target/arm: Move softfloat specific FPCR/FPSR handling to tcg/

The softfloat (i.e. TCG) specific handling for the FPCR
and FPSR is abstracted behind five functions:
 arm_set_default_fp_behaviours
 arm_set_ah_fp_behaviours
 vfp_get_fpsr_from_host
 vfp_clear_float_status_exc_flags
 vfp_set_fpsr_to_host

Currently we rely on the first two calling softfloat functions that
work even in a KVM-only compile because they're defined as inline in
the softfloat header file, and we provide stub versions of the last
three in arm/vfp_helper.c if CONFIG_TCG isn't defined.

Move the softfloat-specific versions of these functions to
tcg/vfp_helper.c, and provide the non-TCG stub versions in
tcg-stubs.c.

This lets us drop the softfloat header include and the last
set of CONFIG_TCG ifdefs from arm/vfp_helper.c.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20250221190957.811948-4-peter.maydell@linaro.org
This commit is contained in:
Peter Maydell 2025-02-21 19:09:55 +00:00
parent e34cfba5e8
commit b9d3dc4553
4 changed files with 259 additions and 248 deletions

View File

@ -1833,5 +1833,14 @@ int alle1_tlbmask(CPUARMState *env);
void arm_set_default_fp_behaviours(float_status *s); void arm_set_default_fp_behaviours(float_status *s);
/* Set the float_status behaviour to match Arm FPCR.AH=1 behaviour */ /* Set the float_status behaviour to match Arm FPCR.AH=1 behaviour */
void arm_set_ah_fp_behaviours(float_status *s); void arm_set_ah_fp_behaviours(float_status *s);
/* Read the float_status info and return the appropriate FPSR value */
uint32_t vfp_get_fpsr_from_host(CPUARMState *env);
/* Clear the exception status flags from all float_status fields */
void vfp_clear_float_status_exc_flags(CPUARMState *env);
/*
* Update float_status fields to handle the bits of the FPCR
* specified by mask changing to the values in val.
*/
void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask);
#endif #endif

View File

@ -30,3 +30,25 @@ void assert_hflags_rebuild_correctly(CPUARMState *env)
void define_tlb_insn_regs(ARMCPU *cpu) void define_tlb_insn_regs(ARMCPU *cpu)
{ {
} }
/* With KVM, we never use float_status, so these can be no-ops */
void arm_set_default_fp_behaviours(float_status *s)
{
}
void arm_set_ah_fp_behaviours(float_status *s)
{
}
uint32_t vfp_get_fpsr_from_host(CPUARMState *env)
{
return 0;
}
void vfp_clear_float_status_exc_flags(CPUARMState *env)
{
}
void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask)
{
}

