 95ff895f79
			
		
	
	
		95ff895f79
		
	
	
	
	
		
			
			The recent transition to always have the DCR helper functions take 32 bit values broke the PPC64 target, as target_long became 64 bits there. This patch changes DCR helpers to target_long arguments, and cast the values to 32 bit when needed. Fixes PPC64 build with --enable-debug-tcg Based on a patch from Alexander Graf <agraf@suse.de> Reported-by: Stefan Weil <weil@mail.berlios.de> Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
		
			
				
	
	
		
			4156 lines
		
	
	
		
			124 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4156 lines
		
	
	
		
			124 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  PowerPC emulation helpers for qemu.
 | |
|  *
 | |
|  *  Copyright (c) 2003-2007 Jocelyn Mayer
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include <string.h>
 | |
| #include "exec.h"
 | |
| #include "host-utils.h"
 | |
| #include "helper.h"
 | |
| 
 | |
| #include "helper_regs.h"
 | |
| 
 | |
| //#define DEBUG_OP
 | |
| //#define DEBUG_EXCEPTIONS
 | |
| //#define DEBUG_SOFTWARE_TLB
 | |
| 
 | |
| #ifdef DEBUG_SOFTWARE_TLB
 | |
| #  define LOG_SWTLB(...) qemu_log(__VA_ARGS__)
 | |
| #else
 | |
| #  define LOG_SWTLB(...) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Exceptions processing helpers */
 | |
| 
 | |
| void helper_raise_exception_err (uint32_t exception, uint32_t error_code)
 | |
| {
 | |
| #if 0
 | |
|     printf("Raise exception %3x code : %d\n", exception, error_code);
 | |
| #endif
 | |
|     env->exception_index = exception;
 | |
|     env->error_code = error_code;
 | |
|     cpu_loop_exit();
 | |
| }
 | |
| 
 | |
| void helper_raise_exception (uint32_t exception)
 | |
| {
 | |
|     helper_raise_exception_err(exception, 0);
 | |
| }
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* SPR accesses */
 | |
| void helper_load_dump_spr (uint32_t sprn)
 | |
| {
 | |
|     qemu_log("Read SPR %d %03x => " TARGET_FMT_lx "\n", sprn, sprn,
 | |
|              env->spr[sprn]);
 | |
| }
 | |
| 
 | |
| void helper_store_dump_spr (uint32_t sprn)
 | |
| {
 | |
|     qemu_log("Write SPR %d %03x <= " TARGET_FMT_lx "\n", sprn, sprn,
 | |
|              env->spr[sprn]);
 | |
| }
 | |
| 
 | |
| target_ulong helper_load_tbl (void)
 | |
| {
 | |
|     return (target_ulong)cpu_ppc_load_tbl(env);
 | |
| }
 | |
| 
 | |
| target_ulong helper_load_tbu (void)
 | |
| {
 | |
|     return cpu_ppc_load_tbu(env);
 | |
| }
 | |
| 
 | |
| target_ulong helper_load_atbl (void)
 | |
| {
 | |
|     return (target_ulong)cpu_ppc_load_atbl(env);
 | |
| }
 | |
| 
 | |
| target_ulong helper_load_atbu (void)
 | |
| {
 | |
|     return cpu_ppc_load_atbu(env);
 | |
| }
 | |
| 
 | |
| target_ulong helper_load_601_rtcl (void)
 | |
| {
 | |
|     return cpu_ppc601_load_rtcl(env);
 | |
| }
 | |
| 
 | |
| target_ulong helper_load_601_rtcu (void)
 | |
| {
 | |
|     return cpu_ppc601_load_rtcu(env);
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| #if defined (TARGET_PPC64)
 | |
| void helper_store_asr (target_ulong val)
 | |
| {
 | |
|     ppc_store_asr(env, val);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void helper_store_sdr1 (target_ulong val)
 | |
| {
 | |
|     ppc_store_sdr1(env, val);
 | |
| }
 | |
| 
 | |
| void helper_store_tbl (target_ulong val)
 | |
| {
 | |
|     cpu_ppc_store_tbl(env, val);
 | |
| }
 | |
| 
 | |
| void helper_store_tbu (target_ulong val)
 | |
| {
 | |
|     cpu_ppc_store_tbu(env, val);
 | |
| }
 | |
| 
 | |
| void helper_store_atbl (target_ulong val)
 | |
| {
 | |
|     cpu_ppc_store_atbl(env, val);
 | |
| }
 | |
| 
 | |
| void helper_store_atbu (target_ulong val)
 | |
| {
 | |
|     cpu_ppc_store_atbu(env, val);
 | |
| }
 | |
| 
 | |
| void helper_store_601_rtcl (target_ulong val)
 | |
| {
 | |
|     cpu_ppc601_store_rtcl(env, val);
 | |
| }
 | |
| 
 | |
| void helper_store_601_rtcu (target_ulong val)
 | |
| {
 | |
|     cpu_ppc601_store_rtcu(env, val);
 | |
| }
 | |
| 
 | |
| target_ulong helper_load_decr (void)
 | |
| {
 | |
|     return cpu_ppc_load_decr(env);
 | |
| }
 | |
| 
 | |
| void helper_store_decr (target_ulong val)
 | |
| {
 | |
|     cpu_ppc_store_decr(env, val);
 | |
| }
 | |
| 
 | |
| void helper_store_hid0_601 (target_ulong val)
 | |
| {
 | |
|     target_ulong hid0;
 | |
| 
 | |
|     hid0 = env->spr[SPR_HID0];
 | |
|     if ((val ^ hid0) & 0x00000008) {
 | |
|         /* Change current endianness */
 | |
|         env->hflags &= ~(1 << MSR_LE);
 | |
|         env->hflags_nmsr &= ~(1 << MSR_LE);
 | |
|         env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE);
 | |
|         env->hflags |= env->hflags_nmsr;
 | |
|         qemu_log("%s: set endianness to %c => " TARGET_FMT_lx "\n", __func__,
 | |
|                  val & 0x8 ? 'l' : 'b', env->hflags);
 | |
|     }
 | |
|     env->spr[SPR_HID0] = (uint32_t)val;
 | |
| }
 | |
| 
 | |
| void helper_store_403_pbr (uint32_t num, target_ulong value)
 | |
| {
 | |
|     if (likely(env->pb[num] != value)) {
 | |
|         env->pb[num] = value;
 | |
|         /* Should be optimized */
 | |
|         tlb_flush(env, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| target_ulong helper_load_40x_pit (void)
 | |
| {
 | |
|     return load_40x_pit(env);
 | |
| }
 | |
| 
 | |
| void helper_store_40x_pit (target_ulong val)
 | |
| {
 | |
|     store_40x_pit(env, val);
 | |
| }
 | |
| 
 | |
| void helper_store_40x_dbcr0 (target_ulong val)
 | |
| {
 | |
|     store_40x_dbcr0(env, val);
 | |
| }
 | |
| 
 | |
| void helper_store_40x_sler (target_ulong val)
 | |
| {
 | |
|     store_40x_sler(env, val);
 | |
| }
 | |
| 
 | |
| void helper_store_booke_tcr (target_ulong val)
 | |
| {
 | |
|     store_booke_tcr(env, val);
 | |
| }
 | |
| 
 | |
| void helper_store_booke_tsr (target_ulong val)
 | |
| {
 | |
|     store_booke_tsr(env, val);
 | |
| }
 | |
| 
 | |
| void helper_store_ibatu (uint32_t nr, target_ulong val)
 | |
| {
 | |
|     ppc_store_ibatu(env, nr, val);
 | |
| }
 | |
| 
 | |
| void helper_store_ibatl (uint32_t nr, target_ulong val)
 | |
| {
 | |
|     ppc_store_ibatl(env, nr, val);
 | |
| }
 | |
| 
 | |
| void helper_store_dbatu (uint32_t nr, target_ulong val)
 | |
| {
 | |
|     ppc_store_dbatu(env, nr, val);
 | |
| }
 | |
| 
 | |
| void helper_store_dbatl (uint32_t nr, target_ulong val)
 | |
| {
 | |
|     ppc_store_dbatl(env, nr, val);
 | |
| }
 | |
| 
 | |
| void helper_store_601_batl (uint32_t nr, target_ulong val)
 | |
| {
 | |
|     ppc_store_ibatl_601(env, nr, val);
 | |
| }
 | |
| 
 | |
| void helper_store_601_batu (uint32_t nr, target_ulong val)
 | |
| {
 | |
|     ppc_store_ibatu_601(env, nr, val);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Memory load and stores */
 | |
| 
 | |
| static inline target_ulong addr_add(target_ulong addr, target_long arg)
 | |
| {
 | |
| #if defined(TARGET_PPC64)
 | |
|         if (!msr_sf)
 | |
|             return (uint32_t)(addr + arg);
 | |
|         else
 | |
| #endif
 | |
|             return addr + arg;
 | |
| }
 | |
| 
 | |
| void helper_lmw (target_ulong addr, uint32_t reg)
 | |
| {
 | |
|     for (; reg < 32; reg++) {
 | |
|         if (msr_le)
 | |
|             env->gpr[reg] = bswap32(ldl(addr));
 | |
|         else
 | |
|             env->gpr[reg] = ldl(addr);
 | |
| 	addr = addr_add(addr, 4);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_stmw (target_ulong addr, uint32_t reg)
 | |
| {
 | |
|     for (; reg < 32; reg++) {
 | |
|         if (msr_le)
 | |
|             stl(addr, bswap32((uint32_t)env->gpr[reg]));
 | |
|         else
 | |
|             stl(addr, (uint32_t)env->gpr[reg]);
 | |
| 	addr = addr_add(addr, 4);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg)
 | |
| {
 | |
|     int sh;
 | |
|     for (; nb > 3; nb -= 4) {
 | |
|         env->gpr[reg] = ldl(addr);
 | |
|         reg = (reg + 1) % 32;
 | |
| 	addr = addr_add(addr, 4);
 | |
|     }
 | |
|     if (unlikely(nb > 0)) {
 | |
|         env->gpr[reg] = 0;
 | |
|         for (sh = 24; nb > 0; nb--, sh -= 8) {
 | |
|             env->gpr[reg] |= ldub(addr) << sh;
 | |
| 	    addr = addr_add(addr, 1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| /* PPC32 specification says we must generate an exception if
 | |
|  * rA is in the range of registers to be loaded.
 | |
|  * In an other hand, IBM says this is valid, but rA won't be loaded.
 | |
|  * For now, I'll follow the spec...
 | |
|  */
 | |
| void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
 | |
| {
 | |
|     if (likely(xer_bc != 0)) {
 | |
|         if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) ||
 | |
|                      (reg < rb && (reg + xer_bc) > rb))) {
 | |
|             helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
 | |
|                                        POWERPC_EXCP_INVAL |
 | |
|                                        POWERPC_EXCP_INVAL_LSWX);
 | |
|         } else {
 | |
|             helper_lsw(addr, xer_bc, reg);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg)
 | |
| {
 | |
|     int sh;
 | |
|     for (; nb > 3; nb -= 4) {
 | |
|         stl(addr, env->gpr[reg]);
 | |
|         reg = (reg + 1) % 32;
 | |
| 	addr = addr_add(addr, 4);
 | |
|     }
 | |
|     if (unlikely(nb > 0)) {
 | |
|         for (sh = 24; nb > 0; nb--, sh -= 8) {
 | |
|             stb(addr, (env->gpr[reg] >> sh) & 0xFF);
 | |
|             addr = addr_add(addr, 1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void do_dcbz(target_ulong addr, int dcache_line_size)
 | |
| {
 | |
|     addr &= ~(dcache_line_size - 1);
 | |
|     int i;
 | |
|     for (i = 0 ; i < dcache_line_size ; i += 4) {
 | |
|         stl(addr + i , 0);
 | |
|     }
 | |
|     if (env->reserve_addr == addr)
 | |
|         env->reserve_addr = (target_ulong)-1ULL;
 | |
| }
 | |
| 
 | |
| void helper_dcbz(target_ulong addr)
 | |
| {
 | |
|     do_dcbz(addr, env->dcache_line_size);
 | |
| }
 | |
| 
 | |
| void helper_dcbz_970(target_ulong addr)
 | |
| {
 | |
|     if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1)
 | |
|         do_dcbz(addr, 32);
 | |
|     else
 | |
|         do_dcbz(addr, env->dcache_line_size);
 | |
| }
 | |
| 
 | |
| void helper_icbi(target_ulong addr)
 | |
| {
 | |
|     uint32_t tmp;
 | |
| 
 | |
|     addr &= ~(env->dcache_line_size - 1);
 | |
|     /* Invalidate one cache line :
 | |
|      * PowerPC specification says this is to be treated like a load
 | |
|      * (not a fetch) by the MMU. To be sure it will be so,
 | |
|      * do the load "by hand".
