 9ee6e8bb85
			
		
	
	
		9ee6e8bb85
		
	
	
	
	
		
			
			git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3572 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			1485 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1485 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  i386 emulator main execution loop
 | |
|  *
 | |
|  *  Copyright (c) 2003-2005 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|  */
 | |
| #include "config.h"
 | |
| #include "exec.h"
 | |
| #include "disas.h"
 | |
| 
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
| #undef EAX
 | |
| #undef ECX
 | |
| #undef EDX
 | |
| #undef EBX
 | |
| #undef ESP
 | |
| #undef EBP
 | |
| #undef ESI
 | |
| #undef EDI
 | |
| #undef EIP
 | |
| #include <signal.h>
 | |
| #include <sys/ucontext.h>
 | |
| #endif
 | |
| 
 | |
| int tb_invalidated_flag;
 | |
| 
 | |
| //#define DEBUG_EXEC
 | |
| //#define DEBUG_SIGNAL
 | |
| 
 | |
| void cpu_loop_exit(void)
 | |
| {
 | |
|     /* NOTE: the register at this point must be saved by hand because
 | |
|        longjmp restore them */
 | |
|     regs_to_env();
 | |
|     longjmp(env->jmp_env, 1);
 | |
| }
 | |
| 
 | |
| #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
 | |
| #define reg_T2
 | |
| #endif
 | |
| 
 | |
| /* exit the current TB from a signal handler. The host registers are
 | |
|    restored in a state compatible with the CPU emulator
 | |
|  */
 | |
| void cpu_resume_from_signal(CPUState *env1, void *puc)
 | |
| {
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
|     struct ucontext *uc = puc;
 | |
| #endif
 | |
| 
 | |
|     env = env1;
 | |
| 
 | |
|     /* XXX: restore cpu registers saved in host registers */
 | |
| 
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
|     if (puc) {
 | |
|         /* XXX: use siglongjmp ? */
 | |
|         sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
 | |
|     }
 | |
| #endif
 | |
|     longjmp(env->jmp_env, 1);
 | |
| }
 | |
| 
 | |
| 
 | |
| static TranslationBlock *tb_find_slow(target_ulong pc,
 | |
|                                       target_ulong cs_base,
 | |
|                                       uint64_t flags)
 | |
| {
 | |
|     TranslationBlock *tb, **ptb1;
 | |
|     int code_gen_size;
 | |
|     unsigned int h;
 | |
|     target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
 | |
|     uint8_t *tc_ptr;
 | |
| 
 | |
|     spin_lock(&tb_lock);
 | |
| 
 | |
|     tb_invalidated_flag = 0;
 | |
| 
 | |
|     regs_to_env(); /* XXX: do it just before cpu_gen_code() */
 | |
| 
 | |
|     /* find translated block using physical mappings */
 | |
|     phys_pc = get_phys_addr_code(env, pc);
 | |
|     phys_page1 = phys_pc & TARGET_PAGE_MASK;
 | |
|     phys_page2 = -1;
 | |
|     h = tb_phys_hash_func(phys_pc);
 | |
|     ptb1 = &tb_phys_hash[h];
 | |
|     for(;;) {
 | |
|         tb = *ptb1;
 | |
|         if (!tb)
 | |
|             goto not_found;
 | |
|         if (tb->pc == pc &&
 | |
|             tb->page_addr[0] == phys_page1 &&
 | |
|             tb->cs_base == cs_base &&
 | |
|             tb->flags == flags) {
 | |
|             /* check next page if needed */
 | |
|             if (tb->page_addr[1] != -1) {
 | |
|                 virt_page2 = (pc & TARGET_PAGE_MASK) +
 | |
|                     TARGET_PAGE_SIZE;
 | |
|                 phys_page2 = get_phys_addr_code(env, virt_page2);
 | |
|                 if (tb->page_addr[1] == phys_page2)
 | |
|                     goto found;
 | |
|             } else {
 | |
|                 goto found;
 | |
|             }
 | |
|         }
 | |
|         ptb1 = &tb->phys_hash_next;
 | |
|     }
 | |
|  not_found:
 | |
|     /* if no translated code available, then translate it now */
 | |
|     tb = tb_alloc(pc);
 | |
|     if (!tb) {
 | |
|         /* flush must be done */
 | |
|         tb_flush(env);
 | |
|         /* cannot fail at this point */
 | |
|         tb = tb_alloc(pc);
 | |
|         /* don't forget to invalidate previous TB info */
 | |
|         tb_invalidated_flag = 1;
 | |
|     }
 | |
|     tc_ptr = code_gen_ptr;
 | |
|     tb->tc_ptr = tc_ptr;
 | |
|     tb->cs_base = cs_base;
 | |
|     tb->flags = flags;
 | |
|     cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
 | |
|     code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
 | |
| 
 | |
|     /* check next page if needed */
 | |
|     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
 | |
|     phys_page2 = -1;
 | |
|     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
 | |
|         phys_page2 = get_phys_addr_code(env, virt_page2);
 | |
|     }
 | |
|     tb_link_phys(tb, phys_pc, phys_page2);
 | |
| 
 | |
|  found:
 | |
|     /* we add the TB in the virtual pc hash table */
 | |
|     env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
 | |
|     spin_unlock(&tb_lock);
 | |
|     return tb;
 | |
| }
 | |
| 
 | |
| static inline TranslationBlock *tb_find_fast(void)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     target_ulong cs_base, pc;
 | |
|     uint64_t flags;
 | |
| 
 | |
|     /* we record a subset of the CPU state. It will
 | |
|        always be the same before a given translated block
 | |
|        is executed. */
 | |
| #if defined(TARGET_I386)
 | |
|     flags = env->hflags;
 | |
|     flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
 | |
|     flags |= env->intercept;
 | |
|     cs_base = env->segs[R_CS].base;
 | |
|     pc = cs_base + env->eip;
 | |
| #elif defined(TARGET_ARM)
 | |
|     flags = env->thumb | (env->vfp.vec_len << 1)
 | |
|             | (env->vfp.vec_stride << 4);
 | |
|     if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
 | |
|         flags |= (1 << 6);
 | |
|     if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
 | |
|         flags |= (1 << 7);
 | |
|     flags |= (env->condexec_bits << 8);
 | |
|     cs_base = 0;
 | |
|     pc = env->regs[15];
 | |
| #elif defined(TARGET_SPARC)
 | |
| #ifdef TARGET_SPARC64
 | |
|     // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
 | |
|     flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
 | |
|         | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
 | |
| #else
 | |
|     // FPU enable . Supervisor
 | |
|     flags = (env->psref << 4) | env->psrs;
 | |
| #endif
 | |
|     cs_base = env->npc;
 | |
|     pc = env->pc;
 | |
| #elif defined(TARGET_PPC)
 | |
|     flags = env->hflags;
 | |
|     cs_base = 0;
 | |
|     pc = env->nip;
 | |
| #elif defined(TARGET_MIPS)
 | |
|     flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
 | |
|     cs_base = 0;
 | |
|     pc = env->PC[env->current_tc];
 | |
| #elif defined(TARGET_M68K)
 | |
|     flags = (env->fpcr & M68K_FPCR_PREC)  /* Bit  6 */
 | |
|             | (env->sr & SR_S)            /* Bit  13 */
 | |
|             | ((env->macsr >> 4) & 0xf);  /* Bits 0-3 */
 | |
|     cs_base = 0;
 | |
|     pc = env->pc;
 | |
| #elif defined(TARGET_SH4)
 | |
|     flags = env->sr & (SR_MD | SR_RB);
 | |
|     cs_base = 0;         /* XXXXX */
 | |
|     pc = env->pc;
 | |
| #elif defined(TARGET_ALPHA)
 | |
|     flags = env->ps;
 | |
|     cs_base = 0;
 | |
|     pc = env->pc;
