Fourth RISC-V PR for QEMU 7.0

* Remove old Ibex PLIC header file
  * Allow writing 8 bytes with generic loader
  * Fixes for RV128
  * Refactor RISC-V CPU configs
  * Initial support for XVentanaCondOps custom extension
  * Fix for vill field in vtype
  * Fix trap cause for RV32 HS-mode CSR access from RV64 HS-mode
  * Support for svnapot, svinval and svpbmt extensions
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCAAdFiEE9sSsRtSTSGjTuM6PIeENKd+XcFQFAmIMmLQACgkQIeENKd+X
 cFTDuQf7Ba9LS+bPHShVBbbZSJEeaFbrNOBKbDT2pBVpJ02yj/yfEiwNp1sD1ich
 8Ud6QHUzBVZ1+yYXfZfrMZPD1B+Yq++9hAKLxlFQjS5E6e3WTUQTvkDqoABG03Wu
 4QPqVcoPGVBvnhO4kuMoDidItljTUGEOGG1m/kc3eXsQ/e9A1PgDWsZMYkLDKkxE
 DOCzgyCNKeWB4Wq6IRTUqmXNMl6WjMKO8qouQUGdlROfQ9HFAfELwIBoCRgQ7LCT
 KiOM04ts5Fv5qjhFH/e4+9zxCiS9YX56qJooNHgNFqr1EOzGl1XzMu77KkT8LhC4
 vJKX+9v4VO8u9fybDEOyELRXHgkEdQ==
 =R9lk
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/alistair/tags/pull-riscv-to-apply-20220216' into staging

Fourth RISC-V PR for QEMU 7.0

 * Remove old Ibex PLIC header file
 * Allow writing 8 bytes with generic loader
 * Fixes for RV128
 * Refactor RISC-V CPU configs
 * Initial support for XVentanaCondOps custom extension
 * Fix for vill field in vtype
 * Fix trap cause for RV32 HS-mode CSR access from RV64 HS-mode
 * Support for svnapot, svinval and svpbmt extensions

# gpg: Signature made Wed 16 Feb 2022 06:24:52 GMT
# gpg:                using RSA key F6C4AC46D4934868D3B8CE8F21E10D29DF977054
# gpg: Good signature from "Alistair Francis <alistair@alistair23.me>" [full]
# Primary key fingerprint: F6C4 AC46 D493 4868 D3B8  CE8F 21E1 0D29 DF97 7054

* remotes/alistair/tags/pull-riscv-to-apply-20220216: (35 commits)
  docs/system: riscv: Update description of CPU
  target/riscv: add support for svpbmt extension
  target/riscv: add support for svinval extension
  target/riscv: add support for svnapot extension
  target/riscv: add PTE_A/PTE_D/PTE_U bits check for inner PTE
  target/riscv: Ignore reserved bits in PTE for RV64
  hw/intc: Add RISC-V AIA APLIC device emulation
  target/riscv: Allow users to force enable AIA CSRs in HART
  hw/riscv: virt: Use AIA INTC compatible string when available
  target/riscv: Implement AIA IMSIC interface CSRs
  target/riscv: Implement AIA xiselect and xireg CSRs
  target/riscv: Implement AIA mtopi, stopi, and vstopi CSRs
  target/riscv: Implement AIA interrupt filtering CSRs
  target/riscv: Implement AIA hvictl and hviprioX CSRs
  target/riscv: Implement AIA CSRs for 64 local interrupts on RV32
  target/riscv: Implement AIA local interrupt priorities
  target/riscv: Allow AIA device emulation to set ireg rmw callback
  target/riscv: Add defines for AIA CSRs
  target/riscv: Add AIA cpu feature
  target/riscv: Allow setting CPU feature from machine/device emulation
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2022-02-16 09:57:11 +00:00
commit c13b8e9973
27 changed files with 3268 additions and 386 deletions

View File

@ -286,6 +286,13 @@ F: include/hw/riscv/
F: linux-user/host/riscv32/ F: linux-user/host/riscv32/
F: linux-user/host/riscv64/ F: linux-user/host/riscv64/
RISC-V XVentanaCondOps extension
M: Philipp Tomsich <philipp.tomsich@vrull.eu>
L: qemu-riscv@nongnu.org
S: Supported
F: target/riscv/XVentanaCondOps.decode
F: target/riscv/insn_trans/trans_xventanacondops.c.inc
RENESAS RX CPUs RENESAS RX CPUs
R: Yoshinori Sato <ysato@users.sourceforge.jp> R: Yoshinori Sato <ysato@users.sourceforge.jp>
S: Orphan S: Orphan

View File

@ -23,9 +23,9 @@ The ``virt`` machine supports the following devices:
* 1 generic PCIe host bridge * 1 generic PCIe host bridge
* The fw_cfg device that allows a guest to obtain data from QEMU * The fw_cfg device that allows a guest to obtain data from QEMU
Note that the default CPU is a generic RV32GC/RV64GC. Optional extensions The hypervisor extension has been enabled for the default CPU, so virtual
can be enabled via command line parameters, e.g.: ``-cpu rv64,x-h=true`` machines with hypervisor extension can simply be used without explicitly
enables the hypervisor extension for RV64. declaring.
Hardware configuration information Hardware configuration information
---------------------------------- ----------------------------------

View File

@ -56,7 +56,7 @@ static void generic_loader_reset(void *opaque)
} }
if (s->data_len) { if (s->data_len) {
assert(s->data_len < sizeof(s->data)); assert(s->data_len <= sizeof(s->data));
dma_memory_write(s->cpu->as, s->addr, &s->data, s->data_len, dma_memory_write(s->cpu->as, s->addr, &s->data, s->data_len,
MEMTXATTRS_UNSPECIFIED); MEMTXATTRS_UNSPECIFIED);
} }

View File

@ -70,6 +70,9 @@ config LOONGSON_LIOINTC
config RISCV_ACLINT config RISCV_ACLINT
bool bool
config RISCV_APLIC
bool
config SIFIVE_PLIC config SIFIVE_PLIC
bool bool

View File

@ -50,6 +50,7 @@ specific_ss.add(when: 'CONFIG_S390_FLIC', if_true: files('s390_flic.c'))
specific_ss.add(when: 'CONFIG_S390_FLIC_KVM', if_true: files('s390_flic_kvm.c')) specific_ss.add(when: 'CONFIG_S390_FLIC_KVM', if_true: files('s390_flic_kvm.c'))
specific_ss.add(when: 'CONFIG_SH_INTC', if_true: files('sh_intc.c')) specific_ss.add(when: 'CONFIG_SH_INTC', if_true: files('sh_intc.c'))
specific_ss.add(when: 'CONFIG_RISCV_ACLINT', if_true: files('riscv_aclint.c')) specific_ss.add(when: 'CONFIG_RISCV_ACLINT', if_true: files('riscv_aclint.c'))
specific_ss.add(when: 'CONFIG_RISCV_APLIC', if_true: files('riscv_aplic.c'))
specific_ss.add(when: 'CONFIG_SIFIVE_PLIC', if_true: files('sifive_plic.c')) specific_ss.add(when: 'CONFIG_SIFIVE_PLIC', if_true: files('sifive_plic.c'))
specific_ss.add(when: 'CONFIG_XICS', if_true: files('xics.c')) specific_ss.add(when: 'CONFIG_XICS', if_true: files('xics.c'))
specific_ss.add(when: ['CONFIG_KVM', 'CONFIG_XICS'], specific_ss.add(when: ['CONFIG_KVM', 'CONFIG_XICS'],

