 ff472a5bad
			
		
	
	
		ff472a5bad
		
	
	
	
	
		
			
			This avoids MacsBug hanging at startup in the absence of ADB mouse input, by replying with an error (which is also what MOL does) when it sends an unknown command (0x1c). Signed-off-by: Alyssa Milburn <fuzzie@fuzzie.org> Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
		
			
				
	
	
		
			835 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			835 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU PowerMac CUDA device support
 | |
|  *
 | |
|  * Copyright (c) 2004-2007 Fabrice Bellard
 | |
|  * Copyright (c) 2007 Jocelyn Mayer
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  */
 | |
| #include "qemu/osdep.h"
 | |
| #include "hw/hw.h"
 | |
| #include "hw/ppc/mac.h"
 | |
| #include "hw/input/adb.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| 
 | |
| /* XXX: implement all timer modes */
 | |
| 
 | |
| /* debug CUDA */
 | |
| //#define DEBUG_CUDA
 | |
| 
 | |
| /* debug CUDA packets */
 | |
| //#define DEBUG_CUDA_PACKET
 | |
| 
 | |
| #ifdef DEBUG_CUDA
 | |
| #define CUDA_DPRINTF(fmt, ...)                                  \
 | |
|     do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0)
 | |
| #else
 | |
| #define CUDA_DPRINTF(fmt, ...)
 | |
| #endif
 | |
| 
 | |
| /* Bits in B data register: all active low */
 | |
| #define TREQ		0x08		/* Transfer request (input) */
 | |
| #define TACK		0x10		/* Transfer acknowledge (output) */
 | |
| #define TIP		0x20		/* Transfer in progress (output) */
 | |
| 
 | |
| /* Bits in ACR */
 | |
| #define SR_CTRL		0x1c		/* Shift register control bits */
 | |
| #define SR_EXT		0x0c		/* Shift on external clock */
 | |
| #define SR_OUT		0x10		/* Shift out if 1 */
 | |
| 
 | |
| /* Bits in IFR and IER */
 | |
| #define IER_SET		0x80		/* set bits in IER */
 | |
| #define IER_CLR		0		/* clear bits in IER */
 | |
| #define SR_INT		0x04		/* Shift register full/empty */
 | |
| #define SR_DATA_INT	0x08
 | |
| #define SR_CLOCK_INT	0x10
 | |
| #define T1_INT          0x40            /* Timer 1 interrupt */
 | |
| #define T2_INT          0x20            /* Timer 2 interrupt */
 | |
| 
 | |
| /* Bits in ACR */
 | |
| #define T1MODE          0xc0            /* Timer 1 mode */
 | |
| #define T1MODE_CONT     0x40            /*  continuous interrupts */
 | |
| 
 | |
| /* commands (1st byte) */
 | |
| #define ADB_PACKET	0
 | |
| #define CUDA_PACKET	1
 | |
| #define ERROR_PACKET	2
 | |
| #define TIMER_PACKET	3
 | |
| #define POWER_PACKET	4
 | |
| #define MACIIC_PACKET	5
 | |
| #define PMU_PACKET	6
 | |
| 
 | |
| 
 | |
| /* CUDA commands (2nd byte) */
 | |
| #define CUDA_WARM_START			0x0
 | |
| #define CUDA_AUTOPOLL			0x1
 | |
| #define CUDA_GET_6805_ADDR		0x2
 | |
| #define CUDA_GET_TIME			0x3
 | |
| #define CUDA_GET_PRAM			0x7
 | |
| #define CUDA_SET_6805_ADDR		0x8
 | |
| #define CUDA_SET_TIME			0x9
 | |
| #define CUDA_POWERDOWN			0xa
 | |
| #define CUDA_POWERUP_TIME		0xb
 | |
| #define CUDA_SET_PRAM			0xc
 | |
| #define CUDA_MS_RESET			0xd
 | |
| #define CUDA_SEND_DFAC			0xe
 | |
| #define CUDA_BATTERY_SWAP_SENSE		0x10
 | |
| #define CUDA_RESET_SYSTEM		0x11
 | |
| #define CUDA_SET_IPL			0x12
 | |
| #define CUDA_FILE_SERVER_FLAG		0x13
 | |
| #define CUDA_SET_AUTO_RATE		0x14
 | |
| #define CUDA_GET_AUTO_RATE		0x16
 | |
| #define CUDA_SET_DEVICE_LIST		0x19
 | |
| #define CUDA_GET_DEVICE_LIST		0x1a
 | |
| #define CUDA_SET_ONE_SECOND_MODE	0x1b
 | |
| #define CUDA_SET_POWER_MESSAGES		0x21
 | |
| #define CUDA_GET_SET_IIC		0x22
 | |
| #define CUDA_WAKEUP			0x23
 | |
| #define CUDA_TIMER_TICKLE		0x24
 | |
| #define CUDA_COMBINED_FORMAT_IIC	0x25
 | |
