
 | |
|                                 "PAGE_SIZE!\n", __func__);
 | |
| #endif
 | |
|                 abort();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* register suffix slot */
 | |
|         if (old.start_addr + old.memory_size > start_addr + size) {
 | |
|             ram_addr_t size_delta;
 | |
| 
 | |
|             mem = kvm_alloc_slot(s);
 | |
|             mem->start_addr = start_addr + size;
 | |
|             size_delta = mem->start_addr - old.start_addr;
 | |
|             mem->memory_size = old.memory_size - size_delta;
 | |
|             mem->ram = old.ram + size_delta;
 | |
|             mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
 | |
| 
 | |
|             err = kvm_set_user_memory_region(s, mem);
 | |
|             if (err) {
 | |
|                 fprintf(stderr, "%s: error registering suffix slot: %s\n",
 | |
|                         __func__, strerror(-err));
 | |
|                 abort();
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* in case the KVM bug workaround already "consumed" the new slot */
 | |
|     if (!size) {
 | |
|         return;
 | |
|     }
 | |
|     if (!add) {
 | |
|         return;
 | |
|     }
 | |
|     mem = kvm_alloc_slot(s);
 | |
|     mem->memory_size = size;
 | |
|     mem->start_addr = start_addr;
 | |
|     mem->ram = ram;
 | |
|     mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
 | |
| 
 | |
|     err = kvm_set_user_memory_region(s, mem);
 | |
|     if (err) {
 | |
|         fprintf(stderr, "%s: error registering slot: %s\n", __func__,
 | |
|                 strerror(-err));
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_region_add(MemoryListener *listener,
 | |
|                            MemoryRegionSection *section)
 | |
| {
 | |
|     memory_region_ref(section->mr);
 | |
|     kvm_set_phys_mem(section, true);
 | |
| }
 | |
| 
 | |
| static void kvm_region_del(MemoryListener *listener,
 | |
|                            MemoryRegionSection *section)
 | |
| {
 | |
|     kvm_set_phys_mem(section, false);
 | |
|     memory_region_unref(section->mr);
 | |
| }
 | |
| 
 | |
| static void kvm_log_sync(MemoryListener *listener,
 | |
|                          MemoryRegionSection *section)
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     r = kvm_physical_sync_dirty_bitmap(section);
 | |
|     if (r < 0) {
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_log_global_start(struct MemoryListener *listener)
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     r = kvm_set_migration_log(1);
 | |
|     assert(r >= 0);
 | |
| }
 | |
| 
 | |
| static void kvm_log_global_stop(struct MemoryListener *listener)
 | |
| {
 | |
|     int r;
 | |
| 
 | |
|     r = kvm_set_migration_log(0);
 | |
|     assert(r >= 0);
 | |
| }
 | |
| 
 | |
| static void kvm_mem_ioeventfd_add(MemoryListener *listener,
 | |
|                                   MemoryRegionSection *section,
 | |
|                                   bool match_data, uint64_t data,
 | |
|                                   EventNotifier *e)
 | |
| {
 | |
|     int fd = event_notifier_get_fd(e);
 | |
|     int r;
 | |
| 
 | |
|     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
 | |
|                                data, true, int128_get64(section->size),
 | |
|                                match_data);
 | |
|     if (r < 0) {
 | |
|         fprintf(stderr, "%s: error adding ioeventfd: %s\n",
 | |
|                 __func__, strerror(-r));
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_mem_ioeventfd_del(MemoryListener *listener,
 | |
|                                   MemoryRegionSection *section,
 | |
|                                   bool match_data, uint64_t data,
 | |
|                                   EventNotifier *e)
 | |
| {
 | |
|     int fd = event_notifier_get_fd(e);
 | |
|     int r;
 | |
| 
 | |
|     r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
 | |
|                                data, false, int128_get64(section->size),
 | |
|                                match_data);
 | |
|     if (r < 0) {
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_io_ioeventfd_add(MemoryListener *listener,
 | |
|                                  MemoryRegionSection *section,
 | |
|                                  bool match_data, uint64_t data,
 | |
|                                  EventNotifier *e)
 | |
| {
 | |
|     int fd = event_notifier_get_fd(e);
 | |
|     int r;
 | |
| 
 | |
|     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
 | |
|                               data, true, int128_get64(section->size),
 | |
|                               match_data);
 | |
|     if (r < 0) {
 | |
|         fprintf(stderr, "%s: error adding ioeventfd: %s\n",
 | |
|                 __func__, strerror(-r));
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_io_ioeventfd_del(MemoryListener *listener,
 | |
|                                  MemoryRegionSection *section,
 | |
|                                  bool match_data, uint64_t data,
 | |
|                                  EventNotifier *e)
 | |
| 
 | |
| {
 | |
|     int fd = event_notifier_get_fd(e);
 | |
|     int r;
 | |
| 
 | |
|     r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
 | |
|                               data, false, int128_get64(section->size),
 | |
|                               match_data);
 | |
|     if (r < 0) {