978
hw/intc/riscv_aplic.c Normal file
View File

@ -0,0 +1,978 @@
/*
* RISC-V APLIC (Advanced Platform Level Interrupt Controller)
*
* Copyright (c) 2021 Western Digital Corporation or its affiliates.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/error-report.h"
#include "qemu/bswap.h"
#include "exec/address-spaces.h"
#include "hw/sysbus.h"
#include "hw/pci/msi.h"
#include "hw/boards.h"
#include "hw/qdev-properties.h"
#include "hw/intc/riscv_aplic.h"
#include "hw/irq.h"
#include "target/riscv/cpu.h"
#include "sysemu/sysemu.h"
#include "migration/vmstate.h"
#define APLIC_MAX_IDC (1UL << 14)
#define APLIC_MAX_SOURCE 1024
#define APLIC_MIN_IPRIO_BITS 1
#define APLIC_MAX_IPRIO_BITS 8
#define APLIC_MAX_CHILDREN 1024
#define APLIC_DOMAINCFG 0x0000
#define APLIC_DOMAINCFG_RDONLY 0x80000000
#define APLIC_DOMAINCFG_IE (1 << 8)
#define APLIC_DOMAINCFG_DM (1 << 2)
#define APLIC_DOMAINCFG_BE (1 << 0)
#define APLIC_SOURCECFG_BASE 0x0004
#define APLIC_SOURCECFG_D (1 << 10)
#define APLIC_SOURCECFG_CHILDIDX_MASK 0x000003ff
#define APLIC_SOURCECFG_SM_MASK 0x00000007
#define APLIC_SOURCECFG_SM_INACTIVE 0x0
#define APLIC_SOURCECFG_SM_DETACH 0x1
#define APLIC_SOURCECFG_SM_EDGE_RISE 0x4
#define APLIC_SOURCECFG_SM_EDGE_FALL 0x5
#define APLIC_SOURCECFG_SM_LEVEL_HIGH 0x6
#define APLIC_SOURCECFG_SM_LEVEL_LOW 0x7
#define APLIC_MMSICFGADDR 0x1bc0
#define APLIC_MMSICFGADDRH 0x1bc4
#define APLIC_SMSICFGADDR 0x1bc8
#define APLIC_SMSICFGADDRH 0x1bcc
#define APLIC_xMSICFGADDRH_L (1UL << 31)
#define APLIC_xMSICFGADDRH_HHXS_MASK 0x1f
#define APLIC_xMSICFGADDRH_HHXS_SHIFT 24
#define APLIC_xMSICFGADDRH_LHXS_MASK 0x7
#define APLIC_xMSICFGADDRH_LHXS_SHIFT 20
#define APLIC_xMSICFGADDRH_HHXW_MASK 0x7
#define APLIC_xMSICFGADDRH_HHXW_SHIFT 16
#define APLIC_xMSICFGADDRH_LHXW_MASK 0xf
#define APLIC_xMSICFGADDRH_LHXW_SHIFT 12
#define APLIC_xMSICFGADDRH_BAPPN_MASK 0xfff
#define APLIC_xMSICFGADDR_PPN_SHIFT 12
#define APLIC_xMSICFGADDR_PPN_HART(__lhxs) \
((1UL << (__lhxs)) - 1)
#define APLIC_xMSICFGADDR_PPN_LHX_MASK(__lhxw) \
((1UL << (__lhxw)) - 1)
#define APLIC_xMSICFGADDR_PPN_LHX_SHIFT(__lhxs) \
((__lhxs))
#define APLIC_xMSICFGADDR_PPN_LHX(__lhxw, __lhxs) \
(APLIC_xMSICFGADDR_PPN_LHX_MASK(__lhxw) << \
APLIC_xMSICFGADDR_PPN_LHX_SHIFT(__lhxs))
#define APLIC_xMSICFGADDR_PPN_HHX_MASK(__hhxw) \
((1UL << (__hhxw)) - 1)
#define APLIC_xMSICFGADDR_PPN_HHX_SHIFT(__hhxs) \
((__hhxs) + APLIC_xMSICFGADDR_PPN_SHIFT)
#define APLIC_xMSICFGADDR_PPN_HHX(__hhxw, __hhxs) \
(APLIC_xMSICFGADDR_PPN_HHX_MASK(__hhxw) << \
APLIC_xMSICFGADDR_PPN_HHX_SHIFT(__hhxs))
#define APLIC_xMSICFGADDRH_VALID_MASK \
(APLIC_xMSICFGADDRH_L | \
(APLIC_xMSICFGADDRH_HHXS_MASK << APLIC_xMSICFGADDRH_HHXS_SHIFT) | \
(APLIC_xMSICFGADDRH_LHXS_MASK << APLIC_xMSICFGADDRH_LHXS_SHIFT) | \
(APLIC_xMSICFGADDRH_HHXW_MASK << APLIC_xMSICFGADDRH_HHXW_SHIFT) | \
(APLIC_xMSICFGADDRH_LHXW_MASK << APLIC_xMSICFGADDRH_LHXW_SHIFT) | \
APLIC_xMSICFGADDRH_BAPPN_MASK)
#define APLIC_SETIP_BASE 0x1c00
#define APLIC_SETIPNUM 0x1cdc
#define APLIC_CLRIP_BASE 0x1d00
#define APLIC_CLRIPNUM 0x1ddc
#define APLIC_SETIE_BASE 0x1e00
#define APLIC_SETIENUM 0x1edc
#define APLIC_CLRIE_BASE 0x1f00
#define APLIC_CLRIENUM 0x1fdc
#define APLIC_SETIPNUM_LE 0x2000
#define APLIC_SETIPNUM_BE 0x2004
#define APLIC_ISTATE_PENDING (1U << 0)
#define APLIC_ISTATE_ENABLED (1U << 1)
#define APLIC_ISTATE_ENPEND (APLIC_ISTATE_ENABLED | \
APLIC_ISTATE_PENDING)
#define APLIC_ISTATE_INPUT (1U << 8)
#define APLIC_GENMSI 0x3000
#define APLIC_TARGET_BASE 0x3004
#define APLIC_TARGET_HART_IDX_SHIFT 18
#define APLIC_TARGET_HART_IDX_MASK 0x3fff
#define APLIC_TARGET_GUEST_IDX_SHIFT 12
#define APLIC_TARGET_GUEST_IDX_MASK 0x3f
#define APLIC_TARGET_IPRIO_MASK 0xff
#define APLIC_TARGET_EIID_MASK 0x7ff
#define APLIC_IDC_BASE 0x4000
#define APLIC_IDC_SIZE 32
#define APLIC_IDC_IDELIVERY 0x00
#define APLIC_IDC_IFORCE 0x04
#define APLIC_IDC_ITHRESHOLD 0x08
#define APLIC_IDC_TOPI 0x18
#define APLIC_IDC_TOPI_ID_SHIFT 16
#define APLIC_IDC_TOPI_ID_MASK 0x3ff
#define APLIC_IDC_TOPI_PRIO_MASK 0xff
#define APLIC_IDC_CLAIMI 0x1c
static uint32_t riscv_aplic_read_input_word(RISCVAPLICState *aplic,
uint32_t word)
{
uint32_t i, irq, ret = 0;
for (i = 0; i < 32; i++) {
irq = word * 32 + i;
if (!irq || aplic->num_irqs <= irq) {
continue;
}
ret |= ((aplic->state[irq] & APLIC_ISTATE_INPUT) ? 1 : 0) << i;
}
return ret;
}
static uint32_t riscv_aplic_read_pending_word(RISCVAPLICState *aplic,
uint32_t word)
{
uint32_t i, irq, ret = 0;
for (i = 0; i < 32; i++) {
irq = word * 32 + i;
if (!irq || aplic->num_irqs <= irq) {
continue;
}
ret |= ((aplic->state[irq] & APLIC_ISTATE_PENDING) ? 1 : 0) << i;
}
return ret;
}
static void riscv_aplic_set_pending_raw(RISCVAPLICState *aplic,
uint32_t irq, bool pending)
{
if (pending) {
aplic->state[irq] |= APLIC_ISTATE_PENDING;
} else {
aplic->state[irq] &= ~APLIC_ISTATE_PENDING;
}
}
static void riscv_aplic_set_pending(RISCVAPLICState *aplic,
uint32_t irq, bool pending)
{
uint32_t sourcecfg, sm;
if ((irq <= 0) || (aplic->num_irqs <= irq)) {
return;
}
sourcecfg = aplic->sourcecfg[irq];
if (sourcecfg & APLIC_SOURCECFG_D) {
return;
}
sm = sourcecfg & APLIC_SOURCECFG_SM_MASK;
if ((sm == APLIC_SOURCECFG_SM_INACTIVE) ||
((!aplic->msimode || (aplic->msimode && !pending)) &&
((sm == APLIC_SOURCECFG_SM_LEVEL_HIGH) ||
(sm == APLIC_SOURCECFG_SM_LEVEL_LOW)))) {
return;
}
riscv_aplic_set_pending_raw(aplic, irq, pending);
}
static void riscv_aplic_set_pending_word(RISCVAPLICState *aplic,
uint32_t word, uint32_t value,
bool pending)
{
uint32_t i, irq;
for (i = 0; i < 32; i++) {
irq = word * 32 + i;
if (!irq || aplic->num_irqs <= irq) {
continue;
}
if (value & (1U << i)) {
riscv_aplic_set_pending(aplic, irq, pending);
}
}
}
static uint32_t riscv_aplic_read_enabled_word(RISCVAPLICState *aplic,
int word)
{
uint32_t i, irq, ret = 0;
for (i = 0; i < 32; i++) {
irq = word * 32 + i;
if (!irq || aplic->num_irqs <= irq) {
continue;
}
ret |= ((aplic->state[irq] & APLIC_ISTATE_ENABLED) ? 1 : 0) << i;
}
return ret;
}
static void riscv_aplic_set_enabled_raw(RISCVAPLICState *aplic,
uint32_t irq, bool enabled)
{
if (enabled) {
aplic->state[irq] |= APLIC_ISTATE_ENABLED;
} else {
aplic->state[irq] &= ~APLIC_ISTATE_ENABLED;
}
}
static void riscv_aplic_set_enabled(RISCVAPLICState *aplic,
uint32_t irq, bool enabled)
{
uint32_t sourcecfg, sm;
if ((irq <= 0) || (aplic->num_irqs <= irq)) {
return;
}
sourcecfg = aplic->sourcecfg[irq];
if (sourcecfg & APLIC_SOURCECFG_D) {
return;
}
sm = sourcecfg & APLIC_SOURCECFG_SM_MASK;
if (sm == APLIC_SOURCECFG_SM_INACTIVE) {
return;
}
riscv_aplic_set_enabled_raw(aplic, irq, enabled);
}
static void riscv_aplic_set_enabled_word(RISCVAPLICState *aplic,
uint32_t word, uint32_t value,
bool enabled)
{
uint32_t i, irq;
for (i = 0; i < 32; i++) {
irq = word * 32 + i;
if (!irq || aplic->num_irqs <= irq) {
continue;
}
if (value & (1U << i)) {
riscv_aplic_set_enabled(aplic, irq, enabled);
}
}
}
static void riscv_aplic_msi_send(RISCVAPLICState *aplic,
uint32_t hart_idx, uint32_t guest_idx,
uint32_t eiid)
{
uint64_t addr;
MemTxResult result;
RISCVAPLICState *aplic_m;
uint32_t lhxs, lhxw, hhxs, hhxw, group_idx, msicfgaddr, msicfgaddrH;
aplic_m = aplic;
while (aplic_m && !aplic_m->mmode) {
aplic_m = aplic_m->parent;
}
if (!aplic_m) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: m-level APLIC not found\n",
__func__);
return;
}
if (aplic->mmode) {
msicfgaddr = aplic_m->mmsicfgaddr;
msicfgaddrH = aplic_m->mmsicfgaddrH;
} else {
msicfgaddr = aplic_m->smsicfgaddr;
msicfgaddrH = aplic_m->smsicfgaddrH;
}
lhxs = (msicfgaddrH >> APLIC_xMSICFGADDRH_LHXS_SHIFT) &
APLIC_xMSICFGADDRH_LHXS_MASK;
lhxw = (msicfgaddrH >> APLIC_xMSICFGADDRH_LHXW_SHIFT) &
APLIC_xMSICFGADDRH_LHXW_MASK;
hhxs = (msicfgaddrH >> APLIC_xMSICFGADDRH_HHXS_SHIFT) &
APLIC_xMSICFGADDRH_HHXS_MASK;
hhxw = (msicfgaddrH >> APLIC_xMSICFGADDRH_HHXW_SHIFT) &
APLIC_xMSICFGADDRH_HHXW_MASK;
group_idx = hart_idx >> lhxw;
hart_idx &= APLIC_xMSICFGADDR_PPN_LHX_MASK(lhxw);
addr = msicfgaddr;
addr |= ((uint64_t)(msicfgaddrH & APLIC_xMSICFGADDRH_BAPPN_MASK)) << 32;
addr |= ((uint64_t)(group_idx & APLIC_xMSICFGADDR_PPN_HHX_MASK(hhxw))) <<
APLIC_xMSICFGADDR_PPN_HHX_SHIFT(hhxs);
addr |= ((uint64_t)(hart_idx & APLIC_xMSICFGADDR_PPN_LHX_MASK(lhxw))) <<
APLIC_xMSICFGADDR_PPN_LHX_SHIFT(lhxs);
addr |= (uint64_t)(guest_idx & APLIC_xMSICFGADDR_PPN_HART(lhxs));
addr <<= APLIC_xMSICFGADDR_PPN_SHIFT;
address_space_stl_le(&address_space_memory, addr,
eiid, MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: MSI write failed for "
"hart_index=%d guest_index=%d eiid=%d\n",
__func__, hart_idx, guest_idx, eiid);
}
}
static void riscv_aplic_msi_irq_update(RISCVAPLICState *aplic, uint32_t irq)
{
uint32_t hart_idx, guest_idx, eiid;
if (!aplic->msimode || (aplic->num_irqs <= irq) ||
!(aplic->domaincfg & APLIC_DOMAINCFG_IE)) {
return;
}
if ((aplic->state[irq] & APLIC_ISTATE_ENPEND) != APLIC_ISTATE_ENPEND) {
return;
}
riscv_aplic_set_pending_raw(aplic, irq, false);
hart_idx = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT;
hart_idx &= APLIC_TARGET_HART_IDX_MASK;
if (aplic->mmode) {
/* M-level APLIC ignores guest_index */
guest_idx = 0;
} else {
guest_idx = aplic->target[irq] >> APLIC_TARGET_GUEST_IDX_SHIFT;
guest_idx &= APLIC_TARGET_GUEST_IDX_MASK;
}
eiid = aplic->target[irq] & APLIC_TARGET_EIID_MASK;
riscv_aplic_msi_send(aplic, hart_idx, guest_idx, eiid);
}
static uint32_t riscv_aplic_idc_topi(RISCVAPLICState *aplic, uint32_t idc)
{
uint32_t best_irq, best_iprio;
uint32_t irq, iprio, ihartidx, ithres;
if (aplic->num_harts <= idc) {
return 0;
}
ithres = aplic->ithreshold[idc];
best_irq = best_iprio = UINT32_MAX;
for (irq = 1; irq < aplic->num_irqs; irq++) {
if ((aplic->state[irq] & APLIC_ISTATE_ENPEND) !=
APLIC_ISTATE_ENPEND) {
continue;
}
ihartidx = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT;
ihartidx &= APLIC_TARGET_HART_IDX_MASK;
if (ihartidx != idc) {
continue;
}
iprio = aplic->target[irq] & aplic->iprio_mask;
if (ithres && iprio >= ithres) {
continue;
}
if (iprio < best_iprio) {
best_irq = irq;
best_iprio = iprio;
}
}
if (best_irq < aplic->num_irqs && best_iprio <= aplic->iprio_mask) {
return (best_irq << APLIC_IDC_TOPI_ID_SHIFT) | best_iprio;
}
return 0;
}
static void riscv_aplic_idc_update(RISCVAPLICState *aplic, uint32_t idc)
{
uint32_t topi;
if (aplic->msimode || aplic->num_harts <= idc) {
return;
}
topi = riscv_aplic_idc_topi(aplic, idc);
if ((aplic->domaincfg & APLIC_DOMAINCFG_IE) &&
aplic->idelivery[idc] &&
(aplic->iforce[idc] || topi)) {
qemu_irq_raise(aplic->external_irqs[idc]);
} else {
qemu_irq_lower(aplic->external_irqs[idc]);
}
}
static uint32_t riscv_aplic_idc_claimi(RISCVAPLICState *aplic, uint32_t idc)
{
uint32_t irq, state, sm, topi = riscv_aplic_idc_topi(aplic, idc);
if (!topi) {
aplic->iforce[idc] = 0;
return 0;
}
irq = (topi >> APLIC_IDC_TOPI_ID_SHIFT) & APLIC_IDC_TOPI_ID_MASK;
sm = aplic->sourcecfg[irq] & APLIC_SOURCECFG_SM_MASK;
state = aplic->state[irq];
riscv_aplic_set_pending_raw(aplic, irq, false);
if ((sm == APLIC_SOURCECFG_SM_LEVEL_HIGH) &&
(state & APLIC_ISTATE_INPUT)) {
riscv_aplic_set_pending_raw(aplic, irq, true);
} else if ((sm == APLIC_SOURCECFG_SM_LEVEL_LOW) &&
!(state & APLIC_ISTATE_INPUT)) {
riscv_aplic_set_pending_raw(aplic, irq, true);
}
riscv_aplic_idc_update(aplic, idc);
return topi;
}
static void riscv_aplic_request(void *opaque, int irq, int level)
{
bool update = false;
RISCVAPLICState *aplic = opaque;
uint32_t sourcecfg, childidx, state, idc;
assert((0 < irq) && (irq < aplic->num_irqs));
sourcecfg = aplic->sourcecfg[irq];
if (sourcecfg & APLIC_SOURCECFG_D) {
childidx = sourcecfg & APLIC_SOURCECFG_CHILDIDX_MASK;
if (childidx < aplic->num_children) {
riscv_aplic_request(aplic->children[childidx], irq, level);
}
return;
}
state = aplic->state[irq];
switch (sourcecfg & APLIC_SOURCECFG_SM_MASK) {
case APLIC_SOURCECFG_SM_EDGE_RISE:
if ((level > 0) && !(state & APLIC_ISTATE_INPUT) &&
!(state & APLIC_ISTATE_PENDING)) {
riscv_aplic_set_pending_raw(aplic, irq, true);
update = true;
}
break;
case APLIC_SOURCECFG_SM_EDGE_FALL:
if ((level <= 0) && (state & APLIC_ISTATE_INPUT) &&
!(state & APLIC_ISTATE_PENDING)) {
riscv_aplic_set_pending_raw(aplic, irq, true);
update = true;
}
break;
case APLIC_SOURCECFG_SM_LEVEL_HIGH:
if ((level > 0) && !(state & APLIC_ISTATE_PENDING)) {
riscv_aplic_set_pending_raw(aplic, irq, true);
update = true;
}
break;
case APLIC_SOURCECFG_SM_LEVEL_LOW:
if ((level <= 0) && !(state & APLIC_ISTATE_PENDING)) {
riscv_aplic_set_pending_raw(aplic, irq, true);
update = true;
}
break;
default:
break;
}
if (level <= 0) {
aplic->state[irq] &= ~APLIC_ISTATE_INPUT;
} else {
aplic->state[irq] |= APLIC_ISTATE_INPUT;
}
if (update) {
if (aplic->msimode) {
riscv_aplic_msi_irq_update(aplic, irq);
} else {
idc = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT;
idc &= APLIC_TARGET_HART_IDX_MASK;
riscv_aplic_idc_update(aplic, idc);
}
}
}
static uint64_t riscv_aplic_read(void *opaque, hwaddr addr, unsigned size)
{
uint32_t irq, word, idc;
RISCVAPLICState *aplic = opaque;
/* Reads must be 4 byte words */
if ((addr & 0x3) != 0) {
goto err;
}
if (addr == APLIC_DOMAINCFG) {
return APLIC_DOMAINCFG_RDONLY | aplic->domaincfg |
(aplic->msimode ? APLIC_DOMAINCFG_DM : 0);