| 
 | |
| #define CUDA_TIMER_FREQ (4700000 / 6)
 | |
| #define CUDA_ADB_POLL_FREQ 50
 | |
| 
 | |
| /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
 | |
| #define RTC_OFFSET                      2082844800
 | |
| 
 | |
| /* CUDA registers */
 | |
| #define CUDA_REG_B       0x00
 | |
| #define CUDA_REG_A       0x01
 | |
| #define CUDA_REG_DIRB    0x02
 | |
| #define CUDA_REG_DIRA    0x03
 | |
| #define CUDA_REG_T1CL    0x04
 | |
| #define CUDA_REG_T1CH    0x05
 | |
| #define CUDA_REG_T1LL    0x06
 | |
| #define CUDA_REG_T1LH    0x07
 | |
| #define CUDA_REG_T2CL    0x08
 | |
| #define CUDA_REG_T2CH    0x09
 | |
| #define CUDA_REG_SR      0x0a
 | |
| #define CUDA_REG_ACR     0x0b
 | |
| #define CUDA_REG_PCR     0x0c
 | |
| #define CUDA_REG_IFR     0x0d
 | |
| #define CUDA_REG_IER     0x0e
 | |
| #define CUDA_REG_ANH     0x0f
 | |
| 
 | |
| static void cuda_update(CUDAState *s);
 | |
| static void cuda_receive_packet_from_host(CUDAState *s,
 | |
|                                           const uint8_t *data, int len);
 | |
| static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
 | |
|                               int64_t current_time);
 | |
| 
 | |
| static void cuda_update_irq(CUDAState *s)
 | |
| {
 | |
|     if (s->ifr & s->ier & (SR_INT | T1_INT | T2_INT)) {
 | |
|         qemu_irq_raise(s->irq);
 | |
|     } else {
 | |
|         qemu_irq_lower(s->irq);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t get_tb(uint64_t time, uint64_t freq)
 | |
| {
 | |
|     return muldiv64(time, freq, get_ticks_per_sec());
 | |
| }
 | |
| 
 | |
| static unsigned int get_counter(CUDATimer *ti)
 | |
| {
 | |
|     int64_t d;
 | |
|     unsigned int counter;
 | |
|     uint64_t tb_diff;
 | |
|     uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | |
| 
 | |
|     /* Reverse of the tb calculation algorithm that Mac OS X uses on bootup. */
 | |
|     tb_diff = get_tb(current_time, ti->frequency) - ti->load_time;
 | |
|     d = (tb_diff * 0xBF401675E5DULL) / (ti->frequency << 24);
 | |
| 
 | |
|     if (ti->index == 0) {
 | |
|         /* the timer goes down from latch to -1 (period of latch + 2) */
 | |
|         if (d <= (ti->counter_value + 1)) {
 | |
|             counter = (ti->counter_value - d) & 0xffff;
 | |
|         } else {
 | |
|             counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
 | |
|             counter = (ti->latch - counter) & 0xffff;
 | |
|         }
 | |
|     } else {
 | |
|         counter = (ti->counter_value - d) & 0xffff;
 | |
|     }
 | |
|     return counter;
 | |
| }
 | |
| 
 | |
| static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
 | |
| {
 | |
|     CUDA_DPRINTF("T%d.counter=%d\n", 1 + ti->index, val);
 | |
|     ti->load_time = get_tb(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 | |
|                            s->frequency);
 | |
|     ti->counter_value = val;
 | |
|     cuda_timer_update(s, ti, ti->load_time);
 | |
| }
 | |
| 
 | |
| static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
 | |
| {
 | |
|     int64_t d, next_time;
 | |
|     unsigned int counter;
 | |
| 
 | |
|     /* current counter value */
 | |
|     d = muldiv64(current_time - s->load_time,
 | |
|                  CUDA_TIMER_FREQ, get_ticks_per_sec());
 | |
|     /* the timer goes down from latch to -1 (period of latch + 2) */
 | |
|     if (d <= (s->counter_value + 1)) {
 | |
|         counter = (s->counter_value - d) & 0xffff;
 | |
|     } else {
 | |
|         counter = (d - (s->counter_value + 1)) % (s->latch + 2);
 | |
|         counter = (s->latch - counter) & 0xffff;
 | |
|     }
 | |
