We had some messy code to filter out stuff we can't build. Lets junk that and simplify the logic by pushing some stuff into subdirs. In particular we move: float_helpers into libs - not a standalone test linux-test into linux - so we only build on Linux hosts This allows for at least some of the tests to be nominally usable by *BSD user builds. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Cc: Warner Losh <imp@bsdimp.com> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Reviewed-by: Warner Losh <imp@bsdimp.com> Message-Id: <20210917162332.3511179-4-alex.bennee@linaro.org>
		
			
				
	
	
		
			229 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			229 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Common Float Helpers
 | 
						|
 *
 | 
						|
 * This contains a series of useful utility routines and a set of
 | 
						|
 * floating point constants useful for exercising the edge cases in
 | 
						|
 * floating point tests.
 | 
						|
 *
 | 
						|
 * Copyright (c) 2019 Linaro
 | 
						|
 *
 | 
						|
 * SPDX-License-Identifier: GPL-3.0-or-later
 | 
						|
 */
 | 
						|
 | 
						|
/* we want additional float type definitions */
 | 
						|
#define __STDC_WANT_IEC_60559_BFP_EXT__
 | 
						|
#define __STDC_WANT_IEC_60559_TYPES_EXT__
 | 
						|
 | 
						|
#define _GNU_SOURCE
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <inttypes.h>
 | 
						|
#include <math.h>
 | 
						|
#include <float.h>
 | 
						|
#include <fenv.h>
 | 
						|
 | 
						|
#include "../float_helpers.h"
 | 
						|
 | 
						|
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
 | 
						|
 | 
						|
/*
 | 
						|
 * Half Precision Numbers
 | 
						|
 *
 | 
						|
 * Not yet well standardised so we return a plain uint16_t for now.
 | 
						|
 */
 | 
						|
 | 
						|
/* no handy defines for these numbers */
 | 
						|
static uint16_t f16_numbers[] = {
 | 
						|
    0xffff, /* -NaN / AHP -Max */
 | 
						|
    0xfcff, /* -NaN / AHP */
 | 
						|
    0xfc01, /* -NaN / AHP */
 | 
						|
    0xfc00, /* -Inf */
 | 
						|
    0xfbff, /* -Max */
 | 
						|
    0xc000, /* -2 */
 | 
						|
    0xbc00, /* -1 */
 | 
						|
    0x8001, /* -MIN subnormal */
 | 
						|
    0x8000, /* -0 */
 | 
						|
    0x0000, /* +0 */
 | 
						|
    0x0001, /* MIN subnormal */
 | 
						|
    0x3c00, /* 1 */
 | 
						|
    0x7bff, /* Max */
 | 
						|
    0x7c00, /* Inf */
 | 
						|
    0x7c01, /* NaN / AHP */
 | 
						|
    0x7cff, /* NaN / AHP */
 | 
						|
    0x7fff, /* NaN / AHP +Max*/
 | 
						|
};
 | 
						|
 | 
						|
static const int num_f16 = ARRAY_SIZE(f16_numbers);
 | 
						|
 | 
						|
int get_num_f16(void)
 | 
						|
{
 | 
						|
    return num_f16;
 | 
						|
}
 | 
						|
 | 
						|
uint16_t get_f16(int i)
 | 
						|
{
 | 
						|
    return f16_numbers[i % num_f16];
 | 
						|
}
 | 
						|
 | 
						|
/* only display as hex */
 | 
						|
char *fmt_16(uint16_t num)
 | 
						|
{
 | 
						|
    char *fmt;
 | 
						|
    asprintf(&fmt, "f16(%#04x)", num);
 | 
						|
    return fmt;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Single Precision Numbers
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef SNANF
 | 
						|
/* Signaling NaN macros, if supported.  */
 | 
						|
#  define SNANF (__builtin_nansf (""))
 | 
						|
#  define SNAN (__builtin_nans (""))
 | 
						|
#  define SNANL (__builtin_nansl (""))
 | 
						|
#endif
 | 
						|
 | 
						|
static float f32_numbers[] = {
 | 
						|
    -SNANF,
 | 
						|
    -NAN,
 | 
						|
    -INFINITY,
 | 
						|
    -FLT_MAX,
 | 
						|
    -0x1.1874b2p+103,
 | 
						|
    -0x1.c0bab6p+99,
 | 
						|
    -0x1.31f75p-40,
 | 
						|
    -0x1.505444p-66,
 | 
						|
    -FLT_MIN,
 | 
						|
    0.0,
 | 
						|
    FLT_MIN,
 | 
						|
    0x1p-25,
 | 
						|
    0x1.ffffe6p-25, /* min positive FP16 subnormal */
 | 
						|
    0x1.ff801ap-15, /* max subnormal FP16 */
 | 
						|
    0x1.00000cp-14, /* min positive normal FP16 */
 | 