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static MemoryListener kvm_memory_listener = {
 | |
|     .region_add = kvm_region_add,
 | |
|     .region_del = kvm_region_del,
 | |
|     .log_start = kvm_log_start,
 | |
|     .log_stop = kvm_log_stop,
 | |
|     .log_sync = kvm_log_sync,
 | |
|     .log_global_start = kvm_log_global_start,
 | |
|     .log_global_stop = kvm_log_global_stop,
 | |
|     .eventfd_add = kvm_mem_ioeventfd_add,
 | |
|     .eventfd_del = kvm_mem_ioeventfd_del,
 | |
|     .coalesced_mmio_add = kvm_coalesce_mmio_region,
 | |
|     .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
 | |
|     .priority = 10,
 | |
| };
 | |
| 
 | |
| static MemoryListener kvm_io_listener = {
 | |
|     .eventfd_add = kvm_io_ioeventfd_add,
 | |
|     .eventfd_del = kvm_io_ioeventfd_del,
 | |
|     .priority = 10,
 | |
| };
 | |
| 
 | |
| static void kvm_handle_interrupt(CPUState *cpu, int mask)
 | |
| {
 | |
|     cpu->interrupt_request |= mask;
 | |
| 
 | |
|     if (!qemu_cpu_is_self(cpu)) {
 | |
|         qemu_cpu_kick(cpu);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int kvm_set_irq(KVMState *s, int irq, int level)
 | |
| {
 | |
|     struct kvm_irq_level event;
 | |
|     int ret;
 | |
| 
 | |
|     assert(kvm_async_interrupts_enabled());
 | |
| 
 | |
|     event.level = level;
 | |
|     event.irq = irq;
 | |
|     ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
 | |
|     if (ret < 0) {
 | |
|         perror("kvm_set_irq");
 | |
|         abort();
 | |
|     }
 | |
| 
 | |
|     return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
 | |
| }
 | |
| 
 | |
| #ifdef KVM_CAP_IRQ_ROUTING
 | |
| typedef struct KVMMSIRoute {
 | |
|     struct kvm_irq_routing_entry kroute;
 | |
|     QTAILQ_ENTRY(KVMMSIRoute) entry;
 | |
| } KVMMSIRoute;
 | |
| 
 | |
| static void set_gsi(KVMState *s, unsigned int gsi)
 | |
| {
 | |
|     s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
 | |
| }
 | |
| 
 | |
| static void clear_gsi(KVMState *s, unsigned int gsi)
 | |
| {
 | |
|     s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
 | |
| }
 | |
| 
 | |
| void kvm_init_irq_routing(KVMState *s)
 | |
| {
 | |
|     int gsi_count, i;
 | |
| 
 | |
|     gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
 | |
|     if (gsi_count > 0) {
 | |
|         unsigned int gsi_bits, i;
 | |
| 
 | |
|         /* Round up so we can search ints using ffs */
 | |
|         gsi_bits = ALIGN(gsi_count, 32);
 | |
|         s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
 | |
|         s->gsi_count = gsi_count;
 | |
| 
 | |
|         /* Mark any over-allocated bits as already in use */
 | |
|         for (i = gsi_count; i < gsi_bits; i++) {
 | |
|             set_gsi(s, i);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
 | |
|     s->nr_allocated_irq_routes = 0;
 | |
| 
 | |
|     if (!s->direct_msi) {
 | |
|         for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
 | |
|             QTAILQ_INIT(&s->msi_hashtab[i]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     kvm_arch_init_irq_routing(s);
 | |
| }
 | |
| 
 | |
| void kvm_irqchip_commit_routes(KVMState *s)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     s->irq_routes->flags = 0;
 | |
|     ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
 | |
|     assert(ret == 0);
 | |
| }
 | |
| 
 | |
| static void kvm_add_routing_entry(KVMState *s,
 | |
|                                   struct kvm_irq_routing_entry *entry)
 | |
| {
 | |
|     struct kvm_irq_routing_entry *new;
 | |
|     int n, size;
 | |
| 
 | |
|     if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
 | |
|         n = s->nr_allocated_irq_routes * 2;
 | |
|         if (n < 64) {
 | |
|             n = 64;
 | |
|         }
 | |
|         size = sizeof(struct kvm_irq_routing);
 | |
|         size += n * sizeof(*new);
 | |
|         s->irq_routes = g_realloc(s->irq_routes, size);
 | |
|         s->nr_allocated_irq_routes = n;
 | |
|     }
 | |
|     n = s->irq_routes->nr++;
 | |
|     new = &s->irq_routes->entries[n];
 | |
| 
 | |
|     *new = *entry;
 | |
| 
 | |
|     set_gsi(s, entry->gsi);
 | |
| }
 | |
| 
 | |
| static int kvm_update_routing_entry(KVMState *s,
 | |
|                                     struct kvm_irq_routing_entry *new_entry)
 | |
| {
 | |
|     struct kvm_irq_routing_entry *entry;
 | |
|     int n;
 | |
| 
 | |
|     for (n = 0; n < s->irq_routes->nr; n++) {
 | |
|         entry = &s->irq_routes->entries[n];
 | |
|         if (entry->gsi != new_entry->gsi) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if(!memcmp(entry, new_entry, sizeof *entry)) {
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         *entry = *new_entry;
 | |
| 
 | |
|         kvm_irqchip_commit_routes(s);
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return -ESRCH;
 | |
| }
 | |
| 
 | |
| void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
 | |
| {
 | |
|     struct kvm_irq_routing_entry e = {};
 | |
| 
 | |
|     assert(pin < s->gsi_count);
 | |
| 
 | |
|     e.gsi = irq;
 | |
|     e.type = KVM_IRQ_ROUTING_IRQCHIP;
 | |
|     e.flags = 0;
 | |
|     e.u.irqchip.irqchip = irqchip;
 | |
|     e.u.irqchip.pin = pin;
 | |
|     kvm_add_routing_entry(s, &e);
 | |
| }
 | |
| 
 | |
| void kvm_irqchip_release_virq(KVMState *s, int virq)
 | |
| {
 | |
|     struct kvm_irq_routing_entry *e;
 | |
|     int i;
 | |
| 
 | |
