 9634d9031c
			
		
	
	
		9634d9031c
		
	
	
	
	
		
			
			git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3452 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			1725 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1725 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
 | |
|  *	The Regents of the University of California.  All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. All advertising materials mentioning features or use of this software
 | |
|  *    must display the following acknowledgement:
 | |
|  *	This product includes software developed by the University of
 | |
|  *	California, Berkeley and its contributors.
 | |
|  * 4. Neither the name of the University nor the names of its contributors
 | |
|  *    may be used to endorse or promote products derived from this software
 | |
|  *    without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  *
 | |
|  *	@(#)tcp_input.c	8.5 (Berkeley) 4/10/94
 | |
|  * tcp_input.c,v 1.10 1994/10/13 18:36:32 wollman Exp
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Changes and additions relating to SLiRP
 | |
|  * Copyright (c) 1995 Danny Gasparovski.
 | |
|  *
 | |
|  * Please read the file COPYRIGHT for the
 | |
|  * terms and conditions of the copyright.
 | |
|  */
 | |
| 
 | |
| #include <slirp.h>
 | |
| #include "ip_icmp.h"
 | |
| 
 | |
| struct socket tcb;
 | |
| 
 | |
| #define	TCPREXMTTHRESH 3
 | |
| struct	socket *tcp_last_so = &tcb;
 | |
| 
 | |
| tcp_seq tcp_iss;                /* tcp initial send seq # */
 | |
| 
 | |
| #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
 | |
| 
 | |
| /* for modulo comparisons of timestamps */
 | |
| #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
 | |
| #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
 | |
| 
 | |
| /*
 | |
|  * Insert segment ti into reassembly queue of tcp with
 | |
|  * control block tp.  Return TH_FIN if reassembly now includes
 | |
|  * a segment with FIN.  The macro form does the common case inline
 | |
|  * (segment is the next to be received on an established connection,
 | |
|  * and the queue is empty), avoiding linkage into and removal
 | |
|  * from the queue and repetition of various conversions.
 | |
|  * Set DELACK for segments received in order, but ack immediately
 | |
|  * when segments are out of order (so fast retransmit can work).
 | |
|  */
 | |
| #ifdef TCP_ACK_HACK
 | |
| #define TCP_REASS(tp, ti, m, so, flags) {\
 | |
|        if ((ti)->ti_seq == (tp)->rcv_nxt && \
 | |
|            (tp)->seg_next == (tcpiphdrp_32)(tp) && \
 | |
|            (tp)->t_state == TCPS_ESTABLISHED) {\
 | |
|                if (ti->ti_flags & TH_PUSH) \
 | |
|                        tp->t_flags |= TF_ACKNOW; \
 | |
|                else \
 | |
|                        tp->t_flags |= TF_DELACK; \
 | |
|                (tp)->rcv_nxt += (ti)->ti_len; \
 | |
|                flags = (ti)->ti_flags & TH_FIN; \
 | |
|                STAT(tcpstat.tcps_rcvpack++);         \
 | |
|                STAT(tcpstat.tcps_rcvbyte += (ti)->ti_len);   \
 | |
|                if (so->so_emu) { \
 | |
| 		       if (tcp_emu((so),(m))) sbappend((so), (m)); \
 | |
| 	       } else \
 | |
| 	       	       sbappend((so), (m)); \
 | |
| /*               sorwakeup(so); */ \
 | |
| 	} else {\
 | |
|                (flags) = tcp_reass((tp), (ti), (m)); \
 | |
|                tp->t_flags |= TF_ACKNOW; \
 | |
|        } \
 | |
| }
 | |
| #else
 | |
| #define	TCP_REASS(tp, ti, m, so, flags) { \
 | |
| 	if ((ti)->ti_seq == (tp)->rcv_nxt && \
 | |
| 	    (tp)->seg_next == (tcpiphdrp_32)(tp) && \
 | |
| 	    (tp)->t_state == TCPS_ESTABLISHED) { \
 | |
| 		tp->t_flags |= TF_DELACK; \
 | |
| 		(tp)->rcv_nxt += (ti)->ti_len; \
 | |
| 		flags = (ti)->ti_flags & TH_FIN; \
 | |
| 		STAT(tcpstat.tcps_rcvpack++);        \
 | |
| 		STAT(tcpstat.tcps_rcvbyte += (ti)->ti_len);  \
 | |
| 		if (so->so_emu) { \
 | |
| 			if (tcp_emu((so),(m))) sbappend(so, (m)); \
 | |
| 		} else \
 | |
| 			sbappend((so), (m)); \
 | |
| /*		sorwakeup(so); */ \
 | |
| 	} else { \
 | |
| 		(flags) = tcp_reass((tp), (ti), (m)); \
 | |
| 		tp->t_flags |= TF_ACKNOW; \
 | |
| 	} \
 | |
| }
 | |
| #endif
 | |
| static void tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt,
 | |
|                           struct tcpiphdr *ti);
 | |
| static void tcp_xmit_timer(register struct tcpcb *tp, int rtt);
 | |
| 
 | |
| static int
 | |
| tcp_reass(register struct tcpcb *tp, register struct tcpiphdr *ti,
 | |
|           struct mbuf *m)
 | |
| {
 | |
| 	register struct tcpiphdr *q;
 | |
| 	struct socket *so = tp->t_socket;
 | |
| 	int flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Call with ti==0 after become established to
 | |
| 	 * force pre-ESTABLISHED data up to user socket.
 | |
| 	 */
 | |
| 	if (ti == 0)
 | |
| 		goto present;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find a segment which begins after this one does.
 | |
| 	 */
 | |
| 	for (q = (struct tcpiphdr *)tp->seg_next; q != (struct tcpiphdr *)tp;
 | |
| 	    q = (struct tcpiphdr *)q->ti_next)
 | |
| 		if (SEQ_GT(q->ti_seq, ti->ti_seq))
 | |
| 			break;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is a preceding segment, it may provide some of
 | |
| 	 * our data already.  If so, drop the data from the incoming
 | |
| 	 * segment.  If it provides all of our data, drop us.
 | |
| 	 */
 | |
| 	if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) {
 | |
| 		register int i;
 | |
| 		q = (struct tcpiphdr *)q->ti_prev;
 | |
| 		/* conversion to int (in i) handles seq wraparound */
 | |
| 		i = q->ti_seq + q->ti_len - ti->ti_seq;
 | |
| 		if (i > 0) {
 | |
| 			if (i >= ti->ti_len) {
 | |
| 				STAT(tcpstat.tcps_rcvduppack++);
 | |
| 				STAT(tcpstat.tcps_rcvdupbyte += ti->ti_len);
 | |
| 				m_freem(m);
 | |
| 				/*
 | |
| 				 * Try to present any queued data
 | |
| 				 * at the left window edge to the user.
 | |
| 				 * This is needed after the 3-WHS
 | |
| 				 * completes.
 | |
| 				 */
 | |
| 				goto present;   /* ??? */
 | |
| 			}
 | |
| 			m_adj(m, i);
 | |
| 			ti->ti_len -= i;
 | |
| 			ti->ti_seq += i;
 | |
| 		}
 | |
| 		q = (struct tcpiphdr *)(q->ti_next);
 | |
| 	}
 | |
| 	STAT(tcpstat.tcps_rcvoopack++);
 | |
| 	STAT(tcpstat.tcps_rcvoobyte += ti->ti_len);
 | |
| 	REASS_MBUF(ti) = (mbufp_32) m;		/* XXX */
 | |
| 
 | |
| 	/*
 | |
| 	 * While we overlap succeeding segments trim them or,
 | |
| 	 * if they are completely covered, dequeue them.
 | |
| 	 */
 | |
| 	while (q != (struct tcpiphdr *)tp) {
 | |
| 		register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
 | |
| 		if (i <= 0)
 | |
| 			break;
 | |
| 		if (i < q->ti_len) {
 | |
| 			q->ti_seq += i;
 | |
| 			q->ti_len -= i;
 | |
| 			m_adj((struct mbuf *) REASS_MBUF(q), i);
 | |
| 			break;
 | |
| 		}
 | |
| 		q = (struct tcpiphdr *)q->ti_next;
 | |
| 		m = (struct mbuf *) REASS_MBUF((struct tcpiphdr *)q->ti_prev);
 | |
| 		remque_32((void *)(q->ti_prev));
 | |
| 		m_freem(m);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Stick new segment in its place.
 | |
| 	 */
 | |
| 	insque_32(ti, (void *)(q->ti_prev));
 | |
| 
 | |
| present:
 | |
| 	/*
 | |
| 	 * Present data to user, advancing rcv_nxt through
 | |
| 	 * completed sequence space.
 | |
| 	 */
 | |
| 	if (!TCPS_HAVEESTABLISHED(tp->t_state))
 | |
| 		return (0);
 | |
| 	ti = (struct tcpiphdr *) tp->seg_next;
 | |
| 	if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt)
 | |
| 		return (0);
 | |
| 	if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
 | |
| 		return (0);
 | |
| 	do {
 | |
| 		tp->rcv_nxt += ti->ti_len;
 | |
| 		flags = ti->ti_flags & TH_FIN;
 | |
| 		remque_32(ti);
 | |
| 		m = (struct mbuf *) REASS_MBUF(ti); /* XXX */
 | |
| 		ti = (struct tcpiphdr *)ti->ti_next;
 | |
| /*		if (so->so_state & SS_FCANTRCVMORE) */
 | |
| 		if (so->so_state & SS_FCANTSENDMORE)
 | |
| 			m_freem(m);
 | |
| 		else {
 | |
| 			if (so->so_emu) {
 | |
| 				if (tcp_emu(so,m)) sbappend(so, m);
 | |
| 			} else
 | |
| 				sbappend(so, m);
 | |
| 		}
 | |
| 	} while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
 | |
| /*	sorwakeup(so); */
 | |
| 	return (flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TCP input routine, follows pages 65-76 of the
 | |
|  * protocol specification dated September, 1981 very closely.
