 74b41e5676
			
		
	
	
		74b41e5676
		
	
	
	
	
		
			
			Sufficiently recent kernels include a KVM call to accelerate use of PAPR TCE tables (IOMMU), which are used by PAPR virtual IO devices. This involves qemu mapping the TCE table in from a kernel obtained fd, which currently we do with PROT_READ only. This is a hangover from early (never released) versions of this kernel interface which only permitted read-only mappings and required us to destroy and recreate the table when we needed to clear it from qemu. Now, the kernel permits read-write mappings, and we rely on this to clear the table in spapr_vio_quiesce_one(). However, due to insufficient testing, I forgot to update the actual mapping of the table in kvmppc_create_spapr_tce() to add PROT_WRITE to the mmap(). This patch corrects the oversight. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Alexander Graf <agraf@suse.de>
		
			
				
	
	
		
			942 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			942 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * PowerPC implementation of KVM hooks
 | |
|  *
 | |
|  * Copyright IBM Corp. 2007
 | |
|  * Copyright (C) 2011 Freescale Semiconductor, Inc.
 | |
|  *
 | |
|  * Authors:
 | |
|  *  Jerone Young <jyoung5@us.ibm.com>
 | |
|  *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 | |
|  *  Hollis Blanchard <hollisb@us.ibm.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <dirent.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/ioctl.h>
 | |
| #include <sys/mman.h>
 | |
| 
 | |
| #include <linux/kvm.h>
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "qemu-timer.h"
 | |
| #include "sysemu.h"
 | |
| #include "kvm.h"
 | |
| #include "kvm_ppc.h"
 | |
| #include "cpu.h"
 | |
| #include "device_tree.h"
 | |
| #include "hw/sysbus.h"
 | |
| #include "hw/spapr.h"
 | |
| 
 | |
| #include "hw/sysbus.h"
 | |
| #include "hw/spapr.h"
 | |
| #include "hw/spapr_vio.h"
 | |
| 
 | |
| //#define DEBUG_KVM
 | |
| 
 | |
| #ifdef DEBUG_KVM
 | |
| #define dprintf(fmt, ...) \
 | |
|     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
 | |
| #else
 | |
| #define dprintf(fmt, ...) \
 | |
|     do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
 | |
| 
 | |
| const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
 | |
|     KVM_CAP_LAST_INFO
 | |
| };
 | |
| 
 | |
| static int cap_interrupt_unset = false;
 | |
| static int cap_interrupt_level = false;
 | |
| static int cap_segstate;
 | |
| static int cap_booke_sregs;
 | |
| static int cap_ppc_smt;
 | |
| static int cap_ppc_rma;
 | |
| static int cap_spapr_tce;
 | |
| 
 | |
| /* XXX We have a race condition where we actually have a level triggered
 | |
|  *     interrupt, but the infrastructure can't expose that yet, so the guest
 | |
|  *     takes but ignores it, goes to sleep and never gets notified that there's
 | |
|  *     still an interrupt pending.
 | |
|  *
 | |
|  *     As a quick workaround, let's just wake up again 20 ms after we injected
 | |
|  *     an interrupt. That way we can assure that we're always reinjecting
 | |
|  *     interrupts in case the guest swallowed them.