 | |
| #elif defined(TARGET_CRIS)
 | |
|     flags = 0;
 | |
|     cs_base = 0;
 | |
|     pc = env->pc;
 | |
| #else
 | |
| #error unsupported CPU
 | |
| #endif
 | |
|     tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
 | |
|     if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
 | |
|                          tb->flags != flags, 0)) {
 | |
|         tb = tb_find_slow(pc, cs_base, flags);
 | |
|         /* Note: we do it here to avoid a gcc bug on Mac OS X when
 | |
|            doing it in tb_find_slow */
 | |
|         if (tb_invalidated_flag) {
 | |
|             /* as some TB could have been invalidated because
 | |
|                of memory exceptions while generating the code, we
 | |
|                must recompute the hash index here */
 | |
|             T0 = 0;
 | |
|         }
 | |
|     }
 | |
|     return tb;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* main execution loop */
 | |
| 
 | |
| int cpu_exec(CPUState *env1)
 | |
| {
 | |
| #define DECLARE_HOST_REGS 1
 | |
| #include "hostregs_helper.h"
 | |
| #if defined(TARGET_SPARC)
 | |
| #if defined(reg_REGWPTR)
 | |
|     uint32_t *saved_regwptr;
 | |
| #endif
 | |
| #endif
 | |
| #if defined(__sparc__) && !defined(HOST_SOLARIS)
 | |
|     int saved_i7;
 | |
|     target_ulong tmp_T0;
 | |
| #endif
 | |
|     int ret, interrupt_request;
 | |
|     void (*gen_func)(void);
 | |
|     TranslationBlock *tb;
 | |
|     uint8_t *tc_ptr;
 | |
| 
 | |
|     if (cpu_halted(env1) == EXCP_HALTED)
 | |
|         return EXCP_HALTED;
 | |
| 
 | |
|     cpu_single_env = env1;
 | |
| 
 | |
|     /* first we save global registers */
 | |
| #define SAVE_HOST_REGS 1
 | |
| #include "hostregs_helper.h"
 | |
|     env = env1;
 | |
| #if defined(__sparc__) && !defined(HOST_SOLARIS)
 | |
|     /* we also save i7 because longjmp may not restore it */
 | |
|     asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
 | |
| #endif
 | |
| 
 | |
|     env_to_regs();
 | |
| #if defined(TARGET_I386)
 | |
|     /* put eflags in CPU temporary format */
 | |
|     CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
 | |
|     DF = 1 - (2 * ((env->eflags >> 10) & 1));
 | |
|     CC_OP = CC_OP_EFLAGS;
 | |
|     env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
 | |
| #elif defined(TARGET_SPARC)
 | |
| #if defined(reg_REGWPTR)
 | |
|     saved_regwptr = REGWPTR;
 | |
| #endif
 | |
| #elif defined(TARGET_M68K)
 | |
|     env->cc_op = CC_OP_FLAGS;
 | |
|     env->cc_dest = env->sr & 0xf;
 | |
|     env->cc_x = (env->sr >> 4) & 1;
 | |
| #elif defined(TARGET_ALPHA)
 | |
| #elif defined(TARGET_ARM)
 | |
| #elif defined(TARGET_PPC)
 | |
| #elif defined(TARGET_MIPS)
 | |
| #elif defined(TARGET_SH4)
 | |
| #elif defined(TARGET_CRIS)
 | |
|     /* XXXXX */
 | |
| #else
 | |
| #error unsupported target CPU
 | |
| #endif
 | |
|     env->exception_index = -1;
 | |
| 
 | |
|     /* prepare setjmp context for exception handling */
 | |
|     for(;;) {
 | |
|         if (setjmp(env->jmp_env) == 0) {
 | |
|             env->current_tb = NULL;
 | |
|             /* if an exception is pending, we execute it here */
 | |
|             if (env->exception_index >= 0) {
 | |
|                 if (env->exception_index >= EXCP_INTERRUPT) {
 | |
|                     /* exit request from the cpu execution loop */
 | |
|                     ret = env->exception_index;
 | |
|                     break;
 | |
|                 } else if (env->user_mode_only) {
 | |
|                     /* if user mode only, we simulate a fake exception
 | |
|                        which will be handled outside the cpu execution
 | |
|                        loop */
 | |
| #if defined(TARGET_I386)
 | |
|                     do_interrupt_user(env->exception_index,
 | |
|                                       env->exception_is_int,
 | |
|                                       env->error_code,
 | |
|                                       env->exception_next_eip);
 | |
| #endif
 | |
|                     ret = env->exception_index;
 | |
|                     break;
 | |
|                 } else {
 | |
| #if defined(TARGET_I386)
 | |
|                     /* simulate a real cpu exception. On i386, it can
 | |
|                        trigger new exceptions, but we do not handle
 | |
|                        double or triple faults yet. */
 | |
|                     do_interrupt(env->exception_index,
 | |
|                                  env->exception_is_int,
 | |
|                                  env->error_code,
 | |
|                                  env->exception_next_eip, 0);
 | |
|                     /* successfully delivered */
 | |
|                     env->old_exception = -1;
 | |
| #elif defined(TARGET_PPC)
 | |
|                     do_interrupt(env);
 | |
| #elif defined(TARGET_MIPS)
 | |
|                     do_interrupt(env);
 | |
| #elif defined(TARGET_SPARC)
 | |
|                     do_interrupt(env->exception_index);
 | |
| #elif defined(TARGET_ARM)
 | |
|                     do_interrupt(env);
 | |
| #elif defined(TARGET_SH4)
 | |
| 		    do_interrupt(env);
 | |
| #elif defined(TARGET_ALPHA)
 | |
|                     do_interrupt(env);
 | |
| #elif defined(TARGET_CRIS)
 | |
|                     do_interrupt(env);
 | |
| #elif defined(TARGET_M68K)
 | |
|                     do_interrupt(0);
 | |
| #endif
 | |
|                 }
 | |
|                 env->exception_index = -1;
 | |
|             }
 | |
| #ifdef USE_KQEMU
 | |
|             if (kqemu_is_ok(env) && env->interrupt_request == 0) {
 | |
|                 int ret;
 | |
|                 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
 | |
|                 ret = kqemu_cpu_exec(env);
 | |
|                 /* put eflags in CPU temporary format */
 | |
|                 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
 | |
|                 DF = 1 - (2 * ((env->eflags >> 10) & 1));
 | |
|                 CC_OP = CC_OP_EFLAGS;
 | |
|                 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
 | |
|                 if (ret == 1) {
 | |
|                     /* exception */
 | |
|                     longjmp(env->jmp_env, 1);
 | |
|                 } else if (ret == 2) {
 | |
|                     /* softmmu execution needed */
 | |
|                 } else {
 | |
|                     if (env->interrupt_request != 0) {
 | |
|                         /* hardware interrupt will be executed just after */
 | |
|                     } else {
 | |
|                         /* otherwise, we restart */
 | |
|                         longjmp(env->jmp_env, 1);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| #endif
 | |
| 
 | |
|             T0 = 0; /* force lookup of first TB */
 | |
|             for(;;) {
 | |
| #if defined(__sparc__) && !defined(HOST_SOLARIS)
 | |
|                 /* g1 can be modified by some libc? functions */
 | |
|                 tmp_T0 = T0;
 | |
| #endif
 | |
|                 interrupt_request = env->interrupt_request;
 | |
|                 if (__builtin_expect(interrupt_request, 0)
 | |
| #if defined(TARGET_I386)
 | |