 | |
|      */
 | |
|     tmp = ldl(addr);
 | |
|     tb_invalidate_page_range(addr, addr + env->icache_line_size);
 | |
| }
 | |
| 
 | |
| // XXX: to be tested
 | |
| target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
 | |
| {
 | |
|     int i, c, d;
 | |
|     d = 24;
 | |
|     for (i = 0; i < xer_bc; i++) {
 | |
|         c = ldub(addr);
 | |
| 	addr = addr_add(addr, 1);
 | |
|         /* ra (if not 0) and rb are never modified */
 | |
|         if (likely(reg != rb && (ra == 0 || reg != ra))) {
 | |
|             env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
 | |
|         }
 | |
|         if (unlikely(c == xer_cmp))
 | |
|             break;
 | |
|         if (likely(d != 0)) {
 | |
|             d -= 8;
 | |
|         } else {
 | |
|             d = 24;
 | |
|             reg++;
 | |
|             reg = reg & 0x1F;
 | |
|         }
 | |
|     }
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Fixed point operations helpers */
 | |
| #if defined(TARGET_PPC64)
 | |
| 
 | |
| /* multiply high word */
 | |
| uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2)
 | |
| {
 | |
|     uint64_t tl, th;
 | |
| 
 | |
|     muls64(&tl, &th, arg1, arg2);
 | |
|     return th;
 | |
| }
 | |
| 
 | |
| /* multiply high word unsigned */
 | |
| uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2)
 | |
| {
 | |
|     uint64_t tl, th;
 | |
| 
 | |
|     mulu64(&tl, &th, arg1, arg2);
 | |
|     return th;
 | |
| }
 | |
| 
 | |
| uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2)
 | |
| {
 | |
|     int64_t th;
 | |
|     uint64_t tl;
 | |
| 
 | |
|     muls64(&tl, (uint64_t *)&th, arg1, arg2);
 | |
|     /* If th != 0 && th != -1, then we had an overflow */
 | |
|     if (likely((uint64_t)(th + 1) <= 1)) {
 | |
|         env->xer &= ~(1 << XER_OV);
 | |
|     } else {
 | |
|         env->xer |= (1 << XER_OV) | (1 << XER_SO);
 | |
|     }
 | |
|     return (int64_t)tl;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| target_ulong helper_cntlzw (target_ulong t)
 | |
| {
 | |
|     return clz32(t);
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_PPC64)
 | |
| target_ulong helper_cntlzd (target_ulong t)
 | |
| {
 | |
|     return clz64(t);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* shift right arithmetic helper */
 | |
| target_ulong helper_sraw (target_ulong value, target_ulong shift)
 | |
| {
 | |
|     int32_t ret;
 | |
| 
 | |
|     if (likely(!(shift & 0x20))) {
 | |
|         if (likely((uint32_t)shift != 0)) {
 | |
|             shift &= 0x1f;
 | |
|             ret = (int32_t)value >> shift;
 | |
|             if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
 | |
|                 env->xer &= ~(1 << XER_CA);
 | |
|             } else {
 | |
|                 env->xer |= (1 << XER_CA);
 | |
|             }
 | |
|         } else {
 | |
|             ret = (int32_t)value;
 | |
|             env->xer &= ~(1 << XER_CA);
 | |
|         }
 | |
|     } else {
 | |
|         ret = (int32_t)value >> 31;
 | |
|         if (ret) {
 | |
|             env->xer |= (1 << XER_CA);
 | |
|         } else {
 | |
|             env->xer &= ~(1 << XER_CA);
 | |
|         }
 | |
|     }
 | |
|     return (target_long)ret;
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_PPC64)
 | |
| target_ulong helper_srad (target_ulong value, target_ulong shift)
 | |
| {
 | |
|     int64_t ret;
 | |
| 
 | |
|     if (likely(!(shift & 0x40))) {
 | |
|         if (likely((uint64_t)shift != 0)) {
 | |
|             shift &= 0x3f;
 | |
|             ret = (int64_t)value >> shift;
 | |
|             if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
 | |
|                 env->xer &= ~(1 << XER_CA);
 | |
|             } else {
 | |
|                 env->xer |= (1 << XER_CA);
 | |
|             }
 | |
|         } else {
 | |
|             ret = (int64_t)value;
 | |
|             env->xer &= ~(1 << XER_CA);
 | |
|         }
 | |
|     } else {
 | |
|         ret = (int64_t)value >> 63;
 | |
|         if (ret) {
 | |
|             env->xer |= (1 << XER_CA);
 | |
|         } else {
 | |
|             env->xer &= ~(1 << XER_CA);
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| target_ulong helper_popcntb (target_ulong val)
 | |
| {
 | |
|     val = (val & 0x55555555) + ((val >>  1) & 0x55555555);
 | |
|     val = (val & 0x33333333) + ((val >>  2) & 0x33333333);
 | |
|     val = (val & 0x0f0f0f0f) + ((val >>  4) & 0x0f0f0f0f);
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_PPC64)
 | |
| target_ulong helper_popcntb_64 (target_ulong val)
 | |
| {
 | |
|     val = (val & 0x5555555555555555ULL) + ((val >>  1) & 0x5555555555555555ULL);
 | |
|     val = (val & 0x3333333333333333ULL) + ((val >>  2) & 0x3333333333333333ULL);
 | |
|     val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >>  4) & 0x0f0f0f0f0f0f0f0fULL);
 | |
|     return val;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Floating point operations helpers */
 | |
| uint64_t helper_float32_to_float64(uint32_t arg)
 | |
| {
 | |
|     CPU_FloatU f;
 | |
|     CPU_DoubleU d;
 | |
|     f.l = arg;
 | |
|     d.d = float32_to_float64(f.f, &env->fp_status);
 | |
|     return d.ll;
 | |
| }
 | |
| 
 | |
| uint32_t helper_float64_to_float32(uint64_t arg)
 | |
| {
 | |
|     CPU_FloatU f;
 | |
|     CPU_DoubleU d;
 | |
|     d.ll = arg;
 | |
|     f.f = float64_to_float32(d.d, &env->fp_status);
 | |
|     return f.l;
 | |
| }
 | |
| 
 | |
| static inline int isden(float64 d)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.d = d;
 | |
| 
 | |
|     return ((u.ll >> 52) & 0x7FF) == 0;
 | |
| }
 | |
| 
 | |
| uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
|     int isneg;
 | |
|     int ret;
 | |
|     farg.ll = arg;
 | |
|     isneg = float64_is_neg(farg.d);
 | |
|     if (unlikely(float64_is_nan(farg.d))) {
 | |
|         if (float64_is_signaling_nan(farg.d)) {
 | |
|             /* Signaling NaN: flags are undefined */
 | |
|             ret = 0x00;
 | |
|         } else {
 | |
|             /* Quiet NaN */
 | |
|             ret = 0x11;
 | |
|         }
 | |
|     } else if (unlikely(float64_is_infinity(farg.d))) {
 | |
|         /* +/- infinity */
 | |
|         if (isneg)
 | |
|             ret = 0x09;
 | |
|         else
 | |
|             ret = 0x05;
 | |
|     } else {
 | |
|         if (float64_is_zero(farg.d)) {
 | |
|             /* +/- zero */
 | |
|             if (isneg)
 | |
|                 ret = 0x12;
 | |
|             else
 | |
|                 ret = 0x02;
 | |
|         } else {
 | |
|             if (isden(farg.d)) {
 | |
|                 /* Denormalized numbers */
 | |
|                 ret = 0x10;
 | |
|             } else {
 | |
|                 /* Normalized numbers */
 | |
|                 ret = 0x00;
 | |
|             }
 | |
|             if (isneg) {
 | |
|                 ret |= 0x08;
 | |
|             } else {
 | |
|                 ret |= 0x04;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (set_fprf) {
 | |
|         /* We update FPSCR_FPRF */
 | |
|         env->fpscr &= ~(0x1F << FPSCR_FPRF);
 | |
|         env->fpscr |= ret << FPSCR_FPRF;
 | |
|     }
 | |
|     /* We just need fpcc to update Rc1 */
 | |
|     return ret & 0xF;
 | |
| }
 | |
| 
 | |
| /* Floating-point invalid operations exception */
 | |
| static inline uint64_t fload_invalid_op_excp(int op)
 | |
| {
 | |
|     uint64_t ret = 0;
 | |
|     int ve;
 | |
| 
 | |
|     ve = fpscr_ve;
 | |
|     switch (op) {
 | |
|     case POWERPC_EXCP_FP_VXSNAN:
 | |
|         env->fpscr |= 1 << FPSCR_VXSNAN;
 | |
| 	break;
 | |
|     case POWERPC_EXCP_FP_VXSOFT:
 | |
|         env->fpscr |= 1 << FPSCR_VXSOFT;
 | |
| 	break;
 | |
|     case POWERPC_EXCP_FP_VXISI:
 | |
|         /* Magnitude subtraction of infinities */
 | |
|         env->fpscr |= 1 << FPSCR_VXISI;
 | |
|         goto update_arith;
 | |
|     case POWERPC_EXCP_FP_VXIDI:
 | |
|         /* Division of infinity by infinity */
 | |
|         env->fpscr |= 1 << FPSCR_VXIDI;
 | |
|         goto update_arith;
 | |
|     case POWERPC_EXCP_FP_VXZDZ:
 | |
|         /* Division of zero by zero */
 | |
|         env->fpscr |= 1 << FPSCR_VXZDZ;
 | |
|         goto update_arith;
 | |
|     case POWERPC_EXCP_FP_VXIMZ:
 | |
|         /* Multiplication of zero by infinity */
 | |
|         env->fpscr |= 1 << FPSCR_VXIMZ;
 | |
|         goto update_arith;
 | |
|     case POWERPC_EXCP_FP_VXVC:
 | |
|         /* Ordered comparison of NaN */
 | |
|         env->fpscr |= 1 << FPSCR_VXVC;
 | |
|         env->fpscr &= ~(0xF << FPSCR_FPCC);
 | |
|         env->fpscr |= 0x11 << FPSCR_FPCC;
 | |
|         /* We must update the target FPR before raising the exception */
 | |
|         if (ve != 0) {
 | |
|             env->exception_index = POWERPC_EXCP_PROGRAM;
 | |
|             env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
 | |
|             /* Update the floating-point enabled exception summary */
 | |
|             env->fpscr |= 1 << FPSCR_FEX;
 | |
|             /* Exception is differed */
 | |
|             ve = 0;
 | |
|         }
 | |
|         break;
 | |
|     case POWERPC_EXCP_FP_VXSQRT:
 | |
|         /* Square root of a negative number */
 | |
|         env->fpscr |= 1 << FPSCR_VXSQRT;
 | |
|     update_arith:
 | |
|         env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 | |
|         if (ve == 0) {
 | |
|             /* Set the result to quiet NaN */
 | |
|             ret = 0xFFF8000000000000ULL;
 | |
|             env->fpscr &= ~(0xF << FPSCR_FPCC);
 | |
|             env->fpscr |= 0x11 << FPSCR_FPCC;
 | |
|         }
 | |
|         break;
 | |
|     case POWERPC_EXCP_FP_VXCVI:
 | |
|         /* Invalid conversion */
 | |
|         env->fpscr |= 1 << FPSCR_VXCVI;
 | |
|         env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 | |
|         if (ve == 0) {
 | |
|             /* Set the result to quiet NaN */
 | |
|             ret = 0xFFF8000000000000ULL;
 | |
|             env->fpscr &= ~(0xF << FPSCR_FPCC);
 | |
|             env->fpscr |= 0x11 << FPSCR_FPCC;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     /* Update the floating-point invalid operation summary */
 | |
|     env->fpscr |= 1 << FPSCR_VX;
 | |
|     /* Update the floating-point exception summary */
 | |
|     env->fpscr |= 1 << FPSCR_FX;
 | |
|     if (ve != 0) {
 | |
|         /* Update the floating-point enabled exception summary */
 | |
|         env->fpscr |= 1 << FPSCR_FEX;
 | |
|         if (msr_fe0 != 0 || msr_fe1 != 0)
 | |
|             helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static inline void float_zero_divide_excp(void)
 | |
| {
 | |
|     env->fpscr |= 1 << FPSCR_ZX;
 | |
|     env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 | |
|     /* Update the floating-point exception summary */
 | |
|     env->fpscr |= 1 << FPSCR_FX;
 | |
|     if (fpscr_ze != 0) {
 | |
|         /* Update the floating-point enabled exception summary */
 | |
|         env->fpscr |= 1 << FPSCR_FEX;
 | |
|         if (msr_fe0 != 0 || msr_fe1 != 0) {
 | |
|             helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
 | |
|                                        POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void float_overflow_excp(void)
 | |
| {
 | |
|     env->fpscr |= 1 << FPSCR_OX;
 | |
|     /* Update the floating-point exception summary */
 | |
|     env->fpscr |= 1 << FPSCR_FX;
 | |
|     if (fpscr_oe != 0) {
 | |
|         /* XXX: should adjust the result */
 | |
|         /* Update the floating-point enabled exception summary */
 | |
|         env->fpscr |= 1 << FPSCR_FEX;
 | |
|         /* We must update the target FPR before raising the exception */
 | |
|         env->exception_index = POWERPC_EXCP_PROGRAM;
 | |
|         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
 | |
|     } else {
 | |
|         env->fpscr |= 1 << FPSCR_XX;
 | |
|         env->fpscr |= 1 << FPSCR_FI;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void float_underflow_excp(void)
 | |
| {
 | |
|     env->fpscr |= 1 << FPSCR_UX;
 | |
|     /* Update the floating-point exception summary */
 | |
|     env->fpscr |= 1 << FPSCR_FX;
 | |
|     if (fpscr_ue != 0) {
 | |
|         /* XXX: should adjust the result */
 | |
|         /* Update the floating-point enabled exception summary */
 | |
|         env->fpscr |= 1 << FPSCR_FEX;
 | |
|         /* We must update the target FPR before raising the exception */
 | |
|         env->exception_index = POWERPC_EXCP_PROGRAM;
 | |
|         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void float_inexact_excp(void)
 | |
| {
 | |
|     env->fpscr |= 1 << FPSCR_XX;
 | |
|     /* Update the floating-point exception summary */
 | |
|     env->fpscr |= 1 << FPSCR_FX;
 | |
|     if (fpscr_xe != 0) {
 | |
|         /* Update the floating-point enabled exception summary */
 | |
|         env->fpscr |= 1 << FPSCR_FEX;
 | |
|         /* We must update the target FPR before raising the exception */
 | |
|         env->exception_index = POWERPC_EXCP_PROGRAM;
 | |
|         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void fpscr_set_rounding_mode(void)
 | |
| {
 | |
|     int rnd_type;
 | |
| 
 | |
|     /* Set rounding mode */
 | |
|     switch (fpscr_rn) {
 | |
|     case 0:
 | |
|         /* Best approximation (round to nearest) */
 | |
|         rnd_type = float_round_nearest_even;
 | |
|         break;
 | |
|     case 1:
 | |
|         /* Smaller magnitude (round toward zero) */
 | |
|         rnd_type = float_round_to_zero;
 | |
|         break;
 | |
|     case 2:
 | |
|         /* Round toward +infinite */
 | |
|         rnd_type = float_round_up;
 | |
|         break;
 | |
|     default:
 | |
|     case 3:
 | |
|         /* Round toward -infinite */
 | |
|         rnd_type = float_round_down;
 | |
|         break;
 | |
|     }
 | |
|     set_float_rounding_mode(rnd_type, &env->fp_status);
 | |
| }
 | |
| 
 | |
| void helper_fpscr_clrbit (uint32_t bit)
 | |
| {
 | |
|     int prev;
 | |
| 
 | |
|     prev = (env->fpscr >> bit) & 1;
 | |
|     env->fpscr &= ~(1 << bit);
 | |
|     if (prev == 1) {
 | |
|         switch (bit) {
 | |
|         case FPSCR_RN1:
 | |
|         case FPSCR_RN:
 | |
|             fpscr_set_rounding_mode();
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_fpscr_setbit (uint32_t bit)
 | |
| {
 | |
|     int prev;
 | |
| 
 | |
|     prev = (env->fpscr >> bit) & 1;
 | |
|     env->fpscr |= 1 << bit;
 | |
|     if (prev == 0) {
 | |
|         switch (bit) {
 | |
|         case FPSCR_VX:
 | |
|             env->fpscr |= 1 << FPSCR_FX;
 | |
|             if (fpscr_ve)
 | |
|                 goto raise_ve;
 | |
|         case FPSCR_OX:
 | |
|             env->fpscr |= 1 << FPSCR_FX;
 | |
|             if (fpscr_oe)
 | |
|                 goto raise_oe;
 | |
|             break;
 | |
|         case FPSCR_UX:
 | |
|             env->fpscr |= 1 << FPSCR_FX;
 | |
|             if (fpscr_ue)
 | |
|                 goto raise_ue;
 | |
|             break;
 | |
|         case FPSCR_ZX:
 | |
|             env->fpscr |= 1 << FPSCR_FX;
 | |
|             if (fpscr_ze)
 | |
|                 goto raise_ze;
 | |
|             break;
 | |
|         case FPSCR_XX:
 | |
|             env->fpscr |= 1 << FPSCR_FX;
 | |
|             if (fpscr_xe)
 | |
|                 goto raise_xe;
 | |
|             break;
 | |
|         case FPSCR_VXSNAN:
 | |
|         case FPSCR_VXISI:
 | |
|         case FPSCR_VXIDI:
 | |
|         case FPSCR_VXZDZ:
 | |
|         case FPSCR_VXIMZ:
 | |
|         case FPSCR_VXVC:
 | |
|         case FPSCR_VXSOFT:
 | |
|         case FPSCR_VXSQRT:
 | |
|         case FPSCR_VXCVI:
 | |
|             env->fpscr |= 1 << FPSCR_VX;
 | |
|             env->fpscr |= 1 << FPSCR_FX;
 | |
|             if (fpscr_ve != 0)
 | |
|                 goto raise_ve;
 | |
|             break;
 | |
|         case FPSCR_VE:
 | |
|             if (fpscr_vx != 0) {
 | |
|             raise_ve:
 | |
|                 env->error_code = POWERPC_EXCP_FP;
 | |
|                 if (fpscr_vxsnan)
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXSNAN;
 | |
|                 if (fpscr_vxisi)
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXISI;
 | |
|                 if (fpscr_vxidi)
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXIDI;
 | |
|                 if (fpscr_vxzdz)
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXZDZ;
 | |
|                 if (fpscr_vximz)
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXIMZ;
 | |
|                 if (fpscr_vxvc)
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXVC;
 | |
|                 if (fpscr_vxsoft)
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXSOFT;
 | |
|                 if (fpscr_vxsqrt)
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXSQRT;
 | |
|                 if (fpscr_vxcvi)
 | |
|                     env->error_code |= POWERPC_EXCP_FP_VXCVI;
 | |
|                 goto raise_excp;
 | |
|             }
 | |
|             break;
 | |
|         case FPSCR_OE:
 | |
|             if (fpscr_ox != 0) {
 | |
|             raise_oe:
 | |
|                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
 | |
|                 goto raise_excp;
 | |
|             }
 | |
|             break;
 | |
|         case FPSCR_UE:
 | |
|             if (fpscr_ux != 0) {
 | |
|             raise_ue:
 | |
|                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
 | |
|                 goto raise_excp;
 | |
|             }
 | |
|             break;
 | |
|         case FPSCR_ZE:
 | |
|             if (fpscr_zx != 0) {
 | |
|             raise_ze:
 | |
|                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
 | |
|                 goto raise_excp;
 | |
|             }
 | |
|             break;
 | |
|         case FPSCR_XE:
 | |
|             if (fpscr_xx != 0) {
 | |
|             raise_xe:
 | |
|                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
 | |
|                 goto raise_excp;
 | |
|             }
 | |
|             break;
 | |
|         case FPSCR_RN1:
 | |
|         case FPSCR_RN:
 | |
|             fpscr_set_rounding_mode();
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         raise_excp:
 | |
|             /* Update the floating-point enabled exception summary */
 | |
|             env->fpscr |= 1 << FPSCR_FEX;
 | |
|                 /* We have to update Rc1 before raising the exception */
 | |
|             env->exception_index = POWERPC_EXCP_PROGRAM;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_store_fpscr (uint64_t arg, uint32_t mask)
 | |
| {
 | |
|     /*
 | |
|      * We use only the 32 LSB of the incoming fpr
 | |
|      */
 | |
|     uint32_t prev, new;
 | |
|     int i;
 | |
| 
 | |
|     prev = env->fpscr;
 | |
|     new = (uint32_t)arg;
 | |
|     new &= ~0x60000000;
 | |
|     new |= prev & 0x60000000;
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         if (mask & (1 << i)) {
 | |
|             env->fpscr &= ~(0xF << (4 * i));
 | |
|             env->fpscr |= new & (0xF << (4 * i));
 | |
|         }
 | |
|     }
 | |
|     /* Update VX and FEX */
 | |
|     if (fpscr_ix != 0)
 | |
|         env->fpscr |= 1 << FPSCR_VX;
 | |
|     else
 | |
|         env->fpscr &= ~(1 << FPSCR_VX);
 | |
|     if ((fpscr_ex & fpscr_eex) != 0) {
 | |
|         env->fpscr |= 1 << FPSCR_FEX;
 | |
|         env->exception_index = POWERPC_EXCP_PROGRAM;
 | |
|         /* XXX: we should compute it properly */
 | |
|         env->error_code = POWERPC_EXCP_FP;
 | |
|     }
 | |
|     else
 | |
|         env->fpscr &= ~(1 << FPSCR_FEX);
 | |
|     fpscr_set_rounding_mode();
 | |
| }
 | |
| 
 | |
| void helper_float_check_status (void)
 | |
| {
 | |
| #ifdef CONFIG_SOFTFLOAT
 | |
|     if (env->exception_index == POWERPC_EXCP_PROGRAM &&
 | |
|         (env->error_code & POWERPC_EXCP_FP)) {
 | |
|         /* Differred floating-point exception after target FPR update */
 | |
|         if (msr_fe0 != 0 || msr_fe1 != 0)
 | |
|             helper_raise_exception_err(env->exception_index, env->error_code);
 | |
|     } else {
 | |
|         int status = get_float_exception_flags(&env->fp_status);
 | |
|         if (status & float_flag_divbyzero) {
 | |
|             float_zero_divide_excp();
 | |
|         } else if (status & float_flag_overflow) {
 | |
|             float_overflow_excp();
 | |
|         } else if (status & float_flag_underflow) {
 | |
|             float_underflow_excp();
 | |
|         } else if (status & float_flag_inexact) {
 | |
|             float_inexact_excp();
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     if (env->exception_index == POWERPC_EXCP_PROGRAM &&
 | |
|         (env->error_code & POWERPC_EXCP_FP)) {
 | |
|         /* Differred floating-point exception after target FPR update */
 | |
|         if (msr_fe0 != 0 || msr_fe1 != 0)
 | |
|             helper_raise_exception_err(env->exception_index, env->error_code);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SOFTFLOAT
 | |
| void helper_reset_fpstatus (void)
 | |
| {
 | |
|     set_float_exception_flags(0, &env->fp_status);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* fadd - fadd. */
 | |
| uint64_t helper_fadd (uint64_t arg1, uint64_t arg2)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
| #if USE_PRECISE_EMULATION
 | |
|     if (unlikely(float64_is_signaling_nan(farg1.d) ||
 | |
|                  float64_is_signaling_nan(farg2.d))) {
 | |
|         /* sNaN addition */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | |
|     } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
 | |
|                       float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
 | |
|         /* Magnitude subtraction of infinities */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
 | |
|     } else {
 | |
|         farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
 | |
|     }
 | |
| #else
 | |
|     farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
 | |
| #endif
 | |
|     return farg1.ll;
 | |
| }
 | |
| 
 | |
| /* fsub - fsub. */
 | |
| uint64_t helper_fsub (uint64_t arg1, uint64_t arg2)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
| #if USE_PRECISE_EMULATION
 | |
| {
 | |
|     if (unlikely(float64_is_signaling_nan(farg1.d) ||
 | |
|                  float64_is_signaling_nan(farg2.d))) {
 | |
|         /* sNaN subtraction */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | |
|     } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
 | |
|                       float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
 | |
|         /* Magnitude subtraction of infinities */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
 | |
|     } else {
 | |
|         farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
 | |
|     }
 | |
| }
 | |
| #else
 | |
|     farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
 | |
| #endif
 | |
|     return farg1.ll;
 | |
| }
 | |
| 
 | |
| /* fmul - fmul. */
 | |
| uint64_t helper_fmul (uint64_t arg1, uint64_t arg2)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
| #if USE_PRECISE_EMULATION
 | |
|     if (unlikely(float64_is_signaling_nan(farg1.d) ||
 | |
|                  float64_is_signaling_nan(farg2.d))) {
 | |
|         /* sNaN multiplication */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | |
|     } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 | |
|                         (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 | |
|         /* Multiplication of zero by infinity */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
 | |
|     } else {
 | |
|         farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
 | |
|     }
 | |
| #else
 | |
|     farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
 | |
| #endif
 | |
|     return farg1.ll;
 | |
| }
 | |
| 
 | |
| /* fdiv - fdiv. */
 | |
| uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
| #if USE_PRECISE_EMULATION
 | |
|     if (unlikely(float64_is_signaling_nan(farg1.d) ||
 | |
|                  float64_is_signaling_nan(farg2.d))) {
 | |
|         /* sNaN division */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | |
|     } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) {
 | |
|         /* Division of infinity by infinity */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
 | |
|     } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
 | |
|         /* Division of zero by zero */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
 | |
|     } else {
 | |
|         farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
 | |
|     }
 | |
| #else
 | |
|     farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
 | |
| #endif
 | |
|     return farg1.ll;
 | |
| }
 | |
| 
 | |
| /* fabs */
 | |
| uint64_t helper_fabs (uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
| 
 | |
|     farg.ll = arg;
 | |
|     farg.d = float64_abs(farg.d);
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fnabs */
 | |
| uint64_t helper_fnabs (uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
| 
 | |
|     farg.ll = arg;
 | |
|     farg.d = float64_abs(farg.d);
 | |
|     farg.d = float64_chs(farg.d);
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fneg */
 | |
| uint64_t helper_fneg (uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
| 
 | |
|     farg.ll = arg;
 | |
|     farg.d = float64_chs(farg.d);
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fctiw - fctiw. */
 | |
| uint64_t helper_fctiw (uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN conversion */
 | |
|         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
 | |
|     } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
 | |
|         /* qNan / infinity conversion */
 | |
|         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
 | |
|     } else {
 | |
|         farg.ll = float64_to_int32(farg.d, &env->fp_status);
 | |
| #if USE_PRECISE_EMULATION
 | |
|         /* XXX: higher bits are not supposed to be significant.
