target/hexagon: Expand GEN_XF_ROUND

This massive macro is now only used once.
Expand it for use only by float64.

Reviewed-by: Brian Cain <brian.cain@oss.qualcomm.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
Richard Henderson 2024-12-08 15:19:19 -06:00
parent 813437e500
commit 795d6a2c49

View File

@ -354,135 +354,134 @@ float32 infinite_float32(uint8_t sign)
}
/* Return a maximum finite value with the requested sign */
#define GEN_XF_ROUND(SUFFIX, MANTBITS, INF_EXP, INTERNAL_TYPE) \
static SUFFIX accum_round_##SUFFIX(Accum a, float_status * fp_status) \
{ \
if ((int128_gethi(a.mant) == 0) && (int128_getlo(a.mant) == 0) \
&& ((a.guard | a.round | a.sticky) == 0)) { \
/* result zero */ \
switch (fp_status->float_rounding_mode) { \
case float_round_down: \
return zero_##SUFFIX(1); \
default: \
return zero_##SUFFIX(0); \
} \
} \
/* Normalize right */ \
/* We want MANTBITS bits of mantissa plus the leading one. */ \
/* That means that we want MANTBITS+1 bits, or 0x000000000000FF_FFFF */ \
/* So we need to normalize right while the high word is non-zero and \
* while the low word is nonzero when masked with 0xffe0_0000_0000_0000 */ \
while ((int128_gethi(a.mant) != 0) || \
((int128_getlo(a.mant) >> (MANTBITS + 1)) != 0)) { \
a = accum_norm_right(a, 1); \
} \
/* \
* OK, now normalize left \
* We want to normalize left until we have a leading one in bit 24 \
* Theoretically, we only need to shift a maximum of one to the left if we \
* shifted out lots of bits from B, or if we had no shift / 1 shift sticky \
* should be 0 \
*/ \
while ((int128_getlo(a.mant) & (1ULL << MANTBITS)) == 0) { \
a = accum_norm_left(a); \
} \
/* \
* OK, now we might need to denormalize because of potential underflow. \
* We need to do this before rounding, and rounding might make us normal \
* again \
*/ \
while (a.exp <= 0) { \
a = accum_norm_right(a, 1 - a.exp); \
/* \
* Do we have underflow? \
* That's when we get an inexact answer because we ran out of bits \
* in a denormal. \
*/ \
if (a.guard || a.round || a.sticky) { \
float_raise(float_flag_underflow, fp_status); \
} \
} \
/* OK, we're relatively canonical... now we need to round */ \
if (a.guard || a.round || a.sticky) { \
float_raise(float_flag_inexact, fp_status); \
switch (fp_status->float_rounding_mode) { \
case float_round_to_zero: \
/* Chop and we're done */ \
break; \
case float_round_up: \
if (a.sign == 0) { \
a.mant = int128_add(a.mant, int128_one()); \
} \
break; \
case float_round_down: \
if (a.sign != 0) { \
a.mant = int128_add(a.mant, int128_one()); \
} \
break; \
default: \
if (a.round || a.sticky) { \
/* round up if guard is 1, down if guard is zero */ \
a.mant = int128_add(a.mant, int128_make64(a.guard)); \
} else if (a.guard) { \
/* exactly .5, round up if odd */ \
a.mant = int128_add(a.mant, int128_and(a.mant, int128_one())); \
} \
break; \
} \
} \
/* \
* OK, now we might have carried all the way up. \
* So we might need to shr once \
* at least we know that the lsb should be zero if we rounded and \
* got a carry out... \
*/ \
if ((int128_getlo(a.mant) >> (MANTBITS + 1)) != 0) { \
a = accum_norm_right(a, 1); \
} \
/* Overflow? */ \
if (a.exp >= INF_EXP) { \
/* Yep, inf result */ \
float_raise(float_flag_overflow, fp_status); \
float_raise(float_flag_inexact, fp_status); \
switch (fp_status->float_rounding_mode) { \
case float_round_to_zero: \
return maxfinite_##SUFFIX(a.sign); \
case float_round_up: \
if (a.sign == 0) { \
return infinite_##SUFFIX(a.sign); \
} else { \
return maxfinite_##SUFFIX(a.sign); \
} \
case float_round_down: \
if (a.sign != 0) { \
return infinite_##SUFFIX(a.sign); \
} else { \
return maxfinite_##SUFFIX(a.sign); \
} \
default: \
return infinite_##SUFFIX(a.sign); \
} \
} \
/* Underflow? */ \
if (int128_getlo(a.mant) & (1ULL << MANTBITS)) { \