 | |
|  */
 | |
| void
 | |
| tcp_input(m, iphlen, inso)
 | |
| 	register struct mbuf *m;
 | |
| 	int iphlen;
 | |
| 	struct socket *inso;
 | |
| {
 | |
|   	struct ip save_ip, *ip;
 | |
| 	register struct tcpiphdr *ti;
 | |
| 	caddr_t optp = NULL;
 | |
| 	int optlen = 0;
 | |
| 	int len, tlen, off;
 | |
| 	register struct tcpcb *tp = 0;
 | |
| 	register int tiflags;
 | |
| 	struct socket *so = 0;
 | |
| 	int todrop, acked, ourfinisacked, needoutput = 0;
 | |
| /*	int dropsocket = 0; */
 | |
| 	int iss = 0;
 | |
| 	u_long tiwin;
 | |
| 	int ret;
 | |
| /*	int ts_present = 0; */
 | |
| 
 | |
| 	DEBUG_CALL("tcp_input");
 | |
| 	DEBUG_ARGS((dfd," m = %8lx  iphlen = %2d  inso = %lx\n",
 | |
| 		    (long )m, iphlen, (long )inso ));
 | |
| 
 | |
| 	/*
 | |
| 	 * If called with m == 0, then we're continuing the connect
 | |
| 	 */
 | |
| 	if (m == NULL) {
 | |
| 		so = inso;
 | |
| 
 | |
| 		/* Re-set a few variables */
 | |
| 		tp = sototcpcb(so);
 | |
| 		m = so->so_m;
 | |
| 		so->so_m = 0;
 | |
| 		ti = so->so_ti;
 | |
| 		tiwin = ti->ti_win;
 | |
| 		tiflags = ti->ti_flags;
 | |
| 
 | |
| 		goto cont_conn;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	STAT(tcpstat.tcps_rcvtotal++);
 | |
| 	/*
 | |
| 	 * Get IP and TCP header together in first mbuf.
 | |
| 	 * Note: IP leaves IP header in first mbuf.
 | |
| 	 */
 | |
| 	ti = mtod(m, struct tcpiphdr *);
 | |
| 	if (iphlen > sizeof(struct ip )) {
 | |
| 	  ip_stripoptions(m, (struct mbuf *)0);
 | |
| 	  iphlen=sizeof(struct ip );
 | |
| 	}
 | |
| 	/* XXX Check if too short */
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Save a copy of the IP header in case we want restore it
 | |
| 	 * for sending an ICMP error message in response.
 | |
| 	 */
 | |
| 	ip=mtod(m, struct ip *);
 | |
| 	save_ip = *ip;
 | |
| 	save_ip.ip_len+= iphlen;
 | |
| 
 | |
| 	/*
 | |
| 	 * Checksum extended TCP header and data.
 | |
| 	 */
 | |
| 	tlen = ((struct ip *)ti)->ip_len;
 | |
| 	ti->ti_next = ti->ti_prev = 0;
 | |
| 	ti->ti_x1 = 0;
 | |
| 	ti->ti_len = htons((u_int16_t)tlen);
 | |
| 	len = sizeof(struct ip ) + tlen;
 | |
| 	/* keep checksum for ICMP reply
 | |
| 	 * ti->ti_sum = cksum(m, len);
 | |
| 	 * if (ti->ti_sum) { */
 | |
| 	if(cksum(m, len)) {
 | |
| 	  STAT(tcpstat.tcps_rcvbadsum++);
 | |
| 	  goto drop;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check that TCP offset makes sense,
 | |
| 	 * pull out TCP options and adjust length.		XXX
 | |
| 	 */
 | |
| 	off = ti->ti_off << 2;
 | |
| 	if (off < sizeof (struct tcphdr) || off > tlen) {
 | |
| 	  STAT(tcpstat.tcps_rcvbadoff++);
 | |
| 	  goto drop;
 | |
| 	}
 | |
| 	tlen -= off;
 | |
| 	ti->ti_len = tlen;
 | |
| 	if (off > sizeof (struct tcphdr)) {
 | |
| 	  optlen = off - sizeof (struct tcphdr);
 | |
| 	  optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
 | |
| 
 | |
| 		/*
 | |
| 		 * Do quick retrieval of timestamp options ("options
 | |
| 		 * prediction?").  If timestamp is the only option and it's
 | |
| 		 * formatted as recommended in RFC 1323 appendix A, we
 | |
| 		 * quickly get the values now and not bother calling
 | |
| 		 * tcp_dooptions(), etc.
 | |
| 		 */
 | |
| /*		if ((optlen == TCPOLEN_TSTAMP_APPA ||
 | |
|  *		     (optlen > TCPOLEN_TSTAMP_APPA &&
 | |
|  *			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
 | |
|  *		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
 | |
|  *		     (ti->ti_flags & TH_SYN) == 0) {
 | |
|  *			ts_present = 1;
 | |
|  *			ts_val = ntohl(*(u_int32_t *)(optp + 4));
 | |
|  *			ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
 | |
|  *			optp = NULL;   / * we've parsed the options * /
 | |
|  *		}
 | |
|  */
 | |
| 	}
 | |
| 	tiflags = ti->ti_flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert TCP protocol specific fields to host format.
 | |
| 	 */
 | |
| 	NTOHL(ti->ti_seq);
 | |
| 	NTOHL(ti->ti_ack);
 | |
| 	NTOHS(ti->ti_win);
 | |
| 	NTOHS(ti->ti_urp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Drop TCP, IP headers and TCP options.
 | |
| 	 */
 | |
| 	m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
 | |
| 	m->m_len  -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Locate pcb for segment.
 | |
| 	 */
 | |
| findso:
 | |
| 	so = tcp_last_so;
 | |
| 	if (so->so_fport != ti->ti_dport ||
 | |
| 	    so->so_lport != ti->ti_sport ||
 | |
| 	    so->so_laddr.s_addr != ti->ti_src.s_addr ||
 | |
| 	    so->so_faddr.s_addr != ti->ti_dst.s_addr) {
 | |
| 		so = solookup(&tcb, ti->ti_src, ti->ti_sport,
 | |
| 			       ti->ti_dst, ti->ti_dport);
 | |
| 		if (so)
 | |
| 			tcp_last_so = so;
 | |
| 		STAT(tcpstat.tcps_socachemiss++);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the state is CLOSED (i.e., TCB does not exist) then
 | |
| 	 * all data in the incoming segment is discarded.
 | |
| 	 * If the TCB exists but is in CLOSED state, it is embryonic,
 | |
| 	 * but should either do a listen or a connect soon.
 | |
| 	 *
 | |
| 	 * state == CLOSED means we've done socreate() but haven't
 | |
| 	 * attached it to a protocol yet...
 | |
| 	 *
 | |
| 	 * XXX If a TCB does not exist, and the TH_SYN flag is
 | |
| 	 * the only flag set, then create a session, mark it
 | |
| 	 * as if it was LISTENING, and continue...
 | |
| 	 */
 | |
| 	if (so == 0) {
 | |
| 	  if ((tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) != TH_SYN)
 | |
| 	    goto dropwithreset;
 | |
| 
 | |
| 	  if ((so = socreate()) == NULL)
 | |
| 	    goto dropwithreset;
 | |
| 	  if (tcp_attach(so) < 0) {
 | |
| 	    free(so); /* Not sofree (if it failed, it's not insqued) */
 | |
| 	    goto dropwithreset;
 | |
| 	  }
 | |
| 
 | |
| 	  sbreserve(&so->so_snd, TCP_SNDSPACE);
 | |
| 	  sbreserve(&so->so_rcv, TCP_RCVSPACE);
 | |
| 
 | |
| 	  /*		tcp_last_so = so; */  /* XXX ? */
 | |
| 	  /*		tp = sototcpcb(so);    */
 | |
| 
 | |
| 	  so->so_laddr = ti->ti_src;
 | |
| 	  so->so_lport = ti->ti_sport;
 | |
| 	  so->so_faddr = ti->ti_dst;
 | |
| 	  so->so_fport = ti->ti_dport;
 | |
| 
 | |
| 	  if ((so->so_iptos = tcp_tos(so)) == 0)
 | |
| 	    so->so_iptos = ((struct ip *)ti)->ip_tos;
 | |
| 
 | |
| 	  tp = sototcpcb(so);
 | |
| 	  tp->t_state = TCPS_LISTEN;
 | |
| 	}
 | |
| 
 | |
|         /*
 | |
|          * If this is a still-connecting socket, this probably
 | |
|          * a retransmit of the SYN.  Whether it's a retransmit SYN
 | |
| 	 * or something else, we nuke it.
 | |
|          */
 | |
|         if (so->so_state & SS_ISFCONNECTING)
 | |
|                 goto drop;
 | |
| 
 | |
| 	tp = sototcpcb(so);
 | |
| 
 | |
| 	/* XXX Should never fail */
 | |
| 	if (tp == 0)
 | |
| 		goto dropwithreset;
 | |
| 	if (tp->t_state == TCPS_CLOSED)
 | |
| 		goto drop;
 | |
| 
 | |
| 	/* Unscale the window into a 32-bit value. */
 | |
| /*	if ((tiflags & TH_SYN) == 0)
 | |
|  *		tiwin = ti->ti_win << tp->snd_scale;
 | |
|  *	else
 | |
|  */
 | |
| 		tiwin = ti->ti_win;
 | |
| 
 | |
| 	/*
 | |
| 	 * Segment received on connection.