 | |
|  */
 | |
| static QEMUTimer *idle_timer;
 | |
| 
 | |
| static void kvm_kick_env(void *env)
 | |
| {
 | |
|     qemu_cpu_kick(env);
 | |
| }
 | |
| 
 | |
| int kvm_arch_init(KVMState *s)
 | |
| {
 | |
|     cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
 | |
|     cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
 | |
|     cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
 | |
|     cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
 | |
|     cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
 | |
|     cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
 | |
|     cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
 | |
| 
 | |
|     if (!cap_interrupt_level) {
 | |
|         fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
 | |
|                         "VM to stall at times!\n");
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_arch_sync_sregs(CPUState *cenv)
 | |
| {
 | |
|     struct kvm_sregs sregs;
 | |
|     int ret;
 | |
| 
 | |
|     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
 | |
|         /* What we're really trying to say is "if we're on BookE, we use
 | |
|            the native PVR for now". This is the only sane way to check
 | |
|            it though, so we potentially confuse users that they can run
 | |
|            BookE guests on BookS. Let's hope nobody dares enough :) */
 | |
|         return 0;
 | |
|     } else {
 | |
|         if (!cap_segstate) {
 | |
|             fprintf(stderr, "kvm error: missing PVR setting capability\n");
 | |
|             return -ENOSYS;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(cenv, KVM_GET_SREGS, &sregs);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     sregs.pvr = cenv->spr[SPR_PVR];
 | |
|     return kvm_vcpu_ioctl(cenv, KVM_SET_SREGS, &sregs);
 | |
| }
 | |
| 
 | |
| /* Set up a shared TLB array with KVM */
 | |
| static int kvm_booke206_tlb_init(CPUState *env)
 | |
| {
 | |
|     struct kvm_book3e_206_tlb_params params = {};
 | |
|     struct kvm_config_tlb cfg = {};
 | |
|     struct kvm_enable_cap encap = {};
 | |
|     unsigned int entries = 0;
 | |
|     int ret, i;
 | |
| 
 | |
|     if (!kvm_enabled() ||
 | |
|         !kvm_check_extension(env->kvm_state, KVM_CAP_SW_TLB)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
 | |
| 
 | |
|     for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
 | |
|         params.tlb_sizes[i] = booke206_tlb_size(env, i);
 | |
|         params.tlb_ways[i] = booke206_tlb_ways(env, i);
 | |
|         entries += params.tlb_sizes[i];
 | |
|     }
 | |
| 
 | |
|     assert(entries == env->nb_tlb);
 | |
|     assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
 | |
| 
 | |
|     env->tlb_dirty = true;
 | |
| 
 | |
|     cfg.array = (uintptr_t)env->tlb.tlbm;
 | |
|     cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
 | |
|     cfg.params = (uintptr_t)¶ms;
 | |
|     cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
 | |
| 
 | |
|     encap.cap = KVM_CAP_SW_TLB;
 | |
|     encap.args[0] = (uintptr_t)&cfg;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_ENABLE_CAP, &encap);
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
 | |
|                 __func__, strerror(-ret));
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     env->kvm_sw_tlb = true;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_init_vcpu(CPUState *cenv)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     ret = kvm_arch_sync_sregs(cenv);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     idle_timer = qemu_new_timer_ns(vm_clock, kvm_kick_env, cenv);
 | |
| 
 | |
|     /* Some targets support access to KVM's guest TLB. */
 | |
|     switch (cenv->mmu_model) {
 | |
|     case POWERPC_MMU_BOOKE206:
 | |
|         ret = kvm_booke206_tlb_init(cenv);
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void kvm_arch_reset_vcpu(CPUState *env)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void kvm_sw_tlb_put(CPUState *env)
 | |
| {
 | |
|     struct kvm_dirty_tlb dirty_tlb;
 | |
|     unsigned char *bitmap;
 | |
|     int ret;
 | |
| 
 | |
|     if (!env->kvm_sw_tlb) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bitmap = g_malloc((env->nb_tlb + 7) / 8);
 | |
|     memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
 | |
| 
 | |
|     dirty_tlb.bitmap = (uintptr_t)bitmap;
 | |
|     dirty_tlb.num_dirty = env->nb_tlb;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_DIRTY_TLB, &dirty_tlb);
 | |
|     if (ret) {
 | |
|         fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
 | |
|                 __func__, strerror(-ret));
 | |
|     }
 | |
| 
 | |
|     g_free(bitmap);
 | |
| }
 | |
| 
 | |
| int kvm_arch_put_registers(CPUState *env, int level)
 | |
| {
 | |
|     struct kvm_regs regs;
 | |
|     int ret;
 | |