| 
 | |
|     /* Note: we consider the irq is raised on 0 */
 | |
|     if (counter == 0xffff) {
 | |
|         next_time = d + s->latch + 1;
 | |
|     } else if (counter == 0) {
 | |
|         next_time = d + s->latch + 2;
 | |
|     } else {
 | |
|         next_time = d + counter;
 | |
|     }
 | |
|     CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
 | |
|                  s->latch, d, next_time - d);
 | |
|     next_time = muldiv64(next_time, get_ticks_per_sec(), CUDA_TIMER_FREQ) +
 | |
|         s->load_time;
 | |
|     if (next_time <= current_time)
 | |
|         next_time = current_time + 1;
 | |
|     return next_time;
 | |
| }
 | |
| 
 | |
| static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
 | |
|                               int64_t current_time)
 | |
| {
 | |
|     if (!ti->timer)
 | |
|         return;
 | |
|     if (ti->index == 0 && (s->acr & T1MODE) != T1MODE_CONT) {
 | |
|         timer_del(ti->timer);
 | |
|     } else {
 | |
|         ti->next_irq_time = get_next_irq_time(ti, current_time);
 | |
|         timer_mod(ti->timer, ti->next_irq_time);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void cuda_timer1(void *opaque)
 | |
| {
 | |
|     CUDAState *s = opaque;
 | |
|     CUDATimer *ti = &s->timers[0];
 | |
| 
 | |
|     cuda_timer_update(s, ti, ti->next_irq_time);
 | |
|     s->ifr |= T1_INT;
 | |
|     cuda_update_irq(s);
 | |
| }
 | |
| 
 | |
| static void cuda_timer2(void *opaque)
 | |
| {
 | |
|     CUDAState *s = opaque;
 | |
|     CUDATimer *ti = &s->timers[1];
 | |
| 
 | |
|     cuda_timer_update(s, ti, ti->next_irq_time);
 | |
|     s->ifr |= T2_INT;
 | |
|     cuda_update_irq(s);
 | |
| }
 | |
| 
 | |
| static void cuda_set_sr_int(void *opaque)
 | |
| {
 | |
|     CUDAState *s = opaque;
 | |
| 
 | |
|     CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
 | |
|     s->ifr |= SR_INT;
 | |
|     cuda_update_irq(s);
 | |
| }
 | |
| 
 | |
| static void cuda_delay_set_sr_int(CUDAState *s)
 | |
| {
 | |
|     int64_t expire;
 | |
| 
 | |
|     if (s->dirb == 0xff) {
 | |
|         /* Not in Mac OS, fire the IRQ directly */
 | |
|         cuda_set_sr_int(s);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
 | |
| 
 | |
|     expire = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 300 * SCALE_US;
 | |
|     timer_mod(s->sr_delay_timer, expire);
 | |
| }
 | |
| 
 | |
| static uint32_t cuda_readb(void *opaque, hwaddr addr)
 | |
| {
 | |
|     CUDAState *s = opaque;
 | |
|     uint32_t val;
 | |
| 
 | |
|     addr = (addr >> 9) & 0xf;
 | |
|     switch(addr) {
 | |
|     case CUDA_REG_B:
 | |
|         val = s->b;
 | |
|         break;
 | |
|     case CUDA_REG_A:
 | |
|         val = s->a;
 | |
|         break;
 | |
|     case CUDA_REG_DIRB:
 | |
|         val = s->dirb;
 | |
|         break;
 | |
|     case CUDA_REG_DIRA:
 | |
|         val = s->dira;
 | |
|         break;
 | |
|     case CUDA_REG_T1CL:
 | |
|         val = get_counter(&s->timers[0]) & 0xff;
 | |
|         s->ifr &= ~T1_INT;
 | |
|         cuda_update_irq(s);
 | |
|         break;
 | |
|     case CUDA_REG_T1CH:
 | |
|         val = get_counter(&s->timers[0]) >> 8;
 | |
|         cuda_update_irq(s);
 | |
|         break;
 | |
|     case CUDA_REG_T1LL:
 | |
|         val = s->timers[0].latch & 0xff;
 | |
|         break;
 | |
|     case CUDA_REG_T1LH:
 | |
|         /* XXX: check this */
 | |
|         val = (s->timers[0].latch >> 8) & 0xff;
 | |
|         break;
 | |
|     case CUDA_REG_T2CL:
 | |
|         val = get_counter(&s->timers[1]) & 0xff;
 | |
|         s->ifr &= ~T2_INT;
 | |
|         cuda_update_irq(s);