 | |
| 	 * Reset idle time and keep-alive timer.
 | |
| 	 */
 | |
| 	tp->t_idle = 0;
 | |
| 	if (SO_OPTIONS)
 | |
| 	   tp->t_timer[TCPT_KEEP] = TCPTV_KEEPINTVL;
 | |
| 	else
 | |
| 	   tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_IDLE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Process options if not in LISTEN state,
 | |
| 	 * else do it below (after getting remote address).
 | |
| 	 */
 | |
| 	if (optp && tp->t_state != TCPS_LISTEN)
 | |
| 		tcp_dooptions(tp, (u_char *)optp, optlen, ti);
 | |
| /* , */
 | |
| /*			&ts_present, &ts_val, &ts_ecr); */
 | |
| 
 | |
| 	/*
 | |
| 	 * Header prediction: check for the two common cases
 | |
| 	 * of a uni-directional data xfer.  If the packet has
 | |
| 	 * no control flags, is in-sequence, the window didn't
 | |
| 	 * change and we're not retransmitting, it's a
 | |
| 	 * candidate.  If the length is zero and the ack moved
 | |
| 	 * forward, we're the sender side of the xfer.  Just
 | |
| 	 * free the data acked & wake any higher level process
 | |
| 	 * that was blocked waiting for space.  If the length
 | |
| 	 * is non-zero and the ack didn't move, we're the
 | |
| 	 * receiver side.  If we're getting packets in-order
 | |
| 	 * (the reassembly queue is empty), add the data to
 | |
| 	 * the socket buffer and note that we need a delayed ack.
 | |
| 	 *
 | |
| 	 * XXX Some of these tests are not needed
 | |
| 	 * eg: the tiwin == tp->snd_wnd prevents many more
 | |
| 	 * predictions.. with no *real* advantage..
 | |
| 	 */
 | |
| 	if (tp->t_state == TCPS_ESTABLISHED &&
 | |
| 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
 | |
| /*	    (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) && */
 | |
| 	    ti->ti_seq == tp->rcv_nxt &&
 | |
| 	    tiwin && tiwin == tp->snd_wnd &&
 | |
| 	    tp->snd_nxt == tp->snd_max) {
 | |
| 		/*
 | |
| 		 * If last ACK falls within this segment's sequence numbers,
 | |
| 		 *  record the timestamp.
 | |
| 		 */
 | |
| /*		if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
 | |
|  *		   SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
 | |
|  *			tp->ts_recent_age = tcp_now;
 | |
|  *			tp->ts_recent = ts_val;
 | |
|  *		}
 | |
|  */
 | |
| 		if (ti->ti_len == 0) {
 | |
| 			if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
 | |
| 			    SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
 | |
| 			    tp->snd_cwnd >= tp->snd_wnd) {
 | |
| 				/*
 | |
| 				 * this is a pure ack for outstanding data.
 | |
| 				 */
 | |
| 				STAT(tcpstat.tcps_predack++);
 | |
| /*				if (ts_present)
 | |
|  *					tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
 | |
|  *				else
 | |
|  */				     if (tp->t_rtt &&
 | |
| 					    SEQ_GT(ti->ti_ack, tp->t_rtseq))
 | |
| 					tcp_xmit_timer(tp, tp->t_rtt);
 | |
| 				acked = ti->ti_ack - tp->snd_una;
 | |
| 				STAT(tcpstat.tcps_rcvackpack++);
 | |
| 				STAT(tcpstat.tcps_rcvackbyte += acked);
 | |
| 				sbdrop(&so->so_snd, acked);
 | |
| 				tp->snd_una = ti->ti_ack;
 | |
| 				m_freem(m);
 | |
| 
 | |
| 				/*
 | |
| 				 * If all outstanding data are acked, stop
 | |
| 				 * retransmit timer, otherwise restart timer
 | |
| 				 * using current (possibly backed-off) value.
 | |
| 				 * If process is waiting for space,
 | |
| 				 * wakeup/selwakeup/signal.  If data
 | |
| 				 * are ready to send, let tcp_output
 | |
| 				 * decide between more output or persist.
 | |
| 				 */
 | |
| 				if (tp->snd_una == tp->snd_max)
 | |
| 					tp->t_timer[TCPT_REXMT] = 0;
 | |
| 				else if (tp->t_timer[TCPT_PERSIST] == 0)
 | |
| 					tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
 | |
| 
 | |
| 				/*
 | |
| 				 * There's room in so_snd, sowwakup will read()
 | |
| 				 * from the socket if we can
 | |
| 				 */
 | |
| /*				if (so->so_snd.sb_flags & SB_NOTIFY)
 | |
|  *					sowwakeup(so);
 | |
|  */
 | |
| 				/*
 | |
| 				 * This is called because sowwakeup might have
 | |
| 				 * put data into so_snd.  Since we don't so sowwakeup,
 | |
| 				 * we don't need this.. XXX???
 | |
| 				 */
 | |
| 				if (so->so_snd.sb_cc)
 | |
| 					(void) tcp_output(tp);
 | |
| 
 | |
| 				return;
 | |
| 			}
 | |
| 		} else if (ti->ti_ack == tp->snd_una &&
 | |
| 		    tp->seg_next == (tcpiphdrp_32)tp &&
 | |
| 		    ti->ti_len <= sbspace(&so->so_rcv)) {
 | |
| 			/*
 | |
| 			 * this is a pure, in-sequence data packet
 | |
| 			 * with nothing on the reassembly queue and
 | |
| 			 * we have enough buffer space to take it.
 | |
| 			 */
 | |
| 			STAT(tcpstat.tcps_preddat++);
 | |
| 			tp->rcv_nxt += ti->ti_len;
 | |
| 			STAT(tcpstat.tcps_rcvpack++);
 | |
| 			STAT(tcpstat.tcps_rcvbyte += ti->ti_len);
 | |
| 			/*
 | |
| 			 * Add data to socket buffer.
 | |
| 			 */
 | |
| 			if (so->so_emu) {
 | |
| 				if (tcp_emu(so,m)) sbappend(so, m);
 | |
| 			} else
 | |
| 				sbappend(so, m);
 | |
| 
 | |
| 			/*
 | |
| 			 * XXX This is called when data arrives.  Later, check
 | |
| 			 * if we can actually write() to the socket
 | |
| 			 * XXX Need to check? It's be NON_BLOCKING
 | |
| 			 */
 | |
| /*			sorwakeup(so); */
 | |
| 
 | |
| 			/*
 | |
| 			 * If this is a short packet, then ACK now - with Nagel
 | |
| 			 *	congestion avoidance sender won't send more until
 | |
| 			 *	he gets an ACK.
 | |
| 			 *
 | |
| 			 * It is better to not delay acks at all to maximize
 | |
| 			 * TCP throughput.  See RFC 2581.
 | |
| 			 */
 | |
| 			tp->t_flags |= TF_ACKNOW;
 | |
| 			tcp_output(tp);
 | |
| 			return;
 | |
| 		}
 | |
| 	} /* header prediction */
 | |
| 	/*
 | |
| 	 * Calculate amount of space in receive window,
 | |
| 	 * and then do TCP input processing.
 | |
| 	 * Receive window is amount of space in rcv queue,
 | |
| 	 * but not less than advertised window.
 | |
| 	 */
 | |
| 	{ int win;
 | |
|           win = sbspace(&so->so_rcv);
 | |
| 	  if (win < 0)
 | |
| 	    win = 0;
 | |
| 	  tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
 | |
| 	}
 | |
| 
 | |
| 	switch (tp->t_state) {
 | |
| 
 | |
| 	/*
 | |
| 	 * If the state is LISTEN then ignore segment if it contains an RST.
 | |
| 	 * If the segment contains an ACK then it is bad and send a RST.
 | |
| 	 * If it does not contain a SYN then it is not interesting; drop it.
 | |
| 	 * Don't bother responding if the destination was a broadcast.
 | |
| 	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
 | |
| 	 * tp->iss, and send a segment:
 | |
| 	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
 | |
| 	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
 | |
| 	 * Fill in remote peer address fields if not previously specified.
 | |
| 	 * Enter SYN_RECEIVED state, and process any other fields of this
 | |
| 	 * segment in this state.
 | |
| 	 */
 | |
| 	case TCPS_LISTEN: {
 | |
| 
 | |
| 	  if (tiflags & TH_RST)
 | |
| 	    goto drop;
 | |
| 	  if (tiflags & TH_ACK)
 | |
| 	    goto dropwithreset;
 | |
| 	  if ((tiflags & TH_SYN) == 0)
 | |
| 	    goto drop;
 | |
| 
 | |
| 	  /*
 | |
| 	   * This has way too many gotos...