|     int i;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     regs.ctr = env->ctr;
 | |
|     regs.lr  = env->lr;
 | |
|     regs.xer = env->xer;
 | |
|     regs.msr = env->msr;
 | |
|     regs.pc = env->nip;
 | |
| 
 | |
|     regs.srr0 = env->spr[SPR_SRR0];
 | |
|     regs.srr1 = env->spr[SPR_SRR1];
 | |
| 
 | |
|     regs.sprg0 = env->spr[SPR_SPRG0];
 | |
|     regs.sprg1 = env->spr[SPR_SPRG1];
 | |
|     regs.sprg2 = env->spr[SPR_SPRG2];
 | |
|     regs.sprg3 = env->spr[SPR_SPRG3];
 | |
|     regs.sprg4 = env->spr[SPR_SPRG4];
 | |
|     regs.sprg5 = env->spr[SPR_SPRG5];
 | |
|     regs.sprg6 = env->spr[SPR_SPRG6];
 | |
|     regs.sprg7 = env->spr[SPR_SPRG7];
 | |
| 
 | |
|     regs.pid = env->spr[SPR_BOOKE_PID];
 | |
| 
 | |
|     for (i = 0;i < 32; i++)
 | |
|         regs.gpr[i] = env->gpr[i];
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     if (env->tlb_dirty) {
 | |
|         kvm_sw_tlb_put(env);
 | |
|         env->tlb_dirty = false;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_arch_get_registers(CPUState *env)
 | |
| {
 | |
|     struct kvm_regs regs;
 | |
|     struct kvm_sregs sregs;
 | |
|     uint32_t cr;
 | |
|     int i, ret;
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
 | |
|     if (ret < 0)
 | |
|         return ret;
 | |
| 
 | |
|     cr = regs.cr;
 | |
|     for (i = 7; i >= 0; i--) {
 | |
|         env->crf[i] = cr & 15;
 | |
|         cr >>= 4;
 | |
|     }
 | |
| 
 | |
|     env->ctr = regs.ctr;
 | |
|     env->lr = regs.lr;
 | |
|     env->xer = regs.xer;
 | |
|     env->msr = regs.msr;
 | |
|     env->nip = regs.pc;
 | |
| 
 | |
|     env->spr[SPR_SRR0] = regs.srr0;
 | |
|     env->spr[SPR_SRR1] = regs.srr1;
 | |
| 
 | |
|     env->spr[SPR_SPRG0] = regs.sprg0;
 | |
|     env->spr[SPR_SPRG1] = regs.sprg1;
 | |
|     env->spr[SPR_SPRG2] = regs.sprg2;
 | |
|     env->spr[SPR_SPRG3] = regs.sprg3;
 | |
|     env->spr[SPR_SPRG4] = regs.sprg4;
 | |
|     env->spr[SPR_SPRG5] = regs.sprg5;
 | |
|     env->spr[SPR_SPRG6] = regs.sprg6;
 | |
|     env->spr[SPR_SPRG7] = regs.sprg7;
 | |
| 
 | |
|     env->spr[SPR_BOOKE_PID] = regs.pid;
 | |
| 
 | |
|     for (i = 0;i < 32; i++)
 | |
|         env->gpr[i] = regs.gpr[i];
 | |
| 
 | |
|     if (cap_booke_sregs) {
 | |
|         ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
 | |
|         if (ret < 0) {
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.features & KVM_SREGS_E_BASE) {
 | |
|             env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
 | |
|             env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
 | |
|             env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
 | |
|             env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
 | |
|             env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
 | |
|             env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
 | |
|             env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
 | |
|             env->spr[SPR_DECR] = sregs.u.e.dec;
 | |
|             env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
 | |
|             env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
 | |
|             env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
 | |
|             env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
 | |
|             env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
 | |
|             env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
 | |
|             env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
 | |
|             env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.features & KVM_SREGS_E_64) {
 | |
|             env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
 | |
|             env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
 | |
|             env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
 | |
|             env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
 | |
|             env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
 | |
|             env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
 | |
|             env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
 | |
|             env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
 | |
|             env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
 | |
|             env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
 | |
|             env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
 | |
|             env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
 | |
|             env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
 | |
|             env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
 | |
|             env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
 | |