View File

@ -25,6 +25,234 @@
#include "fpu/softfloat.h" #include "fpu/softfloat.h"
#include "qemu/log.h" #include "qemu/log.h"
/*
* Set the float_status behaviour to match the Arm defaults:
* * tininess-before-rounding
* * 2-input NaN propagation prefers SNaN over QNaN, and then
* operand A over operand B (see FPProcessNaNs() pseudocode)
* * 3-input NaN propagation prefers SNaN over QNaN, and then
* operand C over A over B (see FPProcessNaNs3() pseudocode,
* but note that for QEMU muladd is a * b + c, whereas for
* the pseudocode function the arguments are in the order c, a, b.
* * 0 * Inf + NaN returns the default NaN if the input NaN is quiet,
* and the input NaN if it is signalling
* * Default NaN has sign bit clear, msb frac bit set
*/
void arm_set_default_fp_behaviours(float_status *s)
{
set_float_detect_tininess(float_tininess_before_rounding, s);
set_float_ftz_detection(float_ftz_before_rounding, s);
set_float_2nan_prop_rule(float_2nan_prop_s_ab, s);
set_float_3nan_prop_rule(float_3nan_prop_s_cab, s);
set_float_infzeronan_rule(float_infzeronan_dnan_if_qnan, s);
set_float_default_nan_pattern(0b01000000, s);
}
/*
* Set the float_status behaviour to match the FEAT_AFP
* FPCR.AH=1 requirements:
* * tininess-after-rounding
* * 2-input NaN propagation prefers the first NaN
* * 3-input NaN propagation prefers a over b over c
* * 0 * Inf + NaN always returns the input NaN and doesn't
* set Invalid for a QNaN
* * default NaN has sign bit set, msb frac bit set
*/
void arm_set_ah_fp_behaviours(float_status *s)
{
set_float_detect_tininess(float_tininess_after_rounding, s);
set_float_ftz_detection(float_ftz_after_rounding, s);
set_float_2nan_prop_rule(float_2nan_prop_ab, s);
set_float_3nan_prop_rule(float_3nan_prop_abc, s);
set_float_infzeronan_rule(float_infzeronan_dnan_never |
float_infzeronan_suppress_invalid, s);
set_float_default_nan_pattern(0b11000000, s);
}
/* Convert host exception flags to vfp form. */
static inline uint32_t vfp_exceptbits_from_host(int host_bits, bool ah)
{
uint32_t target_bits = 0;
if (host_bits & float_flag_invalid) {
target_bits |= FPSR_IOC;
}
if (host_bits & float_flag_divbyzero) {
target_bits |= FPSR_DZC;
}
if (host_bits & float_flag_overflow) {
target_bits |= FPSR_OFC;
}
if (host_bits & (float_flag_underflow | float_flag_output_denormal_flushed)) {
target_bits |= FPSR_UFC;
}
if (host_bits & float_flag_inexact) {
target_bits |= FPSR_IXC;
}
if (host_bits & float_flag_input_denormal_flushed) {
target_bits |= FPSR_IDC;
}
/*
* With FPCR.AH, IDC is set when an input denormal is used,
* and flushing an output denormal to zero sets both IXC and UFC.
*/
if (ah && (host_bits & float_flag_input_denormal_used)) {
target_bits |= FPSR_IDC;
}
if (ah && (host_bits & float_flag_output_denormal_flushed)) {
target_bits |= FPSR_IXC;
}
return target_bits;
}
uint32_t vfp_get_fpsr_from_host(CPUARMState *env)
{
uint32_t a32_flags = 0, a64_flags = 0;
a32_flags |= get_float_exception_flags(&env->vfp.fp_status[FPST_A32]);
a32_flags |= get_float_exception_flags(&env->vfp.fp_status[FPST_STD]);
/* FZ16 does not generate an input denormal exception. */
a32_flags |= (get_float_exception_flags(&env->vfp.fp_status[FPST_A32_F16])
& ~float_flag_input_denormal_flushed);
a32_flags |= (get_float_exception_flags(&env->vfp.fp_status[FPST_STD_F16])
& ~float_flag_input_denormal_flushed);
a64_flags |= get_float_exception_flags(&env->vfp.fp_status[FPST_A64]);
a64_flags |= (get_float_exception_flags(&env->vfp.fp_status[FPST_A64_F16])
& ~(float_flag_input_denormal_flushed | float_flag_input_denormal_used));
/*
* We do not merge in flags from FPST_AH or FPST_AH_F16, because
* they are used for insns that must not set the cumulative exception bits.
*/
/*
* Flushing an input denormal *only* because FPCR.FIZ == 1 does
* not set FPSR.IDC; if FPCR.FZ is also set then this takes
* precedence and IDC is set (see the FPUnpackBase pseudocode).
* So squash it unless (FPCR.AH == 0 && FPCR.FZ == 1).
* We only do this for the a64 flags because FIZ has no effect
* on AArch32 even if it is set.
*/
if ((env->vfp.fpcr & (FPCR_FZ | FPCR_AH)) != FPCR_FZ) {
a64_flags &= ~float_flag_input_denormal_flushed;
}
return vfp_exceptbits_from_host(a64_flags, env->vfp.fpcr & FPCR_AH) |
vfp_exceptbits_from_host(a32_flags, false);
}
void vfp_clear_float_status_exc_flags(CPUARMState *env)