| 			&& env->hflags & HF_GIF_MASK
 | |
| #endif
 | |
| 				) {
 | |
|                     if (interrupt_request & CPU_INTERRUPT_DEBUG) {
 | |
|                         env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
 | |
|                         env->exception_index = EXCP_DEBUG;
 | |
|                         cpu_loop_exit();
 | |
|                     }
 | |
| #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
 | |
|     defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
 | |
|                     if (interrupt_request & CPU_INTERRUPT_HALT) {
 | |
|                         env->interrupt_request &= ~CPU_INTERRUPT_HALT;
 | |
|                         env->halted = 1;
 | |
|                         env->exception_index = EXCP_HLT;
 | |
|                         cpu_loop_exit();
 | |
|                     }
 | |
| #endif
 | |
| #if defined(TARGET_I386)
 | |
|                     if ((interrupt_request & CPU_INTERRUPT_SMI) &&
 | |
|                         !(env->hflags & HF_SMM_MASK)) {
 | |
|                         svm_check_intercept(SVM_EXIT_SMI);
 | |
|                         env->interrupt_request &= ~CPU_INTERRUPT_SMI;
 | |
|                         do_smm_enter();
 | |
| #if defined(__sparc__) && !defined(HOST_SOLARIS)
 | |
|                         tmp_T0 = 0;
 | |
| #else
 | |
|                         T0 = 0;
 | |
| #endif
 | |
|                     } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
 | |
|                         (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) &&
 | |
|                         !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
 | |
|                         int intno;
 | |
|                         svm_check_intercept(SVM_EXIT_INTR);
 | |
|                         env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
 | |
|                         intno = cpu_get_pic_interrupt(env);
 | |
|                         if (loglevel & CPU_LOG_TB_IN_ASM) {
 | |
|                             fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
 | |
|                         }
 | |
|                         do_interrupt(intno, 0, 0, 0, 1);
 | |
|                         /* ensure that no TB jump will be modified as
 | |
|                            the program flow was changed */
 | |
| #if defined(__sparc__) && !defined(HOST_SOLARIS)
 | |
|                         tmp_T0 = 0;
 | |
| #else
 | |
|                         T0 = 0;
 | |
| #endif
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|                     } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
 | |
|                         (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
 | |
|                          int intno;
 | |
|                          /* FIXME: this should respect TPR */
 | |
|                          env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
 | |
|                          svm_check_intercept(SVM_EXIT_VINTR);
 | |
|                          intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
 | |
|                          if (loglevel & CPU_LOG_TB_IN_ASM)
 | |
|                              fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
 | |
| 	                 do_interrupt(intno, 0, 0, -1, 1);
 | |
|                          stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
 | |
|                                   ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
 | |
| #if defined(__sparc__) && !defined(HOST_SOLARIS)
 | |
|                          tmp_T0 = 0;
 | |
| #else
 | |
|                          T0 = 0;
 | |
| #endif
 | |
| #endif
 | |
|                     }
 | |
| #elif defined(TARGET_PPC)
 | |
| #if 0
 | |
|                     if ((interrupt_request & CPU_INTERRUPT_RESET)) {
 | |
|                         cpu_ppc_reset(env);
 | |
|                     }
 | |
| #endif
 | |
|                     if (interrupt_request & CPU_INTERRUPT_HARD) {
 | |
|                         ppc_hw_interrupt(env);
 | |
|                         if (env->pending_interrupts == 0)
 | |
|                             env->interrupt_request &= ~CPU_INTERRUPT_HARD;
 | |
| #if defined(__sparc__) && !defined(HOST_SOLARIS)
 | |
|                         tmp_T0 = 0;
 | |
| #else
 | |
|                         T0 = 0;
 | |
| #endif
 | |
|                     }
 | |
| #elif defined(TARGET_MIPS)
 | |
|                     if ((interrupt_request & CPU_INTERRUPT_HARD) &&
 | |
|                         (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
 | |
|                         (env->CP0_Status & (1 << CP0St_IE)) &&
 | |
|                         !(env->CP0_Status & (1 << CP0St_EXL)) &&
 | |
|                         !(env->CP0_Status & (1 << CP0St_ERL)) &&
 | |
|                         !(env->hflags & MIPS_HFLAG_DM)) {
 | |
|                         /* Raise it */
 | |
|                         env->exception_index = EXCP_EXT_INTERRUPT;
 | |
|                         env->error_code = 0;
 | |
|                         do_interrupt(env);
 | |
| #if defined(__sparc__) && !defined(HOST_SOLARIS)
 | |
|                         tmp_T0 = 0;
 | |
| #else
 | |
|                         T0 = 0;
 | |
| #endif
 | |
|                     }
 | |
| #elif defined(TARGET_SPARC)
 | |
|                     if ((interrupt_request & CPU_INTERRUPT_HARD) &&
 | |
| 			(env->psret != 0)) {
 | |
| 			int pil = env->interrupt_index & 15;
 | |
| 			int type = env->interrupt_index & 0xf0;
 | |
| 
 | |
| 			if (((type == TT_EXTINT) &&
 | |
| 			     (pil == 15 || pil > env->psrpil)) ||
 | |
| 			    type != TT_EXTINT) {
 | |
| 			    env->interrupt_request &= ~CPU_INTERRUPT_HARD;
 | |
| 			    do_interrupt(env->interrupt_index);
 | |
| 			    env->interrupt_index = 0;
 | |
| #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
 | |
|                             cpu_check_irqs(env);
 | |
| #endif
 | |
| #if defined(__sparc__) && !defined(HOST_SOLARIS)
 | |
|                             tmp_T0 = 0;
 | |
| #else
 | |
|                             T0 = 0;
 | |
| #endif
 | |
| 			}
 | |
| 		    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
 | |
| 			//do_interrupt(0, 0, 0, 0, 0);
 | |
| 			env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
 | |
| 		    }
 | |
| #elif defined(TARGET_ARM)
 | |
|                     if (interrupt_request & CPU_INTERRUPT_FIQ
 | |
|                         && !(env->uncached_cpsr & CPSR_F)) {
 | |
|                         env->exception_index = EXCP_FIQ;
 | |
|                         do_interrupt(env);
 | |
|                     }
 | |
|                     /* ARMv7-M interrupt return works by loading a magic value
 | |
|                        into the PC.  On real hardware the load causes the
 | |
|                        return to occur.  The qemu implementation performs the
 | |
|                        jump normally, then does the exception return when the
 | |
|                        CPU tries to execute code at the magic address.
 | |
|                        This will cause the magic PC value to be pushed to
 | |
|                        the stack if an interrupt occured at the wrong time.