 | |
| 	   * But a bit of spaghetti code never hurt anybody :)
 | |
| 	   */
 | |
| 
 | |
| 	  /*
 | |
| 	   * If this is destined for the control address, then flag to
 | |
| 	   * tcp_ctl once connected, otherwise connect
 | |
| 	   */
 | |
| 	  if ((so->so_faddr.s_addr&htonl(0xffffff00)) == special_addr.s_addr) {
 | |
| 	    int lastbyte=ntohl(so->so_faddr.s_addr) & 0xff;
 | |
| 	    if (lastbyte!=CTL_ALIAS && lastbyte!=CTL_DNS) {
 | |
| #if 0
 | |
| 	      if(lastbyte==CTL_CMD || lastbyte==CTL_EXEC) {
 | |
| 		/* Command or exec adress */
 | |
| 		so->so_state |= SS_CTL;
 | |
| 	      } else
 | |
| #endif
 | |
|               {
 | |
| 		/* May be an add exec */
 | |
| 		struct ex_list *ex_ptr;
 | |
| 		for(ex_ptr = exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) {
 | |
| 		  if(ex_ptr->ex_fport == so->so_fport &&
 | |
| 		     lastbyte == ex_ptr->ex_addr) {
 | |
| 		    so->so_state |= SS_CTL;
 | |
| 		    break;
 | |
| 		  }
 | |
| 		}
 | |
| 	      }
 | |
| 	      if(so->so_state & SS_CTL) goto cont_input;
 | |
| 	    }
 | |
| 	    /* CTL_ALIAS: Do nothing, tcp_fconnect will be called on it */
 | |
| 	  }
 | |
| 
 | |
| 	  if (so->so_emu & EMU_NOCONNECT) {
 | |
| 	    so->so_emu &= ~EMU_NOCONNECT;
 | |
| 	    goto cont_input;
 | |
| 	  }
 | |
| 
 | |
| 	  if((tcp_fconnect(so) == -1) && (errno != EINPROGRESS) && (errno != EWOULDBLOCK)) {
 | |
| 	    u_char code=ICMP_UNREACH_NET;
 | |
| 	    DEBUG_MISC((dfd," tcp fconnect errno = %d-%s\n",
 | |
| 			errno,strerror(errno)));
 | |
| 	    if(errno == ECONNREFUSED) {
 | |
| 	      /* ACK the SYN, send RST to refuse the connection */
 | |
| 	      tcp_respond(tp, ti, m, ti->ti_seq+1, (tcp_seq)0,
 | |
| 			  TH_RST|TH_ACK);
 | |
| 	    } else {
 | |
| 	      if(errno == EHOSTUNREACH) code=ICMP_UNREACH_HOST;
 | |
| 	      HTONL(ti->ti_seq);             /* restore tcp header */
 | |
| 	      HTONL(ti->ti_ack);
 | |
| 	      HTONS(ti->ti_win);
 | |
| 	      HTONS(ti->ti_urp);
 | |
| 	      m->m_data -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
 | |
| 	      m->m_len  += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
 | |
| 	      *ip=save_ip;
 | |
| 	      icmp_error(m, ICMP_UNREACH,code, 0,strerror(errno));
 | |
| 	    }
 | |
| 	    tp = tcp_close(tp);
 | |
| 	    m_free(m);
 | |
| 	  } else {
 | |
| 	    /*
 | |
| 	     * Haven't connected yet, save the current mbuf
 | |
| 	     * and ti, and return
 | |
| 	     * XXX Some OS's don't tell us whether the connect()
 | |
| 	     * succeeded or not.  So we must time it out.
 | |
| 	     */
 | |
| 	    so->so_m = m;
 | |
| 	    so->so_ti = ti;
 | |
| 	    tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
 | |
| 	    tp->t_state = TCPS_SYN_RECEIVED;
 | |
| 	  }
 | |
| 	  return;
 | |
| 
 | |
| 	cont_conn:
 | |
| 	  /* m==NULL
 | |
| 	   * Check if the connect succeeded
 | |
| 	   */
 | |
| 	  if (so->so_state & SS_NOFDREF) {
 | |
| 	    tp = tcp_close(tp);
 | |
| 	    goto dropwithreset;
 | |
| 	  }
 | |
| 	cont_input:
 | |
| 	  tcp_template(tp);
 | |
| 
 | |
| 	  if (optp)
 | |
| 	    tcp_dooptions(tp, (u_char *)optp, optlen, ti);
 | |
| 	  /* , */
 | |
| 	  /*				&ts_present, &ts_val, &ts_ecr); */
 | |
| 
 | |
| 	  if (iss)
 | |
| 	    tp->iss = iss;
 | |
| 	  else
 | |
| 	    tp->iss = tcp_iss;
 | |
| 	  tcp_iss += TCP_ISSINCR/2;
 | |
| 	  tp->irs = ti->ti_seq;
 | |
| 	  tcp_sendseqinit(tp);
 | |
| 	  tcp_rcvseqinit(tp);
 | |
| 	  tp->t_flags |= TF_ACKNOW;
 | |
| 	  tp->t_state = TCPS_SYN_RECEIVED;
 | |
| 	  tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
 | |
| 	  STAT(tcpstat.tcps_accepts++);
 | |
| 	  goto trimthenstep6;
 | |
| 	} /* case TCPS_LISTEN */
 | |
| 
 | |
| 	/*
 | |
| 	 * If the state is SYN_SENT:
 | |
| 	 *	if seg contains an ACK, but not for our SYN, drop the input.
 | |
| 	 *	if seg contains a RST, then drop the connection.
 | |
| 	 *	if seg does not contain SYN, then drop it.
 | |
| 	 * Otherwise this is an acceptable SYN segment
 | |
| 	 *	initialize tp->rcv_nxt and tp->irs
 | |
| 	 *	if seg contains ack then advance tp->snd_una
 | |
| 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
 | |
| 	 *	arrange for segment to be acked (eventually)
 | |
| 	 *	continue processing rest of data/controls, beginning with URG
 | |
| 	 */
 | |
| 	case TCPS_SYN_SENT:
 | |
| 		if ((tiflags & TH_ACK) &&
 | |
| 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
 | |
| 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
 | |
| 			goto dropwithreset;
 | |
| 
 | |
| 		if (tiflags & TH_RST) {
 | |
| 			if (tiflags & TH_ACK)
 | |
| 				tp = tcp_drop(tp,0); /* XXX Check t_softerror! */
 | |
| 			goto drop;
 | |
| 		}
 | |
| 
 | |
| 		if ((tiflags & TH_SYN) == 0)
 | |
| 			goto drop;
 | |
| 		if (tiflags & TH_ACK) {
 | |
| 			tp->snd_una = ti->ti_ack;
 | |
| 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
 | |
| 				tp->snd_nxt = tp->snd_una;
 | |
| 		}
 | |
| 
 | |
| 		tp->t_timer[TCPT_REXMT] = 0;
 | |
| 		tp->irs = ti->ti_seq;
 | |
| 		tcp_rcvseqinit(tp);
 | |
| 		tp->t_flags |= TF_ACKNOW;
 | |
| 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
 | |
| 			STAT(tcpstat.tcps_connects++);
 | |
| 			soisfconnected(so);
 | |
| 			tp->t_state = TCPS_ESTABLISHED;
 | |
| 
 | |
| 			/* Do window scaling on this connection? */
 | |
| /*			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
 | |
|  *				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
 | |
|  * 				tp->snd_scale = tp->requested_s_scale;
 | |
|  *				tp->rcv_scale = tp->request_r_scale;
 | |
|  *			}
 | |
|  */
 | |
| 			(void) tcp_reass(tp, (struct tcpiphdr *)0,
 | |
| 				(struct mbuf *)0);
 | |
| 			/*
 | |
| 			 * if we didn't have to retransmit the SYN,
 | |
| 			 * use its rtt as our initial srtt & rtt var.
 | |
| 			 */
 | |
| 			if (tp->t_rtt)
 | |
| 				tcp_xmit_timer(tp, tp->t_rtt);
 | |
| 		} else
 | |
| 			tp->t_state = TCPS_SYN_RECEIVED;
 | |
| 
 | |
| trimthenstep6:
 | |
| 		/*
 | |
| 		 * Advance ti->ti_seq to correspond to first data byte.
 | |
| 		 * If data, trim to stay within window,
 | |
| 		 * dropping FIN if necessary.
 | |
| 		 */
 | |
| 		ti->ti_seq++;
 | |
| 		if (ti->ti_len > tp->rcv_wnd) {
 | |
| 			todrop = ti->ti_len - tp->rcv_wnd;
 | |
| 			m_adj(m, -todrop);
 | |
| 			ti->ti_len = tp->rcv_wnd;
 | |
| 			tiflags &= ~TH_FIN;
 | |
| 			STAT(tcpstat.tcps_rcvpackafterwin++);
 | |
| 			STAT(tcpstat.tcps_rcvbyteafterwin += todrop);
 | |
| 		}
 | |
| 		tp->snd_wl1 = ti->ti_seq - 1;
 | |
| 		tp->rcv_up = ti->ti_seq;
 | |
| 		goto step6;
 | |
| 	} /* switch tp->t_state */
 | |
| 	/*
 | |
| 	 * States other than LISTEN or SYN_SENT.
 | |
| 	 * First check timestamp, if present.
 | |
| 	 * Then check that at least some bytes of segment are within
 | |
| 	 * receive window.  If segment begins before rcv_nxt,
 | |
| 	 * drop leading data (and SYN); if nothing left, just ack.
 | |
| 	 *
 | |
| 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
 | |
| 	 * and it's less than ts_recent, drop it.
 | |
| 	 */
 | |
| /*	if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
 | |
|  *	    TSTMP_LT(ts_val, tp->ts_recent)) {
 | |
|  *
 | |
|  */		/* Check to see if ts_recent is over 24 days old.  */
 | |
| /*		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
 | |
|  */			/*
 | |
|  *			 * Invalidate ts_recent.  If this segment updates
 | |
|  *			 * ts_recent, the age will be reset later and ts_recent
 | |
|  *			 * will get a valid value.  If it does not, setting
 | |
|  *			 * ts_recent to zero will at least satisfy the
 | |
|  *			 * requirement that zero be placed in the timestamp
 | |
|  *			 * echo reply when ts_recent isn't valid.  The
 | |
|  *			 * age isn't reset until we get a valid ts_recent
 | |
|  *			 * because we don't want out-of-order segments to be
 | |
|  *			 * dropped when ts_recent is old.