 | |
|          *     to make tests easier, return the same as a real PowerPC 750
 | |
|          */
 | |
|         farg.ll |= 0xFFF80000ULL << 32;
 | |
| #endif
 | |
|     }
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fctiwz - fctiwz. */
 | |
| uint64_t helper_fctiwz (uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN conversion */
 | |
|         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
 | |
|     } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
 | |
|         /* qNan / infinity conversion */
 | |
|         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
 | |
|     } else {
 | |
|         farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status);
 | |
| #if USE_PRECISE_EMULATION
 | |
|         /* XXX: higher bits are not supposed to be significant.
 | |
|          *     to make tests easier, return the same as a real PowerPC 750
 | |
|          */
 | |
|         farg.ll |= 0xFFF80000ULL << 32;
 | |
| #endif
 | |
|     }
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_PPC64)
 | |
| /* fcfid - fcfid. */
 | |
| uint64_t helper_fcfid (uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
|     farg.d = int64_to_float64(arg, &env->fp_status);
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fctid - fctid. */
 | |
| uint64_t helper_fctid (uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN conversion */
 | |
|         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
 | |
|     } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
 | |
|         /* qNan / infinity conversion */
 | |
|         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
 | |
|     } else {
 | |
|         farg.ll = float64_to_int64(farg.d, &env->fp_status);
 | |
|     }
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fctidz - fctidz. */
 | |
| uint64_t helper_fctidz (uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN conversion */
 | |
|         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
 | |
|     } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
 | |
|         /* qNan / infinity conversion */
 | |
|         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
 | |
|     } else {
 | |
|         farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status);
 | |
|     }
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static inline uint64_t do_fri(uint64_t arg, int rounding_mode)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN round */
 | |
|         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
 | |
|     } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
 | |
|         /* qNan / infinity round */
 | |
|         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
 | |
|     } else {
 | |
|         set_float_rounding_mode(rounding_mode, &env->fp_status);
 | |
|         farg.ll = float64_round_to_int(farg.d, &env->fp_status);
 | |
|         /* Restore rounding mode from FPSCR */
 | |
|         fpscr_set_rounding_mode();
 | |
|     }
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_frin (uint64_t arg)
 | |
| {
 | |
|     return do_fri(arg, float_round_nearest_even);
 | |
| }
 | |
| 
 | |
| uint64_t helper_friz (uint64_t arg)
 | |
| {
 | |
|     return do_fri(arg, float_round_to_zero);
 | |
| }
 | |
| 
 | |
| uint64_t helper_frip (uint64_t arg)
 | |
| {
 | |
|     return do_fri(arg, float_round_up);
 | |
| }
 | |
| 
 | |
| uint64_t helper_frim (uint64_t arg)
 | |
| {
 | |
|     return do_fri(arg, float_round_down);
 | |
| }
 | |
| 
 | |
| /* fmadd - fmadd. */
 | |
| uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2, farg3;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
|     farg3.ll = arg3;
 | |
| #if USE_PRECISE_EMULATION
 | |
|     if (unlikely(float64_is_signaling_nan(farg1.d) ||
 | |
|                  float64_is_signaling_nan(farg2.d) ||
 | |
|                  float64_is_signaling_nan(farg3.d))) {
 | |
|         /* sNaN operation */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | |
|     } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 | |
|                         (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 | |
|         /* Multiplication of zero by infinity */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
 | |
|     } else {
 | |
| #ifdef FLOAT128
 | |
|         /* This is the way the PowerPC specification defines it */
 | |
|         float128 ft0_128, ft1_128;
 | |
| 
 | |
|         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 | |
|         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 | |
|         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 | |
|         if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
 | |
|                      float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
 | |
|             /* Magnitude subtraction of infinities */
 | |
|             farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
 | |
|         } else {
 | |
|             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 | |
|             ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
 | |
|             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 | |
|         }
 | |
| #else
 | |
|         /* This is OK on x86 hosts */
 | |
|         farg1.d = (farg1.d * farg2.d) + farg3.d;
 | |
| #endif
 | |
|     }
 | |
| #else
 | |
|     farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
 | |
|     farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
 | |
| #endif
 | |
|     return farg1.ll;
 | |
| }
 | |
| 
 | |
| /* fmsub - fmsub. */
 | |
| uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2, farg3;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
|     farg3.ll = arg3;
 | |
| #if USE_PRECISE_EMULATION
 | |
|     if (unlikely(float64_is_signaling_nan(farg1.d) ||
 | |
|                  float64_is_signaling_nan(farg2.d) ||
 | |
|                  float64_is_signaling_nan(farg3.d))) {
 | |
|         /* sNaN operation */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | |
|     } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 | |
|                         (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 | |
|         /* Multiplication of zero by infinity */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
 | |
|     } else {
 | |
| #ifdef FLOAT128
 | |
|         /* This is the way the PowerPC specification defines it */
 | |
|         float128 ft0_128, ft1_128;
 | |
| 
 | |
|         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 | |
|         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 | |
|         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 | |
|         if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
 | |
|                      float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
 | |
|             /* Magnitude subtraction of infinities */
 | |
|             farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
 | |
|         } else {
 | |
|             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 | |
|             ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
 | |
|             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 | |
|         }
 | |
| #else
 | |
|         /* This is OK on x86 hosts */
 | |
|         farg1.d = (farg1.d * farg2.d) - farg3.d;
 | |
| #endif
 | |
|     }
 | |
| #else
 | |
|     farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
 | |
|     farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
 | |
| #endif
 | |
|     return farg1.ll;
 | |
| }
 | |
| 
 | |
| /* fnmadd - fnmadd. */
 | |
| uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2, farg3;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
|     farg3.ll = arg3;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg1.d) ||
 | |
|                  float64_is_signaling_nan(farg2.d) ||
 | |
|                  float64_is_signaling_nan(farg3.d))) {
 | |
|         /* sNaN operation */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | |
|     } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 | |
|                         (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 | |
|         /* Multiplication of zero by infinity */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
 | |
|     } else {
 | |
| #if USE_PRECISE_EMULATION
 | |
| #ifdef FLOAT128
 | |
|         /* This is the way the PowerPC specification defines it */
 | |
|         float128 ft0_128, ft1_128;
 | |
| 
 | |
|         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 | |
|         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 | |
|         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 | |
|         if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
 | |
|                      float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
 | |
|             /* Magnitude subtraction of infinities */
 | |
|             farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
 | |
|         } else {
 | |
|             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 | |
|             ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
 | |
|             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 | |
|         }
 | |
| #else
 | |
|         /* This is OK on x86 hosts */
 | |
|         farg1.d = (farg1.d * farg2.d) + farg3.d;
 | |
| #endif
 | |
| #else
 | |
|         farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
 | |
|         farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
 | |
| #endif
 | |
|         if (likely(!float64_is_nan(farg1.d)))
 | |
|             farg1.d = float64_chs(farg1.d);
 | |
|     }
 | |
|     return farg1.ll;
 | |
| }
 | |
| 
 | |
| /* fnmsub - fnmsub. */
 | |
| uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2, farg3;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
|     farg3.ll = arg3;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg1.d) ||
 | |
|                  float64_is_signaling_nan(farg2.d) ||
 | |
|                  float64_is_signaling_nan(farg3.d))) {
 | |
|         /* sNaN operation */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | |
|     } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
 | |
|                         (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
 | |
|         /* Multiplication of zero by infinity */
 | |
|         farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
 | |
|     } else {
 | |
| #if USE_PRECISE_EMULATION
 | |
| #ifdef FLOAT128
 | |
|         /* This is the way the PowerPC specification defines it */
 | |
|         float128 ft0_128, ft1_128;
 | |
| 
 | |
|         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
 | |
|         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
 | |
|         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 | |
|         if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
 | |
|                      float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
 | |
|             /* Magnitude subtraction of infinities */
 | |
|             farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
 | |
|         } else {
 | |
|             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
 | |
|             ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
 | |
|             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
 | |
|         }
 | |
| #else
 | |
|         /* This is OK on x86 hosts */
 | |
|         farg1.d = (farg1.d * farg2.d) - farg3.d;
 | |
| #endif
 | |
| #else
 | |
|         farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
 | |
|         farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
 | |
| #endif
 | |
|         if (likely(!float64_is_nan(farg1.d)))
 | |
|             farg1.d = float64_chs(farg1.d);
 | |
|     }
 | |
|     return farg1.ll;
 | |
| }
 | |
| 
 | |
| /* frsp - frsp. */
 | |
| uint64_t helper_frsp (uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
|     float32 f32;
 | |
|     farg.ll = arg;
 | |
| 
 | |
| #if USE_PRECISE_EMULATION
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN square root */
 | |
|        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | |
|     } else {
 | |
|        f32 = float64_to_float32(farg.d, &env->fp_status);
 | |
|        farg.d = float32_to_float64(f32, &env->fp_status);
 | |
|     }
 | |
| #else
 | |
|     f32 = float64_to_float32(farg.d, &env->fp_status);
 | |
|     farg.d = float32_to_float64(f32, &env->fp_status);
 | |
| #endif
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fsqrt - fsqrt. */
 | |
| uint64_t helper_fsqrt (uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN square root */
 | |
|         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | |
|     } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
 | |
|         /* Square root of a negative nonzero number */
 | |
|         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
 | |
|     } else {
 | |
|         farg.d = float64_sqrt(farg.d, &env->fp_status);
 | |
|     }
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fre - fre. */
 | |
| uint64_t helper_fre (uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN reciprocal */
 | |
|         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | |
|     } else {
 | |
|         farg.d = float64_div(float64_one, farg.d, &env->fp_status);
 | |
|     }
 | |
|     return farg.d;
 | |
| }
 | |
| 
 | |
| /* fres - fres. */
 | |
| uint64_t helper_fres (uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
|     float32 f32;
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN reciprocal */
 | |
|         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | |
|     } else {
 | |
|         farg.d = float64_div(float64_one, farg.d, &env->fp_status);
 | |
|         f32 = float64_to_float32(farg.d, &env->fp_status);
 | |
|         farg.d = float32_to_float64(f32, &env->fp_status);
 | |
|     }
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* frsqrte  - frsqrte. */
 | |
| uint64_t helper_frsqrte (uint64_t arg)
 | |
| {
 | |
|     CPU_DoubleU farg;
 | |
|     float32 f32;
 | |
|     farg.ll = arg;
 | |
| 
 | |
|     if (unlikely(float64_is_signaling_nan(farg.d))) {
 | |
|         /* sNaN reciprocal square root */
 | |
|         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | |
|     } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
 | |
|         /* Reciprocal square root of a negative nonzero number */
 | |
|         farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
 | |
|     } else {
 | |
|         farg.d = float64_sqrt(farg.d, &env->fp_status);
 | |
|         farg.d = float64_div(float64_one, farg.d, &env->fp_status);
 | |
|         f32 = float64_to_float32(farg.d, &env->fp_status);
 | |
|         farg.d = float32_to_float64(f32, &env->fp_status);
 | |
|     }
 | |
|     return farg.ll;
 | |
| }
 | |
| 
 | |
| /* fsel - fsel. */
 | |
| uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3)
 | |
| {
 | |
|     CPU_DoubleU farg1;
 | |
| 
 | |
|     farg1.ll = arg1;
 | |
| 
 | |
|     if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && !float64_is_nan(farg1.d))
 | |
|         return arg2;
 | |
|     else
 | |
|         return arg3;
 | |
| }
 | |
| 
 | |
| void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2;
 | |
|     uint32_t ret = 0;
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
| 
 | |
|     if (unlikely(float64_is_nan(farg1.d) ||
 | |
|                  float64_is_nan(farg2.d))) {
 | |
|         ret = 0x01UL;
 | |
|     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
 | |
|         ret = 0x08UL;
 | |
|     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
 | |
|         ret = 0x04UL;
 | |
|     } else {
 | |
|         ret = 0x02UL;
 | |
|     }
 | |
| 
 | |
|     env->fpscr &= ~(0x0F << FPSCR_FPRF);
 | |
|     env->fpscr |= ret << FPSCR_FPRF;
 | |
|     env->crf[crfD] = ret;
 | |
|     if (unlikely(ret == 0x01UL
 | |
|                  && (float64_is_signaling_nan(farg1.d) ||
 | |
|                      float64_is_signaling_nan(farg2.d)))) {
 | |
|         /* sNaN comparison */
 | |
|         fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD)
 | |
| {
 | |
|     CPU_DoubleU farg1, farg2;
 | |
|     uint32_t ret = 0;
 | |
|     farg1.ll = arg1;
 | |
|     farg2.ll = arg2;
 | |
| 
 | |
|     if (unlikely(float64_is_nan(farg1.d) ||
 | |
|                  float64_is_nan(farg2.d))) {
 | |
|         ret = 0x01UL;
 | |
|     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
 | |
|         ret = 0x08UL;
 | |
|     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
 | |
|         ret = 0x04UL;
 | |
|     } else {
 | |
|         ret = 0x02UL;
 | |
|     }
 | |
| 
 | |
|     env->fpscr &= ~(0x0F << FPSCR_FPRF);
 | |
|     env->fpscr |= ret << FPSCR_FPRF;
 | |
|     env->crf[crfD] = ret;
 | |
|     if (unlikely (ret == 0x01UL)) {
 | |
|         if (float64_is_signaling_nan(farg1.d) ||
 | |
|             float64_is_signaling_nan(farg2.d)) {
 | |
|             /* sNaN comparison */
 | |
|             fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
 | |
|                                   POWERPC_EXCP_FP_VXVC);
 | |
|         } else {
 | |
|             /* qNaN comparison */
 | |
|             fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if !defined (CONFIG_USER_ONLY)
 | |
| void helper_store_msr (target_ulong val)
 | |
| {
 | |
|     val = hreg_store_msr(env, val, 0);
 | |
|     if (val != 0) {
 | |
|         env->interrupt_request |= CPU_INTERRUPT_EXITTB;
 | |
|         helper_raise_exception(val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void do_rfi(target_ulong nip, target_ulong msr,
 | |
|                           target_ulong msrm, int keep_msrh)
 | |
| {
 | |
| #if defined(TARGET_PPC64)
 | |
|     if (msr & (1ULL << MSR_SF)) {
 | |
|         nip = (uint64_t)nip;
 | |
|         msr &= (uint64_t)msrm;
 | |
|     } else {
 | |
|         nip = (uint32_t)nip;
 | |
|         msr = (uint32_t)(msr & msrm);
 | |
|         if (keep_msrh)
 | |
|             msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
 | |
|     }
 | |
| #else
 | |
|     nip = (uint32_t)nip;
 | |
|     msr &= (uint32_t)msrm;
 | |
| #endif
 | |
|     /* XXX: beware: this is false if VLE is supported */
 | |
|     env->nip = nip & ~((target_ulong)0x00000003);
 | |
|     hreg_store_msr(env, msr, 1);
 | |
| #if defined (DEBUG_OP)
 | |
|     cpu_dump_rfi(env->nip, env->msr);
 | |
| #endif
 | |
|     /* No need to raise an exception here,
 | |
|      * as rfi is always the last insn of a TB
 | |
|      */
 | |
|     env->interrupt_request |= CPU_INTERRUPT_EXITTB;
 | |
| }
 | |
| 
 | |
| void helper_rfi (void)
 | |
| {
 | |
|     do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
 | |
|            ~((target_ulong)0x0), 1);
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_PPC64)
 | |
| void helper_rfid (void)
 | |
| {
 | |
|     do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
 | |
|            ~((target_ulong)0x0), 0);
 | |
| }
 | |
| 
 | |
| void helper_hrfid (void)
 | |
| {
 | |
|     do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
 | |
|            ~((target_ulong)0x0), 0);
 | |
| }
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags)
 | |
| {
 | |
|     if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) ||
 | |
|                   ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) ||
 | |
|                   ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) ||
 | |
|                   ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) ||
 | |
|                   ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) {
 | |
|         helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_PPC64)
 | |
| void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags)
 | |
| {
 | |
|     if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) ||
 | |
|                   ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) ||
 | |
|                   ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) ||
 | |
|                   ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) ||
 | |
|                   ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01)))))
 | |
|         helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* PowerPC 601 specific instructions (POWER bridge) */
 | |
| 
 | |
| target_ulong helper_clcs (uint32_t arg)
 | |
| {
 | |
|     switch (arg) {
 | |
|     case 0x0CUL:
 | |
|         /* Instruction cache line size */
 | |
|         return env->icache_line_size;
 | |
|         break;
 | |
|     case 0x0DUL:
 | |
|         /* Data cache line size */
 | |
|         return env->dcache_line_size;
 | |
|         break;
 | |
|     case 0x0EUL:
 | |
|         /* Minimum cache line size */
 | |
|         return (env->icache_line_size < env->dcache_line_size) ?
