target/arm: Always apply CNTVOFF_EL2 for CNTV_TVAL_EL02 accesses

Currently we handle CNTV_TVAL_EL02 by calling gt_tval_read() for the
EL1 virt timer.  This is almost correct, but the underlying
CNTV_TVAL_EL0 register behaves slightly differently.  CNTV_TVAL_EL02
always applies the CNTVOFF_EL2 offset; CNTV_TVAL_EL0 doesn't do so if
we're at EL2 and HCR_EL2.E2H is 1.

We were getting this wrong, because we ended up in
gt_virt_cnt_offset() and did the E2H check.

Factor out the tval read/write calculation from the selection of the
offset, so that we can special case gt_virt_tval_read() and
gt_virt_tval_write() to unconditionally pass CNTVOFF_EL2.

Cc: qemu-stable@nongnu.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-id: 20250204125009.2281315-5-peter.maydell@linaro.org
This commit is contained in:
Peter Maydell 2025-03-07 10:08:20 +00:00
parent bdd641541f
commit 4aecd4b442

View File

@ -2600,6 +2600,12 @@ static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
gt_recalc_timer(env_archcpu(env), timeridx);
}
static uint64_t do_tval_read(CPUARMState *env, int timeridx, uint64_t offset)
{
return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
(gt_get_countervalue(env) - offset));
}
static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
int timeridx)
{
@ -2614,8 +2620,16 @@ static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
break;
}
return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
(gt_get_countervalue(env) - offset));
return do_tval_read(env, timeridx, offset);
}
static void do_tval_write(CPUARMState *env, int timeridx, uint64_t value,
uint64_t offset)
{
trace_arm_gt_tval_write(timeridx, value);
env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
sextract64(value, 0, 32);
gt_recalc_timer(env_archcpu(env), timeridx);
}
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -2632,11 +2646,7 @@ static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
offset = gt_phys_cnt_offset(env);
break;
}
trace_arm_gt_tval_write(timeridx, value);
env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
sextract64(value, 0, 32);
gt_recalc_timer(env_archcpu(env), timeridx);
do_tval_write(env, timeridx, value, offset);
}
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
@ -2768,13 +2778,21 @@ static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
return gt_tval_read(env, ri, GTIMER_VIRT);
/*
* This is CNTV_TVAL_EL02; unlike the underlying CNTV_TVAL_EL0
* we always apply CNTVOFF_EL2. Special case that here rather
* than going into the generic gt_tval_read() and then having
* to re-detect that it's this register.
* Note that the accessfn/perms mean we know we're at EL2 or EL3 here.
*/
return do_tval_read(env, GTIMER_VIRT, env->cp15.cntvoff_el2);
}
static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
gt_tval_write(env, ri, GTIMER_VIRT, value);
/* Similarly for writes to CNTV_TVAL_EL02 */
do_tval_write(env, GTIMER_VIRT, value, env->cp15.cntvoff_el2);
}
static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,