} else if ((APLIC_SOURCECFG_BASE <= addr) &&
(addr < (APLIC_SOURCECFG_BASE + (aplic->num_irqs - 1) * 4))) {
irq = ((addr - APLIC_SOURCECFG_BASE) >> 2) + 1;
return aplic->sourcecfg[irq];
} else if (aplic->mmode && aplic->msimode &&
(addr == APLIC_MMSICFGADDR)) {
return aplic->mmsicfgaddr;
} else if (aplic->mmode && aplic->msimode &&
(addr == APLIC_MMSICFGADDRH)) {
return aplic->mmsicfgaddrH;
} else if (aplic->mmode && aplic->msimode &&
(addr == APLIC_SMSICFGADDR)) {
/*
* Registers SMSICFGADDR and SMSICFGADDRH are implemented only if:
* (a) the interrupt domain is at machine level
* (b) the domain's harts implement supervisor mode
* (c) the domain has one or more child supervisor-level domains
* that support MSI delivery mode (domaincfg.DM is not read-
* only zero in at least one of the supervisor-level child
* domains).
*/
return (aplic->num_children) ? aplic->smsicfgaddr : 0;
} else if (aplic->mmode && aplic->msimode &&
(addr == APLIC_SMSICFGADDRH)) {
return (aplic->num_children) ? aplic->smsicfgaddrH : 0;
} else if ((APLIC_SETIP_BASE <= addr) &&
(addr < (APLIC_SETIP_BASE + aplic->bitfield_words * 4))) {
word = (addr - APLIC_SETIP_BASE) >> 2;
return riscv_aplic_read_pending_word(aplic, word);
} else if (addr == APLIC_SETIPNUM) {
return 0;
} else if ((APLIC_CLRIP_BASE <= addr) &&
(addr < (APLIC_CLRIP_BASE + aplic->bitfield_words * 4))) {
word = (addr - APLIC_CLRIP_BASE) >> 2;
return riscv_aplic_read_input_word(aplic, word);
} else if (addr == APLIC_CLRIPNUM) {
return 0;
} else if ((APLIC_SETIE_BASE <= addr) &&
(addr < (APLIC_SETIE_BASE + aplic->bitfield_words * 4))) {
word = (addr - APLIC_SETIE_BASE) >> 2;
return riscv_aplic_read_enabled_word(aplic, word);
} else if (addr == APLIC_SETIENUM) {
return 0;
} else if ((APLIC_CLRIE_BASE <= addr) &&
(addr < (APLIC_CLRIE_BASE + aplic->bitfield_words * 4))) {
return 0;
} else if (addr == APLIC_CLRIENUM) {
return 0;
} else if (addr == APLIC_SETIPNUM_LE) {
return 0;
} else if (addr == APLIC_SETIPNUM_BE) {
return 0;
} else if (addr == APLIC_GENMSI) {
return (aplic->msimode) ? aplic->genmsi : 0;
} else if ((APLIC_TARGET_BASE <= addr) &&
(addr < (APLIC_TARGET_BASE + (aplic->num_irqs - 1) * 4))) {
irq = ((addr - APLIC_TARGET_BASE) >> 2) + 1;
return aplic->target[irq];
} else if (!aplic->msimode && (APLIC_IDC_BASE <= addr) &&
(addr < (APLIC_IDC_BASE + aplic->num_harts * APLIC_IDC_SIZE))) {
idc = (addr - APLIC_IDC_BASE) / APLIC_IDC_SIZE;
switch (addr - (APLIC_IDC_BASE + idc * APLIC_IDC_SIZE)) {
case APLIC_IDC_IDELIVERY:
return aplic->idelivery[idc];
case APLIC_IDC_IFORCE:
return aplic->iforce[idc];
case APLIC_IDC_ITHRESHOLD:
return aplic->ithreshold[idc];
case APLIC_IDC_TOPI:
return riscv_aplic_idc_topi(aplic, idc);
case APLIC_IDC_CLAIMI:
return riscv_aplic_idc_claimi(aplic, idc);
default:
goto err;
};
}
err:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Invalid register read 0x%" HWADDR_PRIx "\n",
__func__, addr);
return 0;
}
static void riscv_aplic_write(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
RISCVAPLICState *aplic = opaque;
uint32_t irq, word, idc = UINT32_MAX;
/* Writes must be 4 byte words */
if ((addr & 0x3) != 0) {
goto err;
}
if (addr == APLIC_DOMAINCFG) {
/* Only IE bit writeable at the moment */
value &= APLIC_DOMAINCFG_IE;
aplic->domaincfg = value;
} else if ((APLIC_SOURCECFG_BASE <= addr) &&
(addr < (APLIC_SOURCECFG_BASE + (aplic->num_irqs - 1) * 4))) {
irq = ((addr - APLIC_SOURCECFG_BASE) >> 2) + 1;
if (!aplic->num_children && (value & APLIC_SOURCECFG_D)) {
value = 0;
}
if (value & APLIC_SOURCECFG_D) {
value &= (APLIC_SOURCECFG_D | APLIC_SOURCECFG_CHILDIDX_MASK);
} else {
value &= (APLIC_SOURCECFG_D | APLIC_SOURCECFG_SM_MASK);
}
aplic->sourcecfg[irq] = value;
if ((aplic->sourcecfg[irq] & APLIC_SOURCECFG_D) ||
(aplic->sourcecfg[irq] == 0)) {
riscv_aplic_set_pending_raw(aplic, irq, false);
riscv_aplic_set_enabled_raw(aplic, irq, false);
}
} else if (aplic->mmode && aplic->msimode &&
(addr == APLIC_MMSICFGADDR)) {
if (!(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
aplic->mmsicfgaddr = value;
}
} else if (aplic->mmode && aplic->msimode &&
(addr == APLIC_MMSICFGADDRH)) {
if (!(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
aplic->mmsicfgaddrH = value & APLIC_xMSICFGADDRH_VALID_MASK;
}
} else if (aplic->mmode && aplic->msimode &&
(addr == APLIC_SMSICFGADDR)) {
/*
* Registers SMSICFGADDR and SMSICFGADDRH are implemented only if:
* (a) the interrupt domain is at machine level
* (b) the domain's harts implement supervisor mode
* (c) the domain has one or more child supervisor-level domains
* that support MSI delivery mode (domaincfg.DM is not read-
* only zero in at least one of the supervisor-level child
* domains).
*/
if (aplic->num_children &&
!(aplic->smsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
aplic->smsicfgaddr = value;
}
} else if (aplic->mmode && aplic->msimode &&
(addr == APLIC_SMSICFGADDRH)) {
if (aplic->num_children &&
!(aplic->smsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
aplic->smsicfgaddrH = value & APLIC_xMSICFGADDRH_VALID_MASK;
}
} else if ((APLIC_SETIP_BASE <= addr) &&
(addr < (APLIC_SETIP_BASE + aplic->bitfield_words * 4))) {
word = (addr - APLIC_SETIP_BASE) >> 2;
riscv_aplic_set_pending_word(aplic, word, value, true);
} else if (addr == APLIC_SETIPNUM) {
riscv_aplic_set_pending(aplic, value, true);
} else if ((APLIC_CLRIP_BASE <= addr) &&
(addr < (APLIC_CLRIP_BASE + aplic->bitfield_words * 4))) {
word = (addr - APLIC_CLRIP_BASE) >> 2;
riscv_aplic_set_pending_word(aplic, word, value, false);
} else if (addr == APLIC_CLRIPNUM) {
riscv_aplic_set_pending(aplic, value, false);
} else if ((APLIC_SETIE_BASE <= addr) &&
(addr < (APLIC_SETIE_BASE + aplic->bitfield_words * 4))) {
word = (addr - APLIC_SETIE_BASE) >> 2;
riscv_aplic_set_enabled_word(aplic, word, value, true);
} else if (addr == APLIC_SETIENUM) {
riscv_aplic_set_enabled(aplic, value, true);
} else if ((APLIC_CLRIE_BASE <= addr) &&
(addr < (APLIC_CLRIE_BASE + aplic->bitfield_words * 4))) {
word = (addr - APLIC_CLRIE_BASE) >> 2;
riscv_aplic_set_enabled_word(aplic, word, value, false);
} else if (addr == APLIC_CLRIENUM) {
riscv_aplic_set_enabled(aplic, value, false);
} else if (addr == APLIC_SETIPNUM_LE) {
riscv_aplic_set_pending(aplic, value, true);
} else if (addr == APLIC_SETIPNUM_BE) {
riscv_aplic_set_pending(aplic, bswap32(value), true);
} else if (addr == APLIC_GENMSI) {
if (aplic->msimode) {
aplic->genmsi = value & ~(APLIC_TARGET_GUEST_IDX_MASK <<
APLIC_TARGET_GUEST_IDX_SHIFT);
riscv_aplic_msi_send(aplic,
value >> APLIC_TARGET_HART_IDX_SHIFT,
0,
value & APLIC_TARGET_EIID_MASK);
}
} else if ((APLIC_TARGET_BASE <= addr) &&
(addr < (APLIC_TARGET_BASE + (aplic->num_irqs - 1) * 4))) {
irq = ((addr - APLIC_TARGET_BASE) >> 2) + 1;
if (aplic->msimode) {
aplic->target[irq] = value;
} else {
aplic->target[irq] = (value & ~APLIC_TARGET_IPRIO_MASK) |
((value & aplic->iprio_mask) ?
(value & aplic->iprio_mask) : 1);
}
} else if (!aplic->msimode && (APLIC_IDC_BASE <= addr) &&
(addr < (APLIC_IDC_BASE + aplic->num_harts * APLIC_IDC_SIZE))) {
idc = (addr - APLIC_IDC_BASE) / APLIC_IDC_SIZE;
switch (addr - (APLIC_IDC_BASE + idc * APLIC_IDC_SIZE)) {
case APLIC_IDC_IDELIVERY:
aplic->idelivery[idc] = value & 0x1;
break;
case APLIC_IDC_IFORCE:
aplic->iforce[idc] = value & 0x1;
break;
case APLIC_IDC_ITHRESHOLD:
aplic->ithreshold[idc] = value & aplic->iprio_mask;
break;
default:
goto err;
};
} else {
goto err;
}
if (aplic->msimode) {
for (irq = 1; irq < aplic->num_irqs; irq++) {
riscv_aplic_msi_irq_update(aplic, irq);
}
} else {
if (idc == UINT32_MAX) {
for (idc = 0; idc < aplic->num_harts; idc++) {
riscv_aplic_idc_update(aplic, idc);
}
} else {
riscv_aplic_idc_update(aplic, idc);
}
}
return;
err:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Invalid register write 0x%" HWADDR_PRIx "\n",
__func__, addr);
}
static const MemoryRegionOps riscv_aplic_ops = {
.read = riscv_aplic_read,
.write = riscv_aplic_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4
}
};
static void riscv_aplic_realize(DeviceState *dev, Error **errp)
{
uint32_t i;
RISCVAPLICState *aplic = RISCV_APLIC(dev);
aplic->bitfield_words = (aplic->num_irqs + 31) >> 5;
aplic->sourcecfg = g_new0(uint32_t, aplic->num_irqs);
aplic->state = g_new(uint32_t, aplic->num_irqs);
aplic->target = g_new0(uint32_t, aplic->num_irqs);
if (!aplic->msimode) {
for (i = 0; i < aplic->num_irqs; i++) {
aplic->target[i] = 1;
}
}
aplic->idelivery = g_new0(uint32_t, aplic->num_harts);
aplic->iforce = g_new0(uint32_t, aplic->num_harts);
aplic->ithreshold = g_new0(uint32_t, aplic->num_harts);
memory_region_init_io(&aplic->mmio, OBJECT(dev), &riscv_aplic_ops, aplic,
TYPE_RISCV_APLIC, aplic->aperture_size);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &aplic->mmio);
/*
* Only root APLICs have hardware IRQ lines. All non-root APLICs
* have IRQ lines delegated by their parent APLIC.
*/
if (!aplic->parent) {
qdev_init_gpio_in(dev, riscv_aplic_request, aplic->num_irqs);
}
/* Create output IRQ lines for non-MSI mode */
if (!aplic->msimode) {
aplic->external_irqs = g_malloc(sizeof(qemu_irq) * aplic->num_harts);
qdev_init_gpio_out(dev, aplic->external_irqs, aplic->num_harts);
/* Claim the CPU interrupt to be triggered by this APLIC */
for (i = 0; i < aplic->num_harts; i++) {
RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(aplic->hartid_base + i));
if (riscv_cpu_claim_interrupts(cpu,
(aplic->mmode) ? MIP_MEIP : MIP_SEIP) < 0) {
error_report("%s already claimed",
(aplic->mmode) ? "MEIP" : "SEIP");
exit(1);
}
}
}
msi_nonbroken = true;
}
static Property riscv_aplic_properties[] = {
DEFINE_PROP_UINT32("aperture-size", RISCVAPLICState, aperture_size, 0),
DEFINE_PROP_UINT32("hartid-base", RISCVAPLICState, hartid_base, 0),
DEFINE_PROP_UINT32("num-harts", RISCVAPLICState, num_harts, 0),
DEFINE_PROP_UINT32("iprio-mask", RISCVAPLICState, iprio_mask, 0),
DEFINE_PROP_UINT32("num-irqs", RISCVAPLICState, num_irqs, 0),
DEFINE_PROP_BOOL("msimode", RISCVAPLICState, msimode, 0),
DEFINE_PROP_BOOL("mmode", RISCVAPLICState, mmode, 0),
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription vmstate_riscv_aplic = {
.name = "riscv_aplic",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(domaincfg, RISCVAPLICState),
VMSTATE_UINT32(mmsicfgaddr, RISCVAPLICState),
VMSTATE_UINT32(mmsicfgaddrH, RISCVAPLICState),
VMSTATE_UINT32(smsicfgaddr, RISCVAPLICState),
VMSTATE_UINT32(smsicfgaddrH, RISCVAPLICState),
VMSTATE_UINT32(genmsi, RISCVAPLICState),
VMSTATE_VARRAY_UINT32(sourcecfg, RISCVAPLICState,
num_irqs, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(state, RISCVAPLICState,
num_irqs, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(target, RISCVAPLICState,
num_irqs, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(idelivery, RISCVAPLICState,
num_harts, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(iforce, RISCVAPLICState,
num_harts, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(ithreshold, RISCVAPLICState,
num_harts, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_END_OF_LIST()
}
};
static void riscv_aplic_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
device_class_set_props(dc, riscv_aplic_properties);
dc->realize = riscv_aplic_realize;
dc->vmsd = &vmstate_riscv_aplic;
}
static const TypeInfo riscv_aplic_info = {
.name = TYPE_RISCV_APLIC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(RISCVAPLICState),
.class_init = riscv_aplic_class_init,
};
static void riscv_aplic_register_types(void)
{
type_register_static(&riscv_aplic_info);
}
type_init(riscv_aplic_register_types)
/*
* Add a APLIC device to another APLIC device as child for
* interrupt delegation.
*/
void riscv_aplic_add_child(DeviceState *parent, DeviceState *child)
{
RISCVAPLICState *caplic, *paplic;
assert(parent && child);
caplic = RISCV_APLIC(child);
paplic = RISCV_APLIC(parent);
assert(paplic->num_irqs == caplic->num_irqs);
assert(paplic->num_children <= QEMU_APLIC_MAX_CHILDREN);
caplic->parent = paplic;
paplic->children[paplic->num_children] = caplic;
paplic->num_children++;
}
/*
* Create APLIC device.
*/
DeviceState *riscv_aplic_create(hwaddr addr, hwaddr size,
uint32_t hartid_base, uint32_t num_harts, uint32_t num_sources,
uint32_t iprio_bits, bool msimode, bool mmode, DeviceState *parent)
{
DeviceState *dev = qdev_new(TYPE_RISCV_APLIC);
uint32_t i;
assert(num_harts < APLIC_MAX_IDC);
assert((APLIC_IDC_BASE + (num_harts * APLIC_IDC_SIZE)) <= size);
assert(num_sources < APLIC_MAX_SOURCE);
assert(APLIC_MIN_IPRIO_BITS <= iprio_bits);
assert(iprio_bits <= APLIC_MAX_IPRIO_BITS);
qdev_prop_set_uint32(dev, "aperture-size", size);
qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
qdev_prop_set_uint32(dev, "num-harts", num_harts);
qdev_prop_set_uint32(dev, "iprio-mask", ((1U << iprio_bits) - 1));
qdev_prop_set_uint32(dev, "num-irqs", num_sources + 1);
qdev_prop_set_bit(dev, "msimode", msimode);
qdev_prop_set_bit(dev, "mmode", mmode);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
if (parent) {
riscv_aplic_add_child(parent, dev);
}
if (!msimode) {
for (i = 0; i < num_harts; i++) {
CPUState *cpu = qemu_get_cpu(hartid_base + i);
qdev_connect_gpio_out_named(dev, NULL, i,
qdev_get_gpio_in(DEVICE(cpu),
(mmode) ? IRQ_M_EXT : IRQ_S_EXT));
}
}
return dev;
}