|             env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
 | |
|             env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
 | |
|             env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
 | |
| 
 | |
|             if (sregs.u.e.features & KVM_SREGS_E_SPE) {
 | |
|                 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
 | |
|                 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
 | |
|                 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
 | |
|             }
 | |
| 
 | |
|             if (sregs.u.e.features & KVM_SREGS_E_PM) {
 | |
|                 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
 | |
|             }
 | |
| 
 | |
|             if (sregs.u.e.features & KVM_SREGS_E_PC) {
 | |
|                 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
 | |
|                 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
 | |
|             env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
 | |
|             env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
 | |
|             env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
 | |
|             env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
 | |
|             env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
 | |
|             env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
 | |
|             env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
 | |
|             env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
 | |
|             env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
 | |
|             env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.features & KVM_SREGS_EXP) {
 | |
|             env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.features & KVM_SREGS_E_PD) {
 | |
|             env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
 | |
|             env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
 | |
|         }
 | |
| 
 | |
|         if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
 | |
|             env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
 | |
|             env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
 | |
|             env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
 | |
| 
 | |
|             if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
 | |
|                 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
 | |
|                 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (cap_segstate) {
 | |
|         ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
 | |
|         if (ret < 0) {
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
|         ppc_store_sdr1(env, sregs.u.s.sdr1);
 | |
| 
 | |
|         /* Sync SLB */
 | |
| #ifdef TARGET_PPC64
 | |
|         for (i = 0; i < 64; i++) {
 | |
|             ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe,
 | |
|                                sregs.u.s.ppc64.slb[i].slbv);
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         /* Sync SRs */
 | |
|         for (i = 0; i < 16; i++) {
 | |
|             env->sr[i] = sregs.u.s.ppc32.sr[i];
 | |
|         }
 | |
| 
 | |
|         /* Sync BATs */
 | |
|         for (i = 0; i < 8; i++) {
 | |
|             env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
 | |
|             env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
 | |
|             env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
 | |
|             env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvmppc_set_interrupt(CPUState *env, int irq, int level)
 | |
| {
 | |
|     unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
 | |
| 
 | |
|     if (irq != PPC_INTERRUPT_EXT) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     kvm_vcpu_ioctl(env, KVM_INTERRUPT, &virq);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_PPCEMB)
 | |
| #define PPC_INPUT_INT PPC40x_INPUT_INT
 | |
| #elif defined(TARGET_PPC64)
 | |
| #define PPC_INPUT_INT PPC970_INPUT_INT
 | |
| #else
 | |
| #define PPC_INPUT_INT PPC6xx_INPUT_INT
 | |
| #endif
 | |
| 
 | |
| void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
 | |
| {
 | |
|     int r;
 | |
|     unsigned irq;
 | |
| 
 | |
|     /* PowerPC Qemu tracks the various core input pins (interrupt, critical
 | |
|      * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
 | |
|     if (!cap_interrupt_level &&
 | |
|         run->ready_for_interrupt_injection &&
 | |
|         (env->interrupt_request & CPU_INTERRUPT_HARD) &&
 | |
|         (env->irq_input_state & (1<<PPC_INPUT_INT)))
 | |
|     {
 | |
|         /* For now KVM disregards the 'irq' argument. However, in the
 | |
|          * future KVM could cache it in-kernel to avoid a heavyweight exit
 | |
|          * when reading the UIC.