|     if (kvm_gsi_direct_mapping()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < s->irq_routes->nr; i++) {
 | |
|         e = &s->irq_routes->entries[i];
 | |
|         if (e->gsi == virq) {
 | |
|             s->irq_routes->nr--;
 | |
|             *e = s->irq_routes->entries[s->irq_routes->nr];
 | |
|         }
 | |
|     }
 | |
|     clear_gsi(s, virq);
 | |
| }
 | |
| 
 | |
| static unsigned int kvm_hash_msi(uint32_t data)
 | |
| {
 | |
|     /* This is optimized for IA32 MSI layout. However, no other arch shall
 | |
|      * repeat the mistake of not providing a direct MSI injection API. */
 | |
|     return data & 0xff;
 | |
| }
 | |
| 
 | |
| static void kvm_flush_dynamic_msi_routes(KVMState *s)
 | |
| {
 | |
|     KVMMSIRoute *route, *next;
 | |
|     unsigned int hash;
 | |
| 
 | |
|     for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
 | |
|         QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
 | |
|             kvm_irqchip_release_virq(s, route->kroute.gsi);
 | |
|             QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
 | |
|             g_free(route);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int kvm_irqchip_get_virq(KVMState *s)
 | |
| {
 | |
|     uint32_t *word = s->used_gsi_bitmap;
 | |
|     int max_words = ALIGN(s->gsi_count, 32) / 32;
 | |
|     int i, bit;
 | |
|     bool retry = true;
 | |
| 
 | |
| again:
 | |
|     /* Return the lowest unused GSI in the bitmap */
 | |
|     for (i = 0; i < max_words; i++) {
 | |
|         bit = ffs(~word[i]);
 | |
|         if (!bit) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         return bit - 1 + i * 32;
 | |
|     }
 | |
|     if (!s->direct_msi && retry) {
 | |
|         retry = false;
 | |
|         kvm_flush_dynamic_msi_routes(s);
 | |
|         goto again;
 | |
|     }
 | |
|     return -ENOSPC;
 | |
| 
 | |
| }
 | |
| 
 | |
| static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
 | |
| {
 | |
|     unsigned int hash = kvm_hash_msi(msg.data);
 | |
|     KVMMSIRoute *route;
 | |
| 
 | |
|     QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
 | |
|         if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
 | |
|             route->kroute.u.msi.address_hi == (msg.address >> 32) &&
 | |
|             route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
 | |
|             return route;
 | |
|         }
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
 | |
| {
 | |
|     struct kvm_msi msi;
 | |
|     KVMMSIRoute *route;
 | |
| 
 | |
|     if (s->direct_msi) {
 | |
|         msi.address_lo = (uint32_t)msg.address;
 | |
|         msi.address_hi = msg.address >> 32;
 | |
|         msi.data = le32_to_cpu(msg.data);
 | |
|         msi.flags = 0;
 | |
|         memset(msi.pad, 0, sizeof(msi.pad));
 | |
| 
 | |
|         return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
 | |
|     }
 | |
| 
 | |
|     route = kvm_lookup_msi_route(s, msg);
 | |
|     if (!route) {
 | |
|         int virq;
 | |
| 
 | |
|         virq = kvm_irqchip_get_virq(s);
 | |
|         if (virq < 0) {
 | |
|             return virq;
 | |
|         }
 | |
| 
 | |
|         route = g_malloc0(sizeof(KVMMSIRoute));
 | |
|         route->kroute.gsi = virq;
 | |
|         route->kroute.type = KVM_IRQ_ROUTING_MSI;
 | |
|         route->kroute.flags = 0;
 | |
|         route->kroute.u.msi.address_lo = (uint32_t)msg.address;
 | |
|         route->kroute.u.msi.address_hi = msg.address >> 32;
 | |
|         route->kroute.u.msi.data = le32_to_cpu(msg.data);
 | |
| 
 | |
|         kvm_add_routing_entry(s, &route->kroute);
 | |
|         kvm_irqchip_commit_routes(s);
 | |
| 
 | |
|         QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
 | |
|                            entry);
 | |
|     }
 | |
| 
 | |
|     assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
 | |
| 
 | |
|     return kvm_set_irq(s, route->kroute.gsi, 1);
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
 | |
| {
 | |
|     struct kvm_irq_routing_entry kroute = {};
 | |
|     int virq;
 | |
| 
 | |
|     if (kvm_gsi_direct_mapping()) {
 | |
|         return msg.data & 0xffff;
 | |
|     }
 | |
| 
 | |
|     if (!kvm_gsi_routing_enabled()) {
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| 
 | |
|     virq = kvm_irqchip_get_virq(s);
 | |
|     if (virq < 0) {
 | |
|         return virq;
 | |
|     }
 | |
| 
 | |
|     kroute.gsi = virq;
 | |
|     kroute.type = KVM_IRQ_ROUTING_MSI;
 | |
|     kroute.flags = 0;
 | |
|     kroute.u.msi.address_lo = (uint32_t)msg.address;
 | |
|     kroute.u.msi.address_hi = msg.address >> 32;
 | |
|     kroute.u.msi.data = le32_to_cpu(msg.data);
 | |
| 
 | |
|     kvm_add_routing_entry(s, &kroute);
 | |
|     kvm_irqchip_commit_routes(s);
 | |
| 
 | |
|     return virq;
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
 | |
| {
 | |
|     struct kvm_irq_routing_entry kroute = {};
 | |
| 
 | |
|     if (kvm_gsi_direct_mapping()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (!kvm_irqchip_in_kernel()) {
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| 
 | |
|     kroute.gsi = virq;
 | |
|     kroute.type = KVM_IRQ_ROUTING_MSI;
 | |
|     kroute.flags = 0;
 | |
|     kroute.u.msi.address_lo = (uint32_t)msg.address;
 | |
|     kroute.u.msi.address_hi = msg.address >> 32;
 | |
|     kroute.u.msi.data = le32_to_cpu(msg.data);
 | |
| 
 | |
|     return kvm_update_routing_entry(s, &kroute);