 | |
|         break;
 | |
|     case CUDA_REG_T2CH:
 | |
|         val = get_counter(&s->timers[1]) >> 8;
 | |
|         break;
 | |
|     case CUDA_REG_SR:
 | |
|         val = s->sr;
 | |
|         s->ifr &= ~(SR_INT | SR_CLOCK_INT | SR_DATA_INT);
 | |
|         cuda_update_irq(s);
 | |
|         break;
 | |
|     case CUDA_REG_ACR:
 | |
|         val = s->acr;
 | |
|         break;
 | |
|     case CUDA_REG_PCR:
 | |
|         val = s->pcr;
 | |
|         break;
 | |
|     case CUDA_REG_IFR:
 | |
|         val = s->ifr;
 | |
|         if (s->ifr & s->ier) {
 | |
|             val |= 0x80;
 | |
|         }
 | |
|         break;
 | |
|     case CUDA_REG_IER:
 | |
|         val = s->ier | 0x80;
 | |
|         break;
 | |
|     default:
 | |
|     case CUDA_REG_ANH:
 | |
|         val = s->anh;
 | |
|         break;
 | |
|     }
 | |
|     if (addr != CUDA_REG_IFR || val != 0) {
 | |
|         CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
 | |
|     }
 | |
| 
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static void cuda_writeb(void *opaque, hwaddr addr, uint32_t val)
 | |
| {
 | |
|     CUDAState *s = opaque;
 | |
| 
 | |
|     addr = (addr >> 9) & 0xf;
 | |
|     CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
 | |
| 
 | |
|     switch(addr) {
 | |
|     case CUDA_REG_B:
 | |
|         s->b = val;
 | |
|         cuda_update(s);
 | |
|         break;
 | |
|     case CUDA_REG_A:
 | |
|         s->a = val;
 | |
|         break;
 | |
|     case CUDA_REG_DIRB:
 | |
|         s->dirb = val;
 | |
|         break;
 | |
|     case CUDA_REG_DIRA:
 | |
|         s->dira = val;
 | |
|         break;
 | |
|     case CUDA_REG_T1CL:
 | |
|         s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
 | |
|         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
 | |
|         break;
 | |
|     case CUDA_REG_T1CH:
 | |
|         s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
 | |
|         s->ifr &= ~T1_INT;
 | |
|         set_counter(s, &s->timers[0], s->timers[0].latch);
 | |
|         break;
 | |
|     case CUDA_REG_T1LL:
 | |
|         s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
 | |
|         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
 | |
|         break;
 | |
|     case CUDA_REG_T1LH:
 | |
|         s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
 | |
|         s->ifr &= ~T1_INT;
 | |
|         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
 | |
|         break;
 | |
|     case CUDA_REG_T2CL:
 | |
|         s->timers[1].latch = (s->timers[1].latch & 0xff00) | val;
 | |
|         break;
 | |
|     case CUDA_REG_T2CH:
 | |
|         /* To ensure T2 generates an interrupt on zero crossing with the
 | |
|            common timer code, write the value directly from the latch to
 | |
|            the counter */
 | |
|         s->timers[1].latch = (s->timers[1].latch & 0xff) | (val << 8);
 | |
|         s->ifr &= ~T2_INT;
 | |
|         set_counter(s, &s->timers[1], s->timers[1].latch);
 | |
|         break;
 | |
|     case CUDA_REG_SR:
 | |
|         s->sr = val;
 | |
|         break;
 | |
|     case CUDA_REG_ACR:
 | |
|         s->acr = val;
 | |
|         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
 | |
|         cuda_update(s);
 | |
|         break;
 | |
|     case CUDA_REG_PCR:
 | |
|         s->pcr = val;
 | |
|         break;
 | |
|     case CUDA_REG_IFR:
 | |
|         /* reset bits */
 | |
|         s->ifr &= ~val;
 | |
|         cuda_update_irq(s);
 | |
|         break;
 | |
|     case CUDA_REG_IER:
 | |
|         if (val & IER_SET) {
 | |
|             /* set bits */