 | |
|  *			 */
 | |
| /*			tp->ts_recent = 0;
 | |
|  *		} else {
 | |
|  *			tcpstat.tcps_rcvduppack++;
 | |
|  *			tcpstat.tcps_rcvdupbyte += ti->ti_len;
 | |
|  *			tcpstat.tcps_pawsdrop++;
 | |
|  *			goto dropafterack;
 | |
|  *		}
 | |
|  *	}
 | |
|  */
 | |
| 
 | |
| 	todrop = tp->rcv_nxt - ti->ti_seq;
 | |
| 	if (todrop > 0) {
 | |
| 		if (tiflags & TH_SYN) {
 | |
| 			tiflags &= ~TH_SYN;
 | |
| 			ti->ti_seq++;
 | |
| 			if (ti->ti_urp > 1)
 | |
| 				ti->ti_urp--;
 | |
| 			else
 | |
| 				tiflags &= ~TH_URG;
 | |
| 			todrop--;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Following if statement from Stevens, vol. 2, p. 960.
 | |
| 		 */
 | |
| 		if (todrop > ti->ti_len
 | |
| 		    || (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) {
 | |
| 			/*
 | |
| 			 * Any valid FIN must be to the left of the window.
 | |
| 			 * At this point the FIN must be a duplicate or out
 | |
| 			 * of sequence; drop it.
 | |
| 			 */
 | |
| 			tiflags &= ~TH_FIN;
 | |
| 
 | |
| 			/*
 | |
| 			 * Send an ACK to resynchronize and drop any data.
 | |
| 			 * But keep on processing for RST or ACK.
 | |
| 			 */
 | |
| 			tp->t_flags |= TF_ACKNOW;
 | |
| 			todrop = ti->ti_len;
 | |
| 			STAT(tcpstat.tcps_rcvduppack++);
 | |
| 			STAT(tcpstat.tcps_rcvdupbyte += todrop);
 | |
| 		} else {
 | |
| 			STAT(tcpstat.tcps_rcvpartduppack++);
 | |
| 			STAT(tcpstat.tcps_rcvpartdupbyte += todrop);
 | |
| 		}
 | |
| 		m_adj(m, todrop);
 | |
| 		ti->ti_seq += todrop;
 | |
| 		ti->ti_len -= todrop;
 | |
| 		if (ti->ti_urp > todrop)
 | |
| 			ti->ti_urp -= todrop;
 | |
| 		else {
 | |
| 			tiflags &= ~TH_URG;
 | |
| 			ti->ti_urp = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * If new data are received on a connection after the
 | |
| 	 * user processes are gone, then RST the other end.
 | |
| 	 */
 | |
| 	if ((so->so_state & SS_NOFDREF) &&
 | |
| 	    tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
 | |
| 		tp = tcp_close(tp);
 | |
| 		STAT(tcpstat.tcps_rcvafterclose++);
 | |
| 		goto dropwithreset;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If segment ends after window, drop trailing data
 | |
| 	 * (and PUSH and FIN); if nothing left, just ACK.
 | |
| 	 */
 | |
| 	todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
 | |
| 	if (todrop > 0) {
 | |
| 		STAT(tcpstat.tcps_rcvpackafterwin++);
 | |
| 		if (todrop >= ti->ti_len) {
 | |
| 			STAT(tcpstat.tcps_rcvbyteafterwin += ti->ti_len);
 | |
| 			/*
 | |
| 			 * If a new connection request is received
 | |
| 			 * while in TIME_WAIT, drop the old connection
 | |
| 			 * and start over if the sequence numbers
 | |
| 			 * are above the previous ones.
 | |
| 			 */
 | |
| 			if (tiflags & TH_SYN &&
 | |
| 			    tp->t_state == TCPS_TIME_WAIT &&
 | |
| 			    SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
 | |
| 				iss = tp->rcv_nxt + TCP_ISSINCR;
 | |
| 				tp = tcp_close(tp);
 | |
| 				goto findso;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * If window is closed can only take segments at
 | |
| 			 * window edge, and have to drop data and PUSH from
 | |
| 			 * incoming segments.  Continue processing, but
 | |
| 			 * remember to ack.  Otherwise, drop segment
 | |
| 			 * and ack.
 | |
| 			 */
 | |
| 			if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
 | |
| 				tp->t_flags |= TF_ACKNOW;
 | |
| 				STAT(tcpstat.tcps_rcvwinprobe++);
 | |
| 			} else
 | |
| 				goto dropafterack;
 | |
| 		} else
 | |
| 			STAT(tcpstat.tcps_rcvbyteafterwin += todrop);
 | |
| 		m_adj(m, -todrop);
 | |
| 		ti->ti_len -= todrop;
 | |
| 		tiflags &= ~(TH_PUSH|TH_FIN);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If last ACK falls within this segment's sequence numbers,
 | |
| 	 * record its timestamp.
 | |
| 	 */
 | |
| /*	if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
 | |
|  *	    SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
 | |
|  *		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
 | |
|  *		tp->ts_recent_age = tcp_now;
 | |
|  *		tp->ts_recent = ts_val;
 | |
|  *	}
 | |
|  */
 | |
| 
 | |
| 	/*
 | |
| 	 * If the RST bit is set examine the state:
 | |
| 	 *    SYN_RECEIVED STATE:
 | |
| 	 *	If passive open, return to LISTEN state.
 | |
| 	 *	If active open, inform user that connection was refused.
 | |
| 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
 | |
| 	 *	Inform user that connection was reset, and close tcb.
 | |
| 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
 | |
| 	 *	Close the tcb.
 | |
| 	 */
 | |
| 	if (tiflags&TH_RST) switch (tp->t_state) {
 | |
| 
 | |
| 	case TCPS_SYN_RECEIVED:
 | |
| /*		so->so_error = ECONNREFUSED; */
 | |
| 		goto close;
 | |
| 
 | |
| 	case TCPS_ESTABLISHED:
 | |
| 	case TCPS_FIN_WAIT_1:
 | |
| 	case TCPS_FIN_WAIT_2:
 | |
| 	case TCPS_CLOSE_WAIT:
 | |
| /*		so->so_error = ECONNRESET; */
 | |
| 	close:
 | |
| 		tp->t_state = TCPS_CLOSED;
 | |
| 		STAT(tcpstat.tcps_drops++);
 | |
| 		tp = tcp_close(tp);
 | |
| 		goto drop;
 | |
| 
 | |
| 	case TCPS_CLOSING:
 | |
| 	case TCPS_LAST_ACK:
 | |
| 	case TCPS_TIME_WAIT:
 | |
| 		tp = tcp_close(tp);
 | |
| 		goto drop;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If a SYN is in the window, then this is an
 | |
| 	 * error and we send an RST and drop the connection.
 | |
| 	 */
 | |
| 	if (tiflags & TH_SYN) {
 | |
| 		tp = tcp_drop(tp,0);
 | |
| 		goto dropwithreset;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the ACK bit is off we drop the segment and return.
 | |
| 	 */
 | |
| 	if ((tiflags & TH_ACK) == 0) goto drop;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ack processing.
 | |
| 	 */
 | |
| 	switch (tp->t_state) {
 | |
| 	/*
 | |
| 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
 | |
| 	 * ESTABLISHED state and continue processing, otherwise
 | |
| 	 * send an RST.  una<=ack<=max
 | |
| 	 */
 | |
| 	case TCPS_SYN_RECEIVED:
 | |
| 
 | |
| 		if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
 | |
| 		    SEQ_GT(ti->ti_ack, tp->snd_max))
 | |
| 			goto dropwithreset;
 | |
| 		STAT(tcpstat.tcps_connects++);
 | |
| 		tp->t_state = TCPS_ESTABLISHED;
 | |
| 		/*
 | |
| 		 * The sent SYN is ack'ed with our sequence number +1
 | |
| 		 * The first data byte already in the buffer will get
 | |
| 		 * lost if no correction is made.  This is only needed for
 | |
| 		 * SS_CTL since the buffer is empty otherwise.
 | |
| 		 * tp->snd_una++; or:
 | |
| 		 */
 | |
| 		tp->snd_una=ti->ti_ack;
 | |
| 		if (so->so_state & SS_CTL) {
 | |
| 		  /* So tcp_ctl reports the right state */
 | |
| 		  ret = tcp_ctl(so);
 | |
| 		  if (ret == 1) {
 | |
| 		    soisfconnected(so);
 | |
| 		    so->so_state &= ~SS_CTL;   /* success XXX */
 | |
| 		  } else if (ret == 2) {
 | |
| 		    so->so_state = SS_NOFDREF; /* CTL_CMD */
 | |
| 		  } else {
 | |
| 		    needoutput = 1;
 | |
| 		    tp->t_state = TCPS_FIN_WAIT_1;
 | |
| 		  }
 | |
| 		} else {
 | |
| 		  soisfconnected(so);
 | |
| 		}
 | |
| 
 | |
| 		/* Do window scaling? */
 | |
| /*		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
 | |
|  *			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
 | |
|  *			tp->snd_scale = tp->requested_s_scale;
 | |
|  *			tp->rcv_scale = tp->request_r_scale;
 | |
|  *		}
 | |
|  */
 | |
| 		(void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
 | |
| 		tp->snd_wl1 = ti->ti_seq - 1;
 | |
| 		/* Avoid ack processing; snd_una==ti_ack  =>  dup ack */
 | |
| 		goto synrx_to_est;
 | |
| 		/* fall into ... */
 | |
| 
 | |
| 	/*
 | |
| 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
 | |
| 	 * ACKs.  If the ack is in the range
 | |
| 	 *	tp->snd_una < ti->ti_ack <= tp->snd_max
 | |
| 	 * then advance tp->snd_una to ti->ti_ack and drop
 | |
| 	 * data from the retransmission queue.  If this ACK reflects
 | |
| 	 * more up to date window information we update our window information.