 | |
|                 env->icache_line_size : env->dcache_line_size;
 | |
|         break;
 | |
|     case 0x0FUL:
 | |
|         /* Maximum cache line size */
 | |
|         return (env->icache_line_size > env->dcache_line_size) ?
 | |
|                 env->icache_line_size : env->dcache_line_size;
 | |
|         break;
 | |
|     default:
 | |
|         /* Undefined */
 | |
|         return 0;
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| target_ulong helper_div (target_ulong arg1, target_ulong arg2)
 | |
| {
 | |
|     uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
 | |
| 
 | |
|     if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
 | |
|         (int32_t)arg2 == 0) {
 | |
|         env->spr[SPR_MQ] = 0;
 | |
|         return INT32_MIN;
 | |
|     } else {
 | |
|         env->spr[SPR_MQ] = tmp % arg2;
 | |
|         return  tmp / (int32_t)arg2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| target_ulong helper_divo (target_ulong arg1, target_ulong arg2)
 | |
| {
 | |
|     uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
 | |
| 
 | |
|     if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
 | |
|         (int32_t)arg2 == 0) {
 | |
|         env->xer |= (1 << XER_OV) | (1 << XER_SO);
 | |
|         env->spr[SPR_MQ] = 0;
 | |
|         return INT32_MIN;
 | |
|     } else {
 | |
|         env->spr[SPR_MQ] = tmp % arg2;
 | |
|         tmp /= (int32_t)arg2;
 | |
| 	if ((int32_t)tmp != tmp) {
 | |
|             env->xer |= (1 << XER_OV) | (1 << XER_SO);
 | |
|         } else {
 | |
|             env->xer &= ~(1 << XER_OV);
 | |
|         }
 | |
|         return tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| target_ulong helper_divs (target_ulong arg1, target_ulong arg2)
 | |
| {
 | |
|     if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
 | |
|         (int32_t)arg2 == 0) {
 | |
|         env->spr[SPR_MQ] = 0;
 | |
|         return INT32_MIN;
 | |
|     } else {
 | |
|         env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
 | |
|         return (int32_t)arg1 / (int32_t)arg2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| target_ulong helper_divso (target_ulong arg1, target_ulong arg2)
 | |
| {
 | |
|     if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
 | |
|         (int32_t)arg2 == 0) {
 | |
|         env->xer |= (1 << XER_OV) | (1 << XER_SO);
 | |
|         env->spr[SPR_MQ] = 0;
 | |
|         return INT32_MIN;
 | |
|     } else {
 | |
|         env->xer &= ~(1 << XER_OV);
 | |
|         env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
 | |
|         return (int32_t)arg1 / (int32_t)arg2;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if !defined (CONFIG_USER_ONLY)
 | |
| target_ulong helper_rac (target_ulong addr)
 | |
| {
 | |
|     mmu_ctx_t ctx;
 | |
|     int nb_BATs;
 | |
|     target_ulong ret = 0;
 | |
| 
 | |
|     /* We don't have to generate many instances of this instruction,
 | |
|      * as rac is supervisor only.
 | |
|      */
 | |
|     /* XXX: FIX THIS: Pretend we have no BAT */
 | |
|     nb_BATs = env->nb_BATs;
 | |
|     env->nb_BATs = 0;
 | |
|     if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0)
 | |
|         ret = ctx.raddr;
 | |
|     env->nb_BATs = nb_BATs;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void helper_rfsvc (void)
 | |
| {
 | |
|     do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* 602 specific instructions */
 | |
| /* mfrom is the most crazy instruction ever seen, imho ! */
 | |
| /* Real implementation uses a ROM table. Do the same */
 | |
| /* Extremly decomposed:
 | |
|  *                      -arg / 256
 | |
|  * return 256 * log10(10           + 1.0) + 0.5
 | |
|  */
 | |
| #if !defined (CONFIG_USER_ONLY)
 | |
| target_ulong helper_602_mfrom (target_ulong arg)
 | |
| {
 | |
|     if (likely(arg < 602)) {
 | |
| #include "mfrom_table.c"
 | |
|         return mfrom_ROM_table[arg];
 | |
|     } else {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Embedded PowerPC specific helpers */
 | |
| 
 | |
| /* XXX: to be improved to check access rights when in user-mode */
 | |
| target_ulong helper_load_dcr (target_ulong dcrn)
 | |
| {
 | |
|     uint32_t val = 0;
 | |
| 
 | |
|     if (unlikely(env->dcr_env == NULL)) {
 | |
|         qemu_log("No DCR environment\n");
 | |
|         helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
 | |
|                                    POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
 | |
|     } else if (unlikely(ppc_dcr_read(env->dcr_env, (uint32_t)dcrn, &val) != 0)) {
 | |
|         qemu_log("DCR read error %d %03x\n", (uint32_t)dcrn, (uint32_t)dcrn);
 | |
|         helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
 | |
|                                    POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| void helper_store_dcr (target_ulong dcrn, target_ulong val)
 | |
| {
 | |
|     if (unlikely(env->dcr_env == NULL)) {
 | |
|         qemu_log("No DCR environment\n");
 | |
|         helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
 | |
|                                    POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
 | |
|     } else if (unlikely(ppc_dcr_write(env->dcr_env, (uint32_t)dcrn, (uint32_t)val) != 0)) {
 | |
|         qemu_log("DCR write error %d %03x\n", (uint32_t)dcrn, (uint32_t)dcrn);
 | |
|         helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
 | |
|                                    POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| void helper_40x_rfci (void)
 | |
| {
 | |
|     do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
 | |
|            ~((target_ulong)0xFFFF0000), 0);
 | |
| }
 | |
| 
 | |
| void helper_rfci (void)
 | |
| {
 | |
|     do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
 | |
|            ~((target_ulong)0x3FFF0000), 0);
 | |
| }
 | |
| 
 | |
| void helper_rfdi (void)
 | |
| {
 | |
|     do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
 | |
|            ~((target_ulong)0x3FFF0000), 0);
 | |
| }
 | |
| 
 | |
| void helper_rfmci (void)
 | |
| {
 | |
|     do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
 | |
|            ~((target_ulong)0x3FFF0000), 0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* 440 specific */
 | |
| target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc)
 | |
| {
 | |
|     target_ulong mask;
 | |
|     int i;
 | |
| 
 | |
|     i = 1;
 | |
|     for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
 | |
|         if ((high & mask) == 0) {
 | |
|             if (update_Rc) {
 | |
|                 env->crf[0] = 0x4;
 | |
|             }
 | |
|             goto done;
 | |
|         }
 | |
|         i++;
 | |
|     }
 | |
|     for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
 | |
|         if ((low & mask) == 0) {
 | |
|             if (update_Rc) {
 | |
|                 env->crf[0] = 0x8;
 | |
|             }
 | |
|             goto done;
 | |
|         }
 | |
|         i++;
 | |
|     }
 | |
|     if (update_Rc) {
 | |
|         env->crf[0] = 0x2;
 | |
|     }
 | |
|  done:
 | |
|     env->xer = (env->xer & ~0x7F) | i;
 | |
|     if (update_Rc) {
 | |
|         env->crf[0] |= xer_so;
 | |
|     }
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Altivec extension helpers */
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define HI_IDX 0
 | |
| #define LO_IDX 1
 | |
| #else
 | |
| #define HI_IDX 1
 | |
| #define LO_IDX 0
 | |
| #endif
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define VECTOR_FOR_INORDER_I(index, element)            \
 | |
|     for (index = 0; index < ARRAY_SIZE(r->element); index++)
 | |
| #else
 | |
| #define VECTOR_FOR_INORDER_I(index, element)            \
 | |
|   for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
 | |
| #endif
 | |
| 
 | |
| /* If X is a NaN, store the corresponding QNaN into RESULT.  Otherwise,
 | |
|  * execute the following block.  */
 | |
| #define DO_HANDLE_NAN(result, x)                \
 | |
|     if (float32_is_nan(x) || float32_is_signaling_nan(x)) {     \
 | |
|         CPU_FloatU __f;                                         \
 | |
|         __f.f = x;                                              \
 | |
|         __f.l = __f.l | (1 << 22);  /* Set QNaN bit. */         \
 | |
|         result = __f.f;                                         \
 | |
|     } else
 | |
| 
 | |
| #define HANDLE_NAN1(result, x)                  \
 | |
|     DO_HANDLE_NAN(result, x)
 | |
| #define HANDLE_NAN2(result, x, y)               \
 | |
|     DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y)
 | |
| #define HANDLE_NAN3(result, x, y, z)            \
 | |
|     DO_HANDLE_NAN(result, x) DO_HANDLE_NAN(result, y) DO_HANDLE_NAN(result, z)
 | |
| 
 | |
| /* Saturating arithmetic helpers.  */
 | |
| #define SATCVT(from, to, from_type, to_type, min, max, use_min, use_max) \
 | |
|     static inline to_type cvt##from##to(from_type x, int *sat)          \
 | |
|     {                                                                   \
 | |
|         to_type r;                                                      \
 | |
|         if (use_min && x < min) {                                       \
 | |
|             r = min;                                                    \
 | |
|             *sat = 1;                                                   \
 | |
|         } else if (use_max && x > max) {                                \
 | |
|             r = max;                                                    \
 | |
|             *sat = 1;                                                   \
 | |
|         } else {                                                        \
 | |
|             r = x;                                                      \
 | |
|         }                                                               \
 | |
|         return r;                                                       \
 | |
|     }
 | |
| SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX, 1, 1)
 | |
| SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX, 1, 1)
 | |
| SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX, 1, 1)
 | |
| 
 | |
| /* Work around gcc problems with the macro version */
 | |
| static inline uint8_t cvtuhub(uint16_t x, int *sat)
 | |
| {
 | |
|     uint8_t r;
 | |
| 
 | |
|     if (x > UINT8_MAX) {
 | |
|         r = UINT8_MAX;
 | |
|         *sat = 1;
 | |
|     } else {
 | |
|         r = x;
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| //SATCVT(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX, 0, 1)
 | |
| SATCVT(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX, 0, 1)
 | |
| SATCVT(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX, 0, 1)
 | |
| SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX, 1, 1)
 | |
| SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX, 1, 1)
 | |
| SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX, 1, 1)
 | |
| #undef SATCVT
 | |
| 
 | |
| #define LVE(name, access, swap, element)                        \
 | |
|     void helper_##name (ppc_avr_t *r, target_ulong addr)        \
 | |
|     {                                                           \
 | |
|         size_t n_elems = ARRAY_SIZE(r->element);                \
 | |
|         int adjust = HI_IDX*(n_elems-1);                        \
 | |
|         int sh = sizeof(r->element[0]) >> 1;                    \
 | |
|         int index = (addr & 0xf) >> sh;                         \
 | |
|         if(msr_le) {                                            \
 | |
|             r->element[LO_IDX ? index : (adjust - index)] = swap(access(addr)); \
 | |
|         } else {                                                        \
 | |
|             r->element[LO_IDX ? index : (adjust - index)] = access(addr); \
 | |
|         }                                                               \
 | |
|     }
 | |
| #define I(x) (x)
 | |
| LVE(lvebx, ldub, I, u8)
 | |
| LVE(lvehx, lduw, bswap16, u16)
 | |
| LVE(lvewx, ldl, bswap32, u32)
 | |
| #undef I
 | |
| #undef LVE
 | |
| 
 | |
| void helper_lvsl (ppc_avr_t *r, target_ulong sh)
 | |
| {
 | |
|     int i, j = (sh & 0xf);
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I (i, u8) {
 | |
|         r->u8[i] = j++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_lvsr (ppc_avr_t *r, target_ulong sh)
 | |
| {
 | |
|     int i, j = 0x10 - (sh & 0xf);
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I (i, u8) {
 | |
|         r->u8[i] = j++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define STVE(name, access, swap, element)                       \
 | |
|     void helper_##name (ppc_avr_t *r, target_ulong addr)        \
 | |
|     {                                                           \
 | |
|         size_t n_elems = ARRAY_SIZE(r->element);                \
 | |
|         int adjust = HI_IDX*(n_elems-1);                        \
 | |
|         int sh = sizeof(r->element[0]) >> 1;                    \
 | |
|         int index = (addr & 0xf) >> sh;                         \
 | |
|         if(msr_le) {                                            \
 | |
|             access(addr, swap(r->element[LO_IDX ? index : (adjust - index)])); \
 | |
|         } else {                                                        \
 | |
|             access(addr, r->element[LO_IDX ? index : (adjust - index)]); \
 | |
|         }                                                               \
 | |
|     }
 | |
| #define I(x) (x)
 | |
| STVE(stvebx, stb, I, u8)
 | |
| STVE(stvehx, stw, bswap16, u16)
 | |
| STVE(stvewx, stl, bswap32, u32)
 | |
| #undef I
 | |
| #undef LVE
 | |
| 
 | |
| void helper_mtvscr (ppc_avr_t *r)
 | |
| {
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
|     env->vscr = r->u32[3];
 | |
| #else
 | |
|     env->vscr = r->u32[0];
 | |
| #endif
 | |
|     set_flush_to_zero(vscr_nj, &env->vec_status);
 | |
| }
 | |
| 
 | |
| void helper_vaddcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
 | |
|         r->u32[i] = ~a->u32[i] < b->u32[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define VARITH_DO(name, op, element)        \
 | |
| void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)          \
 | |
| {                                                                       \
 | |
|     int i;                                                              \
 | |
|     for (i = 0; i < ARRAY_SIZE(r->element); i++) {                      \
 | |
|         r->element[i] = a->element[i] op b->element[i];                 \
 | |
|     }                                                                   \
 | |
| }
 | |
| #define VARITH(suffix, element)                  \
 | |
|   VARITH_DO(add##suffix, +, element)             \
 | |
|   VARITH_DO(sub##suffix, -, element)
 | |
| VARITH(ubm, u8)
 | |
| VARITH(uhm, u16)
 | |
| VARITH(uwm, u32)
 | |
| #undef VARITH_DO
 | |
| #undef VARITH
 | |
| 
 | |
| #define VARITHFP(suffix, func)                                          \
 | |
|     void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)    \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
 | |
|             HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) {                    \
 | |
|                 r->f[i] = func(a->f[i], b->f[i], &env->vec_status);     \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|     }
 | |
| VARITHFP(addfp, float32_add)
 | |
| VARITHFP(subfp, float32_sub)
 | |
| #undef VARITHFP
 | |
| 
 | |
| #define VARITHSAT_CASE(type, op, cvt, element)                          \
 | |
|     {                                                                   \
 | |
|         type result = (type)a->element[i] op (type)b->element[i];       \
 | |
|         r->element[i] = cvt(result, &sat);                              \
 | |
|     }
 | |
| 
 | |
| #define VARITHSAT_DO(name, op, optype, cvt, element)                    \
 | |
|     void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
 | |
|     {                                                                   \
 | |
|         int sat = 0;                                                    \
 | |
|         int i;                                                          \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
 | |
|             switch (sizeof(r->element[0])) {                            \
 | |
|             case 1: VARITHSAT_CASE(optype, op, cvt, element); break;    \
 | |
|             case 2: VARITHSAT_CASE(optype, op, cvt, element); break;    \
 | |
|             case 4: VARITHSAT_CASE(optype, op, cvt, element); break;    \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|         if (sat) {                                                      \
 | |
|             env->vscr |= (1 << VSCR_SAT);                               \
 | |
|         }                                                               \
 | |
|     }
 | |
| #define VARITHSAT_SIGNED(suffix, element, optype, cvt)        \
 | |
|     VARITHSAT_DO(adds##suffix##s, +, optype, cvt, element)    \
 | |
|     VARITHSAT_DO(subs##suffix##s, -, optype, cvt, element)
 | |
| #define VARITHSAT_UNSIGNED(suffix, element, optype, cvt)       \
 | |
|     VARITHSAT_DO(addu##suffix##s, +, optype, cvt, element)     \
 | |
|     VARITHSAT_DO(subu##suffix##s, -, optype, cvt, element)
 | |
| VARITHSAT_SIGNED(b, s8, int16_t, cvtshsb)
 | |
| VARITHSAT_SIGNED(h, s16, int32_t, cvtswsh)
 | |
| VARITHSAT_SIGNED(w, s32, int64_t, cvtsdsw)
 | |
| VARITHSAT_UNSIGNED(b, u8, uint16_t, cvtshub)
 | |
| VARITHSAT_UNSIGNED(h, u16, uint32_t, cvtswuh)
 | |
| VARITHSAT_UNSIGNED(w, u32, uint64_t, cvtsduw)
 | |
| #undef VARITHSAT_CASE
 | |
| #undef VARITHSAT_DO
 | |
| #undef VARITHSAT_SIGNED
 | |
| #undef VARITHSAT_UNSIGNED
 | |
| 
 | |
| #define VAVG_DO(name, element, etype)                                   \