/* Leading one means: No, we're normal. So, we should be done... */ \
INTERNAL_TYPE ret; \
ret.i = 0; \
ret.sign = a.sign; \
ret.exp = a.exp; \
ret.mant = int128_getlo(a.mant); \
return ret.i; \
} \
assert(a.exp == 1); \
INTERNAL_TYPE ret; \
ret.i = 0; \
ret.sign = a.sign; \
ret.exp = 0; \
ret.mant = int128_getlo(a.mant); \
return ret.i; \
static float64 accum_round_float64(Accum a, float_status *fp_status)
{
if ((int128_gethi(a.mant) == 0) && (int128_getlo(a.mant) == 0)
&& ((a.guard | a.round | a.sticky) == 0)) {
/* result zero */
switch (fp_status->float_rounding_mode) {
case float_round_down:
return zero_float64(1);
default:
return zero_float64(0);
}
}
/*
* Normalize right
* We want DF_MANTBITS bits of mantissa plus the leading one.
* That means that we want DF_MANTBITS+1 bits, or 0x000000000000FF_FFFF
* So we need to normalize right while the high word is non-zero and
* while the low word is nonzero when masked with 0xffe0_0000_0000_0000
*/
while ((int128_gethi(a.mant) != 0) ||
((int128_getlo(a.mant) >> (DF_MANTBITS + 1)) != 0)) {
a = accum_norm_right(a, 1);
}
/*
* OK, now normalize left
* We want to normalize left until we have a leading one in bit 24
* Theoretically, we only need to shift a maximum of one to the left if we
* shifted out lots of bits from B, or if we had no shift / 1 shift sticky
* should be 0
*/
while ((int128_getlo(a.mant) & (1ULL << DF_MANTBITS)) == 0) {
a = accum_norm_left(a);
}
/*
* OK, now we might need to denormalize because of potential underflow.
* We need to do this before rounding, and rounding might make us normal
* again
*/
while (a.exp <= 0) {
a = accum_norm_right(a, 1 - a.exp);
/*
* Do we have underflow?
* That's when we get an inexact answer because we ran out of bits
* in a denormal.
*/
if (a.guard || a.round || a.sticky) {
float_raise(float_flag_underflow, fp_status);
}
}
/* OK, we're relatively canonical... now we need to round */
if (a.guard || a.round || a.sticky) {
float_raise(float_flag_inexact, fp_status);
switch (fp_status->float_rounding_mode) {
case float_round_to_zero:
/* Chop and we're done */
break;
case float_round_up:
if (a.sign == 0) {
a.mant = int128_add(a.mant, int128_one());
}
break;
case float_round_down:
if (a.sign != 0) {
a.mant = int128_add(a.mant, int128_one());
}
break;
default:
if (a.round || a.sticky) {
/* round up if guard is 1, down if guard is zero */
a.mant = int128_add(a.mant, int128_make64(a.guard));
} else if (a.guard) {
/* exactly .5, round up if odd */
a.mant = int128_add(a.mant, int128_and(a.mant, int128_one()));
}
break;
}
}
/*
* OK, now we might have carried all the way up.
* So we might need to shr once
* at least we know that the lsb should be zero if we rounded and
* got a carry out...
*/
if ((int128_getlo(a.mant) >> (DF_MANTBITS + 1)) != 0) {
a = accum_norm_right(a, 1);
}
/* Overflow? */
if (a.exp >= DF_INF_EXP) {
/* Yep, inf result */
float_raise(float_flag_overflow, fp_status);
float_raise(float_flag_inexact, fp_status);
switch (fp_status->float_rounding_mode) {
case float_round_to_zero:
return maxfinite_float64(a.sign);
case float_round_up:
if (a.sign == 0) {
return infinite_float64(a.sign);
} else {
return maxfinite_float64(a.sign);
}
case float_round_down:
if (a.sign != 0) {
return infinite_float64(a.sign);
} else {
return maxfinite_float64(a.sign);
}
default:
return infinite_float64(a.sign);
}
}
/* Underflow? */
if (int128_getlo(a.mant) & (1ULL << DF_MANTBITS)) {
/* Leading one means: No, we're normal. So, we should be done... */
Double ret;
ret.i = 0;
ret.sign = a.sign;
ret.exp = a.exp;
ret.mant = int128_getlo(a.mant);
return ret.i;
}
assert(a.exp == 1);
Double ret;
ret.i = 0;
ret.sign = a.sign;
ret.exp = 0;
ret.mant = int128_getlo(a.mant);
return ret.i;
}
GEN_XF_ROUND(float64, DF_MANTBITS, DF_INF_EXP, Double)
float64 internal_mpyhh(float64 a, float64 b,
unsigned long long int accumulated,