{
/*
* Clear out all the exception-flag information in the float_status
* values. The caller should have arranged for env->vfp.fpsr to
* be the architecturally up-to-date exception flag information first.
*/
set_float_exception_flags(0, &env->vfp.fp_status[FPST_A32]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_A64]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_A32_F16]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_A64_F16]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_STD]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_STD_F16]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_AH]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_AH_F16]);
}
static void vfp_sync_and_clear_float_status_exc_flags(CPUARMState *env)
{
/*
* Synchronize any pending exception-flag information in the
* float_status values into env->vfp.fpsr, and then clear out
* the float_status data.
*/
env->vfp.fpsr |= vfp_get_fpsr_from_host(env);
vfp_clear_float_status_exc_flags(env);
}
void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask)
{
uint64_t changed = env->vfp.fpcr;
changed ^= val;
changed &= mask;
if (changed & (3 << 22)) {
int i = (val >> 22) & 3;
switch (i) {
case FPROUNDING_TIEEVEN:
i = float_round_nearest_even;
break;
case FPROUNDING_POSINF:
i = float_round_up;
break;
case FPROUNDING_NEGINF:
i = float_round_down;
break;
case FPROUNDING_ZERO:
i = float_round_to_zero;
break;
}
set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A32]);
set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A64]);
set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A32_F16]);
set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A64_F16]);
}
if (changed & FPCR_FZ16) {
bool ftz_enabled = val & FPCR_FZ16;
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32_F16]);
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A64_F16]);
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_STD_F16]);
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_AH_F16]);
set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32_F16]);
set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A64_F16]);
set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_STD_F16]);
set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_AH_F16]);
}
if (changed & FPCR_FZ) {
bool ftz_enabled = val & FPCR_FZ;
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32]);
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A64]);
/* FIZ is A64 only so FZ always makes A32 code flush inputs to zero */
set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32]);
}
if (changed & (FPCR_FZ | FPCR_AH | FPCR_FIZ)) {
/*
* A64: Flush denormalized inputs to zero if FPCR.FIZ = 1, or
* both FPCR.AH = 0 and FPCR.FZ = 1.
*/
bool fitz_enabled = (val & FPCR_FIZ) ||
(val & (FPCR_FZ | FPCR_AH)) == FPCR_FZ;
set_flush_inputs_to_zero(fitz_enabled, &env->vfp.fp_status[FPST_A64]);
}
if (changed & FPCR_DN) {
bool dnan_enabled = val & FPCR_DN;
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A32]);
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A64]);
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A32_F16]);
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A64_F16]);
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_AH]);
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_AH_F16]);
}
if (changed & FPCR_AH) {
bool ah_enabled = val & FPCR_AH;
if (ah_enabled) {
/* Change behaviours for A64 FP operations */
arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_A64]);
arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_A64_F16]);
} else {
arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64]);
arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64_F16]);
}
}
/*
* If any bits changed that we look at in vfp_get_fpsr_from_host(),
* we must sync the float_status flags into vfp.fpsr now (under the
* old regime) before we update vfp.fpcr.
*/
if (changed & (FPCR_FZ | FPCR_AH | FPCR_FIZ)) {
vfp_sync_and_clear_float_status_exc_flags(env);
}
}
/* /*
* VFP support. We follow the convention used for VFP instructions: * VFP support. We follow the convention used for VFP instructions:
* Single precision routines have a "s" suffix, double precision a * Single precision routines have a "s" suffix, double precision a