 | |
|     void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
 | |
|             etype x = (etype)a->element[i] + (etype)b->element[i] + 1;  \
 | |
|             r->element[i] = x >> 1;                                     \
 | |
|         }                                                               \
 | |
|     }
 | |
| 
 | |
| #define VAVG(type, signed_element, signed_type, unsigned_element, unsigned_type) \
 | |
|     VAVG_DO(avgs##type, signed_element, signed_type)                    \
 | |
|     VAVG_DO(avgu##type, unsigned_element, unsigned_type)
 | |
| VAVG(b, s8, int16_t, u8, uint16_t)
 | |
| VAVG(h, s16, int32_t, u16, uint32_t)
 | |
| VAVG(w, s32, int64_t, u32, uint64_t)
 | |
| #undef VAVG_DO
 | |
| #undef VAVG
 | |
| 
 | |
| #define VCF(suffix, cvt, element)                                       \
 | |
|     void helper_vcf##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim)  \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
 | |
|             float32 t = cvt(b->element[i], &env->vec_status);           \
 | |
|             r->f[i] = float32_scalbn (t, -uim, &env->vec_status);       \
 | |
|         }                                                               \
 | |
|     }
 | |
| VCF(ux, uint32_to_float32, u32)
 | |
| VCF(sx, int32_to_float32, s32)
 | |
| #undef VCF
 | |
| 
 | |
| #define VCMP_DO(suffix, compare, element, record)                       \
 | |
|     void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
 | |
|     {                                                                   \
 | |
|         uint32_t ones = (uint32_t)-1;                                   \
 | |
|         uint32_t all = ones;                                            \
 | |
|         uint32_t none = 0;                                              \
 | |
|         int i;                                                          \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
 | |
|             uint32_t result = (a->element[i] compare b->element[i] ? ones : 0x0); \
 | |
|             switch (sizeof (a->element[0])) {                           \
 | |
|             case 4: r->u32[i] = result; break;                          \
 | |
|             case 2: r->u16[i] = result; break;                          \
 | |
|             case 1: r->u8[i] = result; break;                           \
 | |
|             }                                                           \
 | |
|             all &= result;                                              \
 | |
|             none |= result;                                             \
 | |
|         }                                                               \
 | |
|         if (record) {                                                   \
 | |
|             env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1);       \
 | |
|         }                                                               \
 | |
|     }
 | |
| #define VCMP(suffix, compare, element)          \
 | |
|     VCMP_DO(suffix, compare, element, 0)        \
 | |
|     VCMP_DO(suffix##_dot, compare, element, 1)
 | |
| VCMP(equb, ==, u8)
 | |
| VCMP(equh, ==, u16)
 | |
| VCMP(equw, ==, u32)
 | |
| VCMP(gtub, >, u8)
 | |
| VCMP(gtuh, >, u16)
 | |
| VCMP(gtuw, >, u32)
 | |
| VCMP(gtsb, >, s8)
 | |
| VCMP(gtsh, >, s16)
 | |
| VCMP(gtsw, >, s32)
 | |
| #undef VCMP_DO
 | |
| #undef VCMP
 | |
| 
 | |
| #define VCMPFP_DO(suffix, compare, order, record)                       \
 | |
|     void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
 | |
|     {                                                                   \
 | |
|         uint32_t ones = (uint32_t)-1;                                   \
 | |
|         uint32_t all = ones;                                            \
 | |
|         uint32_t none = 0;                                              \
 | |
|         int i;                                                          \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
 | |
|             uint32_t result;                                            \
 | |
|             int rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status); \
 | |
|             if (rel == float_relation_unordered) {                      \
 | |
|                 result = 0;                                             \
 | |
|             } else if (rel compare order) {                             \
 | |
|                 result = ones;                                          \
 | |
|             } else {                                                    \
 | |
|                 result = 0;                                             \
 | |
|             }                                                           \
 | |
|             r->u32[i] = result;                                         \
 | |
|             all &= result;                                              \
 | |
|             none |= result;                                             \
 | |
|         }                                                               \
 | |
|         if (record) {                                                   \
 | |
|             env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1);       \
 | |
|         }                                                               \
 | |
|     }
 | |
| #define VCMPFP(suffix, compare, order)           \
 | |
|     VCMPFP_DO(suffix, compare, order, 0)         \
 | |
|     VCMPFP_DO(suffix##_dot, compare, order, 1)
 | |
| VCMPFP(eqfp, ==, float_relation_equal)
 | |
| VCMPFP(gefp, !=, float_relation_less)
 | |
| VCMPFP(gtfp, ==, float_relation_greater)
 | |
| #undef VCMPFP_DO
 | |
| #undef VCMPFP
 | |
| 
 | |
| static inline void vcmpbfp_internal(ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b,
 | |
|                                     int record)
 | |
| {
 | |
|     int i;
 | |
|     int all_in = 0;
 | |
|     for (i = 0; i < ARRAY_SIZE(r->f); i++) {
 | |
|         int le_rel = float32_compare_quiet(a->f[i], b->f[i], &env->vec_status);
 | |
|         if (le_rel == float_relation_unordered) {
 | |
|             r->u32[i] = 0xc0000000;
 | |
|             /* ALL_IN does not need to be updated here.  */
 | |
|         } else {
 | |
|             float32 bneg = float32_chs(b->f[i]);
 | |
|             int ge_rel = float32_compare_quiet(a->f[i], bneg, &env->vec_status);
 | |
|             int le = le_rel != float_relation_greater;
 | |
|             int ge = ge_rel != float_relation_less;
 | |
|             r->u32[i] = ((!le) << 31) | ((!ge) << 30);
 | |
|             all_in |= (!le | !ge);
 | |
|         }
 | |
|     }
 | |
|     if (record) {
 | |
|         env->crf[6] = (all_in == 0) << 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vcmpbfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     vcmpbfp_internal(r, a, b, 0);
 | |
| }
 | |
| 
 | |
| void helper_vcmpbfp_dot (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     vcmpbfp_internal(r, a, b, 1);
 | |
| }
 | |
| 
 | |
| #define VCT(suffix, satcvt, element)                                    \
 | |
|     void helper_vct##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t uim)  \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         int sat = 0;                                                    \
 | |
|         float_status s = env->vec_status;                               \
 | |
|         set_float_rounding_mode(float_round_to_zero, &s);               \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
 | |
|             if (float32_is_nan(b->f[i]) ||                              \
 | |
|                 float32_is_signaling_nan(b->f[i])) {                    \
 | |
|                 r->element[i] = 0;                                      \
 | |
|             } else {                                                    \
 | |
|                 float64 t = float32_to_float64(b->f[i], &s);            \
 | |
|                 int64_t j;                                              \
 | |
|                 t = float64_scalbn(t, uim, &s);                         \
 | |
|                 j = float64_to_int64(t, &s);                            \
 | |
|                 r->element[i] = satcvt(j, &sat);                        \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|         if (sat) {                                                      \
 | |
|             env->vscr |= (1 << VSCR_SAT);                               \
 | |
|         }                                                               \
 | |
|     }
 | |
| VCT(uxs, cvtsduw, u32)
 | |
| VCT(sxs, cvtsdsw, s32)
 | |
| #undef VCT
 | |
| 
 | |
| void helper_vmaddfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < ARRAY_SIZE(r->f); i++) {
 | |
|         HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
 | |
|             /* Need to do the computation in higher precision and round
 | |
|              * once at the end.  */
 | |
|             float64 af, bf, cf, t;
 | |
|             af = float32_to_float64(a->f[i], &env->vec_status);
 | |
|             bf = float32_to_float64(b->f[i], &env->vec_status);
 | |
|             cf = float32_to_float64(c->f[i], &env->vec_status);
 | |
|             t = float64_mul(af, cf, &env->vec_status);
 | |
|             t = float64_add(t, bf, &env->vec_status);
 | |
|             r->f[i] = float64_to_float32(t, &env->vec_status);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vmhaddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     int sat = 0;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
 | |
|         int32_t prod = a->s16[i] * b->s16[i];
 | |
|         int32_t t = (int32_t)c->s16[i] + (prod >> 15);
 | |
|         r->s16[i] = cvtswsh (t, &sat);
 | |
|     }
 | |
| 
 | |
|     if (sat) {
 | |
|         env->vscr |= (1 << VSCR_SAT);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vmhraddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     int sat = 0;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
 | |
|         int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
 | |
|         int32_t t = (int32_t)c->s16[i] + (prod >> 15);
 | |
|         r->s16[i] = cvtswsh (t, &sat);
 | |
|     }
 | |
| 
 | |
|     if (sat) {
 | |
|         env->vscr |= (1 << VSCR_SAT);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define VMINMAX_DO(name, compare, element)                              \
 | |
|     void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
 | |
|             if (a->element[i] compare b->element[i]) {                  \
 | |
|                 r->element[i] = b->element[i];                          \
 | |
|             } else {                                                    \
 | |
|                 r->element[i] = a->element[i];                          \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|     }
 | |
| #define VMINMAX(suffix, element)                \
 | |
|   VMINMAX_DO(min##suffix, >, element)           \
 | |
|   VMINMAX_DO(max##suffix, <, element)
 | |
| VMINMAX(sb, s8)
 | |
| VMINMAX(sh, s16)
 | |
| VMINMAX(sw, s32)
 | |
| VMINMAX(ub, u8)
 | |
| VMINMAX(uh, u16)
 | |
| VMINMAX(uw, u32)
 | |
| #undef VMINMAX_DO
 | |
| #undef VMINMAX
 | |
| 
 | |
| #define VMINMAXFP(suffix, rT, rF)                                       \
 | |
|     void helper_v##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)    \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
 | |
|             HANDLE_NAN2(r->f[i], a->f[i], b->f[i]) {                    \
 | |
|                 if (float32_lt_quiet(a->f[i], b->f[i], &env->vec_status)) { \
 | |
|                     r->f[i] = rT->f[i];                                 \
 | |
|                 } else {                                                \
 | |
|                     r->f[i] = rF->f[i];                                 \
 | |
|                 }                                                       \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|     }
 | |
| VMINMAXFP(minfp, a, b)
 | |
| VMINMAXFP(maxfp, b, a)
 | |
| #undef VMINMAXFP
 | |
| 
 | |
| void helper_vmladduhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
 | |
|         int32_t prod = a->s16[i] * b->s16[i];
 | |
|         r->s16[i] = (int16_t) (prod + c->s16[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define VMRG_DO(name, element, highp)                                   \
 | |
|     void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
 | |
|     {                                                                   \
 | |
|         ppc_avr_t result;                                               \
 | |
|         int i;                                                          \
 | |
|         size_t n_elems = ARRAY_SIZE(r->element);                        \
 | |
|         for (i = 0; i < n_elems/2; i++) {                               \
 | |
|             if (highp) {                                                \
 | |
|                 result.element[i*2+HI_IDX] = a->element[i];             \
 | |
|                 result.element[i*2+LO_IDX] = b->element[i];             \
 | |
|             } else {                                                    \
 | |
|                 result.element[n_elems - i*2 - (1+HI_IDX)] = b->element[n_elems - i - 1]; \
 | |
|                 result.element[n_elems - i*2 - (1+LO_IDX)] = a->element[n_elems - i - 1]; \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|         *r = result;                                                    \
 | |
|     }
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define MRGHI 0
 | |
| #define MRGLO 1
 | |
| #else
 | |
| #define MRGHI 1
 | |
| #define MRGLO 0
 | |
| #endif
 | |
| #define VMRG(suffix, element)                   \
 | |
|   VMRG_DO(mrgl##suffix, element, MRGHI)         \
 | |
|   VMRG_DO(mrgh##suffix, element, MRGLO)
 | |
| VMRG(b, u8)
 | |
| VMRG(h, u16)
 | |
| VMRG(w, u32)
 | |
| #undef VMRG_DO
 | |
| #undef VMRG
 | |
| #undef MRGHI
 | |
| #undef MRGLO
 | |
| 
 | |
| void helper_vmsummbm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     int32_t prod[16];
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
 | |
|         prod[i] = (int32_t)a->s8[i] * b->u8[i];
 | |
|     }
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, s32) {
 | |
|         r->s32[i] = c->s32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vmsumshm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     int32_t prod[8];
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
 | |
|         prod[i] = a->s16[i] * b->s16[i];
 | |
|     }
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, s32) {
 | |
|         r->s32[i] = c->s32[i] + prod[2*i] + prod[2*i+1];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vmsumshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     int32_t prod[8];
 | |
|     int i;
 | |
|     int sat = 0;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
 | |
|         prod[i] = (int32_t)a->s16[i] * b->s16[i];
 | |
|     }
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I (i, s32) {
 | |
|         int64_t t = (int64_t)c->s32[i] + prod[2*i] + prod[2*i+1];
 | |
|         r->u32[i] = cvtsdsw(t, &sat);
 | |
|     }
 | |
| 
 | |
|     if (sat) {
 | |
|         env->vscr |= (1 << VSCR_SAT);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vmsumubm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     uint16_t prod[16];
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
 | |
|         prod[i] = a->u8[i] * b->u8[i];
 | |
|     }
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, u32) {
 | |
|         r->u32[i] = c->u32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vmsumuhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     uint32_t prod[8];
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
 | |
|         prod[i] = a->u16[i] * b->u16[i];
 | |
|     }
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I(i, u32) {
 | |
|         r->u32[i] = c->u32[i] + prod[2*i] + prod[2*i+1];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vmsumuhs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     uint32_t prod[8];
 | |
|     int i;
 | |
|     int sat = 0;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
 | |
|         prod[i] = a->u16[i] * b->u16[i];
 | |
|     }
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I (i, s32) {
 | |
|         uint64_t t = (uint64_t)c->u32[i] + prod[2*i] + prod[2*i+1];
 | |
|         r->u32[i] = cvtuduw(t, &sat);
 | |
|     }
 | |
| 
 | |
|     if (sat) {
 | |
|         env->vscr |= (1 << VSCR_SAT);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define VMUL_DO(name, mul_element, prod_element, evenp)                 \
 | |
|     void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         VECTOR_FOR_INORDER_I(i, prod_element) {                         \
 | |
|             if (evenp) {                                                \
 | |
|                 r->prod_element[i] = a->mul_element[i*2+HI_IDX] * b->mul_element[i*2+HI_IDX]; \
 | |
|             } else {                                                    \
 | |
|                 r->prod_element[i] = a->mul_element[i*2+LO_IDX] * b->mul_element[i*2+LO_IDX]; \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|     }
 | |
| #define VMUL(suffix, mul_element, prod_element) \
 | |
|   VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
 | |
|   VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
 | |
| VMUL(sb, s8, s16)
 | |
| VMUL(sh, s16, s32)
 | |
| VMUL(ub, u8, u16)
 | |
| VMUL(uh, u16, u32)
 | |
| #undef VMUL_DO
 | |
| #undef VMUL
 | |
| 
 | |
| void helper_vnmsubfp (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < ARRAY_SIZE(r->f); i++) {
 | |
|         HANDLE_NAN3(r->f[i], a->f[i], b->f[i], c->f[i]) {
 | |