 | |
| }
 | |
| 
 | |
| static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
 | |
|                                     bool assign)
 | |
| {
 | |
|     struct kvm_irqfd irqfd = {
 | |
|         .fd = fd,
 | |
|         .gsi = virq,
 | |
|         .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
 | |
|     };
 | |
| 
 | |
|     if (rfd != -1) {
 | |
|         irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
 | |
|         irqfd.resamplefd = rfd;
 | |
|     }
 | |
| 
 | |
|     if (!kvm_irqfds_enabled()) {
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| 
 | |
|     return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
 | |
| {
 | |
|     struct kvm_irq_routing_entry kroute;
 | |
|     int virq;
 | |
| 
 | |
|     if (!kvm_gsi_routing_enabled()) {
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| 
 | |
|     virq = kvm_irqchip_get_virq(s);
 | |
|     if (virq < 0) {
 | |
|         return virq;
 | |
|     }
 | |
| 
 | |
|     kroute.gsi = virq;
 | |
|     kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
 | |
|     kroute.flags = 0;
 | |
|     kroute.u.adapter.summary_addr = adapter->summary_addr;
 | |
|     kroute.u.adapter.ind_addr = adapter->ind_addr;
 | |
|     kroute.u.adapter.summary_offset = adapter->summary_offset;
 | |
|     kroute.u.adapter.ind_offset = adapter->ind_offset;
 | |
|     kroute.u.adapter.adapter_id = adapter->adapter_id;
 | |
| 
 | |
|     kvm_add_routing_entry(s, &kroute);
 | |
|     kvm_irqchip_commit_routes(s);
 | |
| 
 | |
|     return virq;
 | |
| }
 | |
| 
 | |
| #else /* !KVM_CAP_IRQ_ROUTING */
 | |
| 
 | |
| void kvm_init_irq_routing(KVMState *s)
 | |
| {
 | |
| }
 | |
| 
 | |
| void kvm_irqchip_release_virq(KVMState *s, int virq)
 | |
| {
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
 | |
| {
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
 | |
| {
 | |
|     return -ENOSYS;
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
 | |
| {
 | |
|     return -ENOSYS;
 | |
| }
 | |
| 
 | |
| static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
 | |
| {
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
 | |
| {
 | |
|     return -ENOSYS;
 | |
| }
 | |
| #endif /* !KVM_CAP_IRQ_ROUTING */
 | |
| 
 | |
| int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
 | |
|                                    EventNotifier *rn, int virq)
 | |
| {
 | |
|     return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
 | |
|            rn ? event_notifier_get_fd(rn) : -1, virq, true);
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
 | |
| {
 | |
|     return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
 | |
|            false);
 | |
| }
 | |
| 
 | |
| static int kvm_irqchip_create(KVMState *s)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
 | |
|         (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
 | |
|          (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* First probe and see if there's a arch-specific hook to create the
 | |
|      * in-kernel irqchip for us */
 | |
|     ret = kvm_arch_irqchip_create(s);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     } else if (ret == 0) {
 | |
|         ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
 | |
|         if (ret < 0) {
 | |
|             fprintf(stderr, "Create kernel irqchip failed\n");
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     kvm_kernel_irqchip = true;
 | |
|     /* If we have an in-kernel IRQ chip then we must have asynchronous
 | |
|      * interrupt delivery (though the reverse is not necessarily true)
 | |
|      */
 | |
|     kvm_async_interrupts_allowed = true;
 | |
|     kvm_halt_in_kernel_allowed = true;
 | |
| 
 | |
|     kvm_init_irq_routing(s);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Find number of supported CPUs using the recommended
 | |
|  * procedure from the kernel API documentation to cope with
 | |
|  * older kernels that may be missing capabilities.
 | |
|  */
 | |
| static int kvm_recommended_vcpus(KVMState *s)
 | |
| {
 | |
|     int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
 | |
|     return (ret) ? ret : 4;
 | |
| }
 | |
| 
 | |
| static int kvm_max_vcpus(KVMState *s)
 | |
| {
 | |
|     int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
 | |
|     return (ret) ? ret : kvm_recommended_vcpus(s);
 | |
| }
 | |
| 
 | |
| int kvm_init(MachineClass *mc)
 | |
| {
 | |
|     static const char upgrade_note[] =
 | |
|         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
 | |
|         "(see http://sourceforge.net/projects/kvm).\n";
 | |
|     struct {
 | |
|         const char *name;
 | |
|         int num;
 | |
|     } num_cpus[] = {
 | |
|         { "SMP",          smp_cpus },
 | |
|         { "hotpluggable", max_cpus },
 | |
|         { NULL, }
 | |
|     }, *nc = num_cpus;
 | |
|     int soft_vcpus_limit, hard_vcpus_limit;
 | |
|     KVMState *s;
 | |
|     const KVMCapabilityInfo *missing_cap;
 | |
|     int ret;
 | |
|     int i, type = 0;
 | |
|     const char *kvm_type;
 | |
| 
 | |
|     s = g_malloc0(sizeof(KVMState));
 | |
| 
 | |
|     /*
 | |
|      * On systems where the kernel can support different base page
 | |
|      * sizes, host page size may be different from TARGET_PAGE_SIZE,
 | |
|      * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum
 | |
|      * page size for the system though.