 | |
|          */
 | |
|         irq = KVM_INTERRUPT_SET;
 | |
| 
 | |
|         dprintf("injected interrupt %d\n", irq);
 | |
|         r = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &irq);
 | |
|         if (r < 0)
 | |
|             printf("cpu %d fail inject %x\n", env->cpu_index, irq);
 | |
| 
 | |
|         /* Always wake up soon in case the interrupt was level based */
 | |
|         qemu_mod_timer(idle_timer, qemu_get_clock_ns(vm_clock) +
 | |
|                        (get_ticks_per_sec() / 50));
 | |
|     }
 | |
| 
 | |
|     /* We don't know if there are more interrupts pending after this. However,
 | |
|      * the guest will return to userspace in the course of handling this one
 | |
|      * anyways, so we will get a chance to deliver the rest. */
 | |
| }
 | |
| 
 | |
| void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
 | |
| {
 | |
| }
 | |
| 
 | |
| int kvm_arch_process_async_events(CPUState *env)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvmppc_handle_halt(CPUState *env)
 | |
| {
 | |
|     if (!(env->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
 | |
|         env->halted = 1;
 | |
|         env->exception_index = EXCP_HLT;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* map dcr access to existing qemu dcr emulation */
 | |
| static int kvmppc_handle_dcr_read(CPUState *env, uint32_t dcrn, uint32_t *data)
 | |
| {
 | |
|     if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
 | |
|         fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvmppc_handle_dcr_write(CPUState *env, uint32_t dcrn, uint32_t data)
 | |
| {
 | |
|     if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
 | |
|         fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     switch (run->exit_reason) {
 | |
|     case KVM_EXIT_DCR:
 | |
|         if (run->dcr.is_write) {
 | |
|             dprintf("handle dcr write\n");
 | |
|             ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
 | |
|         } else {
 | |
|             dprintf("handle dcr read\n");
 | |
|             ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
 | |
|         }
 | |
|         break;
 | |
|     case KVM_EXIT_HLT:
 | |
|         dprintf("handle halt\n");
 | |
|         ret = kvmppc_handle_halt(env);
 | |
|         break;
 | |
| #ifdef CONFIG_PSERIES
 | |
|     case KVM_EXIT_PAPR_HCALL:
 | |
|         dprintf("handle PAPR hypercall\n");
 | |
|         run->papr_hcall.ret = spapr_hypercall(env, run->papr_hcall.nr,
 | |
|                                               run->papr_hcall.args);
 | |
|         ret = 1;
 | |
|         break;
 | |
| #endif
 | |
|     default:
 | |
|         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
 | |
|         ret = -1;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int read_cpuinfo(const char *field, char *value, int len)
 | |
| {
 | |
|     FILE *f;
 | |
|     int ret = -1;
 | |
|     int field_len = strlen(field);
 | |
|     char line[512];
 | |
| 
 | |
|     f = fopen("/proc/cpuinfo", "r");
 | |
|     if (!f) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|         if(!fgets(line, sizeof(line), f)) {
 | |
|             break;
 | |
|         }
 | |
|         if (!strncmp(line, field, field_len)) {
 | |
|             strncpy(value, line, len);
 | |
|             ret = 0;
 | |
|             break;
 | |
|         }
 | |
|     } while(*line);
 | |
| 
 | |
|     fclose(f);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| uint32_t kvmppc_get_tbfreq(void)
 | |
| {
 | |
|     char line[512];
 | |
|     char *ns;
 | |
|     uint32_t retval = get_ticks_per_sec();
 | |
| 
 | |
|     if (read_cpuinfo("timebase", line, sizeof(line))) {
 | |
|         return retval;
 | |
|     }
 | |
| 
 | |
|     if (!(ns = strchr(line, ':'))) {
 | |
|         return retval;
 | |
|     }
 | |
| 
 | |
|     ns++;
 | |
| 
 | |
|     retval = atoi(ns);
 | |
|     return retval;
 | |
| }
 | |
| 
 | |
| /* Try to find a device tree node for a CPU with clock-frequency property */
 | |
| static int kvmppc_find_cpu_dt(char *buf, int buf_len)
 | |
| {
 | |
|     struct dirent *dirp;
 | |
|     DIR *dp;
 | |
| 
 | |
|     if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
 | |
|         printf("Can't open directory " PROC_DEVTREE_CPU "\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     buf[0] = '\0';
 | |
|     while ((dirp = readdir(dp)) != NULL) {
 | |
|         FILE *f;
 | |
|         snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
 | |
|                  dirp->d_name);
 | |
|         f = fopen(buf, "r");
 | |
|         if (f) {