|             /* Need to do the computation is higher precision and round
 | |
|              * once at the end.  */
 | |
|             float64 af, bf, cf, t;
 | |
|             af = float32_to_float64(a->f[i], &env->vec_status);
 | |
|             bf = float32_to_float64(b->f[i], &env->vec_status);
 | |
|             cf = float32_to_float64(c->f[i], &env->vec_status);
 | |
|             t = float64_mul(af, cf, &env->vec_status);
 | |
|             t = float64_sub(t, bf, &env->vec_status);
 | |
|             t = float64_chs(t);
 | |
|             r->f[i] = float64_to_float32(t, &env->vec_status);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vperm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     ppc_avr_t result;
 | |
|     int i;
 | |
|     VECTOR_FOR_INORDER_I (i, u8) {
 | |
|         int s = c->u8[i] & 0x1f;
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
|         int index = s & 0xf;
 | |
| #else
 | |
|         int index = 15 - (s & 0xf);
 | |
| #endif
 | |
|         if (s & 0x10) {
 | |
|             result.u8[i] = b->u8[index];
 | |
|         } else {
 | |
|             result.u8[i] = a->u8[index];
 | |
|         }
 | |
|     }
 | |
|     *r = result;
 | |
| }
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define PKBIG 1
 | |
| #else
 | |
| #define PKBIG 0
 | |
| #endif
 | |
| void helper_vpkpx (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i, j;
 | |
|     ppc_avr_t result;
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
|     const ppc_avr_t *x[2] = { a, b };
 | |
| #else
 | |
|     const ppc_avr_t *x[2] = { b, a };
 | |
| #endif
 | |
| 
 | |
|     VECTOR_FOR_INORDER_I (i, u64) {
 | |
|         VECTOR_FOR_INORDER_I (j, u32){
 | |
|             uint32_t e = x[i]->u32[j];
 | |
|             result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
 | |
|                                  ((e >> 6) & 0x3e0) |
 | |
|                                  ((e >> 3) & 0x1f));
 | |
|         }
 | |
|     }
 | |
|     *r = result;
 | |
| }
 | |
| 
 | |
| #define VPK(suffix, from, to, cvt, dosat)       \
 | |
|     void helper_vpk##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         int sat = 0;                                                    \
 | |
|         ppc_avr_t result;                                               \
 | |
|         ppc_avr_t *a0 = PKBIG ? a : b;                                  \
 | |
|         ppc_avr_t *a1 = PKBIG ? b : a;                                  \
 | |
|         VECTOR_FOR_INORDER_I (i, from) {                                \
 | |
|             result.to[i] = cvt(a0->from[i], &sat);                      \
 | |
|             result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);  \
 | |
|         }                                                               \
 | |
|         *r = result;                                                    \
 | |
|         if (dosat && sat) {                                             \
 | |
|             env->vscr |= (1 << VSCR_SAT);                               \
 | |
|         }                                                               \
 | |
|     }
 | |
| #define I(x, y) (x)
 | |
| VPK(shss, s16, s8, cvtshsb, 1)
 | |
| VPK(shus, s16, u8, cvtshub, 1)
 | |
| VPK(swss, s32, s16, cvtswsh, 1)
 | |
| VPK(swus, s32, u16, cvtswuh, 1)
 | |
| VPK(uhus, u16, u8, cvtuhub, 1)
 | |
| VPK(uwus, u32, u16, cvtuwuh, 1)
 | |
| VPK(uhum, u16, u8, I, 0)
 | |
| VPK(uwum, u32, u16, I, 0)
 | |
| #undef I
 | |
| #undef VPK
 | |
| #undef PKBIG
 | |
| 
 | |
| void helper_vrefp (ppc_avr_t *r, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < ARRAY_SIZE(r->f); i++) {
 | |
|         HANDLE_NAN1(r->f[i], b->f[i]) {
 | |
|             r->f[i] = float32_div(float32_one, b->f[i], &env->vec_status);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define VRFI(suffix, rounding)                                          \
 | |
|     void helper_vrfi##suffix (ppc_avr_t *r, ppc_avr_t *b)               \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         float_status s = env->vec_status;                               \
 | |
|         set_float_rounding_mode(rounding, &s);                          \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->f); i++) {                        \
 | |
|             HANDLE_NAN1(r->f[i], b->f[i]) {                             \
 | |
|                 r->f[i] = float32_round_to_int (b->f[i], &s);           \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|     }
 | |
| VRFI(n, float_round_nearest_even)
 | |
| VRFI(m, float_round_down)
 | |
| VRFI(p, float_round_up)
 | |
| VRFI(z, float_round_to_zero)
 | |
| #undef VRFI
 | |
| 
 | |
| #define VROTATE(suffix, element)                                        \
 | |
|     void helper_vrl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
 | |
|             unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
 | |
|             unsigned int shift = b->element[i] & mask;                  \
 | |
|             r->element[i] = (a->element[i] << shift) | (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
 | |
|         }                                                               \
 | |
|     }
 | |
| VROTATE(b, u8)
 | |
| VROTATE(h, u16)
 | |
| VROTATE(w, u32)
 | |
| #undef VROTATE
 | |
| 
 | |
| void helper_vrsqrtefp (ppc_avr_t *r, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < ARRAY_SIZE(r->f); i++) {
 | |
|         HANDLE_NAN1(r->f[i], b->f[i]) {
 | |
|             float32 t = float32_sqrt(b->f[i], &env->vec_status);
 | |
|             r->f[i] = float32_div(float32_one, t, &env->vec_status);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vsel (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
 | |
| {
 | |
|     r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
 | |
|     r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
 | |
| }
 | |
| 
 | |
| void helper_vlogefp (ppc_avr_t *r, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < ARRAY_SIZE(r->f); i++) {
 | |
|         HANDLE_NAN1(r->f[i], b->f[i]) {
 | |
|             r->f[i] = float32_log2(b->f[i], &env->vec_status);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define LEFT 0
 | |
| #define RIGHT 1
 | |
| #else
 | |
| #define LEFT 1
 | |
| #define RIGHT 0
 | |
| #endif
 | |
| /* The specification says that the results are undefined if all of the
 | |
|  * shift counts are not identical.  We check to make sure that they are
 | |
|  * to conform to what real hardware appears to do.  */
 | |
| #define VSHIFT(suffix, leftp)                                           \
 | |
|     void helper_vs##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)   \
 | |
|     {                                                                   \
 | |
|         int shift = b->u8[LO_IDX*15] & 0x7;                             \
 | |
|         int doit = 1;                                                   \
 | |
|         int i;                                                          \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->u8); i++) {                       \
 | |
|             doit = doit && ((b->u8[i] & 0x7) == shift);                 \
 | |
|         }                                                               \
 | |
|         if (doit) {                                                     \
 | |
|             if (shift == 0) {                                           \
 | |
|                 *r = *a;                                                \
 | |
|             } else if (leftp) {                                         \
 | |
|                 uint64_t carry = a->u64[LO_IDX] >> (64 - shift);        \
 | |
|                 r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry;     \
 | |
|                 r->u64[LO_IDX] = a->u64[LO_IDX] << shift;               \
 | |
|             } else {                                                    \
 | |
|                 uint64_t carry = a->u64[HI_IDX] << (64 - shift);        \
 | |
|                 r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry;     \
 | |
|                 r->u64[HI_IDX] = a->u64[HI_IDX] >> shift;               \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|     }
 | |
| VSHIFT(l, LEFT)
 | |
| VSHIFT(r, RIGHT)
 | |
| #undef VSHIFT
 | |
| #undef LEFT
 | |
| #undef RIGHT
 | |
| 
 | |
| #define VSL(suffix, element)                                            \
 | |
|     void helper_vsl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
 | |
|             unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
 | |
|             unsigned int shift = b->element[i] & mask;                  \
 | |
|             r->element[i] = a->element[i] << shift;                     \
 | |
|         }                                                               \
 | |
|     }
 | |
| VSL(b, u8)
 | |
| VSL(h, u16)
 | |
| VSL(w, u32)
 | |
| #undef VSL
 | |
| 
 | |
| void helper_vsldoi (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
 | |
| {
 | |
|     int sh = shift & 0xf;
 | |
|     int i;
 | |
|     ppc_avr_t result;
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
 | |
|         int index = sh + i;
 | |
|         if (index > 0xf) {
 | |
|             result.u8[i] = b->u8[index-0x10];
 | |
|         } else {
 | |
|             result.u8[i] = a->u8[index];
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
 | |
|         int index = (16 - sh) + i;
 | |
|         if (index > 0xf) {
 | |
|             result.u8[i] = a->u8[index-0x10];
 | |
|         } else {
 | |
|             result.u8[i] = b->u8[index];
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     *r = result;
 | |
| }
 | |
| 
 | |
| void helper_vslo (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|   int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
 | |
| 
 | |
| #if defined (HOST_WORDS_BIGENDIAN)
 | |
|   memmove (&r->u8[0], &a->u8[sh], 16-sh);
 | |
|   memset (&r->u8[16-sh], 0, sh);
 | |
| #else
 | |
|   memmove (&r->u8[sh], &a->u8[0], 16-sh);
 | |
|   memset (&r->u8[0], 0, sh);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Experimental testing shows that hardware masks the immediate.  */
 | |
| #define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
 | |
| #else
 | |
| #define SPLAT_ELEMENT(element) (ARRAY_SIZE(r->element)-1 - _SPLAT_MASKED(element))
 | |
| #endif
 | |
| #define VSPLT(suffix, element)                                          \
 | |
|     void helper_vsplt##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
 | |
|     {                                                                   \
 | |
|         uint32_t s = b->element[SPLAT_ELEMENT(element)];                \
 | |
|         int i;                                                          \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
 | |
|             r->element[i] = s;                                          \
 | |
|         }                                                               \
 | |
|     }
 | |
| VSPLT(b, u8)
 | |
| VSPLT(h, u16)
 | |
| VSPLT(w, u32)
 | |
| #undef VSPLT
 | |
| #undef SPLAT_ELEMENT
 | |
| #undef _SPLAT_MASKED
 | |
| 
 | |
| #define VSPLTI(suffix, element, splat_type)                     \
 | |
|     void helper_vspltis##suffix (ppc_avr_t *r, uint32_t splat)  \
 | |
|     {                                                           \
 | |
|         splat_type x = (int8_t)(splat << 3) >> 3;               \
 | |
|         int i;                                                  \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->element); i++) {          \
 | |
|             r->element[i] = x;                                  \
 | |
|         }                                                       \
 | |
|     }
 | |
| VSPLTI(b, s8, int8_t)
 | |
| VSPLTI(h, s16, int16_t)
 | |
| VSPLTI(w, s32, int32_t)
 | |
| #undef VSPLTI
 | |
| 
 | |
| #define VSR(suffix, element)                                            \
 | |
|     void helper_vsr##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
 | |
|             unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
 | |
|             unsigned int shift = b->element[i] & mask;                  \
 | |
|             r->element[i] = a->element[i] >> shift;                     \
 | |
|         }                                                               \
 | |
|     }
 | |
| VSR(ab, s8)
 | |
| VSR(ah, s16)
 | |
| VSR(aw, s32)
 | |
| VSR(b, u8)
 | |
| VSR(h, u16)
 | |
| VSR(w, u32)
 | |
| #undef VSR
 | |
| 
 | |
| void helper_vsro (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|   int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
 | |
| 
 | |
| #if defined (HOST_WORDS_BIGENDIAN)
 | |
|   memmove (&r->u8[sh], &a->u8[0], 16-sh);
 | |
|   memset (&r->u8[0], 0, sh);
 | |
| #else
 | |
|   memmove (&r->u8[0], &a->u8[sh], 16-sh);
 | |
|   memset (&r->u8[16-sh], 0, sh);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void helper_vsubcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
 | |
|         r->u32[i] = a->u32[i] >= b->u32[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vsumsws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int64_t t;
 | |
|     int i, upper;
 | |
|     ppc_avr_t result;
 | |
|     int sat = 0;
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
|     upper = ARRAY_SIZE(r->s32)-1;
 | |
| #else
 | |
|     upper = 0;
 | |
| #endif
 | |
|     t = (int64_t)b->s32[upper];
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
 | |
|         t += a->s32[i];
 | |
|         result.s32[i] = 0;
 | |
|     }
 | |
|     result.s32[upper] = cvtsdsw(t, &sat);
 | |
|     *r = result;
 | |
| 
 | |
|     if (sat) {
 | |
|         env->vscr |= (1 << VSCR_SAT);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vsum2sws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i, j, upper;
 | |
|     ppc_avr_t result;
 | |
|     int sat = 0;
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
|     upper = 1;
 | |
| #else
 | |
|     upper = 0;
 | |
| #endif
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
 | |
|         int64_t t = (int64_t)b->s32[upper+i*2];
 | |
|         result.u64[i] = 0;
 | |
|         for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
 | |
|             t += a->s32[2*i+j];
 | |
|         }
 | |
|         result.s32[upper+i*2] = cvtsdsw(t, &sat);
 | |
|     }
 | |
| 
 | |
|     *r = result;
 | |
|     if (sat) {
 | |
|         env->vscr |= (1 << VSCR_SAT);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vsum4sbs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i, j;
 | |
|     int sat = 0;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
 | |
|         int64_t t = (int64_t)b->s32[i];
 | |
|         for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
 | |
|             t += a->s8[4*i+j];
 | |
|         }
 | |
|         r->s32[i] = cvtsdsw(t, &sat);
 | |
|     }
 | |
| 
 | |
|     if (sat) {
 | |
|         env->vscr |= (1 << VSCR_SAT);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vsum4shs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int sat = 0;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
 | |
|         int64_t t = (int64_t)b->s32[i];
 | |
|         t += a->s16[2*i] + a->s16[2*i+1];
 | |
|         r->s32[i] = cvtsdsw(t, &sat);
 | |
|     }
 | |
| 
 | |
|     if (sat) {
 | |
|         env->vscr |= (1 << VSCR_SAT);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_vsum4ubs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
 | |
| {
 | |
|     int i, j;
 | |
|     int sat = 0;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
 | |
|         uint64_t t = (uint64_t)b->u32[i];
 | |
|         for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
 | |
|             t += a->u8[4*i+j];
 | |
|         }
 | |
|         r->u32[i] = cvtuduw(t, &sat);
 | |
|     }
 | |
| 
 | |
|     if (sat) {
 | |
|         env->vscr |= (1 << VSCR_SAT);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define UPKHI 1
 | |
| #define UPKLO 0
 | |
| #else
 | |
| #define UPKHI 0
 | |
| #define UPKLO 1
 | |
| #endif
 | |
| #define VUPKPX(suffix, hi)                                      \
 | |
|     void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b)       \
 | |
|     {                                                           \
 | |
|         int i;                                                  \
 | |
|         ppc_avr_t result;                                       \
 | |
|         for (i = 0; i < ARRAY_SIZE(r->u32); i++) {              \
 | |
|             uint16_t e = b->u16[hi ? i : i+4];                  \
 | |
|             uint8_t a = (e >> 15) ? 0xff : 0;                   \
 | |
|             uint8_t r = (e >> 10) & 0x1f;                       \
 | |
|             uint8_t g = (e >> 5) & 0x1f;                        \
 | |
|             uint8_t b = e & 0x1f;                               \
 | |
|             result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b;       \
 | |
|         }                                                               \
 | |
|         *r = result;                                                    \
 | |
|     }
 | |
| VUPKPX(lpx, UPKLO)
 | |
| VUPKPX(hpx, UPKHI)
 | |
| #undef VUPKPX
 | |
| 
 | |
| #define VUPK(suffix, unpacked, packee, hi)                              \
 | |
|     void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b)               \
 | |
|     {                                                                   \
 | |
|         int i;                                                          \
 | |
|         ppc_avr_t result;                                               \
 | |
|         if (hi) {                                                       \
 | |
|             for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) {             \
 | |