 | |
|      */
 | |
|     assert(TARGET_PAGE_SIZE <= getpagesize());
 | |
|     page_size_init();
 | |
| 
 | |
|     s->sigmask_len = 8;
 | |
| 
 | |
| #ifdef KVM_CAP_SET_GUEST_DEBUG
 | |
|     QTAILQ_INIT(&s->kvm_sw_breakpoints);
 | |
| #endif
 | |
|     s->vmfd = -1;
 | |
|     s->fd = qemu_open("/dev/kvm", O_RDWR);
 | |
|     if (s->fd == -1) {
 | |
|         fprintf(stderr, "Could not access KVM kernel module: %m\n");
 | |
|         ret = -errno;
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
 | |
|     if (ret < KVM_API_VERSION) {
 | |
|         if (ret >= 0) {
 | |
|             ret = -EINVAL;
 | |
|         }
 | |
|         fprintf(stderr, "kvm version too old\n");
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (ret > KVM_API_VERSION) {
 | |
|         ret = -EINVAL;
 | |
|         fprintf(stderr, "kvm version not supported\n");
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
 | |
| 
 | |
|     /* If unspecified, use the default value */
 | |
|     if (!s->nr_slots) {
 | |
|         s->nr_slots = 32;
 | |
|     }
 | |
| 
 | |
|     s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
 | |
| 
 | |
|     for (i = 0; i < s->nr_slots; i++) {
 | |
|         s->slots[i].slot = i;
 | |
|     }
 | |
| 
 | |
|     /* check the vcpu limits */
 | |
|     soft_vcpus_limit = kvm_recommended_vcpus(s);
 | |
|     hard_vcpus_limit = kvm_max_vcpus(s);
 | |
| 
 | |
|     while (nc->name) {
 | |
|         if (nc->num > soft_vcpus_limit) {
 | |
|             fprintf(stderr,
 | |
|                     "Warning: Number of %s cpus requested (%d) exceeds "
 | |
|                     "the recommended cpus supported by KVM (%d)\n",
 | |
|                     nc->name, nc->num, soft_vcpus_limit);
 | |
| 
 | |
|             if (nc->num > hard_vcpus_limit) {
 | |
|                 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
 | |
|                         "the maximum cpus supported by KVM (%d)\n",
 | |
|                         nc->name, nc->num, hard_vcpus_limit);
 | |
|                 exit(1);
 | |
|             }
 | |
|         }
 | |
|         nc++;
 | |
|     }
 | |
| 
 | |
|     kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
 | |
|     if (mc->kvm_type) {
 | |
|         type = mc->kvm_type(kvm_type);
 | |
|     } else if (kvm_type) {
 | |
|         ret = -EINVAL;
 | |
|         fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|         ret = kvm_ioctl(s, KVM_CREATE_VM, type);
 | |
|     } while (ret == -EINTR);
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
 | |
|                 strerror(-ret));
 | |
| 
 | |
| #ifdef TARGET_S390X
 | |
|         fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
 | |
|                         "your host kernel command line\n");
 | |
| #endif
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     s->vmfd = ret;
 | |
|     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
 | |
|     if (!missing_cap) {
 | |
|         missing_cap =
 | |
|             kvm_check_extension_list(s, kvm_arch_required_capabilities);
 | |
|     }
 | |
|     if (missing_cap) {
 | |
|         ret = -EINVAL;
 | |
|         fprintf(stderr, "kvm does not support %s\n%s",
 | |
|                 missing_cap->name, upgrade_note);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
 | |
| 
 | |
|     s->broken_set_mem_region = 1;
 | |
|     ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
 | |
|     if (ret > 0) {
 | |
|         s->broken_set_mem_region = 0;
 | |
|     }
 | |
| 
 | |
| #ifdef KVM_CAP_VCPU_EVENTS
 | |
|     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
 | |
| #endif
 | |
| 
 | |
|     s->robust_singlestep =
 | |
|         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
 | |
| 
 | |
| #ifdef KVM_CAP_DEBUGREGS
 | |
|     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
 | |
| #endif
 | |
| 
 | |
| #ifdef KVM_CAP_XSAVE
 | |
|     s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
 | |
| #endif
 | |
| 
 | |
| #ifdef KVM_CAP_XCRS
 | |
|     s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
 | |
| #endif
 | |
| 
 | |
| #ifdef KVM_CAP_PIT_STATE2
 | |
|     s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
 | |
| #endif
 | |
| 
 | |
| #ifdef KVM_CAP_IRQ_ROUTING
 | |
|     s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
 | |
| #endif
 | |
| 
 | |
|     s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
 | |
| 
 | |
|     s->irq_set_ioctl = KVM_IRQ_LINE;
 | |
|     if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
 | |
|         s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
 | |
|     }
 | |
| 
 | |
| #ifdef KVM_CAP_READONLY_MEM
 | |
|     kvm_readonly_mem_allowed =
 | |
|         (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
 | |
| #endif
 | |
| 
 | |
|     kvm_eventfds_allowed =
 | |
|         (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
 | |
| 
 | |
|     ret = kvm_arch_init(s);
 | |
|     if (ret < 0) {
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_irqchip_create(s);
 | |
|     if (ret < 0) {
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     kvm_state = s;
 | |
|     memory_listener_register(&kvm_memory_listener, &address_space_memory);
 | |
|     memory_listener_register(&kvm_io_listener, &address_space_io);
 | |
| 
 | |
|     s->many_ioeventfds = kvm_check_many_ioeventfds();
 | |
| 
 | |
|     cpu_interrupt_handler = kvm_handle_interrupt;
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| err:
 | |
|     assert(ret < 0);
 | |
|     if (s->vmfd >= 0) {
 | |
|         close(s->vmfd);
 | |
|     }
 | |
|     if (s->fd != -1) {
 | |
|         close(s->fd);
 | |
|     }
 | |
|     g_free(s->slots);
 | |
|     g_free(s);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
 | |
| {
 | |
|     s->sigmask_len = sigmask_len;
 | |
| }
 | |
| 
 | |
| static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
 | |
|                           uint32_t count)
 | |
| {
 | |
|     int i;
 | |
|     uint8_t *ptr = data;
 | |
| 
 | |
|     for (i = 0; i < count; i++) {
 | |
|         address_space_rw(&address_space_io, port, ptr, size,
 | |
|                          direction == KVM_EXIT_IO_OUT);
 | |
|         ptr += size;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
 | |
| {
 | |
|     fprintf(stderr, "KVM internal error. Suberror: %d\n",
 | |
|             run->internal.suberror);
 | |
| 
 | |
|     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
 | |
|         int i;
 | |
| 
 | |
|         for (i = 0; i < run->internal.ndata; ++i) {
 | |
|             fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
 | |
|                     i, (uint64_t)run->internal.data[i]);
 | |
|         }
 | |
|     }
 | |
|     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
 | |
|         fprintf(stderr, "emulation failure\n");
 | |
|         if (!kvm_arch_stop_on_emulation_error(cpu)) {
 | |
|             cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
 | |
|             return EXCP_INTERRUPT;
 | |
|         }
 | |
|     }
 | |
|     /* FIXME: Should trigger a qmp message to let management know
 | |
|      * something went wrong.