 | |
|                        We avoid this by disabling interrupts when
 | |
|                        pc contains a magic address.  */
 | |
|                     if (interrupt_request & CPU_INTERRUPT_HARD
 | |
|                         && ((IS_M(env) && env->regs[15] < 0xfffffff0)
 | |
|                             || !(env->uncached_cpsr & CPSR_I))) {
 | |
|                         env->exception_index = EXCP_IRQ;
 | |
|                         do_interrupt(env);
 | |
|                     }
 | |
| #elif defined(TARGET_SH4)
 | |
| 		    /* XXXXX */
 | |
| #elif defined(TARGET_ALPHA)
 | |
|                     if (interrupt_request & CPU_INTERRUPT_HARD) {
 | |
|                         do_interrupt(env);
 | |
|                     }
 | |
| #elif defined(TARGET_CRIS)
 | |
|                     if (interrupt_request & CPU_INTERRUPT_HARD) {
 | |
|                         do_interrupt(env);
 | |
| 			env->interrupt_request &= ~CPU_INTERRUPT_HARD;
 | |
|                     }
 | |
| #elif defined(TARGET_M68K)
 | |
|                     if (interrupt_request & CPU_INTERRUPT_HARD
 | |
|                         && ((env->sr & SR_I) >> SR_I_SHIFT)
 | |
|                             < env->pending_level) {
 | |
|                         /* Real hardware gets the interrupt vector via an
 | |
|                            IACK cycle at this point.  Current emulated
 | |
|                            hardware doesn't rely on this, so we
 | |
|                            provide/save the vector when the interrupt is
 | |
|                            first signalled.  */
 | |
|                         env->exception_index = env->pending_vector;
 | |
|                         do_interrupt(1);
 | |
|                     }
 | |
| #endif
 | |
|                    /* Don't use the cached interupt_request value,
 | |
|                       do_interrupt may have updated the EXITTB flag. */
 | |
|                     if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
 | |
|                         env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
 | |
|                         /* ensure that no TB jump will be modified as
 | |
|                            the program flow was changed */
 | |
| #if defined(__sparc__) && !defined(HOST_SOLARIS)
 | |
|                         tmp_T0 = 0;
 | |
| #else
 | |
|                         T0 = 0;
 | |
| #endif
 | |
|                     }
 | |
|                     if (interrupt_request & CPU_INTERRUPT_EXIT) {
 | |
|                         env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
 | |
|                         env->exception_index = EXCP_INTERRUPT;
 | |
|                         cpu_loop_exit();
 | |
|                     }
 | |
|                 }
 | |
| #ifdef DEBUG_EXEC
 | |
|                 if ((loglevel & CPU_LOG_TB_CPU)) {
 | |
|                     /* restore flags in standard format */
 | |
|                     regs_to_env();
 | |
| #if defined(TARGET_I386)
 | |
|                     env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
 | |
|                     cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
 | |
|                     env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
 | |
| #elif defined(TARGET_ARM)
 | |
|                     cpu_dump_state(env, logfile, fprintf, 0);
 | |
| #elif defined(TARGET_SPARC)
 | |
| 		    REGWPTR = env->regbase + (env->cwp * 16);
 | |
| 		    env->regwptr = REGWPTR;
 | |
|                     cpu_dump_state(env, logfile, fprintf, 0);
 | |
| #elif defined(TARGET_PPC)
 | |
|                     cpu_dump_state(env, logfile, fprintf, 0);
 | |
| #elif defined(TARGET_M68K)
 | |
|                     cpu_m68k_flush_flags(env, env->cc_op);
 | |
|                     env->cc_op = CC_OP_FLAGS;
 | |
|                     env->sr = (env->sr & 0xffe0)
 | |
|                               | env->cc_dest | (env->cc_x << 4);
 | |
|                     cpu_dump_state(env, logfile, fprintf, 0);
 | |
| #elif defined(TARGET_MIPS)
 | |
|                     cpu_dump_state(env, logfile, fprintf, 0);
 | |
| #elif defined(TARGET_SH4)
 | |
| 		    cpu_dump_state(env, logfile, fprintf, 0);
 | |
| #elif defined(TARGET_ALPHA)
 | |
|                     cpu_dump_state(env, logfile, fprintf, 0);
 | |
| #elif defined(TARGET_CRIS)
 | |
|                     cpu_dump_state(env, logfile, fprintf, 0);
 | |
| #else
 | |
| #error unsupported target CPU
 | |
| #endif
 | |
|                 }
 | |
| #endif
 | |
|                 tb = tb_find_fast();
 | |
| #ifdef DEBUG_EXEC
 | |
|                 if ((loglevel & CPU_LOG_EXEC)) {
 | |
|                     fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
 | |
|                             (long)tb->tc_ptr, tb->pc,
 | |
|                             lookup_symbol(tb->pc));
 | |
|                 }
 | |
| #endif
 | |
| #if defined(__sparc__) && !defined(HOST_SOLARIS)
 | |
|                 T0 = tmp_T0;
 | |
| #endif
 | |
|                 /* see if we can patch the calling TB. When the TB
 | |
|                    spans two pages, we cannot safely do a direct
 | |
|                    jump. */
 | |
|                 {
 | |
|                     if (T0 != 0 &&
 | |
| #if USE_KQEMU
 | |
|                         (env->kqemu_enabled != 2) &&
 | |
| #endif
 | |
|                         tb->page_addr[1] == -1) {
 | |
|                     spin_lock(&tb_lock);
 | |
|                     tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
 | |
|                     spin_unlock(&tb_lock);
 | |
|                 }
 | |
|                 }
 | |
|                 tc_ptr = tb->tc_ptr;
 | |
|                 env->current_tb = tb;
 | |
|                 /* execute the generated code */
 | |
|                 gen_func = (void *)tc_ptr;
 | |
| #if defined(__sparc__)
 | |
|                 __asm__ __volatile__("call	%0\n\t"
 | |
|                                      "mov	%%o7,%%i0"
 | |
|                                      : /* no outputs */
 | |
|                                      : "r" (gen_func)
 | |
|                                      : "i0", "i1", "i2", "i3", "i4", "i5",
 | |
|                                        "o0", "o1", "o2", "o3", "o4", "o5",
 | |
|                                        "l0", "l1", "l2", "l3", "l4", "l5",
 | |
|                                        "l6", "l7");
 | |
| #elif defined(__arm__)
 | |
|                 asm volatile ("mov pc, %0\n\t"
 | |
|                               ".global exec_loop\n\t"
 | |
|                               "exec_loop:\n\t"
 | |
|                               : /* no outputs */
 | |
|                               : "r" (gen_func)
 | |
|                               : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
 | |
| #elif defined(__ia64)
 | |
| 		struct fptr {
 | |
| 			void *ip;
 | |
| 			void *gp;
 | |
| 		} fp;
 | |
| 
 | |
| 		fp.ip = tc_ptr;
 | |
| 		fp.gp = code_gen_buffer + 2 * (1 << 20);
 | |
| 		(*(void (*)(void)) &fp)();
 | |
| #else
 | |
|                 gen_func();
 | |
| #endif
 | |
|                 env->current_tb = NULL;
 | |
|                 /* reset soft MMU for next block (it can currently
 | |
|                    only be set by a memory fault) */
 | |
| #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
 | |
|                 if (env->hflags & HF_SOFTMMU_MASK) {
 | |
|                     env->hflags &= ~HF_SOFTMMU_MASK;
 | |
|                     /* do not allow linking to another block */
 | |
|                     T0 = 0;
 | |
|                 }
 | |
| #endif
 | |
| #if defined(USE_KQEMU)
 | |
| #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
 | |