|                 result.unpacked[i] = b->packee[i];                      \
 | |
|             }                                                           \
 | |
|         } else {                                                        \
 | |
|             for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); i++) { \
 | |
|                 result.unpacked[i-ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
 | |
|             }                                                           \
 | |
|         }                                                               \
 | |
|         *r = result;                                                    \
 | |
|     }
 | |
| VUPK(hsb, s16, s8, UPKHI)
 | |
| VUPK(hsh, s32, s16, UPKHI)
 | |
| VUPK(lsb, s16, s8, UPKLO)
 | |
| VUPK(lsh, s32, s16, UPKLO)
 | |
| #undef VUPK
 | |
| #undef UPKHI
 | |
| #undef UPKLO
 | |
| 
 | |
| #undef DO_HANDLE_NAN
 | |
| #undef HANDLE_NAN1
 | |
| #undef HANDLE_NAN2
 | |
| #undef HANDLE_NAN3
 | |
| #undef VECTOR_FOR_INORDER_I
 | |
| #undef HI_IDX
 | |
| #undef LO_IDX
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* SPE extension helpers */
 | |
| /* Use a table to make this quicker */
 | |
| static uint8_t hbrev[16] = {
 | |
|     0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
 | |
|     0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
 | |
| };
 | |
| 
 | |
| static inline uint8_t byte_reverse(uint8_t val)
 | |
| {
 | |
|     return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
 | |
| }
 | |
| 
 | |
| static inline uint32_t word_reverse(uint32_t val)
 | |
| {
 | |
|     return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
 | |
|         (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
 | |
| }
 | |
| 
 | |
| #define MASKBITS 16 // Random value - to be fixed (implementation dependant)
 | |
| target_ulong helper_brinc (target_ulong arg1, target_ulong arg2)
 | |
| {
 | |
|     uint32_t a, b, d, mask;
 | |
| 
 | |
|     mask = UINT32_MAX >> (32 - MASKBITS);
 | |
|     a = arg1 & mask;
 | |
|     b = arg2 & mask;
 | |
|     d = word_reverse(1 + word_reverse(a | ~b));
 | |
|     return (arg1 & ~mask) | (d & b);
 | |
| }
 | |
| 
 | |
| uint32_t helper_cntlsw32 (uint32_t val)
 | |
| {
 | |
|     if (val & 0x80000000)
 | |
|         return clz32(~val);
 | |
|     else
 | |
|         return clz32(val);
 | |
| }
 | |
| 
 | |
| uint32_t helper_cntlzw32 (uint32_t val)
 | |
| {
 | |
|     return clz32(val);
 | |
| }
 | |
| 
 | |
| /* Single-precision floating-point conversions */
 | |
| static inline uint32_t efscfsi(uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
| 
 | |
|     u.f = int32_to_float32(val, &env->vec_status);
 | |
| 
 | |
|     return u.l;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efscfui(uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
| 
 | |
|     u.f = uint32_to_float32(val, &env->vec_status);
 | |
| 
 | |
|     return u.l;
 | |
| }
 | |
| 
 | |
| static inline int32_t efsctsi(uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
| 
 | |
|     u.l = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float32_is_nan(u.f)))
 | |
|         return 0;
 | |
| 
 | |
|     return float32_to_int32(u.f, &env->vec_status);
 | |
| }
 | |
| 
 | |
| static inline uint32_t efsctui(uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
| 
 | |
|     u.l = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float32_is_nan(u.f)))
 | |
|         return 0;
 | |
| 
 | |
|     return float32_to_uint32(u.f, &env->vec_status);
 | |
| }
 | |
| 
 | |
| static inline uint32_t efsctsiz(uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
| 
 | |
|     u.l = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float32_is_nan(u.f)))
 | |
|         return 0;
 | |
| 
 | |
|     return float32_to_int32_round_to_zero(u.f, &env->vec_status);
 | |
| }
 | |
| 
 | |
| static inline uint32_t efsctuiz(uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
| 
 | |
|     u.l = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float32_is_nan(u.f)))
 | |
|         return 0;
 | |
| 
 | |
|     return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
 | |
| }
 | |
| 
 | |
| static inline uint32_t efscfsf(uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
|     float32 tmp;
 | |
| 
 | |
|     u.f = int32_to_float32(val, &env->vec_status);
 | |
|     tmp = int64_to_float32(1ULL << 32, &env->vec_status);
 | |
|     u.f = float32_div(u.f, tmp, &env->vec_status);
 | |
| 
 | |
|     return u.l;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efscfuf(uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
|     float32 tmp;
 | |
| 
 | |
|     u.f = uint32_to_float32(val, &env->vec_status);
 | |
|     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
 | |
|     u.f = float32_div(u.f, tmp, &env->vec_status);
 | |
| 
 | |
|     return u.l;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efsctsf(uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
|     float32 tmp;
 | |
| 
 | |
|     u.l = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float32_is_nan(u.f)))
 | |
|         return 0;
 | |
|     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
 | |
|     u.f = float32_mul(u.f, tmp, &env->vec_status);
 | |
| 
 | |
|     return float32_to_int32(u.f, &env->vec_status);
 | |
| }
 | |
| 
 | |
| static inline uint32_t efsctuf(uint32_t val)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
|     float32 tmp;
 | |
| 
 | |
|     u.l = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float32_is_nan(u.f)))
 | |
|         return 0;
 | |
|     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
 | |
|     u.f = float32_mul(u.f, tmp, &env->vec_status);
 | |
| 
 | |
|     return float32_to_uint32(u.f, &env->vec_status);
 | |
| }
 | |
| 
 | |
| #define HELPER_SPE_SINGLE_CONV(name)                                          \
 | |
| uint32_t helper_e##name (uint32_t val)                                        \
 | |
| {                                                                             \
 | |
|     return e##name(val);                                                      \
 | |
| }
 | |
| /* efscfsi */
 | |
| HELPER_SPE_SINGLE_CONV(fscfsi);
 | |
| /* efscfui */
 | |
| HELPER_SPE_SINGLE_CONV(fscfui);
 | |
| /* efscfuf */
 | |
| HELPER_SPE_SINGLE_CONV(fscfuf);
 | |
| /* efscfsf */
 | |
| HELPER_SPE_SINGLE_CONV(fscfsf);
 | |
| /* efsctsi */
 | |
| HELPER_SPE_SINGLE_CONV(fsctsi);
 | |
| /* efsctui */
 | |
| HELPER_SPE_SINGLE_CONV(fsctui);
 | |
| /* efsctsiz */
 | |
| HELPER_SPE_SINGLE_CONV(fsctsiz);
 | |
| /* efsctuiz */
 | |
| HELPER_SPE_SINGLE_CONV(fsctuiz);
 | |
| /* efsctsf */
 | |
| HELPER_SPE_SINGLE_CONV(fsctsf);
 | |
| /* efsctuf */
 | |
| HELPER_SPE_SINGLE_CONV(fsctuf);
 | |
| 
 | |
| #define HELPER_SPE_VECTOR_CONV(name)                                          \
 | |
| uint64_t helper_ev##name (uint64_t val)                                       \
 | |
| {                                                                             \
 | |
|     return ((uint64_t)e##name(val >> 32) << 32) |                             \
 | |
|             (uint64_t)e##name(val);                                           \
 | |
| }
 | |
| /* evfscfsi */
 | |
| HELPER_SPE_VECTOR_CONV(fscfsi);
 | |
| /* evfscfui */
 | |
| HELPER_SPE_VECTOR_CONV(fscfui);
 | |
| /* evfscfuf */
 | |
| HELPER_SPE_VECTOR_CONV(fscfuf);
 | |
| /* evfscfsf */
 | |
| HELPER_SPE_VECTOR_CONV(fscfsf);
 | |
| /* evfsctsi */
 | |
| HELPER_SPE_VECTOR_CONV(fsctsi);
 | |
| /* evfsctui */
 | |
| HELPER_SPE_VECTOR_CONV(fsctui);
 | |
| /* evfsctsiz */
 | |
| HELPER_SPE_VECTOR_CONV(fsctsiz);
 | |
| /* evfsctuiz */
 | |
| HELPER_SPE_VECTOR_CONV(fsctuiz);
 | |
| /* evfsctsf */
 | |
| HELPER_SPE_VECTOR_CONV(fsctsf);
 | |
| /* evfsctuf */
 | |
| HELPER_SPE_VECTOR_CONV(fsctuf);
 | |
| 
 | |
| /* Single-precision floating-point arithmetic */
 | |
| static inline uint32_t efsadd(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     CPU_FloatU u1, u2;
 | |
|     u1.l = op1;
 | |
|     u2.l = op2;
 | |
|     u1.f = float32_add(u1.f, u2.f, &env->vec_status);
 | |
|     return u1.l;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efssub(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     CPU_FloatU u1, u2;
 | |
|     u1.l = op1;
 | |
|     u2.l = op2;
 | |
|     u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
 | |
|     return u1.l;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efsmul(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     CPU_FloatU u1, u2;
 | |
|     u1.l = op1;
 | |
|     u2.l = op2;
 | |
|     u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
 | |
|     return u1.l;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efsdiv(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     CPU_FloatU u1, u2;
 | |
|     u1.l = op1;
 | |
|     u2.l = op2;
 | |
|     u1.f = float32_div(u1.f, u2.f, &env->vec_status);
 | |
|     return u1.l;
 | |
| }
 | |
| 
 | |
| #define HELPER_SPE_SINGLE_ARITH(name)                                         \
 | |
| uint32_t helper_e##name (uint32_t op1, uint32_t op2)                          \
 | |
| {                                                                             \
 | |
|     return e##name(op1, op2);                                                 \
 | |
| }
 | |
| /* efsadd */
 | |
| HELPER_SPE_SINGLE_ARITH(fsadd);
 | |
| /* efssub */
 | |
| HELPER_SPE_SINGLE_ARITH(fssub);
 | |
| /* efsmul */
 | |
| HELPER_SPE_SINGLE_ARITH(fsmul);
 | |
| /* efsdiv */
 | |
| HELPER_SPE_SINGLE_ARITH(fsdiv);
 | |
| 
 | |
| #define HELPER_SPE_VECTOR_ARITH(name)                                         \
 | |
| uint64_t helper_ev##name (uint64_t op1, uint64_t op2)                         \
 | |
| {                                                                             \
 | |
|     return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) |                  \
 | |
|             (uint64_t)e##name(op1, op2);                                      \
 | |
| }
 | |
| /* evfsadd */
 | |
| HELPER_SPE_VECTOR_ARITH(fsadd);
 | |
| /* evfssub */
 | |
| HELPER_SPE_VECTOR_ARITH(fssub);
 | |
| /* evfsmul */
 | |
| HELPER_SPE_VECTOR_ARITH(fsmul);
 | |
| /* evfsdiv */
 | |
| HELPER_SPE_VECTOR_ARITH(fsdiv);
 | |
| 
 | |
| /* Single-precision floating-point comparisons */
 | |
| static inline uint32_t efststlt(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     CPU_FloatU u1, u2;
 | |
|     u1.l = op1;
 | |
|     u2.l = op2;
 | |
|     return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efststgt(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     CPU_FloatU u1, u2;
 | |
|     u1.l = op1;
 | |
|     u2.l = op2;
 | |
|     return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efststeq(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     CPU_FloatU u1, u2;
 | |
|     u1.l = op1;
 | |
|     u2.l = op2;
 | |
|     return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
 | |
| }
 | |
| 
 | |
| static inline uint32_t efscmplt(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     /* XXX: TODO: test special values (NaN, infinites, ...) */
 | |
|     return efststlt(op1, op2);
 | |
| }
 | |
| 
 | |
| static inline uint32_t efscmpgt(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     /* XXX: TODO: test special values (NaN, infinites, ...) */
 | |
|     return efststgt(op1, op2);
 | |
| }
 | |
| 
 | |
| static inline uint32_t efscmpeq(uint32_t op1, uint32_t op2)
 | |
| {
 | |
|     /* XXX: TODO: test special values (NaN, infinites, ...) */
 | |
|     return efststeq(op1, op2);
 | |
| }
 | |
| 
 | |
| #define HELPER_SINGLE_SPE_CMP(name)                                           \
 | |
| uint32_t helper_e##name (uint32_t op1, uint32_t op2)                          \
 | |
| {                                                                             \
 | |
|     return e##name(op1, op2) << 2;                                            \
 | |
| }
 | |
| /* efststlt */
 | |
| HELPER_SINGLE_SPE_CMP(fststlt);
 | |
| /* efststgt */
 | |
| HELPER_SINGLE_SPE_CMP(fststgt);
 | |
| /* efststeq */
 | |
| HELPER_SINGLE_SPE_CMP(fststeq);
 | |
| /* efscmplt */
 | |
| HELPER_SINGLE_SPE_CMP(fscmplt);
 | |
| /* efscmpgt */
 | |
| HELPER_SINGLE_SPE_CMP(fscmpgt);
 | |
| /* efscmpeq */
 | |
| HELPER_SINGLE_SPE_CMP(fscmpeq);
 | |
| 
 | |
| static inline uint32_t evcmp_merge(int t0, int t1)
 | |
| {
 | |
|     return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
 | |
| }
 | |
| 
 | |
| #define HELPER_VECTOR_SPE_CMP(name)                                           \
 | |
| uint32_t helper_ev##name (uint64_t op1, uint64_t op2)                         \
 | |
| {                                                                             \
 | |
|     return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2));     \
 | |
| }
 | |
| /* evfststlt */
 | |
| HELPER_VECTOR_SPE_CMP(fststlt);
 | |
| /* evfststgt */
 | |
| HELPER_VECTOR_SPE_CMP(fststgt);
 | |
| /* evfststeq */
 | |
| HELPER_VECTOR_SPE_CMP(fststeq);
 | |
| /* evfscmplt */
 | |
| HELPER_VECTOR_SPE_CMP(fscmplt);
 | |
| /* evfscmpgt */
 | |
| HELPER_VECTOR_SPE_CMP(fscmpgt);
 | |
| /* evfscmpeq */
 | |
| HELPER_VECTOR_SPE_CMP(fscmpeq);
 | |
| 
 | |
| /* Double-precision floating-point conversion */
 | |
| uint64_t helper_efdcfsi (uint32_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.d = int32_to_float64(val, &env->vec_status);
 | |
| 
 | |
|     return u.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdcfsid (uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.d = int64_to_float64(val, &env->vec_status);
 | |
| 
 | |
|     return u.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdcfui (uint32_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.d = uint32_to_float64(val, &env->vec_status);
 | |
| 
 | |
|     return u.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdcfuid (uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.d = uint64_to_float64(val, &env->vec_status);
 | |
| 
 | |
|     return u.ll;
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdctsi (uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.ll = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float64_is_nan(u.d)))
 | |
|         return 0;
 | |
| 
 | |
|     return float64_to_int32(u.d, &env->vec_status);
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdctui (uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.ll = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float64_is_nan(u.d)))
 | |
|         return 0;
 | |
| 
 | |
|     return float64_to_uint32(u.d, &env->vec_status);
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdctsiz (uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.ll = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float64_is_nan(u.d)))
 | |
|         return 0;
 | |
| 
 | |
|     return float64_to_int32_round_to_zero(u.d, &env->vec_status);
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdctsidz (uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.ll = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float64_is_nan(u.d)))
 | |
|         return 0;
 | |
| 
 | |
|     return float64_to_int64_round_to_zero(u.d, &env->vec_status);
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdctuiz (uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.ll = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float64_is_nan(u.d)))
 | |
|         return 0;
 | |
| 
 | |
|     return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdctuidz (uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
| 
 | |
|     u.ll = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float64_is_nan(u.d)))
 | |
|         return 0;
 | |
| 
 | |
|     return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdcfsf (uint32_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     float64 tmp;
 | |
| 
 | |
|     u.d = int32_to_float64(val, &env->vec_status);
 | |
|     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
 | |
|     u.d = float64_div(u.d, tmp, &env->vec_status);
 | |
| 
 | |
|     return u.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdcfuf (uint32_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     float64 tmp;
 | |
| 
 | |
|     u.d = uint32_to_float64(val, &env->vec_status);
 | |
|     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
 | |
|     u.d = float64_div(u.d, tmp, &env->vec_status);
 | |
| 
 | |
|     return u.ll;
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdctsf (uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     float64 tmp;
 | |
| 
 | |
|     u.ll = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float64_is_nan(u.d)))
 | |
|         return 0;
 | |
|     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
 | |
|     u.d = float64_mul(u.d, tmp, &env->vec_status);
 | |
| 
 | |
|     return float64_to_int32(u.d, &env->vec_status);
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdctuf (uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     float64 tmp;
 | |
| 
 | |
|     u.ll = val;
 | |
|     /* NaN are not treated the same way IEEE 754 does */
 | |
|     if (unlikely(float64_is_nan(u.d)))
 | |
|         return 0;
 | |
|     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
 | |
|     u.d = float64_mul(u.d, tmp, &env->vec_status);
 | |
| 
 | |
|     return float64_to_uint32(u.d, &env->vec_status);
 | |
| }
 | |
| 
 | |
| uint32_t helper_efscfd (uint64_t val)
 | |
| {
 | |
|     CPU_DoubleU u1;
 | |
|     CPU_FloatU u2;
 | |
| 
 | |
|     u1.ll = val;
 | |
|     u2.f = float64_to_float32(u1.d, &env->vec_status);
 | |
| 
 | |
|     return u2.l;
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdcfs (uint32_t val)
 | |
| {
 | |
|     CPU_DoubleU u2;
 | |
|     CPU_FloatU u1;
 | |
| 
 | |
|     u1.l = val;
 | |
|     u2.d = float32_to_float64(u1.f, &env->vec_status);
 | |
| 
 | |