View File

@ -212,8 +212,17 @@ static void create_fdt_socket_cpus(RISCVVirtState *s, int socket,
qemu_fdt_add_subnode(mc->fdt, intc_name); qemu_fdt_add_subnode(mc->fdt, intc_name);
qemu_fdt_setprop_cell(mc->fdt, intc_name, "phandle", qemu_fdt_setprop_cell(mc->fdt, intc_name, "phandle",
intc_phandles[cpu]); intc_phandles[cpu]);
if (riscv_feature(&s->soc[socket].harts[cpu].env,
RISCV_FEATURE_AIA)) {
static const char * const compat[2] = {
"riscv,cpu-intc-aia", "riscv,cpu-intc"
};
qemu_fdt_setprop_string_array(mc->fdt, intc_name, "compatible",
(char **)&compat, ARRAY_SIZE(compat));
} else {
qemu_fdt_setprop_string(mc->fdt, intc_name, "compatible", qemu_fdt_setprop_string(mc->fdt, intc_name, "compatible",
"riscv,cpu-intc"); "riscv,cpu-intc");
}
qemu_fdt_setprop(mc->fdt, intc_name, "interrupt-controller", NULL, 0); qemu_fdt_setprop(mc->fdt, intc_name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(mc->fdt, intc_name, "#interrupt-cells", 1); qemu_fdt_setprop_cell(mc->fdt, intc_name, "#interrupt-cells", 1);