 | |
| 	 */
 | |
| 	case TCPS_ESTABLISHED:
 | |
| 	case TCPS_FIN_WAIT_1:
 | |
| 	case TCPS_FIN_WAIT_2:
 | |
| 	case TCPS_CLOSE_WAIT:
 | |
| 	case TCPS_CLOSING:
 | |
| 	case TCPS_LAST_ACK:
 | |
| 	case TCPS_TIME_WAIT:
 | |
| 
 | |
| 		if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
 | |
| 			if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
 | |
| 			  STAT(tcpstat.tcps_rcvdupack++);
 | |
| 			  DEBUG_MISC((dfd," dup ack  m = %lx  so = %lx \n",
 | |
| 				      (long )m, (long )so));
 | |
| 				/*
 | |
| 				 * If we have outstanding data (other than
 | |
| 				 * a window probe), this is a completely
 | |
| 				 * duplicate ack (ie, window info didn't
 | |
| 				 * change), the ack is the biggest we've
 | |
| 				 * seen and we've seen exactly our rexmt
 | |
| 				 * threshold of them, assume a packet
 | |
| 				 * has been dropped and retransmit it.
 | |
| 				 * Kludge snd_nxt & the congestion
 | |
| 				 * window so we send only this one
 | |
| 				 * packet.
 | |
| 				 *
 | |
| 				 * We know we're losing at the current
 | |
| 				 * window size so do congestion avoidance
 | |
| 				 * (set ssthresh to half the current window
 | |
| 				 * and pull our congestion window back to
 | |
| 				 * the new ssthresh).
 | |
| 				 *
 | |
| 				 * Dup acks mean that packets have left the
 | |
| 				 * network (they're now cached at the receiver)
 | |
| 				 * so bump cwnd by the amount in the receiver
 | |
| 				 * to keep a constant cwnd packets in the
 | |
| 				 * network.
 | |
| 				 */
 | |
| 				if (tp->t_timer[TCPT_REXMT] == 0 ||
 | |
| 				    ti->ti_ack != tp->snd_una)
 | |
| 					tp->t_dupacks = 0;
 | |
| 				else if (++tp->t_dupacks == TCPREXMTTHRESH) {
 | |
| 					tcp_seq onxt = tp->snd_nxt;
 | |
| 					u_int win =
 | |
| 					    min(tp->snd_wnd, tp->snd_cwnd) / 2 /
 | |
| 						tp->t_maxseg;
 | |
| 
 | |
| 					if (win < 2)
 | |
| 						win = 2;
 | |
| 					tp->snd_ssthresh = win * tp->t_maxseg;
 | |
| 					tp->t_timer[TCPT_REXMT] = 0;
 | |
| 					tp->t_rtt = 0;
 | |
| 					tp->snd_nxt = ti->ti_ack;
 | |
| 					tp->snd_cwnd = tp->t_maxseg;
 | |
| 					(void) tcp_output(tp);
 | |
| 					tp->snd_cwnd = tp->snd_ssthresh +
 | |
| 					       tp->t_maxseg * tp->t_dupacks;
 | |
| 					if (SEQ_GT(onxt, tp->snd_nxt))
 | |
| 						tp->snd_nxt = onxt;
 | |
| 					goto drop;
 | |
| 				} else if (tp->t_dupacks > TCPREXMTTHRESH) {
 | |
| 					tp->snd_cwnd += tp->t_maxseg;
 | |
| 					(void) tcp_output(tp);
 | |
| 					goto drop;
 | |
| 				}
 | |
| 			} else
 | |
| 				tp->t_dupacks = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	synrx_to_est:
 | |
| 		/*
 | |
| 		 * If the congestion window was inflated to account
 | |
| 		 * for the other side's cached packets, retract it.
 | |
| 		 */
 | |
| 		if (tp->t_dupacks > TCPREXMTTHRESH &&
 | |
| 		    tp->snd_cwnd > tp->snd_ssthresh)
 | |
| 			tp->snd_cwnd = tp->snd_ssthresh;
 | |
| 		tp->t_dupacks = 0;
 | |
| 		if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
 | |
| 			STAT(tcpstat.tcps_rcvacktoomuch++);
 | |
| 			goto dropafterack;
 | |
| 		}
 | |
| 		acked = ti->ti_ack - tp->snd_una;
 | |
| 		STAT(tcpstat.tcps_rcvackpack++);
 | |
| 		STAT(tcpstat.tcps_rcvackbyte += acked);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we have a timestamp reply, update smoothed
 | |
| 		 * round trip time.  If no timestamp is present but
 | |
| 		 * transmit timer is running and timed sequence
 | |
| 		 * number was acked, update smoothed round trip time.
 | |
| 		 * Since we now have an rtt measurement, cancel the
 | |
| 		 * timer backoff (cf., Phil Karn's retransmit alg.).
 | |
| 		 * Recompute the initial retransmit timer.
 | |
| 		 */
 | |
| /*		if (ts_present)
 | |
|  *			tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
 | |
|  *		else
 | |
|  */
 | |
| 		     if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
 | |
| 			tcp_xmit_timer(tp,tp->t_rtt);
 | |
| 
 | |
| 		/*
 | |
| 		 * If all outstanding data is acked, stop retransmit
 | |
| 		 * timer and remember to restart (more output or persist).
 | |
| 		 * If there is more data to be acked, restart retransmit
 | |
| 		 * timer, using current (possibly backed-off) value.
 | |
| 		 */
 | |
| 		if (ti->ti_ack == tp->snd_max) {
 | |
| 			tp->t_timer[TCPT_REXMT] = 0;
 | |
| 			needoutput = 1;
 | |
| 		} else if (tp->t_timer[TCPT_PERSIST] == 0)
 | |
| 			tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
 | |
| 		/*
 | |
| 		 * When new data is acked, open the congestion window.
 | |
| 		 * If the window gives us less than ssthresh packets
 | |
| 		 * in flight, open exponentially (maxseg per packet).
 | |
| 		 * Otherwise open linearly: maxseg per window
 | |
| 		 * (maxseg^2 / cwnd per packet).
 | |
| 		 */
 | |
| 		{
 | |
| 		  register u_int cw = tp->snd_cwnd;
 | |
| 		  register u_int incr = tp->t_maxseg;
 | |
| 
 | |
| 		  if (cw > tp->snd_ssthresh)
 | |
| 		    incr = incr * incr / cw;
 | |
| 		  tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
 | |
| 		}
 | |
| 		if (acked > so->so_snd.sb_cc) {
 | |
| 			tp->snd_wnd -= so->so_snd.sb_cc;
 | |
| 			sbdrop(&so->so_snd, (int )so->so_snd.sb_cc);
 | |
| 			ourfinisacked = 1;
 | |
| 		} else {
 | |
| 			sbdrop(&so->so_snd, acked);
 | |
| 			tp->snd_wnd -= acked;
 | |
| 			ourfinisacked = 0;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * XXX sowwakup is called when data is acked and there's room for
 | |
| 		 * for more data... it should read() the socket
 | |
| 		 */
 | |
| /*		if (so->so_snd.sb_flags & SB_NOTIFY)
 | |
|  *			sowwakeup(so);
 | |
|  */
 | |
| 		tp->snd_una = ti->ti_ack;
 | |
| 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
 | |
| 			tp->snd_nxt = tp->snd_una;
 | |
| 
 | |
| 		switch (tp->t_state) {
 | |
| 
 | |
| 		/*
 | |
| 		 * In FIN_WAIT_1 STATE in addition to the processing
 | |
| 		 * for the ESTABLISHED state if our FIN is now acknowledged
 | |
| 		 * then enter FIN_WAIT_2.
 | |
| 		 */
 | |
| 		case TCPS_FIN_WAIT_1:
 | |
| 			if (ourfinisacked) {
 | |
| 				/*
 | |
| 				 * If we can't receive any more
 | |
| 				 * data, then closing user can proceed.
 | |
| 				 * Starting the timer is contrary to the
 | |
| 				 * specification, but if we don't get a FIN
 | |
| 				 * we'll hang forever.
 | |
| 				 */
 | |
| 				if (so->so_state & SS_FCANTRCVMORE) {
 | |
| 					soisfdisconnected(so);
 | |
| 					tp->t_timer[TCPT_2MSL] = TCP_MAXIDLE;
 | |
| 				}
 | |
| 				tp->t_state = TCPS_FIN_WAIT_2;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 	 	/*
 | |
| 		 * In CLOSING STATE in addition to the processing for
 | |
| 		 * the ESTABLISHED state if the ACK acknowledges our FIN
 | |
| 		 * then enter the TIME-WAIT state, otherwise ignore
 | |
| 		 * the segment.
 | |
| 		 */
 | |
| 		case TCPS_CLOSING:
 | |
| 			if (ourfinisacked) {
 | |
| 				tp->t_state = TCPS_TIME_WAIT;
 | |
| 				tcp_canceltimers(tp);
 | |
| 				tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
 | |
| 				soisfdisconnected(so);
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * In LAST_ACK, we may still be waiting for data to drain
 | |
| 		 * and/or to be acked, as well as for the ack of our FIN.
 | |
| 		 * If our FIN is now acknowledged, delete the TCB,
 | |
| 		 * enter the closed state and return.
 | |
| 		 */
 | |
| 		case TCPS_LAST_ACK:
 | |
| 			if (ourfinisacked) {
 | |
| 				tp = tcp_close(tp);
 | |
| 				goto drop;
 | |
| 			}
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * In TIME_WAIT state the only thing that should arrive
 | |
| 		 * is a retransmission of the remote FIN.  Acknowledge
 | |
| 		 * it and restart the finack timer.
 | |
| 		 */
 | |
| 		case TCPS_TIME_WAIT:
 | |
| 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
 | |
| 			goto dropafterack;
 | |
| 		}
 | |
| 	} /* switch(tp->t_state) */
 | |
| 
 | |
| step6:
 | |
| 	/*
 | |
| 	 * Update window information.