|                 if (kqemu_is_ok(env) &&
 | |
|                     (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
 | |
|                     cpu_loop_exit();
 | |
|                 }
 | |
| #endif
 | |
|             } /* for(;;) */
 | |
|         } else {
 | |
|             env_to_regs();
 | |
|         }
 | |
|     } /* for(;;) */
 | |
| 
 | |
| 
 | |
| #if defined(TARGET_I386)
 | |
|     /* restore flags in standard format */
 | |
|     env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
 | |
| #elif defined(TARGET_ARM)
 | |
|     /* XXX: Save/restore host fpu exception state?.  */
 | |
| #elif defined(TARGET_SPARC)
 | |
| #if defined(reg_REGWPTR)
 | |
|     REGWPTR = saved_regwptr;
 | |
| #endif
 | |
| #elif defined(TARGET_PPC)
 | |
| #elif defined(TARGET_M68K)
 | |
|     cpu_m68k_flush_flags(env, env->cc_op);
 | |
|     env->cc_op = CC_OP_FLAGS;
 | |
|     env->sr = (env->sr & 0xffe0)
 | |
|               | env->cc_dest | (env->cc_x << 4);
 | |
| #elif defined(TARGET_MIPS)
 | |
| #elif defined(TARGET_SH4)
 | |
| #elif defined(TARGET_ALPHA)
 | |
| #elif defined(TARGET_CRIS)
 | |
|     /* XXXXX */
 | |
| #else
 | |
| #error unsupported target CPU
 | |
| #endif
 | |
| 
 | |
|     /* restore global registers */
 | |
| #if defined(__sparc__) && !defined(HOST_SOLARIS)
 | |
|     asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
 | |
| #endif
 | |
| #include "hostregs_helper.h"
 | |
| 
 | |
|     /* fail safe : never use cpu_single_env outside cpu_exec() */
 | |
|     cpu_single_env = NULL;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* must only be called from the generated code as an exception can be
 | |
|    generated */
 | |
| void tb_invalidate_page_range(target_ulong start, target_ulong end)
 | |
| {
 | |
|     /* XXX: cannot enable it yet because it yields to MMU exception
 | |
|        where NIP != read address on PowerPC */
 | |
| #if 0
 | |
|     target_ulong phys_addr;
 | |
|     phys_addr = get_phys_addr_code(env, start);
 | |
|     tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
 | |
| {
 | |
|     CPUX86State *saved_env;
 | |
| 
 | |
|     saved_env = env;
 | |
|     env = s;
 | |
|     if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
 | |
|         selector &= 0xffff;
 | |
|         cpu_x86_load_seg_cache(env, seg_reg, selector,
 | |
|                                (selector << 4), 0xffff, 0);
 | |
|     } else {
 | |
|         load_seg(seg_reg, selector);
 | |
|     }
 | |
|     env = saved_env;
 | |
| }
 | |
| 
 | |
| void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
 | |
| {
 | |
|     CPUX86State *saved_env;
 | |
| 
 | |
|     saved_env = env;
 | |
|     env = s;
 | |
| 
 | |
|     helper_fsave((target_ulong)ptr, data32);
 | |
| 
 | |
|     env = saved_env;
 | |
| }
 | |
| 
 | |
| void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
 | |
| {
 | |
|     CPUX86State *saved_env;
 | |
| 
 | |
|     saved_env = env;
 | |
|     env = s;
 | |
| 
 | |
|     helper_frstor((target_ulong)ptr, data32);
 | |
| 
 | |
|     env = saved_env;
 | |
| }
 | |
| 
 | |
| #endif /* TARGET_I386 */
 | |
| 
 | |
| #if !defined(CONFIG_SOFTMMU)
 | |
| 
 | |
| #if defined(TARGET_I386)
 | |
| 
 | |
| /* 'pc' is the host PC at which the exception was raised. 'address' is
 | |
|    the effective address of the memory exception. 'is_write' is 1 if a
 | |
|    write caused the exception and otherwise 0'. 'old_set' is the
 | |
|    signal set which should be restored */
 | |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
 | |
|                                     int is_write, sigset_t *old_set,
 | |
|                                     void *puc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int ret;
 | |
| 
 | |
|     if (cpu_single_env)
 | |
|         env = cpu_single_env; /* XXX: find a correct solution for multithread */
 | |
| #if defined(DEBUG_SIGNAL)
 | |
|     qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
 | |
|                 pc, address, is_write, *(unsigned long *)old_set);
 | |
| #endif
 | |
|     /* XXX: locking issue */
 | |
|     if (is_write && page_unprotect(h2g(address), pc, puc)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* see if it is an MMU fault */
 | |
|     ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
 | |
|     if (ret < 0)
 | |
|         return 0; /* not an MMU fault */
 | |
|     if (ret == 0)
 | |
|         return 1; /* the MMU fault was handled without causing real CPU fault */
 | |
|     /* now we have a real cpu fault */
 | |
|     tb = tb_find_pc(pc);
 | |
|     if (tb) {
 | |
|         /* the PC is inside the translated code. It means that we have
 | |
|            a virtual CPU fault */
 | |
|         cpu_restore_state(tb, env, pc, puc);
 | |
|     }
 | |
|     if (ret == 1) {
 | |
| #if 0
 | |
|         printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
 | |
|                env->eip, env->cr[2], env->error_code);
 | |
| #endif
 | |
|         /* we restore the process signal mask as the sigreturn should
 | |
|            do it (XXX: use sigsetjmp) */
 | |
|         sigprocmask(SIG_SETMASK, old_set, NULL);
 | |
|         raise_exception_err(env->exception_index, env->error_code);
 | |
|     } else {
 | |
|         /* activate soft MMU for this block */
 | |
|         env->hflags |= HF_SOFTMMU_MASK;
 | |
|         cpu_resume_from_signal(env, puc);
 | |
|     }
 | |
|     /* never comes here */
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| #elif defined(TARGET_ARM)
 | |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
 | |
|                                     int is_write, sigset_t *old_set,
 | |
|                                     void *puc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int ret;
 | |
| 
 | |
|     if (cpu_single_env)
 | |
|         env = cpu_single_env; /* XXX: find a correct solution for multithread */
 | |
| #if defined(DEBUG_SIGNAL)
 | |
|     printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
 | |
|            pc, address, is_write, *(unsigned long *)old_set);
 | |
| #endif
 | |
|     /* XXX: locking issue */
 | |
|     if (is_write && page_unprotect(h2g(address), pc, puc)) {
 | |
|         return 1;
 | |
|     }
 | |
|     /* see if it is an MMU fault */
 | |
|     ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
 | |
|     if (ret < 0)
 | |
|         return 0; /* not an MMU fault */
 | |
|     if (ret == 0)
 | |
|         return 1; /* the MMU fault was handled without causing real CPU fault */
 | |
|     /* now we have a real cpu fault */
 | |
|     tb = tb_find_pc(pc);
 | |
|     if (tb) {
 | |
|         /* the PC is inside the translated code. It means that we have
 | |
|            a virtual CPU fault */
 | |
|         cpu_restore_state(tb, env, pc, puc);
 | |
|     }
 | |
|     /* we restore the process signal mask as the sigreturn should
 | |
|        do it (XXX: use sigsetjmp) */
 | |
|     sigprocmask(SIG_SETMASK, old_set, NULL);
 | |
|     cpu_loop_exit();
 | |
| }
 | |
| #elif defined(TARGET_SPARC)
 | |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
 | |
|                                     int is_write, sigset_t *old_set,
 | |
|                                     void *puc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int ret;
 | |
| 
 | |
|     if (cpu_single_env)
 | |
|         env = cpu_single_env; /* XXX: find a correct solution for multithread */
 | |
| #if defined(DEBUG_SIGNAL)
 | |
|     printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
 | |
|            pc, address, is_write, *(unsigned long *)old_set);
 | |
| #endif
 | |
|     /* XXX: locking issue */
 | |