 | |
|             snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
 | |
|             fclose(f);
 | |
|             break;
 | |
|         }
 | |
|         buf[0] = '\0';
 | |
|     }
 | |
|     closedir(dp);
 | |
|     if (buf[0] == '\0') {
 | |
|         printf("Unknown host!\n");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Read a CPU node property from the host device tree that's a single
 | |
|  * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
 | |
|  * (can't find or open the property, or doesn't understand the
 | |
|  * format) */
 | |
| static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
 | |
| {
 | |
|     char buf[PATH_MAX];
 | |
|     union {
 | |
|         uint32_t v32;
 | |
|         uint64_t v64;
 | |
|     } u;
 | |
|     FILE *f;
 | |
|     int len;
 | |
| 
 | |
|     if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     strncat(buf, "/", sizeof(buf) - strlen(buf));
 | |
|     strncat(buf, propname, sizeof(buf) - strlen(buf));
 | |
| 
 | |
|     f = fopen(buf, "rb");
 | |
|     if (!f) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     len = fread(&u, 1, sizeof(u), f);
 | |
|     fclose(f);
 | |
|     switch (len) {
 | |
|     case 4:
 | |
|         /* property is a 32-bit quantity */
 | |
|         return be32_to_cpu(u.v32);
 | |
|     case 8:
 | |
|         return be64_to_cpu(u.v64);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| uint64_t kvmppc_get_clockfreq(void)
 | |
| {
 | |
|     return kvmppc_read_int_cpu_dt("clock-frequency");
 | |
| }
 | |
| 
 | |
| uint32_t kvmppc_get_vmx(void)
 | |
| {
 | |
|     return kvmppc_read_int_cpu_dt("ibm,vmx");
 | |
| }
 | |
| 
 | |
| uint32_t kvmppc_get_dfp(void)
 | |
| {
 | |
|     return kvmppc_read_int_cpu_dt("ibm,dfp");
 | |
| }
 | |
| 
 | |
| int kvmppc_get_hypercall(CPUState *env, uint8_t *buf, int buf_len)
 | |
| {
 | |
|     uint32_t *hc = (uint32_t*)buf;
 | |
| 
 | |
|     struct kvm_ppc_pvinfo pvinfo;
 | |
| 
 | |
|     if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
 | |
|         !kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_PVINFO, &pvinfo)) {
 | |
|         memcpy(buf, pvinfo.hcall, buf_len);
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Fallback to always fail hypercalls:
 | |
|      *
 | |
|      *     li r3, -1
 | |
|      *     nop
 | |
|      *     nop
 | |
|      *     nop
 | |
|      */
 | |
| 
 | |
|     hc[0] = 0x3860ffff;
 | |
|     hc[1] = 0x60000000;
 | |
|     hc[2] = 0x60000000;
 | |
|     hc[3] = 0x60000000;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void kvmppc_set_papr(CPUState *env)
 | |
| {
 | |
|     struct kvm_enable_cap cap = {};
 | |
|     struct kvm_one_reg reg = {};
 | |
|     struct kvm_sregs sregs = {};
 | |
|     int ret;
 | |
| 
 | |
|     cap.cap = KVM_CAP_PPC_PAPR;
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_ENABLE_CAP, &cap);
 | |
| 
 | |
|     if (ret) {
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * XXX We set HIOR here. It really should be a qdev property of
 | |
|      *     the CPU node, but we don't have CPUs converted to qdev yet.
 | |
|      *
 | |
|      *     Once we have qdev CPUs, move HIOR to a qdev property and
 | |
|      *     remove this chunk.
 | |
|      */
 | |
|     reg.id = KVM_ONE_REG_PPC_HIOR;
 | |
|     reg.u.reg64 = env->spr[SPR_HIOR];
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     /* Set SDR1 so kernel space finds the HTAB */
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
 | |
|     if (ret) {
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     sregs.u.s.sdr1 = env->spr[SPR_SDR1];
 | |
| 
 | |
|     ret = kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
 | |
|     if (ret) {
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| fail:
 | |
|     cpu_abort(env, "This KVM version does not support PAPR\n");
 | |
| }
 | |
| 
 | |
| int kvmppc_smt_threads(void)
 | |
| {
 | |
|     return cap_ppc_smt ? cap_ppc_smt : 1;
 | |
| }
 | |
| 
 | |
| off_t kvmppc_alloc_rma(const char *name, MemoryRegion *sysmem)
 | |
| {
 | |
|     void *rma;
 | |
|     off_t size;
 | |
|     int fd;
 | |
|     struct kvm_allocate_rma ret;
 | |
|     MemoryRegion *rma_region;
 | |
| 
 | |
|     /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
 | |
|      * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
 | |
|      *                      not necessary on this hardware
 | |
|      * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
 | |
|      *
 | |
|      * FIXME: We should allow the user to force contiguous RMA
 | |
|      * allocation in the cap_ppc_rma==1 case.