 | |
|      */
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| void kvm_flush_coalesced_mmio_buffer(void)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
| 
 | |
|     if (s->coalesced_flush_in_progress) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     s->coalesced_flush_in_progress = true;
 | |
| 
 | |
|     if (s->coalesced_mmio_ring) {
 | |
|         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
 | |
|         while (ring->first != ring->last) {
 | |
|             struct kvm_coalesced_mmio *ent;
 | |
| 
 | |
|             ent = &ring->coalesced_mmio[ring->first];
 | |
| 
 | |
|             cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
 | |
|             smp_wmb();
 | |
|             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s->coalesced_flush_in_progress = false;
 | |
| }
 | |
| 
 | |
| static void do_kvm_cpu_synchronize_state(void *arg)
 | |
| {
 | |
|     CPUState *cpu = arg;
 | |
| 
 | |
|     if (!cpu->kvm_vcpu_dirty) {
 | |
|         kvm_arch_get_registers(cpu);
 | |
|         cpu->kvm_vcpu_dirty = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void kvm_cpu_synchronize_state(CPUState *cpu)
 | |
| {
 | |
|     if (!cpu->kvm_vcpu_dirty) {
 | |
|         run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void kvm_cpu_synchronize_post_reset(CPUState *cpu)
 | |
| {
 | |
|     kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
 | |
|     cpu->kvm_vcpu_dirty = false;
 | |
| }
 | |
| 
 | |
| void kvm_cpu_synchronize_post_init(CPUState *cpu)
 | |
| {
 | |
|     kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
 | |
|     cpu->kvm_vcpu_dirty = false;
 | |
| }
 | |
| 
 | |
| int kvm_cpu_exec(CPUState *cpu)
 | |
| {
 | |
|     struct kvm_run *run = cpu->kvm_run;
 | |
|     int ret, run_ret;
 | |
| 
 | |
|     DPRINTF("kvm_cpu_exec()\n");
 | |
| 
 | |
|     if (kvm_arch_process_async_events(cpu)) {
 | |
|         cpu->exit_request = 0;
 | |
|         return EXCP_HLT;
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|         if (cpu->kvm_vcpu_dirty) {
 | |
|             kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
 | |
|             cpu->kvm_vcpu_dirty = false;
 | |
|         }
 | |
| 
 | |
|         kvm_arch_pre_run(cpu, run);
 | |
|         if (cpu->exit_request) {
 | |
|             DPRINTF("interrupt exit requested\n");
 | |
|             /*
 | |
|              * KVM requires us to reenter the kernel after IO exits to complete
 | |
|              * instruction emulation. This self-signal will ensure that we
 | |
|              * leave ASAP again.
 | |
|              */
 | |
|             qemu_cpu_kick_self();
 | |
|         }
 | |
|         qemu_mutex_unlock_iothread();
 | |
| 
 | |
|         run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
 | |
| 
 | |
|         qemu_mutex_lock_iothread();
 | |
|         kvm_arch_post_run(cpu, run);
 | |
| 
 | |
|         if (run_ret < 0) {
 | |
|             if (run_ret == -EINTR || run_ret == -EAGAIN) {
 | |
|                 DPRINTF("io window exit\n");
 | |
|                 ret = EXCP_INTERRUPT;
 | |
|                 break;
 | |
|             }
 | |
|             fprintf(stderr, "error: kvm run failed %s\n",
 | |
|                     strerror(-run_ret));
 | |
|             abort();
 | |
|         }
 | |
| 
 | |
|         trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
 | |
|         switch (run->exit_reason) {
 | |
|         case KVM_EXIT_IO:
 | |
|             DPRINTF("handle_io\n");
 | |
|             kvm_handle_io(run->io.port,
 | |
|                           (uint8_t *)run + run->io.data_offset,
 | |
|                           run->io.direction,
 | |
|                           run->io.size,
 | |
|                           run->io.count);
 | |
|             ret = 0;
 | |
|             break;
 | |
|         case KVM_EXIT_MMIO:
 | |
|             DPRINTF("handle_mmio\n");
 | |
|             cpu_physical_memory_rw(run->mmio.phys_addr,
 | |
|                                    run->mmio.data,
 | |
|                                    run->mmio.len,
 | |
|                                    run->mmio.is_write);
 | |
|             ret = 0;
 | |
|             break;
 | |
|         case KVM_EXIT_IRQ_WINDOW_OPEN:
 | |
|             DPRINTF("irq_window_open\n");
 | |
|             ret = EXCP_INTERRUPT;
 | |
|             break;
 | |
|         case KVM_EXIT_SHUTDOWN:
 | |
|             DPRINTF("shutdown\n");
 | |
|             qemu_system_reset_request();
 | |
|             ret = EXCP_INTERRUPT;
 | |
|             break;
 | |
|         case KVM_EXIT_UNKNOWN:
 | |
|             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
 | |
|                     (uint64_t)run->hw.hardware_exit_reason);
 | |
|             ret = -1;
 | |
|             break;
 | |
|         case KVM_EXIT_INTERNAL_ERROR:
 | |
|             ret = kvm_handle_internal_error(cpu, run);
 | |
|             break;
 | |
|         case KVM_EXIT_SYSTEM_EVENT:
 | |
|             switch (run->system_event.type) {
 | |
|             case KVM_SYSTEM_EVENT_SHUTDOWN:
 | |
|                 qemu_system_shutdown_request();
 | |
|                 ret = EXCP_INTERRUPT;
 | |
|                 break;
 | |
|             case KVM_SYSTEM_EVENT_RESET:
 | |
|                 qemu_system_reset_request();
 | |
|                 ret = EXCP_INTERRUPT;
 | |
|                 break;
 | |
|             default:
 | |
|                 DPRINTF("kvm_arch_handle_exit\n");
 | |
|                 ret = kvm_arch_handle_exit(cpu, run);
 | |
|                 break;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             DPRINTF("kvm_arch_handle_exit\n");
 | |
|             ret = kvm_arch_handle_exit(cpu, run);
 | |
|             break;
 | |
|         }
 | |
|     } while (ret == 0);
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
 | |
|         vm_stop(RUN_STATE_INTERNAL_ERROR);
 | |
|     }
 | |
| 
 | |
|     cpu->exit_request = 0;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_ioctl(KVMState *s, int type, ...)