|     if (is_write && page_unprotect(h2g(address), pc, puc)) {
 | |
|         return 1;
 | |
|     }
 | |
|     /* see if it is an MMU fault */
 | |
|     ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
 | |
|     if (ret < 0)
 | |
|         return 0; /* not an MMU fault */
 | |
|     if (ret == 0)
 | |
|         return 1; /* the MMU fault was handled without causing real CPU fault */
 | |
|     /* now we have a real cpu fault */
 | |
|     tb = tb_find_pc(pc);
 | |
|     if (tb) {
 | |
|         /* the PC is inside the translated code. It means that we have
 | |
|            a virtual CPU fault */
 | |
|         cpu_restore_state(tb, env, pc, puc);
 | |
|     }
 | |
|     /* we restore the process signal mask as the sigreturn should
 | |
|        do it (XXX: use sigsetjmp) */
 | |
|     sigprocmask(SIG_SETMASK, old_set, NULL);
 | |
|     cpu_loop_exit();
 | |
| }
 | |
| #elif defined (TARGET_PPC)
 | |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
 | |
|                                     int is_write, sigset_t *old_set,
 | |
|                                     void *puc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int ret;
 | |
| 
 | |
|     if (cpu_single_env)
 | |
|         env = cpu_single_env; /* XXX: find a correct solution for multithread */
 | |
| #if defined(DEBUG_SIGNAL)
 | |
|     printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
 | |
|            pc, address, is_write, *(unsigned long *)old_set);
 | |
| #endif
 | |
|     /* XXX: locking issue */
 | |
|     if (is_write && page_unprotect(h2g(address), pc, puc)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* see if it is an MMU fault */
 | |
|     ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
 | |
|     if (ret < 0)
 | |
|         return 0; /* not an MMU fault */
 | |
|     if (ret == 0)
 | |
|         return 1; /* the MMU fault was handled without causing real CPU fault */
 | |
| 
 | |
|     /* now we have a real cpu fault */
 | |
|     tb = tb_find_pc(pc);
 | |
|     if (tb) {
 | |
|         /* the PC is inside the translated code. It means that we have
 | |
|            a virtual CPU fault */
 | |
|         cpu_restore_state(tb, env, pc, puc);
 | |
|     }
 | |
|     if (ret == 1) {
 | |
| #if 0
 | |
|         printf("PF exception: NIP=0x%08x error=0x%x %p\n",
 | |
|                env->nip, env->error_code, tb);
 | |
| #endif
 | |
|     /* we restore the process signal mask as the sigreturn should
 | |
|        do it (XXX: use sigsetjmp) */
 | |
|         sigprocmask(SIG_SETMASK, old_set, NULL);
 | |
|         do_raise_exception_err(env->exception_index, env->error_code);
 | |
|     } else {
 | |
|         /* activate soft MMU for this block */
 | |
|         cpu_resume_from_signal(env, puc);
 | |
|     }
 | |
|     /* never comes here */
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| #elif defined(TARGET_M68K)
 | |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
 | |
|                                     int is_write, sigset_t *old_set,
 | |
|                                     void *puc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int ret;
 | |
| 
 | |
|     if (cpu_single_env)
 | |
|         env = cpu_single_env; /* XXX: find a correct solution for multithread */
 | |
| #if defined(DEBUG_SIGNAL)
 | |
|     printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
 | |
|            pc, address, is_write, *(unsigned long *)old_set);
 | |
| #endif
 | |
|     /* XXX: locking issue */
 | |
|     if (is_write && page_unprotect(address, pc, puc)) {
 | |
|         return 1;
 | |
|     }
 | |
|     /* see if it is an MMU fault */
 | |
|     ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
 | |
|     if (ret < 0)
 | |
|         return 0; /* not an MMU fault */
 | |
|     if (ret == 0)
 | |
|         return 1; /* the MMU fault was handled without causing real CPU fault */
 | |
|     /* now we have a real cpu fault */
 | |
|     tb = tb_find_pc(pc);
 | |
|     if (tb) {
 | |
|         /* the PC is inside the translated code. It means that we have
 | |
|            a virtual CPU fault */
 | |
|         cpu_restore_state(tb, env, pc, puc);
 | |
|     }
 | |
|     /* we restore the process signal mask as the sigreturn should
 | |
|        do it (XXX: use sigsetjmp) */
 | |
|     sigprocmask(SIG_SETMASK, old_set, NULL);
 | |
|     cpu_loop_exit();
 | |
|     /* never comes here */
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| #elif defined (TARGET_MIPS)
 | |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
 | |
|                                     int is_write, sigset_t *old_set,
 | |
|                                     void *puc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int ret;
 | |
| 
 | |
|     if (cpu_single_env)
 | |
|         env = cpu_single_env; /* XXX: find a correct solution for multithread */
 | |
| #if defined(DEBUG_SIGNAL)
 | |
|     printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
 | |
|            pc, address, is_write, *(unsigned long *)old_set);
 | |
| #endif
 | |
|     /* XXX: locking issue */
 | |
|     if (is_write && page_unprotect(h2g(address), pc, puc)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* see if it is an MMU fault */
 | |
|     ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
 | |
|     if (ret < 0)
 | |
|         return 0; /* not an MMU fault */
 | |
|     if (ret == 0)
 | |
|         return 1; /* the MMU fault was handled without causing real CPU fault */
 | |
| 
 | |
|     /* now we have a real cpu fault */
 | |
|     tb = tb_find_pc(pc);
 | |
|     if (tb) {
 | |
|         /* the PC is inside the translated code. It means that we have
 | |
|            a virtual CPU fault */
 | |
|         cpu_restore_state(tb, env, pc, puc);
 | |
|     }
 | |
|     if (ret == 1) {
 | |
| #if 0
 | |
|         printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
 | |
|                env->PC, env->error_code, tb);
 | |
| #endif
 | |
|     /* we restore the process signal mask as the sigreturn should
 | |
|        do it (XXX: use sigsetjmp) */
 | |
|         sigprocmask(SIG_SETMASK, old_set, NULL);
 | |
|         do_raise_exception_err(env->exception_index, env->error_code);
 | |
|     } else {
 | |
|         /* activate soft MMU for this block */
 | |
|         cpu_resume_from_signal(env, puc);
 | |
|     }
 | |
|     /* never comes here */
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| #elif defined (TARGET_SH4)
 | |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
 | |
|                                     int is_write, sigset_t *old_set,
 | |
|                                     void *puc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int ret;
 | |
| 
 | |
|     if (cpu_single_env)
 | |
|         env = cpu_single_env; /* XXX: find a correct solution for multithread */
 | |
| #if defined(DEBUG_SIGNAL)
 | |
|     printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
 | |
|            pc, address, is_write, *(unsigned long *)old_set);
 | |
| #endif
 | |
|     /* XXX: locking issue */
 | |
|     if (is_write && page_unprotect(h2g(address), pc, puc)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* see if it is an MMU fault */
 | |
|     ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
 | |
|     if (ret < 0)
 | |
|         return 0; /* not an MMU fault */
 | |
|     if (ret == 0)
 | |
|         return 1; /* the MMU fault was handled without causing real CPU fault */
 | |
| 
 | |
|     /* now we have a real cpu fault */
 | |
|     tb = tb_find_pc(pc);
 | |
|     if (tb) {
 | |
|         /* the PC is inside the translated code. It means that we have
 | |
|            a virtual CPU fault */