View File

@ -1,67 +0,0 @@
/*
* QEMU RISC-V lowRISC Ibex PLIC
*
* Copyright (c) 2020 Western Digital
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HW_IBEX_PLIC_H
#define HW_IBEX_PLIC_H
#include "hw/sysbus.h"
#include "qom/object.h"
#define TYPE_IBEX_PLIC "ibex-plic"
OBJECT_DECLARE_SIMPLE_TYPE(IbexPlicState, IBEX_PLIC)
struct IbexPlicState {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
MemoryRegion mmio;
uint32_t *pending;
uint32_t *hidden_pending;
uint32_t *claimed;
uint32_t *source;
uint32_t *priority;
uint32_t *enable;
uint32_t threshold;
uint32_t claim;
/* config */
uint32_t num_cpus;
uint32_t num_sources;
uint32_t pending_base;
uint32_t pending_num;
uint32_t source_base;
uint32_t source_num;
uint32_t priority_base;
uint32_t priority_num;
uint32_t enable_base;
uint32_t enable_num;
uint32_t threshold_base;
uint32_t claim_base;
qemu_irq *external_irqs;
};
#endif /* HW_IBEX_PLIC_H */

View File

@ -0,0 +1,79 @@
/*
* RISC-V APLIC (Advanced Platform Level Interrupt Controller) interface
*
* Copyright (c) 2021 Western Digital Corporation or its affiliates.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef HW_RISCV_APLIC_H
#define HW_RISCV_APLIC_H
#include "hw/sysbus.h"
#include "qom/object.h"
#define TYPE_RISCV_APLIC "riscv.aplic"
typedef struct RISCVAPLICState RISCVAPLICState;
DECLARE_INSTANCE_CHECKER(RISCVAPLICState, RISCV_APLIC, TYPE_RISCV_APLIC)
#define APLIC_MIN_SIZE 0x4000
#define APLIC_SIZE_ALIGN(__x) (((__x) + (APLIC_MIN_SIZE - 1)) & \
~(APLIC_MIN_SIZE - 1))
#define APLIC_SIZE(__num_harts) (APLIC_MIN_SIZE + \
APLIC_SIZE_ALIGN(32 * (__num_harts)))
struct RISCVAPLICState {
/*< private >*/
SysBusDevice parent_obj;
qemu_irq *external_irqs;
/*< public >*/
MemoryRegion mmio;
uint32_t bitfield_words;
uint32_t domaincfg;
uint32_t mmsicfgaddr;
uint32_t mmsicfgaddrH;
uint32_t smsicfgaddr;
uint32_t smsicfgaddrH;
uint32_t genmsi;
uint32_t *sourcecfg;
uint32_t *state;
uint32_t *target;
uint32_t *idelivery;
uint32_t *iforce;
uint32_t *ithreshold;
/* topology */
#define QEMU_APLIC_MAX_CHILDREN 16
struct RISCVAPLICState *parent;
struct RISCVAPLICState *children[QEMU_APLIC_MAX_CHILDREN];
uint16_t num_children;
/* config */
uint32_t aperture_size;
uint32_t hartid_base;
uint32_t num_harts;
uint32_t iprio_mask;
uint32_t num_irqs;
bool msimode;
bool mmode;
};
void riscv_aplic_add_child(DeviceState *parent, DeviceState *child);
DeviceState *riscv_aplic_create(hwaddr addr, hwaddr size,
uint32_t hartid_base, uint32_t num_harts, uint32_t num_sources,
uint32_t iprio_bits, bool msimode, bool mmode, DeviceState *parent);
#endif

View File

@ -0,0 +1,25 @@
#
# RISC-V translation routines for the XVentanaCondOps extension
#
# Copyright (c) 2022 Dr. Philipp Tomsich, philipp.tomsich@vrull.eu
#
# SPDX-License-Identifier: LGPL-2.1-or-later
#
# Reference: VTx-family custom instructions
# Custom ISA extensions for Ventana Micro Systems RISC-V cores
# (https://github.com/ventanamicro/ventana-custom-extensions/releases/download/v1.0.0/ventana-custom-extensions-v1.0.0.pdf)
# Fields
%rs2 20:5
%rs1 15:5
%rd 7:5
# Argument sets
&r rd rs1 rs2 !extern
# Formats
@r ....... ..... ..... ... ..... ....... &r %rs2 %rs1 %rd
# *** RV64 Custom-3 Extension ***
vt_maskc 0000000 ..... ..... 110 ..... 1111011 @r
vt_maskcn 0000000 ..... ..... 111 ..... 1111011 @r

View File

@ -135,11 +135,6 @@ static void set_vext_version(CPURISCVState *env, int vext_ver)
env->vext_ver = vext_ver; env->vext_ver = vext_ver;
} }
static void set_feature(CPURISCVState *env, int feature)
{
env->features |= (1ULL << feature);
}
static void set_resetvec(CPURISCVState *env, target_ulong resetvec) static void set_resetvec(CPURISCVState *env, target_ulong resetvec)
{ {
#ifndef CONFIG_USER_ONLY #ifndef CONFIG_USER_ONLY
@ -405,6 +400,10 @@ void restore_state_to_opc(CPURISCVState *env, TranslationBlock *tb,
static void riscv_cpu_reset(DeviceState *dev) static void riscv_cpu_reset(DeviceState *dev)
{ {
#ifndef CONFIG_USER_ONLY
uint8_t iprio;
int i, irq, rdzero;
#endif
CPUState *cs = CPU(dev); CPUState *cs = CPU(dev);
RISCVCPU *cpu = RISCV_CPU(cs); RISCVCPU *cpu = RISCV_CPU(cs);
RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cpu); RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cpu);
@ -434,8 +433,24 @@ static void riscv_cpu_reset(DeviceState *dev)
} }
} }
env->mcause = 0; env->mcause = 0;
env->miclaim = MIP_SGEIP;
env->pc = env->resetvec; env->pc = env->resetvec;
env->two_stage_lookup = false; env->two_stage_lookup = false;
/* Initialized default priorities of local interrupts. */
for (i = 0; i < ARRAY_SIZE(env->miprio); i++) {
iprio = riscv_cpu_default_priority(i);
env->miprio[i] = (i == IRQ_M_EXT) ? 0 : iprio;
env->siprio[i] = (i == IRQ_S_EXT) ? 0 : iprio;
env->hviprio[i] = 0;
}
i = 0;
while (!riscv_cpu_hviprio_index2irq(i, &irq, &rdzero)) {
if (!rdzero) {
env->hviprio[irq] = env->miprio[irq];
}
i++;
}
/* mmte is supposed to have pm.current hardwired to 1 */ /* mmte is supposed to have pm.current hardwired to 1 */
env->mmte |= (PM_EXT_INITIAL | MMTE_M_PM_CURRENT); env->mmte |= (PM_EXT_INITIAL | MMTE_M_PM_CURRENT);
#endif #endif
@ -507,30 +522,33 @@ static void riscv_cpu_realize(DeviceState *dev, Error **errp)
} }
if (cpu->cfg.mmu) { if (cpu->cfg.mmu) {
set_feature(env, RISCV_FEATURE_MMU); riscv_set_feature(env, RISCV_FEATURE_MMU);
} }
if (cpu->cfg.pmp) { if (cpu->cfg.pmp) {
set_feature(env, RISCV_FEATURE_PMP); riscv_set_feature(env, RISCV_FEATURE_PMP);
/* /*
* Enhanced PMP should only be available * Enhanced PMP should only be available
* on harts with PMP support * on harts with PMP support
*/ */
if (cpu->cfg.epmp) { if (cpu->cfg.epmp) {
set_feature(env, RISCV_FEATURE_EPMP); riscv_set_feature(env, RISCV_FEATURE_EPMP);
} }
} }
if (cpu->cfg.aia) {
riscv_set_feature(env, RISCV_FEATURE_AIA);
}
set_resetvec(env, cpu->cfg.resetvec); set_resetvec(env, cpu->cfg.resetvec);
/* Validate that MISA_MXL is set properly. */ /* Validate that MISA_MXL is set properly. */
switch (env->misa_mxl_max) { switch (env->misa_mxl_max) {
#ifdef TARGET_RISCV64 #ifdef TARGET_RISCV64
case MXL_RV64: case MXL_RV64:
cc->gdb_core_xml_file = "riscv-64bit-cpu.xml";
break;
case MXL_RV128: case MXL_RV128:
cc->gdb_core_xml_file = "riscv-64bit-cpu.xml";
break; break;
#endif #endif
case MXL_RV32: case MXL_RV32:
@ -663,7 +681,9 @@ static void riscv_cpu_realize(DeviceState *dev, Error **errp)
static void riscv_cpu_set_irq(void *opaque, int irq, int level) static void riscv_cpu_set_irq(void *opaque, int irq, int level)
{ {
RISCVCPU *cpu = RISCV_CPU(opaque); RISCVCPU *cpu = RISCV_CPU(opaque);
CPURISCVState *env = &cpu->env;
if (irq < IRQ_LOCAL_MAX) {
switch (irq) { switch (irq) {
case IRQ_U_SOFT: case IRQ_U_SOFT:
case IRQ_S_SOFT: case IRQ_S_SOFT:
@ -686,6 +706,30 @@ static void riscv_cpu_set_irq(void *opaque, int irq, int level)
default: default:
g_assert_not_reached(); g_assert_not_reached();
} }
} else if (irq < (IRQ_LOCAL_MAX + IRQ_LOCAL_GUEST_MAX)) {
/* Require H-extension for handling guest local interrupts */
if (!riscv_has_ext(env, RVH)) {
g_assert_not_reached();
}
/* Compute bit position in HGEIP CSR */
irq = irq - IRQ_LOCAL_MAX + 1;
if (env->geilen < irq) {
g_assert_not_reached();
}
/* Update HGEIP CSR */
env->hgeip &= ~((target_ulong)1 << irq);
if (level) {
env->hgeip |= (target_ulong)1 << irq;
}
/* Update mip.SGEIP bit */
riscv_cpu_update_mip(cpu, MIP_SGEIP,
BOOL_TO_MASK(!!(env->hgeie & env->hgeip)));
} else {
g_assert_not_reached();
}
} }
#endif /* CONFIG_USER_ONLY */ #endif /* CONFIG_USER_ONLY */
@ -696,7 +740,8 @@ static void riscv_cpu_init(Object *obj)
cpu_set_cpustate_pointers(cpu); cpu_set_cpustate_pointers(cpu);
#ifndef CONFIG_USER_ONLY #ifndef CONFIG_USER_ONLY
qdev_init_gpio_in(DEVICE(cpu), riscv_cpu_set_irq, 12); qdev_init_gpio_in(DEVICE(cpu), riscv_cpu_set_irq,
IRQ_LOCAL_MAX + IRQ_LOCAL_GUEST_MAX);
#endif /* CONFIG_USER_ONLY */ #endif /* CONFIG_USER_ONLY */
} }
@ -729,15 +774,23 @@ static Property riscv_cpu_properties[] = {
DEFINE_PROP_UINT16("vlen", RISCVCPU, cfg.vlen, 128), DEFINE_PROP_UINT16("vlen", RISCVCPU, cfg.vlen, 128),
DEFINE_PROP_UINT16("elen", RISCVCPU, cfg.elen, 64), DEFINE_PROP_UINT16("elen", RISCVCPU, cfg.elen, 64),
DEFINE_PROP_BOOL("svinval", RISCVCPU, cfg.ext_svinval, false),
DEFINE_PROP_BOOL("svnapot", RISCVCPU, cfg.ext_svnapot, false),
DEFINE_PROP_BOOL("svpbmt", RISCVCPU, cfg.ext_svpbmt, false),
DEFINE_PROP_BOOL("zba", RISCVCPU, cfg.ext_zba, true), DEFINE_PROP_BOOL("zba", RISCVCPU, cfg.ext_zba, true),
DEFINE_PROP_BOOL("zbb", RISCVCPU, cfg.ext_zbb, true), DEFINE_PROP_BOOL("zbb", RISCVCPU, cfg.ext_zbb, true),
DEFINE_PROP_BOOL("zbc", RISCVCPU, cfg.ext_zbc, true), DEFINE_PROP_BOOL("zbc", RISCVCPU, cfg.ext_zbc, true),
DEFINE_PROP_BOOL("zbs", RISCVCPU, cfg.ext_zbs, true), DEFINE_PROP_BOOL("zbs", RISCVCPU, cfg.ext_zbs, true),
/* Vendor-specific custom extensions */
DEFINE_PROP_BOOL("xventanacondops", RISCVCPU, cfg.ext_XVentanaCondOps, false),
/* These are experimental so mark with 'x-' */ /* These are experimental so mark with 'x-' */
DEFINE_PROP_BOOL("x-j", RISCVCPU, cfg.ext_j, false), DEFINE_PROP_BOOL("x-j", RISCVCPU, cfg.ext_j, false),
/* ePMP 0.9.3 */ /* ePMP 0.9.3 */
DEFINE_PROP_BOOL("x-epmp", RISCVCPU, cfg.epmp, false), DEFINE_PROP_BOOL("x-epmp", RISCVCPU, cfg.epmp, false),
DEFINE_PROP_BOOL("x-aia", RISCVCPU, cfg.aia, false),
DEFINE_PROP_UINT64("resetvec", RISCVCPU, cfg.resetvec, DEFAULT_RSTVEC), DEFINE_PROP_UINT64("resetvec", RISCVCPU, cfg.resetvec, DEFAULT_RSTVEC),
DEFINE_PROP_END_OF_LIST(), DEFINE_PROP_END_OF_LIST(),