 | |
|             s->ier |= val & 0x7f;
 | |
|         } else {
 | |
|             /* reset bits */
 | |
|             s->ier &= ~val;
 | |
|         }
 | |
|         cuda_update_irq(s);
 | |
|         break;
 | |
|     default:
 | |
|     case CUDA_REG_ANH:
 | |
|         s->anh = val;
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* NOTE: TIP and TREQ are negated */
 | |
| static void cuda_update(CUDAState *s)
 | |
| {
 | |
|     int packet_received, len;
 | |
| 
 | |
|     packet_received = 0;
 | |
|     if (!(s->b & TIP)) {
 | |
|         /* transfer requested from host */
 | |
| 
 | |
|         if (s->acr & SR_OUT) {
 | |
|             /* data output */
 | |
|             if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
 | |
|                 if (s->data_out_index < sizeof(s->data_out)) {
 | |
|                     CUDA_DPRINTF("send: %02x\n", s->sr);
 | |
|                     s->data_out[s->data_out_index++] = s->sr;
 | |
|                     cuda_delay_set_sr_int(s);
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             if (s->data_in_index < s->data_in_size) {
 | |
|                 /* data input */
 | |
|                 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
 | |
|                     s->sr = s->data_in[s->data_in_index++];
 | |
|                     CUDA_DPRINTF("recv: %02x\n", s->sr);
 | |
|                     /* indicate end of transfer */
 | |
|                     if (s->data_in_index >= s->data_in_size) {
 | |
|                         s->b = (s->b | TREQ);
 | |
|                     }
 | |
|                     cuda_delay_set_sr_int(s);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         /* no transfer requested: handle sync case */
 | |
|         if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
 | |
|             /* update TREQ state each time TACK change state */
 | |
|             if (s->b & TACK)
 | |
|                 s->b = (s->b | TREQ);
 | |
|             else
 | |
|                 s->b = (s->b & ~TREQ);
 | |
|             cuda_delay_set_sr_int(s);
 | |
|         } else {
 | |
|             if (!(s->last_b & TIP)) {
 | |
|                 /* handle end of host to cuda transfer */
 | |
|                 packet_received = (s->data_out_index > 0);
 | |
|                 /* always an IRQ at the end of transfer */
 | |
|                 cuda_delay_set_sr_int(s);
 | |
|             }
 | |
|             /* signal if there is data to read */
 | |
|             if (s->data_in_index < s->data_in_size) {
 | |
|                 s->b = (s->b & ~TREQ);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     s->last_acr = s->acr;
 | |
|     s->last_b = s->b;
 | |
| 
 | |
|     /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
 | |
|        recursively */
 | |
|     if (packet_received) {
 | |
|         len = s->data_out_index;
 | |
|         s->data_out_index = 0;
 | |
|         cuda_receive_packet_from_host(s, s->data_out, len);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void cuda_send_packet_to_host(CUDAState *s,
 | |
|                                      const uint8_t *data, int len)
 | |
| {
 | |
| #ifdef DEBUG_CUDA_PACKET
 | |
|     {
 | |
|         int i;
 | |
|         printf("cuda_send_packet_to_host:\n");
 | |
|         for(i = 0; i < len; i++)
 | |
|             printf(" %02x", data[i]);
 | |
|         printf("\n");
 | |
|     }
 | |
| #endif
 | |
|     memcpy(s->data_in, data, len);
 | |
|     s->data_in_size = len;
 | |
|     s->data_in_index = 0;
 | |
|     cuda_update(s);
 | |
|     cuda_delay_set_sr_int(s);
 | |
| }
 | |
| 
 | |