 | |
| 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
 | |
| 	 */
 | |
| 	if ((tiflags & TH_ACK) &&
 | |
| 	    (SEQ_LT(tp->snd_wl1, ti->ti_seq) ||
 | |
| 	    (tp->snd_wl1 == ti->ti_seq && (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
 | |
| 	    (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))))) {
 | |
| 		/* keep track of pure window updates */
 | |
| 		if (ti->ti_len == 0 &&
 | |
| 		    tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
 | |
| 			STAT(tcpstat.tcps_rcvwinupd++);
 | |
| 		tp->snd_wnd = tiwin;
 | |
| 		tp->snd_wl1 = ti->ti_seq;
 | |
| 		tp->snd_wl2 = ti->ti_ack;
 | |
| 		if (tp->snd_wnd > tp->max_sndwnd)
 | |
| 			tp->max_sndwnd = tp->snd_wnd;
 | |
| 		needoutput = 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Process segments with URG.
 | |
| 	 */
 | |
| 	if ((tiflags & TH_URG) && ti->ti_urp &&
 | |
| 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
 | |
| 		/*
 | |
| 		 * This is a kludge, but if we receive and accept
 | |
| 		 * random urgent pointers, we'll crash in
 | |
| 		 * soreceive.  It's hard to imagine someone
 | |
| 		 * actually wanting to send this much urgent data.
 | |
| 		 */
 | |
| 		if (ti->ti_urp + so->so_rcv.sb_cc > so->so_rcv.sb_datalen) {
 | |
| 			ti->ti_urp = 0;
 | |
| 			tiflags &= ~TH_URG;
 | |
| 			goto dodata;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * If this segment advances the known urgent pointer,
 | |
| 		 * then mark the data stream.  This should not happen
 | |
| 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
 | |
| 		 * a FIN has been received from the remote side.
 | |
| 		 * In these states we ignore the URG.
 | |
| 		 *
 | |
| 		 * According to RFC961 (Assigned Protocols),
 | |
| 		 * the urgent pointer points to the last octet
 | |
| 		 * of urgent data.  We continue, however,
 | |
| 		 * to consider it to indicate the first octet
 | |
| 		 * of data past the urgent section as the original
 | |
| 		 * spec states (in one of two places).
 | |
| 		 */
 | |
| 		if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
 | |
| 			tp->rcv_up = ti->ti_seq + ti->ti_urp;
 | |
| 			so->so_urgc =  so->so_rcv.sb_cc +
 | |
| 				(tp->rcv_up - tp->rcv_nxt); /* -1; */
 | |
| 			tp->rcv_up = ti->ti_seq + ti->ti_urp;
 | |
| 
 | |
| 		}
 | |
| 	} else
 | |
| 		/*
 | |
| 		 * If no out of band data is expected,
 | |
| 		 * pull receive urgent pointer along
 | |
| 		 * with the receive window.
 | |
| 		 */
 | |
| 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
 | |
| 			tp->rcv_up = tp->rcv_nxt;
 | |
| dodata:
 | |
| 
 | |
| 	/*
 | |
| 	 * Process the segment text, merging it into the TCP sequencing queue,
 | |
| 	 * and arranging for acknowledgment of receipt if necessary.
 | |
| 	 * This process logically involves adjusting tp->rcv_wnd as data
 | |
| 	 * is presented to the user (this happens in tcp_usrreq.c,
 | |
| 	 * case PRU_RCVD).  If a FIN has already been received on this
 | |
| 	 * connection then we just ignore the text.
 | |
| 	 */
 | |
| 	if ((ti->ti_len || (tiflags&TH_FIN)) &&
 | |
| 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
 | |
| 		TCP_REASS(tp, ti, m, so, tiflags);
 | |
| 		/*
 | |
| 		 * Note the amount of data that peer has sent into
 | |
| 		 * our window, in order to estimate the sender's
 | |
| 		 * buffer size.
 | |
| 		 */
 | |
| 		len = so->so_rcv.sb_datalen - (tp->rcv_adv - tp->rcv_nxt);
 | |
| 	} else {
 | |
| 		m_free(m);
 | |
| 		tiflags &= ~TH_FIN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If FIN is received ACK the FIN and let the user know
 | |
| 	 * that the connection is closing.
 | |
| 	 */
 | |
| 	if (tiflags & TH_FIN) {
 | |
| 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
 | |
| 			/*
 | |
| 			 * If we receive a FIN we can't send more data,
 | |
| 			 * set it SS_FDRAIN
 | |
|                          * Shutdown the socket if there is no rx data in the
 | |
| 			 * buffer.
 | |
| 			 * soread() is called on completion of shutdown() and
 | |
| 			 * will got to TCPS_LAST_ACK, and use tcp_output()
 | |
| 			 * to send the FIN.
 | |
| 			 */
 | |
| /*			sofcantrcvmore(so); */
 | |
| 			sofwdrain(so);
 | |
| 
 | |
| 			tp->t_flags |= TF_ACKNOW;
 | |
| 			tp->rcv_nxt++;
 | |
| 		}
 | |
| 		switch (tp->t_state) {
 | |
| 
 | |
| 	 	/*
 | |
| 		 * In SYN_RECEIVED and ESTABLISHED STATES
 | |
| 		 * enter the CLOSE_WAIT state.
 | |
| 		 */
 | |
| 		case TCPS_SYN_RECEIVED:
 | |
| 		case TCPS_ESTABLISHED:
 | |
| 		  if(so->so_emu == EMU_CTL)        /* no shutdown on socket */
 | |
| 		    tp->t_state = TCPS_LAST_ACK;
 | |
| 		  else
 | |
| 		    tp->t_state = TCPS_CLOSE_WAIT;
 | |
| 		  break;
 | |
| 
 | |
| 	 	/*
 | |
| 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
 | |
| 		 * enter the CLOSING state.
 | |
| 		 */
 | |
| 		case TCPS_FIN_WAIT_1:
 | |
| 			tp->t_state = TCPS_CLOSING;
 | |
| 			break;
 | |
| 
 | |
| 	 	/*
 | |
| 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
 | |
| 		 * starting the time-wait timer, turning off the other
 | |
| 		 * standard timers.
 | |
| 		 */
 | |
| 		case TCPS_FIN_WAIT_2:
 | |
| 			tp->t_state = TCPS_TIME_WAIT;
 | |
| 			tcp_canceltimers(tp);
 | |
| 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
 | |
| 			soisfdisconnected(so);
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
 | |
| 		 */
 | |
| 		case TCPS_TIME_WAIT:
 | |
| 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a small packet, then ACK now - with Nagel
 | |
| 	 *      congestion avoidance sender won't send more until
 | |
| 	 *      he gets an ACK.
 | |
| 	 *
 | |
| 	 * See above.
 | |
| 	 */
 | |
| /*	if (ti->ti_len && (unsigned)ti->ti_len < tp->t_maxseg) {
 | |
|  */
 | |
| /*	if ((ti->ti_len && (unsigned)ti->ti_len < tp->t_maxseg &&
 | |
|  *		(so->so_iptos & IPTOS_LOWDELAY) == 0) ||
 | |
|  *	       ((so->so_iptos & IPTOS_LOWDELAY) &&
 | |
|  *	       ((struct tcpiphdr_2 *)ti)->first_char == (char)27)) {
 | |
|  */
 | |
| 	if (ti->ti_len && (unsigned)ti->ti_len <= 5 &&
 | |
| 	    ((struct tcpiphdr_2 *)ti)->first_char == (char)27) {
 | |
| 		tp->t_flags |= TF_ACKNOW;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Return any desired output.
 | |
| 	 */
 | |
| 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
 | |
| 		(void) tcp_output(tp);
 | |
| 	}
 | |
| 	return;
 | |
| 
 | |
| dropafterack:
 | |
| 	/*
 | |
| 	 * Generate an ACK dropping incoming segment if it occupies
 | |
| 	 * sequence space, where the ACK reflects our state.
 | |
| 	 */
 | |
| 	if (tiflags & TH_RST)
 | |
| 		goto drop;
 | |
| 	m_freem(m);
 | |
| 	tp->t_flags |= TF_ACKNOW;
 | |
| 	(void) tcp_output(tp);
 | |
| 	return;
 | |
| 
 | |
| dropwithreset:
 | |
| 	/* reuses m if m!=NULL, m_free() unnecessary */
 | |
| 	if (tiflags & TH_ACK)
 | |
| 		tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
 | |
| 	else {
 | |
| 		if (tiflags & TH_SYN) ti->ti_len++;
 | |
| 		tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
 | |
| 		    TH_RST|TH_ACK);
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| drop:
 | |
| 	/*
 | |
| 	 * Drop space held by incoming segment and return.