View File

@ -78,7 +78,8 @@ enum {
RISCV_FEATURE_MMU, RISCV_FEATURE_MMU,
RISCV_FEATURE_PMP, RISCV_FEATURE_PMP,
RISCV_FEATURE_EPMP, RISCV_FEATURE_EPMP,
RISCV_FEATURE_MISA RISCV_FEATURE_MISA,
RISCV_FEATURE_AIA
}; };
#define PRIV_VERSION_1_10_0 0x00011000 #define PRIV_VERSION_1_10_0 0x00011000
@ -161,6 +162,7 @@ struct CPURISCVState {
target_ulong priv; target_ulong priv;
/* This contains QEMU specific information about the virt state. */ /* This contains QEMU specific information about the virt state. */
target_ulong virt; target_ulong virt;
target_ulong geilen;
target_ulong resetvec; target_ulong resetvec;
target_ulong mhartid; target_ulong mhartid;
@ -170,12 +172,12 @@ struct CPURISCVState {
*/ */
uint64_t mstatus; uint64_t mstatus;
target_ulong mip; uint64_t mip;
uint32_t miclaim; uint64_t miclaim;
target_ulong mie; uint64_t mie;
target_ulong mideleg; uint64_t mideleg;
target_ulong satp; /* since: priv-1.10.0 */ target_ulong satp; /* since: priv-1.10.0 */
target_ulong stval; target_ulong stval;
@ -190,16 +192,30 @@ struct CPURISCVState {
target_ulong mcause; target_ulong mcause;
target_ulong mtval; /* since: priv-1.10.0 */ target_ulong mtval; /* since: priv-1.10.0 */
/* Machine and Supervisor interrupt priorities */
uint8_t miprio[64];
uint8_t siprio[64];
/* AIA CSRs */
target_ulong miselect;
target_ulong siselect;
/* Hypervisor CSRs */ /* Hypervisor CSRs */
target_ulong hstatus; target_ulong hstatus;
target_ulong hedeleg; target_ulong hedeleg;
target_ulong hideleg; uint64_t hideleg;
target_ulong hcounteren; target_ulong hcounteren;
target_ulong htval; target_ulong htval;
target_ulong htinst; target_ulong htinst;
target_ulong hgatp; target_ulong hgatp;
target_ulong hgeie;
target_ulong hgeip;
uint64_t htimedelta; uint64_t htimedelta;
/* Hypervisor controlled virtual interrupt priorities */
target_ulong hvictl;
uint8_t hviprio[64];
/* Upper 64-bits of 128-bit CSRs */ /* Upper 64-bits of 128-bit CSRs */
uint64_t mscratchh; uint64_t mscratchh;
uint64_t sscratchh; uint64_t sscratchh;
@ -217,6 +233,9 @@ struct CPURISCVState {
target_ulong vstval; target_ulong vstval;
target_ulong vsatp; target_ulong vsatp;
/* AIA VS-mode CSRs */
target_ulong vsiselect;
target_ulong mtval2; target_ulong mtval2;
target_ulong mtinst; target_ulong mtinst;
@ -252,6 +271,22 @@ struct CPURISCVState {
uint64_t (*rdtime_fn)(uint32_t); uint64_t (*rdtime_fn)(uint32_t);
uint32_t rdtime_fn_arg; uint32_t rdtime_fn_arg;
/* machine specific AIA ireg read-modify-write callback */
#define AIA_MAKE_IREG(__isel, __priv, __virt, __vgein, __xlen) \
((((__xlen) & 0xff) << 24) | \
(((__vgein) & 0x3f) << 20) | \
(((__virt) & 0x1) << 18) | \
(((__priv) & 0x3) << 16) | \
(__isel & 0xffff))
#define AIA_IREG_ISEL(__ireg) ((__ireg) & 0xffff)
#define AIA_IREG_PRIV(__ireg) (((__ireg) >> 16) & 0x3)
#define AIA_IREG_VIRT(__ireg) (((__ireg) >> 18) & 0x1)
#define AIA_IREG_VGEIN(__ireg) (((__ireg) >> 20) & 0x3f)
#define AIA_IREG_XLEN(__ireg) (((__ireg) >> 24) & 0xff)
int (*aia_ireg_rmw_fn[4])(void *arg, target_ulong reg,
target_ulong *val, target_ulong new_val, target_ulong write_mask);
void *aia_ireg_rmw_fn_arg[4];
/* True if in debugger mode. */ /* True if in debugger mode. */
bool debugger; bool debugger;
@ -303,24 +338,7 @@ struct RISCVCPUClass {
DeviceReset parent_reset; DeviceReset parent_reset;
}; };
/** struct RISCVCPUConfig {
* RISCVCPU:
* @env: #CPURISCVState
*
* A RISCV CPU.
*/
struct RISCVCPU {
/*< private >*/
CPUState parent_obj;
/*< public >*/
CPUNegativeOffsetState neg;
CPURISCVState env;
char *dyn_csr_xml;
char *dyn_vreg_xml;
/* Configuration Settings */
struct {
bool ext_i; bool ext_i;
bool ext_e; bool ext_e;
bool ext_g; bool ext_g;
@ -341,11 +359,17 @@ struct RISCVCPU {
bool ext_counters; bool ext_counters;
bool ext_ifencei; bool ext_ifencei;
bool ext_icsr; bool ext_icsr;
bool ext_svinval;
bool ext_svnapot;
bool ext_svpbmt;
bool ext_zfh; bool ext_zfh;
bool ext_zfhmin; bool ext_zfhmin;
bool ext_zve32f; bool ext_zve32f;
bool ext_zve64f; bool ext_zve64f;
/* Vendor-specific custom extensions */
bool ext_XVentanaCondOps;
char *priv_spec; char *priv_spec;
char *user_spec; char *user_spec;
char *bext_spec; char *bext_spec;
@ -355,8 +379,30 @@ struct RISCVCPU {
bool mmu; bool mmu;
bool pmp; bool pmp;
bool epmp; bool epmp;
bool aia;
uint64_t resetvec; uint64_t resetvec;
} cfg; };
typedef struct RISCVCPUConfig RISCVCPUConfig;
/**
* RISCVCPU:
* @env: #CPURISCVState
*
* A RISCV CPU.
*/
struct RISCVCPU {
/*< private >*/
CPUState parent_obj;
/*< public >*/
CPUNegativeOffsetState neg;
CPURISCVState env;
char *dyn_csr_xml;
char *dyn_vreg_xml;
/* Configuration Settings */
RISCVCPUConfig cfg;
}; };
static inline int riscv_has_ext(CPURISCVState *env, target_ulong ext) static inline int riscv_has_ext(CPURISCVState *env, target_ulong ext)
@ -369,6 +415,11 @@ static inline bool riscv_feature(CPURISCVState *env, int feature)
return env->features & (1ULL << feature); return env->features & (1ULL << feature);
} }
static inline void riscv_set_feature(CPURISCVState *env, int feature)
{
env->features |= (1ULL << feature);
}
#include "cpu_user.h" #include "cpu_user.h"
extern const char * const riscv_int_regnames[]; extern const char * const riscv_int_regnames[];
@ -383,7 +434,14 @@ int riscv_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
int cpuid, void *opaque); int cpuid, void *opaque);
int riscv_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); int riscv_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
int riscv_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); int riscv_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero);
uint8_t riscv_cpu_default_priority(int irq);
int riscv_cpu_mirq_pending(CPURISCVState *env);
int riscv_cpu_sirq_pending(CPURISCVState *env);
int riscv_cpu_vsirq_pending(CPURISCVState *env);
bool riscv_cpu_fp_enabled(CPURISCVState *env); bool riscv_cpu_fp_enabled(CPURISCVState *env);
target_ulong riscv_cpu_get_geilen(CPURISCVState *env);
void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen);
bool riscv_cpu_vector_enabled(CPURISCVState *env); bool riscv_cpu_vector_enabled(CPURISCVState *env);
bool riscv_cpu_virt_enabled(CPURISCVState *env); bool riscv_cpu_virt_enabled(CPURISCVState *env);
void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable); void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable);
@ -410,11 +468,18 @@ void riscv_cpu_list(void);
#ifndef CONFIG_USER_ONLY #ifndef CONFIG_USER_ONLY
bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request); bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request);
void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env); void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env);
int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts); int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts);
uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value); uint64_t riscv_cpu_update_mip(RISCVCPU *cpu, uint64_t mask, uint64_t value);
#define BOOL_TO_MASK(x) (-!!(x)) /* helper for riscv_cpu_update_mip value */ #define BOOL_TO_MASK(x) (-!!(x)) /* helper for riscv_cpu_update_mip value */
void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t), void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
uint32_t arg); uint32_t arg);
void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
int (*rmw_fn)(void *arg,
target_ulong reg,
target_ulong *val,
target_ulong new_val,
target_ulong write_mask),
void *rmw_fn_arg);
#endif #endif
void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv); void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv);
@ -459,6 +524,7 @@ static inline RISCVMXL riscv_cpu_mxl(CPURISCVState *env)
return env->misa_mxl; return env->misa_mxl;
} }
#endif #endif
#define riscv_cpu_mxl_bits(env) (1UL << (4 + riscv_cpu_mxl(env)))
#if defined(TARGET_RISCV32) #if defined(TARGET_RISCV32)
#define cpu_recompute_xl(env) ((void)(env), MXL_RV32) #define cpu_recompute_xl(env) ((void)(env), MXL_RV32)
@ -495,6 +561,19 @@ static inline int riscv_cpu_xlen(CPURISCVState *env)
return 16 << env->xl; return 16 << env->xl;
} }
#ifdef TARGET_RISCV32
#define riscv_cpu_sxl(env) ((void)(env), MXL_RV32)
#else
static inline RISCVMXL riscv_cpu_sxl(CPURISCVState *env)
{
#ifdef CONFIG_USER_ONLY
return env->misa_mxl;
#else
return get_field(env->mstatus, MSTATUS64_SXL);
#endif
}
#endif
/* /*
* Encode LMUL to lmul as follows: * Encode LMUL to lmul as follows:
* LMUL vlmul lmul * LMUL vlmul lmul