						|
    1.0,
 | 
						|
    0x1.004p+0, /* smallest float after 1.0 FP16 */
 | 
						|
    2.0,
 | 
						|
    M_E, M_PI,
 | 
						|
    0x1.ffbep+15,
 | 
						|
    0x1.ffcp+15, /* max FP16 */
 | 
						|
    0x1.ffc2p+15,
 | 
						|
    0x1.ffbfp+16,
 | 
						|
    0x1.ffcp+16, /* max AFP */
 | 
						|
    0x1.ffc1p+16,
 | 
						|
    0x1.c0bab6p+99,
 | 
						|
    FLT_MAX,
 | 
						|
    INFINITY,
 | 
						|
    NAN,
 | 
						|
    SNANF
 | 
						|
};
 | 
						|
 | 
						|
static const int num_f32 = ARRAY_SIZE(f32_numbers);
 | 
						|
 | 
						|
int get_num_f32(void)
 | 
						|
{
 | 
						|
    return num_f32;
 | 
						|
}
 | 
						|
 | 
						|
float get_f32(int i)
 | 
						|
{
 | 
						|
    return f32_numbers[i % num_f32];
 | 
						|
}
 | 
						|
 | 
						|
char *fmt_f32(float num)
 | 
						|
{
 | 
						|
    uint32_t single_as_hex = *(uint32_t *) #
 | 
						|
    char *fmt;
 | 
						|
    asprintf(&fmt, "f32(%02.20a:%#010x)", num, single_as_hex);
 | 
						|
    return fmt;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* This allows us to initialise some doubles as pure hex */
 | 
						|
typedef union {
 | 
						|
    double d;
 | 
						|
    uint64_t h;
 | 
						|
} test_doubles;
 | 
						|
 | 
						|
static test_doubles f64_numbers[] = {
 | 
						|
    {SNAN},
 | 
						|
    {-NAN},
 | 
						|
    {-INFINITY},
 | 
						|
    {-DBL_MAX},
 | 
						|
    {-FLT_MAX-1.0},
 | 
						|
    {-FLT_MAX},
 | 
						|
    {-1.111E+31},
 | 
						|
    {-1.111E+30}, /* half prec */
 | 
						|
    {-2.0}, {-1.0},
 | 
						|
    {-DBL_MIN},
 | 
						|
    {-FLT_MIN},
 | 
						|
    {0.0},
 | 
						|
    {FLT_MIN},
 | 
						|
    {2.98023224e-08},
 | 
						|
    {5.96046E-8}, /* min positive FP16 subnormal */
 | 
						|
    {6.09756E-5}, /* max subnormal FP16 */
 | 
						|
    {6.10352E-5}, /* min positive normal FP16 */
 | 
						|
    {1.0},
 | 
						|
    {1.0009765625}, /* smallest float after 1.0 FP16 */
 | 
						|
    {DBL_MIN},
 | 
						|
    {1.3789972848607228e-308},
 | 
						|
    {1.4914738736681624e-308},
 | 
						|
    {1.0}, {2.0},
 | 
						|
    {M_E}, {M_PI},
 | 
						|
    {65503.0},
 | 
						|
    {65504.0}, /* max FP16 */
 | 
						|
    {65505.0},
 | 
						|
    {131007.0},
 | 
						|
    {131008.0}, /* max AFP */
 | 
						|
    {131009.0},
 | 
						|
    {.h = 0x41dfffffffc00000 }, /* to int = 0x7fffffff */
 | 
						|
    {FLT_MAX},
 | 
						|
    {FLT_MAX + 1.0},
 | 
						|
    {DBL_MAX},
 | 
						|
    {INFINITY},
 | 
						|
    {NAN},
 | 
						|
    {.h = 0x7ff0000000000001}, /* SNAN */
 | 
						|
    {SNAN},
 | 
						|
};
 | 
						|
 | 
						|
static const int num_f64 = ARRAY_SIZE(f64_numbers);
 | 
						|
 | 
						|
int get_num_f64(void)
 | 
						|
{
 | 
						|
    return num_f64;
 | 
						|
}
 | 
						|
 | 
						|
double get_f64(int i)
 | 
						|
{
 | 
						|
    return f64_numbers[i % num_f64].d;
 | 
						|
}
 | 
						|
 | 
						|
char *fmt_f64(double num)
 | 
						|
{
 | 
						|
    uint64_t double_as_hex = *(uint64_t *) #
 | 
						|
    char *fmt;
 | 
						|
    asprintf(&fmt, "f64(%02.20a:%#020" PRIx64 ")", num, double_as_hex);
 | 
						|
    return fmt;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Float flags
 | 
						|
 */
 | 
						|
char *fmt_flags(void)
 | 
						|
{
 | 
						|
    int flags = fetestexcept(FE_ALL_EXCEPT);
 | 
						|
    char *fmt;
 | 
						|
 | 
						|
    if (flags) {
 | 
						|
        asprintf(&fmt, "%s%s%s%s%s",
 | 
						|
                 flags & FE_OVERFLOW ? "OVERFLOW " : "",
 | 
						|
                 flags & FE_UNDERFLOW ? "UNDERFLOW " : "",
 | 
						|
                 flags & FE_DIVBYZERO ? "DIV0 " : "",
 | 
						|
                 flags & FE_INEXACT ? "INEXACT " : "",
 | 
						|
                 flags & FE_INVALID ? "INVALID" : "");
 | 
						|
    } else {
 | 
						|
        asprintf(&fmt, "OK");
 | 
						|
    }
 | 
						|
 | 
						|
    return fmt;
 | 
						|
}
 |