|     return u2.ll;
 | |
| }
 | |
| 
 | |
| /* Double precision fixed-point arithmetic */
 | |
| uint64_t helper_efdadd (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     CPU_DoubleU u1, u2;
 | |
|     u1.ll = op1;
 | |
|     u2.ll = op2;
 | |
|     u1.d = float64_add(u1.d, u2.d, &env->vec_status);
 | |
|     return u1.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdsub (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     CPU_DoubleU u1, u2;
 | |
|     u1.ll = op1;
 | |
|     u2.ll = op2;
 | |
|     u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
 | |
|     return u1.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_efdmul (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     CPU_DoubleU u1, u2;
 | |
|     u1.ll = op1;
 | |
|     u2.ll = op2;
 | |
|     u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
 | |
|     return u1.ll;
 | |
| }
 | |
| 
 | |
| uint64_t helper_efddiv (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     CPU_DoubleU u1, u2;
 | |
|     u1.ll = op1;
 | |
|     u2.ll = op2;
 | |
|     u1.d = float64_div(u1.d, u2.d, &env->vec_status);
 | |
|     return u1.ll;
 | |
| }
 | |
| 
 | |
| /* Double precision floating point helpers */
 | |
| uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     CPU_DoubleU u1, u2;
 | |
|     u1.ll = op1;
 | |
|     u2.ll = op2;
 | |
|     return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     CPU_DoubleU u1, u2;
 | |
|     u1.ll = op1;
 | |
|     u2.ll = op2;
 | |
|     return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     CPU_DoubleU u1, u2;
 | |
|     u1.ll = op1;
 | |
|     u2.ll = op2;
 | |
|     return float64_eq(u1.d, u2.d, &env->vec_status) ? 4 : 0;
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     /* XXX: TODO: test special values (NaN, infinites, ...) */
 | |
|     return helper_efdtstlt(op1, op2);
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     /* XXX: TODO: test special values (NaN, infinites, ...) */
 | |
|     return helper_efdtstgt(op1, op2);
 | |
| }
 | |
| 
 | |
| uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2)
 | |
| {
 | |
|     /* XXX: TODO: test special values (NaN, infinites, ...) */
 | |
|     return helper_efdtsteq(op1, op2);
 | |
| }
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Softmmu support */
 | |
| #if !defined (CONFIG_USER_ONLY)
 | |
| 
 | |
| #define MMUSUFFIX _mmu
 | |
| 
 | |
| #define SHIFT 0
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 1
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 2
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 3
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| /* try to fill the TLB and return an exception if error. If retaddr is
 | |
|    NULL, it means that the function was called in C code (i.e. not
 | |
|    from generated code or from helper.c) */
 | |
| /* XXX: fix it to restore all registers */
 | |
| void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     CPUState *saved_env;
 | |
|     unsigned long pc;
 | |
|     int ret;
 | |
| 
 | |
|     /* XXX: hack to restore env in all cases, even if not called from
 | |
|        generated code */
 | |
|     saved_env = env;
 | |
|     env = cpu_single_env;
 | |
|     ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
 | |
|     if (unlikely(ret != 0)) {
 | |
|         if (likely(retaddr)) {
 | |
|             /* now we have a real cpu fault */
 | |
|             pc = (unsigned long)retaddr;
 | |
|             tb = tb_find_pc(pc);
 | |
|             if (likely(tb)) {
 | |
|                 /* the PC is inside the translated code. It means that we have
 | |
|                    a virtual CPU fault */
 | |
|                 cpu_restore_state(tb, env, pc, NULL);
 | |
|             }
 | |
|         }
 | |
|         helper_raise_exception_err(env->exception_index, env->error_code);
 | |
|     }
 | |
|     env = saved_env;
 | |
| }
 | |
| 
 | |
| /* Segment registers load and store */
 | |
| target_ulong helper_load_sr (target_ulong sr_num)
 | |
| {
 | |
| #if defined(TARGET_PPC64)
 | |
|     if (env->mmu_model & POWERPC_MMU_64)
 | |
|         return ppc_load_sr(env, sr_num);
 | |
| #endif
 | |
|     return env->sr[sr_num];
 | |
| }
 | |
| 
 | |
| void helper_store_sr (target_ulong sr_num, target_ulong val)
 | |
| {
 | |
|     ppc_store_sr(env, sr_num, val);
 | |
| }
 | |
| 
 | |
| /* SLB management */
 | |
| #if defined(TARGET_PPC64)
 | |
| target_ulong helper_load_slb (target_ulong slb_nr)
 | |
| {
 | |
|     return ppc_load_slb(env, slb_nr);
 | |
| }
 | |
| 
 | |
| void helper_store_slb (target_ulong rb, target_ulong rs)
 | |
| {
 | |
|     ppc_store_slb(env, rb, rs);
 | |
| }
 | |
| 
 | |
| void helper_slbia (void)
 | |
| {
 | |
|     ppc_slb_invalidate_all(env);
 | |
| }
 | |
| 
 | |
| void helper_slbie (target_ulong addr)
 | |
| {
 | |
|     ppc_slb_invalidate_one(env, addr);
 | |
| }
 | |
| 
 | |
| #endif /* defined(TARGET_PPC64) */
 | |
| 
 | |
| /* TLB management */
 | |
| void helper_tlbia (void)
 | |
| {
 | |
|     ppc_tlb_invalidate_all(env);
 | |
| }
 | |
| 
 | |
| void helper_tlbie (target_ulong addr)
 | |
| {
 | |
|     ppc_tlb_invalidate_one(env, addr);
 | |
| }
 | |
| 
 | |
| /* Software driven TLBs management */
 | |
| /* PowerPC 602/603 software TLB load instructions helpers */
 | |
| static void do_6xx_tlb (target_ulong new_EPN, int is_code)
 | |
| {
 | |
|     target_ulong RPN, CMP, EPN;
 | |
|     int way;
 | |
| 
 | |
|     RPN = env->spr[SPR_RPA];
 | |
|     if (is_code) {
 | |
|         CMP = env->spr[SPR_ICMP];
 | |
|         EPN = env->spr[SPR_IMISS];
 | |
|     } else {
 | |
|         CMP = env->spr[SPR_DCMP];
 | |
|         EPN = env->spr[SPR_DMISS];
 | |
|     }
 | |
|     way = (env->spr[SPR_SRR1] >> 17) & 1;
 | |
|     LOG_SWTLB("%s: EPN " TARGET_FMT_lx " " TARGET_FMT_lx " PTE0 " TARGET_FMT_lx
 | |
|               " PTE1 " TARGET_FMT_lx " way %d\n", __func__, new_EPN, EPN, CMP,
 | |
|               RPN, way);
 | |
|     /* Store this TLB */
 | |
|     ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
 | |
|                      way, is_code, CMP, RPN);
 | |
| }
 | |
| 
 | |
| void helper_6xx_tlbd (target_ulong EPN)
 | |
| {
 | |
|     do_6xx_tlb(EPN, 0);
 | |
| }
 | |
| 
 | |
| void helper_6xx_tlbi (target_ulong EPN)
 | |
| {
 | |
|     do_6xx_tlb(EPN, 1);
 | |
| }
 | |
| 
 | |
| /* PowerPC 74xx software TLB load instructions helpers */
 | |
| static void do_74xx_tlb (target_ulong new_EPN, int is_code)
 | |
| {
 | |
|     target_ulong RPN, CMP, EPN;
 | |
|     int way;
 | |
| 
 | |
|     RPN = env->spr[SPR_PTELO];
 | |
|     CMP = env->spr[SPR_PTEHI];
 | |
|     EPN = env->spr[SPR_TLBMISS] & ~0x3;
 | |
|     way = env->spr[SPR_TLBMISS] & 0x3;
 | |
|     LOG_SWTLB("%s: EPN " TARGET_FMT_lx " " TARGET_FMT_lx " PTE0 " TARGET_FMT_lx
 | |
|               " PTE1 " TARGET_FMT_lx " way %d\n", __func__, new_EPN, EPN, CMP,
 | |
|               RPN, way);
 | |
|     /* Store this TLB */
 | |
|     ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
 | |
|                      way, is_code, CMP, RPN);
 | |
| }
 | |
| 
 | |
| void helper_74xx_tlbd (target_ulong EPN)
 | |
| {
 | |
|     do_74xx_tlb(EPN, 0);
 | |
| }
 | |
| 
 | |
| void helper_74xx_tlbi (target_ulong EPN)
 | |
| {
 | |
|     do_74xx_tlb(EPN, 1);
 | |
| }
 | |
| 
 | |
| static inline target_ulong booke_tlb_to_page_size(int size)
 | |
| {
 | |
|     return 1024 << (2 * size);
 | |
| }
 | |
| 
 | |
| static inline int booke_page_size_to_tlb(target_ulong page_size)
 | |
| {
 | |
|     int size;
 | |
| 
 | |
|     switch (page_size) {
 | |
|     case 0x00000400UL:
 | |
|         size = 0x0;
 | |
|         break;
 | |
|     case 0x00001000UL:
 | |
|         size = 0x1;
 | |
|         break;
 | |
|     case 0x00004000UL:
 | |
|         size = 0x2;
 | |
|         break;
 | |
|     case 0x00010000UL:
 | |
|         size = 0x3;
 | |
|         break;
 | |
|     case 0x00040000UL:
 | |
|         size = 0x4;
 | |
|         break;
 | |
|     case 0x00100000UL:
 | |
|         size = 0x5;
 | |
|         break;
 | |
|     case 0x00400000UL:
 | |
|         size = 0x6;
 | |
|         break;
 | |
|     case 0x01000000UL:
 | |
|         size = 0x7;
 | |
|         break;
 | |
|     case 0x04000000UL:
 | |
|         size = 0x8;
 | |
|         break;
 | |
|     case 0x10000000UL:
 | |
|         size = 0x9;
 | |
|         break;
 | |
|     case 0x40000000UL:
 | |
|         size = 0xA;
 | |
|         break;
 | |
| #if defined (TARGET_PPC64)
 | |
|     case 0x000100000000ULL:
 | |
|         size = 0xB;
 | |
|         break;
 | |
|     case 0x000400000000ULL:
 | |
|         size = 0xC;
 | |
|         break;
 | |
|     case 0x001000000000ULL:
 | |
|         size = 0xD;
 | |
|         break;
 | |
|     case 0x004000000000ULL:
 | |
|         size = 0xE;
 | |
|         break;
 | |
|     case 0x010000000000ULL:
 | |
|         size = 0xF;
 | |
|         break;
 | |
| #endif
 | |
|     default:
 | |
|         size = -1;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| /* Helpers for 4xx TLB management */
 | |
| target_ulong helper_4xx_tlbre_lo (target_ulong entry)
 | |
| {
 | |
|     ppcemb_tlb_t *tlb;
 | |
|     target_ulong ret;
 | |
|     int size;
 | |
| 
 | |
|     entry &= 0x3F;
 | |
|     tlb = &env->tlb[entry].tlbe;
 | |
|     ret = tlb->EPN;
 | |
|     if (tlb->prot & PAGE_VALID)
 | |
|         ret |= 0x400;
 | |
|     size = booke_page_size_to_tlb(tlb->size);
 | |
|     if (size < 0 || size > 0x7)
 | |
|         size = 1;
 | |
|     ret |= size << 7;
 | |
|     env->spr[SPR_40x_PID] = tlb->PID;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| target_ulong helper_4xx_tlbre_hi (target_ulong entry)
 | |
| {
 | |
|     ppcemb_tlb_t *tlb;
 | |
|     target_ulong ret;
 | |
| 
 | |
|     entry &= 0x3F;
 | |
|     tlb = &env->tlb[entry].tlbe;
 | |
|     ret = tlb->RPN;
 | |
|     if (tlb->prot & PAGE_EXEC)
 | |
|         ret |= 0x200;
 | |
|     if (tlb->prot & PAGE_WRITE)
 | |
|         ret |= 0x100;
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val)
 | |
| {
 | |
|     ppcemb_tlb_t *tlb;
 | |
|     target_ulong page, end;
 | |
| 
 | |
|     LOG_SWTLB("%s entry %d val " TARGET_FMT_lx "\n", __func__, (int)entry,
 | |
|               val);
 | |
|     entry &= 0x3F;
 | |
|     tlb = &env->tlb[entry].tlbe;
 | |
|     /* Invalidate previous TLB (if it's valid) */
 | |
|     if (tlb->prot & PAGE_VALID) {
 | |
|         end = tlb->EPN + tlb->size;
 | |
|         LOG_SWTLB("%s: invalidate old TLB %d start " TARGET_FMT_lx " end "
 | |
|                   TARGET_FMT_lx "\n", __func__, (int)entry, tlb->EPN, end);
 | |
|         for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
 | |
|             tlb_flush_page(env, page);
 | |
|     }
 | |
|     tlb->size = booke_tlb_to_page_size((val >> 7) & 0x7);
 | |
|     /* We cannot handle TLB size < TARGET_PAGE_SIZE.
 | |
|      * If this ever occurs, one should use the ppcemb target instead
 | |
|      * of the ppc or ppc64 one
 | |
|      */
 | |
|     if ((val & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
 | |
|         cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
 | |
|                   "are not supported (%d)\n",
 | |
|                   tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7));
 | |
|     }
 | |
|     tlb->EPN = val & ~(tlb->size - 1);
 | |
|     if (val & 0x40) {
 | |
|         tlb->prot |= PAGE_VALID;
 | |
|         if (val & 0x20) {
 | |
|             /* XXX: TO BE FIXED */
 | |
|             cpu_abort(env,
 | |
|                       "Little-endian TLB entries are not supported by now\n");
 | |
|         }
 | |
|     } else {
 | |
|         tlb->prot &= ~PAGE_VALID;
 | |
|     }
 | |
|     tlb->PID = env->spr[SPR_40x_PID]; /* PID */
 | |
|     LOG_SWTLB("%s: set up TLB %d RPN " TARGET_FMT_plx " EPN " TARGET_FMT_lx
 | |
|               " size " TARGET_FMT_lx " prot %c%c%c%c PID %d\n", __func__,
 | |
|               (int)entry, tlb->RPN, tlb->EPN, tlb->size,
 | |
|               tlb->prot & PAGE_READ ? 'r' : '-',
 | |
|               tlb->prot & PAGE_WRITE ? 'w' : '-',
 | |
|               tlb->prot & PAGE_EXEC ? 'x' : '-',
 | |
|               tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
 | |
|     /* Invalidate new TLB (if valid) */
 | |
|     if (tlb->prot & PAGE_VALID) {
 | |
|         end = tlb->EPN + tlb->size;
 | |
|         LOG_SWTLB("%s: invalidate TLB %d start " TARGET_FMT_lx " end "
 | |
|                   TARGET_FMT_lx "\n", __func__, (int)entry, tlb->EPN, end);
 | |
|         for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
 | |
|             tlb_flush_page(env, page);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val)
 | |
| {
 | |
|     ppcemb_tlb_t *tlb;
 | |
| 
 | |
|     LOG_SWTLB("%s entry %i val " TARGET_FMT_lx "\n", __func__, (int)entry,
 | |
|               val);
 | |
|     entry &= 0x3F;
 | |
|     tlb = &env->tlb[entry].tlbe;
 | |
|     tlb->attr = val & 0xFF;
 | |
|     tlb->RPN = val & 0xFFFFFC00;
 | |
|     tlb->prot = PAGE_READ;
 | |
|     if (val & 0x200)
 | |
|         tlb->prot |= PAGE_EXEC;
 | |
|     if (val & 0x100)
 | |
|         tlb->prot |= PAGE_WRITE;
 | |
|     LOG_SWTLB("%s: set up TLB %d RPN " TARGET_FMT_plx " EPN " TARGET_FMT_lx
 | |
|               " size " TARGET_FMT_lx " prot %c%c%c%c PID %d\n", __func__,
 | |
|               (int)entry, tlb->RPN, tlb->EPN, tlb->size,
 | |
|               tlb->prot & PAGE_READ ? 'r' : '-',
 | |
|               tlb->prot & PAGE_WRITE ? 'w' : '-',
 | |
|               tlb->prot & PAGE_EXEC ? 'x' : '-',
 | |
|               tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
 | |
| }
 | |
| 
 | |
| target_ulong helper_4xx_tlbsx (target_ulong address)
 | |
| {
 | |
|     return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]);
 | |
| }
 | |
| 
 | |
| /* PowerPC 440 TLB management */
 | |
| void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value)
 | |
| {
 | |
|     ppcemb_tlb_t *tlb;
 | |
|     target_ulong EPN, RPN, size;
 | |
|     int do_flush_tlbs;
 | |
| 
 | |
|     LOG_SWTLB("%s word %d entry %d value " TARGET_FMT_lx "\n",
 | |
|               __func__, word, (int)entry, value);
 | |
|     do_flush_tlbs = 0;
 | |
|     entry &= 0x3F;
 | |
|     tlb = &env->tlb[entry].tlbe;
 | |
|     switch (word) {
 | |
|     default:
 | |
|         /* Just here to please gcc */
 | |
|     case 0:
 | |
|         EPN = value & 0xFFFFFC00;
 | |
|         if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
 | |
|             do_flush_tlbs = 1;
 | |
|         tlb->EPN = EPN;
 | |
|         size = booke_tlb_to_page_size((value >> 4) & 0xF);
 | |
|         if ((tlb->prot & PAGE_VALID) && tlb->size < size)
 | |
|             do_flush_tlbs = 1;
 | |
|         tlb->size = size;
 | |
|         tlb->attr &= ~0x1;
 | |
|         tlb->attr |= (value >> 8) & 1;
 | |
|         if (value & 0x200) {
 | |
|             tlb->prot |= PAGE_VALID;
 | |
|         } else {
 | |
|             if (tlb->prot & PAGE_VALID) {
 | |
|                 tlb->prot &= ~PAGE_VALID;
 | |
|                 do_flush_tlbs = 1;
 | |
|             }
 | |
|         }
 | |
|         tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
 | |
|         if (do_flush_tlbs)
 | |
|             tlb_flush(env, 1);
 | |
|         break;
 | |
|     case 1:
 | |
|         RPN = value & 0xFFFFFC0F;
 | |
|         if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
 | |
|             tlb_flush(env, 1);
 | |
|         tlb->RPN = RPN;
 | |
|         break;
 | |
|     case 2:
 | |
|         tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00);
 | |
|         tlb->prot = tlb->prot & PAGE_VALID;
 | |
|         if (value & 0x1)
 | |
|             tlb->prot |= PAGE_READ << 4;
 | |
|         if (value & 0x2)
 | |
|             tlb->prot |= PAGE_WRITE << 4;
 | |
|         if (value & 0x4)
 | |
|             tlb->prot |= PAGE_EXEC << 4;
 | |
|         if (value & 0x8)
 | |
|             tlb->prot |= PAGE_READ;
 | |
|         if (value & 0x10)
 | |
|             tlb->prot |= PAGE_WRITE;
 | |
|         if (value & 0x20)
 | |
|             tlb->prot |= PAGE_EXEC;
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| target_ulong helper_440_tlbre (uint32_t word, target_ulong entry)
 | |
| {
 | |
|     ppcemb_tlb_t *tlb;
 | |
|     target_ulong ret;
 | |
|     int size;
 | |
| 
 | |
|     entry &= 0x3F;
 | |
|     tlb = &env->tlb[entry].tlbe;
 | |
|     switch (word) {
 | |
|     default:
 | |
|         /* Just here to please gcc */
 | |
|     case 0:
 | |
|         ret = tlb->EPN;
 | |
|         size = booke_page_size_to_tlb(tlb->size);
 | |
|         if (size < 0 || size > 0xF)
 | |
|             size = 1;
 | |
|         ret |= size << 4;
 | |
|         if (tlb->attr & 0x1)
 | |
|             ret |= 0x100;
 | |
|         if (tlb->prot & PAGE_VALID)
 | |
|             ret |= 0x200;
 | |
|         env->spr[SPR_440_MMUCR] &= ~0x000000FF;
 | |
|         env->spr[SPR_440_MMUCR] |= tlb->PID;
 | |
|         break;
 | |
|     case 1:
 | |
|         ret = tlb->RPN;
 | |
|         break;
 | |
|     case 2:
 | |
|         ret = tlb->attr & ~0x1;
 | |
|         if (tlb->prot & (PAGE_READ << 4))
 | |
|             ret |= 0x1;
 | |
|         if (tlb->prot & (PAGE_WRITE << 4))
 | |
|             ret |= 0x2;
 | |
|         if (tlb->prot & (PAGE_EXEC << 4))
 | |
|             ret |= 0x4;
 | |
|         if (tlb->prot & PAGE_READ)
 | |
|             ret |= 0x8;
 | |
|         if (tlb->prot & PAGE_WRITE)
 | |
|             ret |= 0x10;
 | |
|         if (tlb->prot & PAGE_EXEC)
 | |
|             ret |= 0x20;
 | |
|         break;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| target_ulong helper_440_tlbsx (target_ulong address)
 | |
| {
 | |
|     return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF);
 | |
| }
 | |
| 
 | |
| #endif /* !CONFIG_USER_ONLY */
 |