View File

@ -168,6 +168,31 @@
#define CSR_MTVAL 0x343 #define CSR_MTVAL 0x343
#define CSR_MIP 0x344 #define CSR_MIP 0x344
/* Machine-Level Window to Indirectly Accessed Registers (AIA) */
#define CSR_MISELECT 0x350
#define CSR_MIREG 0x351
/* Machine-Level Interrupts (AIA) */
#define CSR_MTOPI 0xfb0
/* Machine-Level IMSIC Interface (AIA) */
#define CSR_MSETEIPNUM 0x358
#define CSR_MCLREIPNUM 0x359
#define CSR_MSETEIENUM 0x35a
#define CSR_MCLREIENUM 0x35b
#define CSR_MTOPEI 0x35c
/* Virtual Interrupts for Supervisor Level (AIA) */
#define CSR_MVIEN 0x308
#define CSR_MVIP 0x309
/* Machine-Level High-Half CSRs (AIA) */
#define CSR_MIDELEGH 0x313
#define CSR_MIEH 0x314
#define CSR_MVIENH 0x318
#define CSR_MVIPH 0x319
#define CSR_MIPH 0x354
/* Supervisor Trap Setup */ /* Supervisor Trap Setup */
#define CSR_SSTATUS 0x100 #define CSR_SSTATUS 0x100
#define CSR_SEDELEG 0x102 #define CSR_SEDELEG 0x102
@ -187,6 +212,24 @@
#define CSR_SPTBR 0x180 #define CSR_SPTBR 0x180
#define CSR_SATP 0x180 #define CSR_SATP 0x180
/* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */
#define CSR_SISELECT 0x150
#define CSR_SIREG 0x151
/* Supervisor-Level Interrupts (AIA) */
#define CSR_STOPI 0xdb0
/* Supervisor-Level IMSIC Interface (AIA) */
#define CSR_SSETEIPNUM 0x158
#define CSR_SCLREIPNUM 0x159
#define CSR_SSETEIENUM 0x15a
#define CSR_SCLREIENUM 0x15b
#define CSR_STOPEI 0x15c
/* Supervisor-Level High-Half CSRs (AIA) */
#define CSR_SIEH 0x114
#define CSR_SIPH 0x154
/* Hpervisor CSRs */ /* Hpervisor CSRs */
#define CSR_HSTATUS 0x600 #define CSR_HSTATUS 0x600
#define CSR_HEDELEG 0x602 #define CSR_HEDELEG 0x602
@ -217,6 +260,35 @@
#define CSR_MTINST 0x34a #define CSR_MTINST 0x34a
#define CSR_MTVAL2 0x34b #define CSR_MTVAL2 0x34b
/* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */
#define CSR_HVIEN 0x608
#define CSR_HVICTL 0x609
#define CSR_HVIPRIO1 0x646
#define CSR_HVIPRIO2 0x647
/* VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) */
#define CSR_VSISELECT 0x250
#define CSR_VSIREG 0x251
/* VS-Level Interrupts (H-extension with AIA) */
#define CSR_VSTOPI 0xeb0
/* VS-Level IMSIC Interface (H-extension with AIA) */
#define CSR_VSSETEIPNUM 0x258
#define CSR_VSCLREIPNUM 0x259
#define CSR_VSSETEIENUM 0x25a
#define CSR_VSCLREIENUM 0x25b
#define CSR_VSTOPEI 0x25c
/* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */
#define CSR_HIDELEGH 0x613
#define CSR_HVIENH 0x618
#define CSR_HVIPH 0x655
#define CSR_HVIPRIO1H 0x656
#define CSR_HVIPRIO2H 0x657
#define CSR_VSIEH 0x214
#define CSR_VSIPH 0x254
/* Enhanced Physical Memory Protection (ePMP) */ /* Enhanced Physical Memory Protection (ePMP) */
#define CSR_MSECCFG 0x747 #define CSR_MSECCFG 0x747
#define CSR_MSECCFGH 0x757 #define CSR_MSECCFGH 0x757
@ -489,10 +561,16 @@ typedef enum {
#define PTE_A 0x040 /* Accessed */ #define PTE_A 0x040 /* Accessed */
#define PTE_D 0x080 /* Dirty */ #define PTE_D 0x080 /* Dirty */
#define PTE_SOFT 0x300 /* Reserved for Software */ #define PTE_SOFT 0x300 /* Reserved for Software */
#define PTE_PBMT 0x6000000000000000ULL /* Page-based memory types */
#define PTE_N 0x8000000000000000ULL /* NAPOT translation */
#define PTE_ATTR (PTE_N | PTE_PBMT) /* All attributes bits */
/* Page table PPN shift amount */ /* Page table PPN shift amount */
#define PTE_PPN_SHIFT 10 #define PTE_PPN_SHIFT 10
/* Page table PPN mask */
#define PTE_PPN_MASK 0x3FFFFFFFFFFC00ULL
/* Leaf page shift amount */ /* Leaf page shift amount */
#define PGSHIFT 12 #define PGSHIFT 12
@ -540,6 +618,9 @@ typedef enum RISCVException {
#define IRQ_S_EXT 9 #define IRQ_S_EXT 9
#define IRQ_VS_EXT 10 #define IRQ_VS_EXT 10
#define IRQ_M_EXT 11 #define IRQ_M_EXT 11
#define IRQ_S_GEXT 12
#define IRQ_LOCAL_MAX 16
#define IRQ_LOCAL_GUEST_MAX (TARGET_LONG_BITS - 1)
/* mip masks */ /* mip masks */
#define MIP_USIP (1 << IRQ_U_SOFT) #define MIP_USIP (1 << IRQ_U_SOFT)
@ -554,6 +635,7 @@ typedef enum RISCVException {
#define MIP_SEIP (1 << IRQ_S_EXT) #define MIP_SEIP (1 << IRQ_S_EXT)
#define MIP_VSEIP (1 << IRQ_VS_EXT) #define MIP_VSEIP (1 << IRQ_VS_EXT)
#define MIP_MEIP (1 << IRQ_M_EXT) #define MIP_MEIP (1 << IRQ_M_EXT)
#define MIP_SGEIP (1 << IRQ_S_GEXT)
/* sip masks */ /* sip masks */
#define SIP_SSIP MIP_SSIP #define SIP_SSIP MIP_SSIP
@ -631,4 +713,51 @@ typedef enum RISCVException {
#define UMTE_U_PM_INSN U_PM_INSN #define UMTE_U_PM_INSN U_PM_INSN
#define UMTE_MASK (UMTE_U_PM_ENABLE | MMTE_U_PM_CURRENT | UMTE_U_PM_INSN) #define UMTE_MASK (UMTE_U_PM_ENABLE | MMTE_U_PM_CURRENT | UMTE_U_PM_INSN)
/* MISELECT, SISELECT, and VSISELECT bits (AIA) */
#define ISELECT_IPRIO0 0x30
#define ISELECT_IPRIO15 0x3f
#define ISELECT_IMSIC_EIDELIVERY 0x70
#define ISELECT_IMSIC_EITHRESHOLD 0x72
#define ISELECT_IMSIC_EIP0 0x80
#define ISELECT_IMSIC_EIP63 0xbf
#define ISELECT_IMSIC_EIE0 0xc0
#define ISELECT_IMSIC_EIE63 0xff
#define ISELECT_IMSIC_FIRST ISELECT_IMSIC_EIDELIVERY
#define ISELECT_IMSIC_LAST ISELECT_IMSIC_EIE63
#define ISELECT_MASK 0x1ff
/* Dummy [M|S|VS]ISELECT value for emulating [M|S|VS]TOPEI CSRs */
#define ISELECT_IMSIC_TOPEI (ISELECT_MASK + 1)
/* IMSIC bits (AIA) */
#define IMSIC_TOPEI_IID_SHIFT 16
#define IMSIC_TOPEI_IID_MASK 0x7ff
#define IMSIC_TOPEI_IPRIO_MASK 0x7ff
#define IMSIC_EIPx_BITS 32
#define IMSIC_EIEx_BITS 32
/* MTOPI and STOPI bits (AIA) */
#define TOPI_IID_SHIFT 16
#define TOPI_IID_MASK 0xfff
#define TOPI_IPRIO_MASK 0xff
/* Interrupt priority bits (AIA) */
#define IPRIO_IRQ_BITS 8
#define IPRIO_MMAXIPRIO 255
#define IPRIO_DEFAULT_UPPER 4
#define IPRIO_DEFAULT_MIDDLE (IPRIO_DEFAULT_UPPER + 24)
#define IPRIO_DEFAULT_M IPRIO_DEFAULT_MIDDLE
#define IPRIO_DEFAULT_S (IPRIO_DEFAULT_M + 3)
#define IPRIO_DEFAULT_SGEXT (IPRIO_DEFAULT_S + 3)
#define IPRIO_DEFAULT_VS (IPRIO_DEFAULT_SGEXT + 1)
#define IPRIO_DEFAULT_LOWER (IPRIO_DEFAULT_VS + 3)
/* HVICTL bits (AIA) */
#define HVICTL_VTI 0x40000000
#define HVICTL_IID 0x0fff0000
#define HVICTL_IPRIOM 0x00000100
#define HVICTL_IPRIO 0x000000ff
#define HVICTL_VALID_MASK \
(HVICTL_VTI | HVICTL_IID | HVICTL_IPRIOM | HVICTL_IPRIO)
#endif #endif