View File

@ -21,254 +21,6 @@
#include "cpu.h" #include "cpu.h"
#include "internals.h" #include "internals.h"
#include "cpu-features.h" #include "cpu-features.h"
#include "fpu/softfloat.h"
/*
* Set the float_status behaviour to match the Arm defaults:
* * tininess-before-rounding
* * 2-input NaN propagation prefers SNaN over QNaN, and then
* operand A over operand B (see FPProcessNaNs() pseudocode)
* * 3-input NaN propagation prefers SNaN over QNaN, and then
* operand C over A over B (see FPProcessNaNs3() pseudocode,
* but note that for QEMU muladd is a * b + c, whereas for
* the pseudocode function the arguments are in the order c, a, b.
* * 0 * Inf + NaN returns the default NaN if the input NaN is quiet,
* and the input NaN if it is signalling
* * Default NaN has sign bit clear, msb frac bit set
*/
void arm_set_default_fp_behaviours(float_status *s)
{
set_float_detect_tininess(float_tininess_before_rounding, s);
set_float_ftz_detection(float_ftz_before_rounding, s);
set_float_2nan_prop_rule(float_2nan_prop_s_ab, s);
set_float_3nan_prop_rule(float_3nan_prop_s_cab, s);
set_float_infzeronan_rule(float_infzeronan_dnan_if_qnan, s);
set_float_default_nan_pattern(0b01000000, s);
}
/*
* Set the float_status behaviour to match the FEAT_AFP
* FPCR.AH=1 requirements:
* * tininess-after-rounding
* * 2-input NaN propagation prefers the first NaN
* * 3-input NaN propagation prefers a over b over c
* * 0 * Inf + NaN always returns the input NaN and doesn't
* set Invalid for a QNaN
* * default NaN has sign bit set, msb frac bit set
*/
void arm_set_ah_fp_behaviours(float_status *s)
{
set_float_detect_tininess(float_tininess_after_rounding, s);
set_float_ftz_detection(float_ftz_after_rounding, s);
set_float_2nan_prop_rule(float_2nan_prop_ab, s);
set_float_3nan_prop_rule(float_3nan_prop_abc, s);
set_float_infzeronan_rule(float_infzeronan_dnan_never |
float_infzeronan_suppress_invalid, s);
set_float_default_nan_pattern(0b11000000, s);
}
#ifdef CONFIG_TCG
/* Convert host exception flags to vfp form. */
static inline uint32_t vfp_exceptbits_from_host(int host_bits, bool ah)
{
uint32_t target_bits = 0;
if (host_bits & float_flag_invalid) {
target_bits |= FPSR_IOC;
}
if (host_bits & float_flag_divbyzero) {
target_bits |= FPSR_DZC;
}
if (host_bits & float_flag_overflow) {
target_bits |= FPSR_OFC;
}
if (host_bits & (float_flag_underflow | float_flag_output_denormal_flushed)) {
target_bits |= FPSR_UFC;
}
if (host_bits & float_flag_inexact) {
target_bits |= FPSR_IXC;
}
if (host_bits & float_flag_input_denormal_flushed) {
target_bits |= FPSR_IDC;
}
/*
* With FPCR.AH, IDC is set when an input denormal is used,
* and flushing an output denormal to zero sets both IXC and UFC.
*/
if (ah && (host_bits & float_flag_input_denormal_used)) {
target_bits |= FPSR_IDC;
}
if (ah && (host_bits & float_flag_output_denormal_flushed)) {
target_bits |= FPSR_IXC;
}
return target_bits;
}
static uint32_t vfp_get_fpsr_from_host(CPUARMState *env)
{
uint32_t a32_flags = 0, a64_flags = 0;
a32_flags |= get_float_exception_flags(&env->vfp.fp_status[FPST_A32]);
a32_flags |= get_float_exception_flags(&env->vfp.fp_status[FPST_STD]);
/* FZ16 does not generate an input denormal exception. */
a32_flags |= (get_float_exception_flags(&env->vfp.fp_status[FPST_A32_F16])
& ~float_flag_input_denormal_flushed);
a32_flags |= (get_float_exception_flags(&env->vfp.fp_status[FPST_STD_F16])
& ~float_flag_input_denormal_flushed);
a64_flags |= get_float_exception_flags(&env->vfp.fp_status[FPST_A64]);
a64_flags |= (get_float_exception_flags(&env->vfp.fp_status[FPST_A64_F16])
& ~(float_flag_input_denormal_flushed | float_flag_input_denormal_used));
/*
* We do not merge in flags from FPST_AH or FPST_AH_F16, because
* they are used for insns that must not set the cumulative exception bits.
*/
/*
* Flushing an input denormal *only* because FPCR.FIZ == 1 does
* not set FPSR.IDC; if FPCR.FZ is also set then this takes
* precedence and IDC is set (see the FPUnpackBase pseudocode).
* So squash it unless (FPCR.AH == 0 && FPCR.FZ == 1).
* We only do this for the a64 flags because FIZ has no effect
* on AArch32 even if it is set.
*/
if ((env->vfp.fpcr & (FPCR_FZ | FPCR_AH)) != FPCR_FZ) {
a64_flags &= ~float_flag_input_denormal_flushed;
}
return vfp_exceptbits_from_host(a64_flags, env->vfp.fpcr & FPCR_AH) |
vfp_exceptbits_from_host(a32_flags, false);
}