 | |
| 	 */
 | |
| 	m_free(m);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
|  /* , ts_present, ts_val, ts_ecr) */
 | |
| /*	int *ts_present;
 | |
|  *	u_int32_t *ts_val, *ts_ecr;
 | |
|  */
 | |
| static void
 | |
| tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcpiphdr *ti)
 | |
| {
 | |
| 	u_int16_t mss;
 | |
| 	int opt, optlen;
 | |
| 
 | |
| 	DEBUG_CALL("tcp_dooptions");
 | |
| 	DEBUG_ARGS((dfd," tp = %lx  cnt=%i \n", (long )tp, cnt));
 | |
| 
 | |
| 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
 | |
| 		opt = cp[0];
 | |
| 		if (opt == TCPOPT_EOL)
 | |
| 			break;
 | |
| 		if (opt == TCPOPT_NOP)
 | |
| 			optlen = 1;
 | |
| 		else {
 | |
| 			optlen = cp[1];
 | |
| 			if (optlen <= 0)
 | |
| 				break;
 | |
| 		}
 | |
| 		switch (opt) {
 | |
| 
 | |
| 		default:
 | |
| 			continue;
 | |
| 
 | |
| 		case TCPOPT_MAXSEG:
 | |
| 			if (optlen != TCPOLEN_MAXSEG)
 | |
| 				continue;
 | |
| 			if (!(ti->ti_flags & TH_SYN))
 | |
| 				continue;
 | |
| 			memcpy((char *) &mss, (char *) cp + 2, sizeof(mss));
 | |
| 			NTOHS(mss);
 | |
| 			(void) tcp_mss(tp, mss);	/* sets t_maxseg */
 | |
| 			break;
 | |
| 
 | |
| /*		case TCPOPT_WINDOW:
 | |
|  *			if (optlen != TCPOLEN_WINDOW)
 | |
|  *				continue;
 | |
|  *			if (!(ti->ti_flags & TH_SYN))
 | |
|  *				continue;
 | |
|  *			tp->t_flags |= TF_RCVD_SCALE;
 | |
|  *			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
 | |
|  *			break;
 | |
|  */
 | |
| /*		case TCPOPT_TIMESTAMP:
 | |
|  *			if (optlen != TCPOLEN_TIMESTAMP)
 | |
|  *				continue;
 | |
|  *			*ts_present = 1;
 | |
|  *			memcpy((char *) ts_val, (char *)cp + 2, sizeof(*ts_val));
 | |
|  *			NTOHL(*ts_val);
 | |
|  *			memcpy((char *) ts_ecr, (char *)cp + 6, sizeof(*ts_ecr));
 | |
|  *			NTOHL(*ts_ecr);
 | |
|  *
 | |
|  */			/*
 | |
|  *			 * A timestamp received in a SYN makes
 | |
|  *			 * it ok to send timestamp requests and replies.
 | |
|  *			 */
 | |
| /*			if (ti->ti_flags & TH_SYN) {
 | |
|  *				tp->t_flags |= TF_RCVD_TSTMP;
 | |
|  *				tp->ts_recent = *ts_val;
 | |
|  *				tp->ts_recent_age = tcp_now;
 | |
|  *			}
 | |
|  */			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Pull out of band byte out of a segment so
 | |
|  * it doesn't appear in the user's data queue.
 | |
|  * It is still reflected in the segment length for
 | |
|  * sequencing purposes.
 | |
|  */
 | |
| 
 | |
| #ifdef notdef
 | |
| 
 | |
| void
 | |
| tcp_pulloutofband(so, ti, m)
 | |
| 	struct socket *so;
 | |
| 	struct tcpiphdr *ti;
 | |
| 	register struct mbuf *m;
 | |
| {
 | |
| 	int cnt = ti->ti_urp - 1;
 | |
| 
 | |
| 	while (cnt >= 0) {
 | |
| 		if (m->m_len > cnt) {
 | |
| 			char *cp = mtod(m, caddr_t) + cnt;
 | |
| 			struct tcpcb *tp = sototcpcb(so);
 | |
| 
 | |
| 			tp->t_iobc = *cp;
 | |
| 			tp->t_oobflags |= TCPOOB_HAVEDATA;
 | |
| 			memcpy(sp, cp+1, (unsigned)(m->m_len - cnt - 1));
 | |
| 			m->m_len--;
 | |
| 			return;
 | |
| 		}
 | |
| 		cnt -= m->m_len;
 | |
| 		m = m->m_next; /* XXX WRONG! Fix it! */
 | |
| 		if (m == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	panic("tcp_pulloutofband");
 | |
| }
 | |
| 
 | |
| #endif /* notdef */
 | |
| 
 | |
| /*
 | |
|  * Collect new round-trip time estimate
 | |
|  * and update averages and current timeout.
 | |
|  */
 | |
| 
 | |
| static void
 | |
| tcp_xmit_timer(register struct tcpcb *tp, int rtt)
 | |
| {
 | |
| 	register short delta;
 | |
| 
 | |
| 	DEBUG_CALL("tcp_xmit_timer");
 | |
| 	DEBUG_ARG("tp = %lx", (long)tp);
 | |
| 	DEBUG_ARG("rtt = %d", rtt);
 | |
| 
 | |
| 	STAT(tcpstat.tcps_rttupdated++);
 | |
| 	if (tp->t_srtt != 0) {
 | |
| 		/*
 | |
| 		 * srtt is stored as fixed point with 3 bits after the
 | |
| 		 * binary point (i.e., scaled by 8).  The following magic
 | |
| 		 * is equivalent to the smoothing algorithm in rfc793 with
 | |
| 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
 | |
| 		 * point).  Adjust rtt to origin 0.
 | |
| 		 */
 | |
| 		delta = rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);
 | |
| 		if ((tp->t_srtt += delta) <= 0)
 | |
| 			tp->t_srtt = 1;
 | |
| 		/*
 | |
| 		 * We accumulate a smoothed rtt variance (actually, a
 | |
| 		 * smoothed mean difference), then set the retransmit
 | |
| 		 * timer to smoothed rtt + 4 times the smoothed variance.
 | |
| 		 * rttvar is stored as fixed point with 2 bits after the
 | |
| 		 * binary point (scaled by 4).  The following is
 | |
| 		 * equivalent to rfc793 smoothing with an alpha of .75
 | |
| 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
 | |
| 		 * rfc793's wired-in beta.
 | |
| 		 */
 | |
| 		if (delta < 0)
 | |
| 			delta = -delta;
 | |
| 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
 | |
| 		if ((tp->t_rttvar += delta) <= 0)
 | |
| 			tp->t_rttvar = 1;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * No rtt measurement yet - use the unsmoothed rtt.
 | |
| 		 * Set the variance to half the rtt (so our first
 | |
| 		 * retransmit happens at 3*rtt).
 | |
| 		 */
 | |
| 		tp->t_srtt = rtt << TCP_RTT_SHIFT;
 | |
| 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
 | |
| 	}
 | |
| 	tp->t_rtt = 0;
 | |
| 	tp->t_rxtshift = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * the retransmit should happen at rtt + 4 * rttvar.
 | |
| 	 * Because of the way we do the smoothing, srtt and rttvar
 | |
| 	 * will each average +1/2 tick of bias.  When we compute
 | |
| 	 * the retransmit timer, we want 1/2 tick of rounding and
 | |
| 	 * 1 extra tick because of +-1/2 tick uncertainty in the
 | |
| 	 * firing of the timer.  The bias will give us exactly the
 | |
| 	 * 1.5 tick we need.  But, because the bias is
 | |
| 	 * statistical, we have to test that we don't drop below
 | |
| 	 * the minimum feasible timer (which is 2 ticks).
 | |
| 	 */
 | |
| 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
 | |
| 	    (short)tp->t_rttmin, TCPTV_REXMTMAX); /* XXX */
 | |
| 
 | |
| 	/*
 | |
| 	 * We received an ack for a packet that wasn't retransmitted;
 | |
| 	 * it is probably safe to discard any error indications we've
 | |
| 	 * received recently.  This isn't quite right, but close enough
 | |
| 	 * for now (a route might have failed after we sent a segment,
 | |
| 	 * and the return path might not be symmetrical).
 | |
| 	 */
 | |
| 	tp->t_softerror = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Determine a reasonable value for maxseg size.
 | |
|  * If the route is known, check route for mtu.
 | |
|  * If none, use an mss that can be handled on the outgoing
 | |
|  * interface without forcing IP to fragment; if bigger than
 | |
|  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
 | |
|  * to utilize large mbufs.  If no route is found, route has no mtu,
 | |
|  * or the destination isn't local, use a default, hopefully conservative
 | |
|  * size (usually 512 or the default IP max size, but no more than the mtu
 | |
|  * of the interface), as we can't discover anything about intervening
 | |
|  * gateways or networks.  We also initialize the congestion/slow start
 | |
|  * window to be a single segment if the destination isn't local.
 | |
|  * While looking at the routing entry, we also initialize other path-dependent
 | |
|  * parameters from pre-set or cached values in the routing entry.
 | |
|  */
 | |
| 
 | |
| int
 | |
| tcp_mss(tp, offer)
 | |
|         register struct tcpcb *tp;
 | |
|         u_int offer;
 | |
| {
 | |
| 	struct socket *so = tp->t_socket;
 | |
| 	int mss;
 | |
| 
 | |
| 	DEBUG_CALL("tcp_mss");
 | |
| 	DEBUG_ARG("tp = %lx", (long)tp);
 | |
| 	DEBUG_ARG("offer = %d", offer);
 | |
| 
 | |
| 	mss = min(IF_MTU, IF_MRU) - sizeof(struct tcpiphdr);
 | |
| 	if (offer)
 | |
| 		mss = min(mss, offer);
 | |
| 	mss = max(mss, 32);
 | |
| 	if (mss < tp->t_maxseg || offer != 0)
 | |
| 	   tp->t_maxseg = mss;
 | |
| 
 | |
| 	tp->snd_cwnd = mss;
 | |
| 
 | |
| 	sbreserve(&so->so_snd, TCP_SNDSPACE + ((TCP_SNDSPACE % mss) ?
 | |
|                                                (mss - (TCP_SNDSPACE % mss)) :
 | |
|                                                0));
 | |
| 	sbreserve(&so->so_rcv, TCP_RCVSPACE + ((TCP_RCVSPACE % mss) ?
 | |
|                                                (mss - (TCP_RCVSPACE % mss)) :
 | |
|                                                0));
 | |
| 
 | |
| 	DEBUG_MISC((dfd, " returning mss = %d\n", mss));
 | |
| 
 | |
| 	return mss;
 | |
| }
 |