| static void cuda_adb_poll(void *opaque)
 | |
| {
 | |
|     CUDAState *s = opaque;
 | |
|     uint8_t obuf[ADB_MAX_OUT_LEN + 2];
 | |
|     int olen;
 | |
| 
 | |
|     olen = adb_poll(&s->adb_bus, obuf + 2);
 | |
|     if (olen > 0) {
 | |
|         obuf[0] = ADB_PACKET;
 | |
|         obuf[1] = 0x40; /* polled data */
 | |
|         cuda_send_packet_to_host(s, obuf, olen + 2);
 | |
|     }
 | |
|     timer_mod(s->adb_poll_timer,
 | |
|                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
 | |
|                    (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
 | |
| }
 | |
| 
 | |
| static void cuda_receive_packet(CUDAState *s,
 | |
|                                 const uint8_t *data, int len)
 | |
| {
 | |
|     uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] };
 | |
|     int autopoll;
 | |
|     uint32_t ti;
 | |
| 
 | |
|     switch(data[0]) {
 | |
|     case CUDA_AUTOPOLL:
 | |
|         autopoll = (data[1] != 0);
 | |
|         if (autopoll != s->autopoll) {
 | |
|             s->autopoll = autopoll;
 | |
|             if (autopoll) {
 | |
|                 timer_mod(s->adb_poll_timer,
 | |
|                                qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
 | |
|                                (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
 | |
|             } else {
 | |
|                 timer_del(s->adb_poll_timer);
 | |
|             }
 | |
|         }
 | |
|         cuda_send_packet_to_host(s, obuf, 3);
 | |
|         break;
 | |
|     case CUDA_GET_6805_ADDR:
 | |
|         cuda_send_packet_to_host(s, obuf, 3);
 | |
|         break;
 | |
|     case CUDA_SET_TIME:
 | |
|         ti = (((uint32_t)data[1]) << 24) + (((uint32_t)data[2]) << 16) + (((uint32_t)data[3]) << 8) + data[4];
 | |
|         s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec());
 | |
|         cuda_send_packet_to_host(s, obuf, 3);
 | |
|         break;
 | |
|     case CUDA_GET_TIME:
 | |
|         ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec());
 | |
|         obuf[3] = ti >> 24;
 | |
|         obuf[4] = ti >> 16;
 | |
|         obuf[5] = ti >> 8;
 | |
|         obuf[6] = ti;
 | |
|         cuda_send_packet_to_host(s, obuf, 7);
 | |
|         break;
 | |
|     case CUDA_FILE_SERVER_FLAG:
 | |
|     case CUDA_SET_DEVICE_LIST:
 | |
|     case CUDA_SET_AUTO_RATE:
 | |
|     case CUDA_SET_POWER_MESSAGES:
 | |
|         cuda_send_packet_to_host(s, obuf, 3);
 | |
|         break;
 | |
|     case CUDA_POWERDOWN:
 | |
|         cuda_send_packet_to_host(s, obuf, 3);
 | |
|         qemu_system_shutdown_request();
 | |
|         break;
 | |
|     case CUDA_RESET_SYSTEM:
 | |
|         cuda_send_packet_to_host(s, obuf, 3);
 | |
|         qemu_system_reset_request();
 | |
|         break;
 | |
|     case CUDA_COMBINED_FORMAT_IIC:
 | |
|         obuf[0] = ERROR_PACKET;
 | |
|         obuf[1] = 0x5;
 | |
|         obuf[2] = CUDA_PACKET;
 | |
|         obuf[3] = data[0];
 | |
|         cuda_send_packet_to_host(s, obuf, 4);
 | |
|         break;
 | |
|     case CUDA_GET_SET_IIC:
 | |
|         if (len == 4) {
 | |
|             cuda_send_packet_to_host(s, obuf, 3);
 | |
|         } else {
 | |
|             obuf[0] = ERROR_PACKET;
 | |
|             obuf[1] = 0x2;
 | |
|             obuf[2] = CUDA_PACKET;
 | |
|             obuf[3] = data[0];
 | |
|             cuda_send_packet_to_host(s, obuf, 4);
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         obuf[0] = ERROR_PACKET;
 | |
|         obuf[1] = 0x2;
 | |
|         obuf[2] = CUDA_PACKET;
 | |
|         obuf[3] = data[0];
 | |