 | |
|      */
 | |
|     if (cap_ppc_rma < 2) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
 | |
|     if (fd < 0) {
 | |
|         fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
 | |
|                 strerror(errno));
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     size = MIN(ret.rma_size, 256ul << 20);
 | |
| 
 | |
|     rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 | |
|     if (rma == MAP_FAILED) {
 | |
|         fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
 | |
|         return -1;
 | |
|     };
 | |
| 
 | |
|     rma_region = g_new(MemoryRegion, 1);
 | |
|     memory_region_init_ram_ptr(rma_region, NULL, name, size, rma);
 | |
|     memory_region_add_subregion(sysmem, 0, rma_region);
 | |
| 
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd)
 | |
| {
 | |
|     struct kvm_create_spapr_tce args = {
 | |
|         .liobn = liobn,
 | |
|         .window_size = window_size,
 | |
|     };
 | |
|     long len;
 | |
|     int fd;
 | |
|     void *table;
 | |
| 
 | |
|     if (!cap_spapr_tce) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
 | |
|     if (fd < 0) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     len = (window_size / SPAPR_VIO_TCE_PAGE_SIZE) * sizeof(VIOsPAPR_RTCE);
 | |
|     /* FIXME: round this up to page size */
 | |
| 
 | |
|     table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 | |
|     if (table == MAP_FAILED) {
 | |
|         close(fd);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     *pfd = fd;
 | |
|     return table;
 | |
| }
 | |
| 
 | |
| int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t window_size)
 | |
| {
 | |
|     long len;
 | |
| 
 | |
|     if (fd < 0) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     len = (window_size / SPAPR_VIO_TCE_PAGE_SIZE)*sizeof(VIOsPAPR_RTCE);
 | |
|     if ((munmap(table, len) < 0) ||
 | |
|         (close(fd) < 0)) {
 | |
|         fprintf(stderr, "KVM: Unexpected error removing KVM SPAPR TCE "
 | |
|                 "table: %s", strerror(errno));
 | |
|         /* Leak the table */
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline uint32_t mfpvr(void)
 | |
| {
 | |
|     uint32_t pvr;
 | |
| 
 | |
|     asm ("mfpvr %0"
 | |
|          : "=r"(pvr));
 | |
|     return pvr;
 | |
| }
 | |
| 
 | |
| static void alter_insns(uint64_t *word, uint64_t flags, bool on)
 | |
| {
 | |
|     if (on) {
 | |
|         *word |= flags;
 | |
|     } else {
 | |
|         *word &= ~flags;
 | |
|     }
 | |
| }
 | |
| 
 | |
| const ppc_def_t *kvmppc_host_cpu_def(void)
 | |
| {
 | |
|     uint32_t host_pvr = mfpvr();
 | |
|     const ppc_def_t *base_spec;
 | |
|     ppc_def_t *spec;
 | |
|     uint32_t vmx = kvmppc_get_vmx();
 | |
|     uint32_t dfp = kvmppc_get_dfp();
 | |
| 
 | |
|     base_spec = ppc_find_by_pvr(host_pvr);
 | |
| 
 | |
|     spec = g_malloc0(sizeof(*spec));
 | |
|     memcpy(spec, base_spec, sizeof(*spec));
 | |
| 
 | |
|     /* Now fix up the spec with information we can query from the host */
 | |
| 
 | |
|     if (vmx != -1) {
 | |
|         /* Only override when we know what the host supports */
 | |
|         alter_insns(&spec->insns_flags, PPC_ALTIVEC, vmx > 0);
 | |
|         alter_insns(&spec->insns_flags2, PPC2_VSX, vmx > 1);
 | |
|     }
 | |
|     if (dfp != -1) {
 | |
|         /* Only override when we know what the host supports */
 | |
|         alter_insns(&spec->insns_flags2, PPC2_DFP, dfp);
 | |
|     }
 | |
| 
 | |
|     return spec;
 | |
| }
 | |
| 
 | |
| bool kvm_arch_stop_on_emulation_error(CPUState *env)
 | |
| {
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int kvm_arch_on_sigbus(int code, void *addr)
 | |
| {
 | |
|     return 1;
 | |
| }
 |