 | |
|         cpu_restore_state(tb, env, pc, puc);
 | |
|     }
 | |
| #if 0
 | |
|         printf("PF exception: NIP=0x%08x error=0x%x %p\n",
 | |
|                env->nip, env->error_code, tb);
 | |
| #endif
 | |
|     /* we restore the process signal mask as the sigreturn should
 | |
|        do it (XXX: use sigsetjmp) */
 | |
|     sigprocmask(SIG_SETMASK, old_set, NULL);
 | |
|     cpu_loop_exit();
 | |
|     /* never comes here */
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| #elif defined (TARGET_ALPHA)
 | |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
 | |
|                                     int is_write, sigset_t *old_set,
 | |
|                                     void *puc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int ret;
 | |
| 
 | |
|     if (cpu_single_env)
 | |
|         env = cpu_single_env; /* XXX: find a correct solution for multithread */
 | |
| #if defined(DEBUG_SIGNAL)
 | |
|     printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
 | |
|            pc, address, is_write, *(unsigned long *)old_set);
 | |
| #endif
 | |
|     /* XXX: locking issue */
 | |
|     if (is_write && page_unprotect(h2g(address), pc, puc)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* see if it is an MMU fault */
 | |
|     ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
 | |
|     if (ret < 0)
 | |
|         return 0; /* not an MMU fault */
 | |
|     if (ret == 0)
 | |
|         return 1; /* the MMU fault was handled without causing real CPU fault */
 | |
| 
 | |
|     /* now we have a real cpu fault */
 | |
|     tb = tb_find_pc(pc);
 | |
|     if (tb) {
 | |
|         /* the PC is inside the translated code. It means that we have
 | |
|            a virtual CPU fault */
 | |
|         cpu_restore_state(tb, env, pc, puc);
 | |
|     }
 | |
| #if 0
 | |
|         printf("PF exception: NIP=0x%08x error=0x%x %p\n",
 | |
|                env->nip, env->error_code, tb);
 | |
| #endif
 | |
|     /* we restore the process signal mask as the sigreturn should
 | |
|        do it (XXX: use sigsetjmp) */
 | |
|     sigprocmask(SIG_SETMASK, old_set, NULL);
 | |
|     cpu_loop_exit();
 | |
|     /* never comes here */
 | |
|     return 1;
 | |
| }
 | |
| #elif defined (TARGET_CRIS)
 | |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
 | |
|                                     int is_write, sigset_t *old_set,
 | |
|                                     void *puc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int ret;
 | |
| 
 | |
|     if (cpu_single_env)
 | |
|         env = cpu_single_env; /* XXX: find a correct solution for multithread */
 | |
| #if defined(DEBUG_SIGNAL)
 | |
|     printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
 | |
|            pc, address, is_write, *(unsigned long *)old_set);
 | |
| #endif
 | |
|     /* XXX: locking issue */
 | |
|     if (is_write && page_unprotect(h2g(address), pc, puc)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* see if it is an MMU fault */
 | |
|     ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
 | |
|     if (ret < 0)
 | |
|         return 0; /* not an MMU fault */
 | |
|     if (ret == 0)
 | |
|         return 1; /* the MMU fault was handled without causing real CPU fault */
 | |
| 
 | |
|     /* now we have a real cpu fault */
 | |
|     tb = tb_find_pc(pc);
 | |
|     if (tb) {
 | |
|         /* the PC is inside the translated code. It means that we have
 | |
|            a virtual CPU fault */
 | |
|         cpu_restore_state(tb, env, pc, puc);
 | |
|     }
 | |
| #if 0
 | |
|         printf("PF exception: NIP=0x%08x error=0x%x %p\n",
 | |
|                env->nip, env->error_code, tb);
 | |
| #endif
 | |
|     /* we restore the process signal mask as the sigreturn should
 | |
|        do it (XXX: use sigsetjmp) */
 | |
|     sigprocmask(SIG_SETMASK, old_set, NULL);
 | |
|     cpu_loop_exit();
 | |
|     /* never comes here */
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| #else
 | |
| #error unsupported target CPU
 | |
| #endif
 | |
| 
 | |
| #if defined(__i386__)
 | |
| 
 | |
| #if defined(__APPLE__)
 | |
| # include <sys/ucontext.h>
 | |
| 
 | |
| # define EIP_sig(context)  (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
 | |
| # define TRAP_sig(context)    ((context)->uc_mcontext->es.trapno)
 | |
| # define ERROR_sig(context)   ((context)->uc_mcontext->es.err)
 | |
| #else
 | |
| # define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
 | |
| # define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
 | |
| # define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
 | |
| #endif
 | |
| 
 | |
| int cpu_signal_handler(int host_signum, void *pinfo,
 | |
|                        void *puc)
 | |
| {
 | |
|     siginfo_t *info = pinfo;
 | |
|     struct ucontext *uc = puc;
 | |
|     unsigned long pc;
 | |
|     int trapno;
 | |
| 
 | |
| #ifndef REG_EIP
 | |
| /* for glibc 2.1 */
 | |
| #define REG_EIP    EIP
 | |
| #define REG_ERR    ERR
 | |
| #define REG_TRAPNO TRAPNO
 | |
| #endif
 | |
|     pc = EIP_sig(uc);
 | |
|     trapno = TRAP_sig(uc);
 | |
|     return handle_cpu_signal(pc, (unsigned long)info->si_addr,
 | |
|                              trapno == 0xe ?
 | |
|                              (ERROR_sig(uc) >> 1) & 1 : 0,
 | |
|                              &uc->uc_sigmask, puc);
 | |
| }
 | |
| 
 | |
| #elif defined(__x86_64__)
 | |
| 
 | |
| int cpu_signal_handler(int host_signum, void *pinfo,
 | |
|                        void *puc)
 | |
| {
 | |
|     siginfo_t *info = pinfo;
 | |
|     struct ucontext *uc = puc;
 | |
|     unsigned long pc;
 | |
| 
 | |
|     pc = uc->uc_mcontext.gregs[REG_RIP];
 | |
|     return handle_cpu_signal(pc, (unsigned long)info->si_addr,
 | |
|                              uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
 | |
|                              (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
 | |
|                              &uc->uc_sigmask, puc);
 | |
| }
 | |
| 
 | |
| #elif defined(__powerpc__)
 | |
| 
 | |
| /***********************************************************************
 | |
|  * signal context platform-specific definitions
 | |
|  * From Wine
 | |
|  */
 | |
| #ifdef linux
 | |
| /* All Registers access - only for local access */
 | |
| # define REG_sig(reg_name, context)		((context)->uc_mcontext.regs->reg_name)
 | |
| /* Gpr Registers access  */
 | |
| # define GPR_sig(reg_num, context)		REG_sig(gpr[reg_num], context)
 | |
| # define IAR_sig(context)			REG_sig(nip, context)	/* Program counter */
 | |
| # define MSR_sig(context)			REG_sig(msr, context)   /* Machine State Register (Supervisor) */
 | |
| # define CTR_sig(context)			REG_sig(ctr, context)   /* Count register */
 | |
| # define XER_sig(context)			REG_sig(xer, context) /* User's integer exception register */
 | |
| # define LR_sig(context)			REG_sig(link, context) /* Link register */
 | |
| # define CR_sig(context)			REG_sig(ccr, context) /* Condition register */
 | |
| /* Float Registers access  */
 | |
| # define FLOAT_sig(reg_num, context)		(((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
 | |
| # define FPSCR_sig(context)			(*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
 | |
| /* Exception Registers access */
 | |
| # define DAR_sig(context)			REG_sig(dar, context)
 | |
| # define DSISR_sig(context)			REG_sig(dsisr, context)
 | |
| # define TRAP_sig(context)			REG_sig(trap, context)
 | |
| #endif /* linux */
 | |
| 
 | |
| #ifdef __APPLE__
 | |
| # include <sys/ucontext.h>
 | |
| typedef struct ucontext SIGCONTEXT;
 | |
| /* All Registers access - only for local access */