|         cuda_send_packet_to_host(s, obuf, 4);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void cuda_receive_packet_from_host(CUDAState *s,
 | |
|                                           const uint8_t *data, int len)
 | |
| {
 | |
| #ifdef DEBUG_CUDA_PACKET
 | |
|     {
 | |
|         int i;
 | |
|         printf("cuda_receive_packet_from_host:\n");
 | |
|         for(i = 0; i < len; i++)
 | |
|             printf(" %02x", data[i]);
 | |
|         printf("\n");
 | |
|     }
 | |
| #endif
 | |
|     switch(data[0]) {
 | |
|     case ADB_PACKET:
 | |
|         {
 | |
|             uint8_t obuf[ADB_MAX_OUT_LEN + 3];
 | |
|             int olen;
 | |
|             olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1);
 | |
|             if (olen > 0) {
 | |
|                 obuf[0] = ADB_PACKET;
 | |
|                 obuf[1] = 0x00;
 | |
|                 cuda_send_packet_to_host(s, obuf, olen + 2);
 | |
|             } else {
 | |
|                 /* error */
 | |
|                 obuf[0] = ADB_PACKET;
 | |
|                 obuf[1] = -olen;
 | |
|                 obuf[2] = data[1];
 | |
|                 olen = 0;
 | |
|                 cuda_send_packet_to_host(s, obuf, olen + 3);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case CUDA_PACKET:
 | |
|         cuda_receive_packet(s, data + 1, len - 1);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void cuda_writew (void *opaque, hwaddr addr, uint32_t value)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void cuda_writel (void *opaque, hwaddr addr, uint32_t value)
 | |
| {
 | |
| }
 | |
| 
 | |
| static uint32_t cuda_readw (void *opaque, hwaddr addr)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static uint32_t cuda_readl (void *opaque, hwaddr addr)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps cuda_ops = {
 | |
|     .old_mmio = {
 | |
|         .write = {
 | |
|             cuda_writeb,
 | |
|             cuda_writew,
 | |
|             cuda_writel,
 | |
|         },
 | |
|         .read = {
 | |
|             cuda_readb,
 | |
|             cuda_readw,
 | |
|             cuda_readl,
 | |
|         },
 | |
|     },
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| static bool cuda_timer_exist(void *opaque, int version_id)
 | |
| {
 | |
|     CUDATimer *s = opaque;
 | |
| 
 | |
|     return s->timer != NULL;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_cuda_timer = {
 | |
|     .name = "cuda_timer",
 | |
|     .version_id = 0,
 | |
|     .minimum_version_id = 0,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UINT16(latch, CUDATimer),
 | |
|         VMSTATE_UINT16(counter_value, CUDATimer),
 | |
|         VMSTATE_INT64(load_time, CUDATimer),
 | |
|         VMSTATE_INT64(next_irq_time, CUDATimer),
 | |
|         VMSTATE_TIMER_PTR_TEST(timer, CUDATimer, cuda_timer_exist),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static const VMStateDescription vmstate_cuda = {
 | |
|     .name = "cuda",
 | |
|     .version_id = 3,
 | |
|     .minimum_version_id = 3,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UINT8(a, CUDAState),
 | |
|         VMSTATE_UINT8(b, CUDAState),
 | |
|         VMSTATE_UINT8(last_b, CUDAState),
 | |
|         VMSTATE_UINT8(dira, CUDAState),
 | |
|         VMSTATE_UINT8(dirb, CUDAState),
 | |
|         VMSTATE_UINT8(sr, CUDAState),
 | |
|         VMSTATE_UINT8(acr, CUDAState),
 | |
|         VMSTATE_UINT8(last_acr, CUDAState),
 | |
|         VMSTATE_UINT8(pcr, CUDAState),
 | |
|         VMSTATE_UINT8(ifr, CUDAState),
 | |
|         VMSTATE_UINT8(ier, CUDAState),
 | |
|         VMSTATE_UINT8(anh, CUDAState),