static void vfp_clear_float_status_exc_flags(CPUARMState *env)
{
/*
* Clear out all the exception-flag information in the float_status
* values. The caller should have arranged for env->vfp.fpsr to
* be the architecturally up-to-date exception flag information first.
*/
set_float_exception_flags(0, &env->vfp.fp_status[FPST_A32]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_A64]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_A32_F16]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_A64_F16]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_STD]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_STD_F16]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_AH]);
set_float_exception_flags(0, &env->vfp.fp_status[FPST_AH_F16]);
}
static void vfp_sync_and_clear_float_status_exc_flags(CPUARMState *env)
{
/*
* Synchronize any pending exception-flag information in the
* float_status values into env->vfp.fpsr, and then clear out
* the float_status data.
*/
env->vfp.fpsr |= vfp_get_fpsr_from_host(env);
vfp_clear_float_status_exc_flags(env);
}
static void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask)
{
uint64_t changed = env->vfp.fpcr;
changed ^= val;
changed &= mask;
if (changed & (3 << 22)) {
int i = (val >> 22) & 3;
switch (i) {
case FPROUNDING_TIEEVEN:
i = float_round_nearest_even;
break;
case FPROUNDING_POSINF:
i = float_round_up;
break;
case FPROUNDING_NEGINF:
i = float_round_down;
break;
case FPROUNDING_ZERO:
i = float_round_to_zero;
break;
}
set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A32]);
set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A64]);
set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A32_F16]);
set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A64_F16]);
}
if (changed & FPCR_FZ16) {
bool ftz_enabled = val & FPCR_FZ16;
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32_F16]);
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A64_F16]);
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_STD_F16]);
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_AH_F16]);
set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32_F16]);
set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A64_F16]);
set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_STD_F16]);
set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_AH_F16]);
}
if (changed & FPCR_FZ) {
bool ftz_enabled = val & FPCR_FZ;
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32]);
set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A64]);
/* FIZ is A64 only so FZ always makes A32 code flush inputs to zero */
set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32]);
}
if (changed & (FPCR_FZ | FPCR_AH | FPCR_FIZ)) {
/*
* A64: Flush denormalized inputs to zero if FPCR.FIZ = 1, or
* both FPCR.AH = 0 and FPCR.FZ = 1.
*/
bool fitz_enabled = (val & FPCR_FIZ) ||
(val & (FPCR_FZ | FPCR_AH)) == FPCR_FZ;
set_flush_inputs_to_zero(fitz_enabled, &env->vfp.fp_status[FPST_A64]);
}
if (changed & FPCR_DN) {
bool dnan_enabled = val & FPCR_DN;
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A32]);
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A64]);
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A32_F16]);
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A64_F16]);
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_AH]);
set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_AH_F16]);
}
if (changed & FPCR_AH) {
bool ah_enabled = val & FPCR_AH;
if (ah_enabled) {
/* Change behaviours for A64 FP operations */
arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_A64]);
arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_A64_F16]);
} else {
arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64]);
arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64_F16]);
}
}
/*
* If any bits changed that we look at in vfp_get_fpsr_from_host(),
* we must sync the float_status flags into vfp.fpsr now (under the
* old regime) before we update vfp.fpcr.
*/
if (changed & (FPCR_FZ | FPCR_AH | FPCR_FIZ)) {
vfp_sync_and_clear_float_status_exc_flags(env);
}
}
#else
static uint32_t vfp_get_fpsr_from_host(CPUARMState *env)
{
return 0;
}
static void vfp_clear_float_status_exc_flags(CPUARMState *env)
{
}
static void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask)
{
}
#endif
uint32_t vfp_get_fpcr(CPUARMState *env) uint32_t vfp_get_fpcr(CPUARMState *env)
{ {