 | |
| {
 | |
|     int ret;
 | |
|     void *arg;
 | |
|     va_list ap;
 | |
| 
 | |
|     va_start(ap, type);
 | |
|     arg = va_arg(ap, void *);
 | |
|     va_end(ap);
 | |
| 
 | |
|     trace_kvm_ioctl(type, arg);
 | |
|     ret = ioctl(s->fd, type, arg);
 | |
|     if (ret == -1) {
 | |
|         ret = -errno;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_vm_ioctl(KVMState *s, int type, ...)
 | |
| {
 | |
|     int ret;
 | |
|     void *arg;
 | |
|     va_list ap;
 | |
| 
 | |
|     va_start(ap, type);
 | |
|     arg = va_arg(ap, void *);
 | |
|     va_end(ap);
 | |
| 
 | |
|     trace_kvm_vm_ioctl(type, arg);
 | |
|     ret = ioctl(s->vmfd, type, arg);
 | |
|     if (ret == -1) {
 | |
|         ret = -errno;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
 | |
| {
 | |
|     int ret;
 | |
|     void *arg;
 | |
|     va_list ap;
 | |
| 
 | |
|     va_start(ap, type);
 | |
|     arg = va_arg(ap, void *);
 | |
|     va_end(ap);
 | |
| 
 | |
|     trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
 | |
|     ret = ioctl(cpu->kvm_fd, type, arg);
 | |
|     if (ret == -1) {
 | |
|         ret = -errno;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_device_ioctl(int fd, int type, ...)
 | |
| {
 | |
|     int ret;
 | |
|     void *arg;
 | |
|     va_list ap;
 | |
| 
 | |
|     va_start(ap, type);
 | |
|     arg = va_arg(ap, void *);
 | |
|     va_end(ap);
 | |
| 
 | |
|     trace_kvm_device_ioctl(fd, type, arg);
 | |
|     ret = ioctl(fd, type, arg);
 | |
|     if (ret == -1) {
 | |
|         ret = -errno;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_has_sync_mmu(void)
 | |
| {
 | |
|     return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
 | |
| }
 | |
| 
 | |
| int kvm_has_vcpu_events(void)
 | |
| {
 | |
|     return kvm_state->vcpu_events;
 | |
| }
 | |
| 
 | |
| int kvm_has_robust_singlestep(void)
 | |
| {
 | |
|     return kvm_state->robust_singlestep;
 | |
| }
 | |
| 
 | |
| int kvm_has_debugregs(void)
 | |
| {
 | |
|     return kvm_state->debugregs;
 | |
| }
 | |
| 
 | |
| int kvm_has_xsave(void)
 | |
| {
 | |
|     return kvm_state->xsave;
 | |
| }
 | |
| 
 | |
| int kvm_has_xcrs(void)
 | |
| {
 | |
|     return kvm_state->xcrs;
 | |
| }
 | |
| 
 | |
| int kvm_has_pit_state2(void)
 | |
| {
 | |
|     return kvm_state->pit_state2;
 | |
| }
 | |
| 
 | |
| int kvm_has_many_ioeventfds(void)
 | |
| {
 | |
|     if (!kvm_enabled()) {
 | |
|         return 0;
 | |
|     }
 | |
|     return kvm_state->many_ioeventfds;
 | |
| }
 | |
| 
 | |
| int kvm_has_gsi_routing(void)
 | |
| {
 | |
| #ifdef KVM_CAP_IRQ_ROUTING
 | |
|     return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
 | |
| #else
 | |
|     return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int kvm_has_intx_set_mask(void)
 | |
| {
 | |
|     return kvm_state->intx_set_mask;
 | |
| }
 | |
| 
 | |
| void kvm_setup_guest_memory(void *start, size_t size)
 | |
| {
 | |
| #ifdef CONFIG_VALGRIND_H
 | |
|     VALGRIND_MAKE_MEM_DEFINED(start, size);
 | |
| #endif
 | |
|     if (!kvm_has_sync_mmu()) {
 | |
|         int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
 | |
| 
 | |
|         if (ret) {
 | |
|             perror("qemu_madvise");
 | |
|             fprintf(stderr,
 | |
|                     "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef KVM_CAP_SET_GUEST_DEBUG
 | |
| struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
 | |
|                                                  target_ulong pc)
 | |
| {
 | |
|     struct kvm_sw_breakpoint *bp;
 | |
| 
 | |
|     QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
 | |
|         if (bp->pc == pc) {
 | |
|             return bp;
 | |
|         }
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| int kvm_sw_breakpoints_active(CPUState *cpu)
 | |
| {
 | |
|     return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
 | |
| }
 | |
| 
 | |
| struct kvm_set_guest_debug_data {
 | |
|     struct kvm_guest_debug dbg;
 | |
|     CPUState *cpu;
 | |
|     int err;
 | |
| };
 | |
| 
 | |
| static void kvm_invoke_set_guest_debug(void *data)
 | |
| {
 | |
|     struct kvm_set_guest_debug_data *dbg_data = data;
 | |
| 
 | |
|     dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
 | |
|                                    &dbg_data->dbg);
 | |
| }
 | |
| 
 | |
| int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
 | |
| {
 | |
|     struct kvm_set_guest_debug_data data;
 | |
| 
 | |
|     data.dbg.control = reinject_trap;
 | |
| 
 | |
|     if (cpu->singlestep_enabled) {
 | |
|         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
 | |
|     }
 | |
|     kvm_arch_update_guest_debug(cpu, &data.dbg);
 | |
|     data.cpu = cpu;
 | |
| 
 | |
|     run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
 | |
|     return data.err;
 | |
| }
 | |
| 
 | |
| int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
 | |
|                           target_ulong len, int type)
 | |
| {
 | |