 | |
| # define REG_sig(reg_name, context)		((context)->uc_mcontext->ss.reg_name)
 | |
| # define FLOATREG_sig(reg_name, context)	((context)->uc_mcontext->fs.reg_name)
 | |
| # define EXCEPREG_sig(reg_name, context)	((context)->uc_mcontext->es.reg_name)
 | |
| # define VECREG_sig(reg_name, context)		((context)->uc_mcontext->vs.reg_name)
 | |
| /* Gpr Registers access */
 | |
| # define GPR_sig(reg_num, context)		REG_sig(r##reg_num, context)
 | |
| # define IAR_sig(context)			REG_sig(srr0, context)	/* Program counter */
 | |
| # define MSR_sig(context)			REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
 | |
| # define CTR_sig(context)			REG_sig(ctr, context)
 | |
| # define XER_sig(context)			REG_sig(xer, context) /* Link register */
 | |
| # define LR_sig(context)			REG_sig(lr, context)  /* User's integer exception register */
 | |
| # define CR_sig(context)			REG_sig(cr, context)  /* Condition register */
 | |
| /* Float Registers access */
 | |
| # define FLOAT_sig(reg_num, context)		FLOATREG_sig(fpregs[reg_num], context)
 | |
| # define FPSCR_sig(context)			((double)FLOATREG_sig(fpscr, context))
 | |
| /* Exception Registers access */
 | |
| # define DAR_sig(context)			EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
 | |
| # define DSISR_sig(context)			EXCEPREG_sig(dsisr, context)
 | |
| # define TRAP_sig(context)			EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
 | |
| #endif /* __APPLE__ */
 | |
| 
 | |
| int cpu_signal_handler(int host_signum, void *pinfo,
 | |
|                        void *puc)
 | |
| {
 | |
|     siginfo_t *info = pinfo;
 | |
|     struct ucontext *uc = puc;
 | |
|     unsigned long pc;
 | |
|     int is_write;
 | |
| 
 | |
|     pc = IAR_sig(uc);
 | |
|     is_write = 0;
 | |
| #if 0
 | |
|     /* ppc 4xx case */
 | |
|     if (DSISR_sig(uc) & 0x00800000)
 | |
|         is_write = 1;
 | |
| #else
 | |
|     if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
 | |
|         is_write = 1;
 | |
| #endif
 | |
|     return handle_cpu_signal(pc, (unsigned long)info->si_addr,
 | |
|                              is_write, &uc->uc_sigmask, puc);
 | |
| }
 | |
| 
 | |
| #elif defined(__alpha__)
 | |
| 
 | |
| int cpu_signal_handler(int host_signum, void *pinfo,
 | |
|                            void *puc)
 | |
| {
 | |
|     siginfo_t *info = pinfo;
 | |
|     struct ucontext *uc = puc;
 | |
|     uint32_t *pc = uc->uc_mcontext.sc_pc;
 | |
|     uint32_t insn = *pc;
 | |
|     int is_write = 0;
 | |
| 
 | |
|     /* XXX: need kernel patch to get write flag faster */
 | |
|     switch (insn >> 26) {
 | |
|     case 0x0d: // stw
 | |
|     case 0x0e: // stb
 | |
|     case 0x0f: // stq_u
 | |
|     case 0x24: // stf
 | |
|     case 0x25: // stg
 | |
|     case 0x26: // sts
 | |
|     case 0x27: // stt
 | |
|     case 0x2c: // stl
 | |
|     case 0x2d: // stq
 | |
|     case 0x2e: // stl_c
 | |
|     case 0x2f: // stq_c
 | |
| 	is_write = 1;
 | |
|     }
 | |
| 
 | |
|     return handle_cpu_signal(pc, (unsigned long)info->si_addr,
 | |
|                              is_write, &uc->uc_sigmask, puc);
 | |
| }
 | |
| #elif defined(__sparc__)
 | |
| 
 | |
| int cpu_signal_handler(int host_signum, void *pinfo,
 | |
|                        void *puc)
 | |
| {
 | |
|     siginfo_t *info = pinfo;
 | |
|     uint32_t *regs = (uint32_t *)(info + 1);
 | |
|     void *sigmask = (regs + 20);
 | |
|     unsigned long pc;
 | |
|     int is_write;
 | |
|     uint32_t insn;
 | |
| 
 | |
|     /* XXX: is there a standard glibc define ? */
 | |
|     pc = regs[1];
 | |
|     /* XXX: need kernel patch to get write flag faster */
 | |
|     is_write = 0;
 | |
|     insn = *(uint32_t *)pc;
 | |
|     if ((insn >> 30) == 3) {
 | |
|       switch((insn >> 19) & 0x3f) {
 | |
|       case 0x05: // stb
 | |
|       case 0x06: // sth
 | |
|       case 0x04: // st
 | |
|       case 0x07: // std
 | |
|       case 0x24: // stf
 | |
|       case 0x27: // stdf
 | |
|       case 0x25: // stfsr
 | |
| 	is_write = 1;
 | |
| 	break;
 | |
|       }
 | |
|     }
 | |
|     return handle_cpu_signal(pc, (unsigned long)info->si_addr,
 | |
|                              is_write, sigmask, NULL);
 | |
| }
 | |
| 
 | |
| #elif defined(__arm__)
 | |
| 
 | |
| int cpu_signal_handler(int host_signum, void *pinfo,
 | |
|                        void *puc)
 | |
| {
 | |
|     siginfo_t *info = pinfo;
 | |
|     struct ucontext *uc = puc;
 | |
|     unsigned long pc;
 | |
|     int is_write;
 | |
| 
 | |
|     pc = uc->uc_mcontext.gregs[R15];
 | |
|     /* XXX: compute is_write */
 | |
|     is_write = 0;
 | |
|     return handle_cpu_signal(pc, (unsigned long)info->si_addr,
 | |
|                              is_write,
 | |
|                              &uc->uc_sigmask, puc);
 | |
| }
 | |
| 
 | |
| #elif defined(__mc68000)
 | |
| 
 | |
| int cpu_signal_handler(int host_signum, void *pinfo,
 | |
|                        void *puc)
 | |
| {
 | |
|     siginfo_t *info = pinfo;
 | |
|     struct ucontext *uc = puc;
 | |
|     unsigned long pc;
 | |
|     int is_write;
 | |
| 
 | |
|     pc = uc->uc_mcontext.gregs[16];
 | |
|     /* XXX: compute is_write */
 | |
|     is_write = 0;
 | |
|     return handle_cpu_signal(pc, (unsigned long)info->si_addr,
 | |
|                              is_write,
 | |
|                              &uc->uc_sigmask, puc);
 | |
| }
 | |
| 
 | |
| #elif defined(__ia64)
 | |
| 
 | |
| #ifndef __ISR_VALID
 | |
|   /* This ought to be in <bits/siginfo.h>... */
 | |
| # define __ISR_VALID	1
 | |
| #endif
 | |
| 
 | |
| int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
 | |
| {
 | |
|     siginfo_t *info = pinfo;
 | |
|     struct ucontext *uc = puc;
 | |
|     unsigned long ip;
 | |
|     int is_write = 0;
 | |
| 
 | |
|     ip = uc->uc_mcontext.sc_ip;
 | |
|     switch (host_signum) {
 | |
|       case SIGILL:
 | |
|       case SIGFPE:
 | |
|       case SIGSEGV:
 | |
|       case SIGBUS:
 | |
|       case SIGTRAP:
 | |
| 	  if (info->si_code && (info->si_segvflags & __ISR_VALID))
 | |
| 	      /* ISR.W (write-access) is bit 33:  */
 | |
| 	      is_write = (info->si_isr >> 33) & 1;
 | |
| 	  break;
 | |
| 
 | |
|       default:
 | |
| 	  break;
 | |
|     }
 | |
|     return handle_cpu_signal(ip, (unsigned long)info->si_addr,
 | |
|                              is_write,
 | |
|                              &uc->uc_sigmask, puc);
 | |
| }
 | |
| 
 | |
| #elif defined(__s390__)
 | |
| 
 | |
| int cpu_signal_handler(int host_signum, void *pinfo,
 | |
|                        void *puc)
 | |
| {
 | |
|     siginfo_t *info = pinfo;
 | |
|     struct ucontext *uc = puc;
 | |
|     unsigned long pc;
 | |
|     int is_write;
 | |
| 
 | |
|     pc = uc->uc_mcontext.psw.addr;
 | |
|     /* XXX: compute is_write */
 | |
|     is_write = 0;
 | |
|     return handle_cpu_signal(pc, (unsigned long)info->si_addr,
 | |
|                              is_write, &uc->uc_sigmask, puc);
 | |
| }
 | |
| 
 | |
| #elif defined(__mips__)
 | |
| 
 | |
| int cpu_signal_handler(int host_signum, void *pinfo,
 | |
|                        void *puc)
 | |
| {
 | |
|     siginfo_t *info = pinfo;
 | |
|     struct ucontext *uc = puc;
 | |
|     greg_t pc = uc->uc_mcontext.pc;
 | |
|     int is_write;
 | |
| 
 | |
|     /* XXX: compute is_write */
 | |
|     is_write = 0;
 | |
|     return handle_cpu_signal(pc, (unsigned long)info->si_addr,
 | |
|                              is_write, &uc->uc_sigmask, puc);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #error host CPU specific signal handler needed
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #endif /* !defined(CONFIG_SOFTMMU) */
 |