 | |
|         VMSTATE_INT32(data_in_size, CUDAState),
 | |
|         VMSTATE_INT32(data_in_index, CUDAState),
 | |
|         VMSTATE_INT32(data_out_index, CUDAState),
 | |
|         VMSTATE_UINT8(autopoll, CUDAState),
 | |
|         VMSTATE_BUFFER(data_in, CUDAState),
 | |
|         VMSTATE_BUFFER(data_out, CUDAState),
 | |
|         VMSTATE_UINT32(tick_offset, CUDAState),
 | |
|         VMSTATE_STRUCT_ARRAY(timers, CUDAState, 2, 1,
 | |
|                              vmstate_cuda_timer, CUDATimer),
 | |
|         VMSTATE_TIMER_PTR(adb_poll_timer, CUDAState),
 | |
|         VMSTATE_TIMER_PTR(sr_delay_timer, CUDAState),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static void cuda_reset(DeviceState *dev)
 | |
| {
 | |
|     CUDAState *s = CUDA(dev);
 | |
| 
 | |
|     s->b = 0;
 | |
|     s->a = 0;
 | |
|     s->dirb = 0xff;
 | |
|     s->dira = 0;
 | |
|     s->sr = 0;
 | |
|     s->acr = 0;
 | |
|     s->pcr = 0;
 | |
|     s->ifr = 0;
 | |
|     s->ier = 0;
 | |
|     //    s->ier = T1_INT | SR_INT;
 | |
|     s->anh = 0;
 | |
|     s->data_in_size = 0;
 | |
|     s->data_in_index = 0;
 | |
|     s->data_out_index = 0;
 | |
|     s->autopoll = 0;
 | |
| 
 | |
|     s->timers[0].latch = 0xffff;
 | |
|     set_counter(s, &s->timers[0], 0xffff);
 | |
| 
 | |
|     s->timers[1].latch = 0xffff;
 | |
| 
 | |
|     s->sr_delay_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_set_sr_int, s);
 | |
| }
 | |
| 
 | |
| static void cuda_realizefn(DeviceState *dev, Error **errp)
 | |
| {
 | |
|     CUDAState *s = CUDA(dev);
 | |
|     struct tm tm;
 | |
| 
 | |
|     s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer1, s);
 | |
|     s->timers[0].frequency = s->frequency;
 | |
|     s->timers[1].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer2, s);
 | |
|     s->timers[1].frequency = (SCALE_US * 6000) / 4700;
 | |
| 
 | |
|     qemu_get_timedate(&tm, 0);
 | |
|     s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
 | |
| 
 | |
|     s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s);
 | |
| }
 | |
| 
 | |
| static void cuda_initfn(Object *obj)
 | |
| {
 | |
|     SysBusDevice *d = SYS_BUS_DEVICE(obj);
 | |
|     CUDAState *s = CUDA(obj);
 | |
|     int i;
 | |
| 
 | |
|     memory_region_init_io(&s->mem, obj, &cuda_ops, s, "cuda", 0x2000);
 | |
|     sysbus_init_mmio(d, &s->mem);
 | |
|     sysbus_init_irq(d, &s->irq);
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
 | |
|         s->timers[i].index = i;
 | |
|     }
 | |
| 
 | |
|     qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS,
 | |
|                         DEVICE(obj), "adb.0");
 | |
| }
 | |
| 
 | |
| static Property cuda_properties[] = {
 | |
|     DEFINE_PROP_UINT64("frequency", CUDAState, frequency, 0),
 | |
|     DEFINE_PROP_END_OF_LIST()
 | |
| };
 | |
| 
 | |
| static void cuda_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     DeviceClass *dc = DEVICE_CLASS(oc);
 | |
| 
 | |
|     dc->realize = cuda_realizefn;
 | |
|     dc->reset = cuda_reset;
 | |
|     dc->vmsd = &vmstate_cuda;
 | |
|     dc->props = cuda_properties;
 | |
|     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
 | |
| }
 | |
| 
 | |
| static const TypeInfo cuda_type_info = {
 | |
|     .name = TYPE_CUDA,
 | |
|     .parent = TYPE_SYS_BUS_DEVICE,
 | |
|     .instance_size = sizeof(CUDAState),
 | |
|     .instance_init = cuda_initfn,
 | |
|     .class_init = cuda_class_init,
 | |
| };
 | |
| 
 | |
| static void cuda_register_types(void)
 | |
| {
 | |
|     type_register_static(&cuda_type_info);
 | |
| }
 | |
| 
 | |
| type_init(cuda_register_types)
 |