|     struct kvm_sw_breakpoint *bp;
 | |
|     int err;
 | |
| 
 | |
|     if (type == GDB_BREAKPOINT_SW) {
 | |
|         bp = kvm_find_sw_breakpoint(cpu, addr);
 | |
|         if (bp) {
 | |
|             bp->use_count++;
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
 | |
|         if (!bp) {
 | |
|             return -ENOMEM;
 | |
|         }
 | |
| 
 | |
|         bp->pc = addr;
 | |
|         bp->use_count = 1;
 | |
|         err = kvm_arch_insert_sw_breakpoint(cpu, bp);
 | |
|         if (err) {
 | |
|             g_free(bp);
 | |
|             return err;
 | |
|         }
 | |
| 
 | |
|         QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
 | |
|     } else {
 | |
|         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         err = kvm_update_guest_debug(cpu, 0);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
 | |
|                           target_ulong len, int type)
 | |
| {
 | |
|     struct kvm_sw_breakpoint *bp;
 | |
|     int err;
 | |
| 
 | |
|     if (type == GDB_BREAKPOINT_SW) {
 | |
|         bp = kvm_find_sw_breakpoint(cpu, addr);
 | |
|         if (!bp) {
 | |
|             return -ENOENT;
 | |
|         }
 | |
| 
 | |
|         if (bp->use_count > 1) {
 | |
|             bp->use_count--;
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         err = kvm_arch_remove_sw_breakpoint(cpu, bp);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
| 
 | |
|         QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
 | |
|         g_free(bp);
 | |
|     } else {
 | |
|         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         err = kvm_update_guest_debug(cpu, 0);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void kvm_remove_all_breakpoints(CPUState *cpu)
 | |
| {
 | |
|     struct kvm_sw_breakpoint *bp, *next;
 | |
|     KVMState *s = cpu->kvm_state;
 | |
|     CPUState *tmpcpu;
 | |
| 
 | |
|     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
 | |
|         if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
 | |
|             /* Try harder to find a CPU that currently sees the breakpoint. */
 | |
|             CPU_FOREACH(tmpcpu) {
 | |
|                 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
 | |
|         g_free(bp);
 | |
|     }
 | |
|     kvm_arch_remove_all_hw_breakpoints();
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         kvm_update_guest_debug(cpu, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #else /* !KVM_CAP_SET_GUEST_DEBUG */
 | |
| 
 | |
| int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
 | |
| {
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
 | |
|                           target_ulong len, int type)
 | |
| {
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
 | |
|                           target_ulong len, int type)
 | |
| {
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| void kvm_remove_all_breakpoints(CPUState *cpu)
 | |
| {
 | |
| }
 | |
| #endif /* !KVM_CAP_SET_GUEST_DEBUG */
 | |
| 
 | |
| int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     struct kvm_signal_mask *sigmask;
 | |
|     int r;
 | |
| 
 | |
|     if (!sigset) {
 | |
|         return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
 | |
|     }
 | |
| 
 | |
|     sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
 | |
| 
 | |
|     sigmask->len = s->sigmask_len;
 | |
|     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
 | |
|     r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
 | |
|     g_free(sigmask);
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
 | |
| {
 | |
|     return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
 | |
| }
 | |
| 
 | |
| int kvm_on_sigbus(int code, void *addr)
 | |
| {
 | |
|     return kvm_arch_on_sigbus(code, addr);
 | |
| }
 | |
| 
 | |
| int kvm_create_device(KVMState *s, uint64_t type, bool test)
 | |
| {
 | |
|     int ret;
 | |
|     struct kvm_create_device create_dev;
 | |
| 
 | |
|     create_dev.type = type;
 | |
|     create_dev.fd = -1;
 | |
|     create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
 | |
| 
 | |
|     if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
 | |
|         return -ENOTSUP;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return test ? 0 : create_dev.fd;
 | |
| }
 | |
| 
 | |
| int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
 | |
| {
 | |
|     struct kvm_one_reg reg;
 | |
|     int r;
 | |
| 
 | |
|     reg.id = id;
 | |
|     reg.addr = (uintptr_t) source;
 | |
|     r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (r) {
 | |
|         trace_kvm_failed_reg_set(id, strerror(r));
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
 | |
| {
 | |
|     struct kvm_one_reg reg;
 | |
|     int r;
 | |
| 
 | |
|     reg.id = id;
 | |
|     reg.addr = (uintptr_t) target;
 | |
|     r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (r) {
 | |
|         trace_kvm_failed_reg_get(id, strerror(r));
 | |
|     }
 | |
|     return r;
 | |
| }
 |