View File

@ -152,32 +152,275 @@ void riscv_cpu_update_mask(CPURISCVState *env)
} }
#ifndef CONFIG_USER_ONLY #ifndef CONFIG_USER_ONLY
/*
* The HS-mode is allowed to configure priority only for the
* following VS-mode local interrupts:
*
* 0 (Reserved interrupt, reads as zero)
* 1 Supervisor software interrupt
* 4 (Reserved interrupt, reads as zero)
* 5 Supervisor timer interrupt
* 8 (Reserved interrupt, reads as zero)
* 13 (Reserved interrupt)
* 14 "
* 15 "
* 16 "
* 18 Debug/trace interrupt
* 20 (Reserved interrupt)
* 22 "
* 24 "
* 26 "
* 28 "
* 30 (Reserved for standard reporting of bus or system errors)
*/
static const int hviprio_index2irq[] = {
0, 1, 4, 5, 8, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30 };
static const int hviprio_index2rdzero[] = {
1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
{
if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
return -EINVAL;
}
if (out_irq) {
*out_irq = hviprio_index2irq[index];
}
if (out_rdzero) {
*out_rdzero = hviprio_index2rdzero[index];
}
return 0;
}
/*
* Default priorities of local interrupts are defined in the
* RISC-V Advanced Interrupt Architecture specification.
*
* ----------------------------------------------------------------
* Default |
* Priority | Major Interrupt Numbers
* ----------------------------------------------------------------
* Highest | 63 (3f), 62 (3e), 31 (1f), 30 (1e), 61 (3d), 60 (3c),
* | 59 (3b), 58 (3a), 29 (1d), 28 (1c), 57 (39), 56 (38),
* | 55 (37), 54 (36), 27 (1b), 26 (1a), 53 (35), 52 (34),
* | 51 (33), 50 (32), 25 (19), 24 (18), 49 (31), 48 (30)
* |
* | 11 (0b), 3 (03), 7 (07)
* | 9 (09), 1 (01), 5 (05)
* | 12 (0c)
* | 10 (0a), 2 (02), 6 (06)
* |
* | 47 (2f), 46 (2e), 23 (17), 22 (16), 45 (2d), 44 (2c),
* | 43 (2b), 42 (2a), 21 (15), 20 (14), 41 (29), 40 (28),
* | 39 (27), 38 (26), 19 (13), 18 (12), 37 (25), 36 (24),
* Lowest | 35 (23), 34 (22), 17 (11), 16 (10), 33 (21), 32 (20)
* ----------------------------------------------------------------
*/
static const uint8_t default_iprio[64] = {
[63] = IPRIO_DEFAULT_UPPER,
[62] = IPRIO_DEFAULT_UPPER + 1,
[31] = IPRIO_DEFAULT_UPPER + 2,
[30] = IPRIO_DEFAULT_UPPER + 3,
[61] = IPRIO_DEFAULT_UPPER + 4,
[60] = IPRIO_DEFAULT_UPPER + 5,
[59] = IPRIO_DEFAULT_UPPER + 6,
[58] = IPRIO_DEFAULT_UPPER + 7,
[29] = IPRIO_DEFAULT_UPPER + 8,
[28] = IPRIO_DEFAULT_UPPER + 9,
[57] = IPRIO_DEFAULT_UPPER + 10,
[56] = IPRIO_DEFAULT_UPPER + 11,
[55] = IPRIO_DEFAULT_UPPER + 12,
[54] = IPRIO_DEFAULT_UPPER + 13,
[27] = IPRIO_DEFAULT_UPPER + 14,
[26] = IPRIO_DEFAULT_UPPER + 15,
[53] = IPRIO_DEFAULT_UPPER + 16,
[52] = IPRIO_DEFAULT_UPPER + 17,
[51] = IPRIO_DEFAULT_UPPER + 18,
[50] = IPRIO_DEFAULT_UPPER + 19,
[25] = IPRIO_DEFAULT_UPPER + 20,
[24] = IPRIO_DEFAULT_UPPER + 21,
[49] = IPRIO_DEFAULT_UPPER + 22,
[48] = IPRIO_DEFAULT_UPPER + 23,
[11] = IPRIO_DEFAULT_M,
[3] = IPRIO_DEFAULT_M + 1,
[7] = IPRIO_DEFAULT_M + 2,
[9] = IPRIO_DEFAULT_S,
[1] = IPRIO_DEFAULT_S + 1,
[5] = IPRIO_DEFAULT_S + 2,
[12] = IPRIO_DEFAULT_SGEXT,
[10] = IPRIO_DEFAULT_VS,
[2] = IPRIO_DEFAULT_VS + 1,
[6] = IPRIO_DEFAULT_VS + 2,
[47] = IPRIO_DEFAULT_LOWER,
[46] = IPRIO_DEFAULT_LOWER + 1,
[23] = IPRIO_DEFAULT_LOWER + 2,
[22] = IPRIO_DEFAULT_LOWER + 3,
[45] = IPRIO_DEFAULT_LOWER + 4,
[44] = IPRIO_DEFAULT_LOWER + 5,
[43] = IPRIO_DEFAULT_LOWER + 6,
[42] = IPRIO_DEFAULT_LOWER + 7,
[21] = IPRIO_DEFAULT_LOWER + 8,
[20] = IPRIO_DEFAULT_LOWER + 9,
[41] = IPRIO_DEFAULT_LOWER + 10,
[40] = IPRIO_DEFAULT_LOWER + 11,
[39] = IPRIO_DEFAULT_LOWER + 12,
[38] = IPRIO_DEFAULT_LOWER + 13,
[19] = IPRIO_DEFAULT_LOWER + 14,
[18] = IPRIO_DEFAULT_LOWER + 15,
[37] = IPRIO_DEFAULT_LOWER + 16,
[36] = IPRIO_DEFAULT_LOWER + 17,
[35] = IPRIO_DEFAULT_LOWER + 18,
[34] = IPRIO_DEFAULT_LOWER + 19,
[17] = IPRIO_DEFAULT_LOWER + 20,
[16] = IPRIO_DEFAULT_LOWER + 21,
[33] = IPRIO_DEFAULT_LOWER + 22,
[32] = IPRIO_DEFAULT_LOWER + 23,
};
uint8_t riscv_cpu_default_priority(int irq)
{
if (irq < 0 || irq > 63) {
return IPRIO_MMAXIPRIO;
}
return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
};
static int riscv_cpu_pending_to_irq(CPURISCVState *env,
int extirq, unsigned int extirq_def_prio,
uint64_t pending, uint8_t *iprio)
{
int irq, best_irq = RISCV_EXCP_NONE;
unsigned int prio, best_prio = UINT_MAX;
if (!pending) {
return RISCV_EXCP_NONE;
}
irq = ctz64(pending);
if (!riscv_feature(env, RISCV_FEATURE_AIA)) {
return irq;
}
pending = pending >> irq;
while (pending) {
prio = iprio[irq];
if (!prio) {
if (irq == extirq) {
prio = extirq_def_prio;
} else {
prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
1 : IPRIO_MMAXIPRIO;
}
}
if ((pending & 0x1) && (prio <= best_prio)) {
best_irq = irq;
best_prio = prio;
}
irq++;
pending = pending >> 1;
}
return best_irq;
}
static uint64_t riscv_cpu_all_pending(CPURISCVState *env)
{
uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
return (env->mip | vsgein) & env->mie;
}
int riscv_cpu_mirq_pending(CPURISCVState *env)
{
uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
irqs, env->miprio);
}
int riscv_cpu_sirq_pending(CPURISCVState *env)
{
uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
irqs, env->siprio);
}
int riscv_cpu_vsirq_pending(CPURISCVState *env)
{
uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
irqs >> 1, env->hviprio);
}
static int riscv_cpu_local_irq_pending(CPURISCVState *env) static int riscv_cpu_local_irq_pending(CPURISCVState *env)
{ {
target_ulong virt_enabled = riscv_cpu_virt_enabled(env); int virq;
uint64_t irqs, pending, mie, hsie, vsie;
target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE); /* Determine interrupt enable state of all privilege modes */
target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE); if (riscv_cpu_virt_enabled(env)) {
mie = 1;
target_ulong pending = env->mip & env->mie; hsie = 1;
vsie = (env->priv < PRV_S) ||
target_ulong mie = env->priv < PRV_M || (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
(env->priv == PRV_M && mstatus_mie);
target_ulong sie = env->priv < PRV_S ||
(env->priv == PRV_S && mstatus_sie);
target_ulong hsie = virt_enabled || sie;
target_ulong vsie = virt_enabled && sie;
target_ulong irqs =
(pending & ~env->mideleg & -mie) |
(pending & env->mideleg & ~env->hideleg & -hsie) |
(pending & env->mideleg & env->hideleg & -vsie);
if (irqs) {
return ctz64(irqs); /* since non-zero */
} else { } else {
return RISCV_EXCP_NONE; /* indicates no pending interrupt */ mie = (env->priv < PRV_M) ||
(env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
hsie = (env->priv < PRV_S) ||
(env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
vsie = 0;
} }
/* Determine all pending interrupts */
pending = riscv_cpu_all_pending(env);
/* Check M-mode interrupts */
irqs = pending & ~env->mideleg & -mie;
if (irqs) {
return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
irqs, env->miprio);
}
/* Check HS-mode interrupts */
irqs = pending & env->mideleg & ~env->hideleg & -hsie;
if (irqs) {
return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
irqs, env->siprio);
}
/* Check VS-mode interrupts */
irqs = pending & env->mideleg & env->hideleg & -vsie;
if (irqs) {
virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
irqs >> 1, env->hviprio);
return (virq <= 0) ? virq : virq + 1;
}
/* Indicate no pending interrupt */
return RISCV_EXCP_NONE;
} }
bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
@ -279,6 +522,28 @@ void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
} }
} }
target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
{
if (!riscv_has_ext(env, RVH)) {
return 0;
}
return env->geilen;
}
void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
{
if (!riscv_has_ext(env, RVH)) {
return;
}
if (geilen > (TARGET_LONG_BITS - 1)) {
return;
}
env->geilen = geilen;
}
bool riscv_cpu_virt_enabled(CPURISCVState *env) bool riscv_cpu_virt_enabled(CPURISCVState *env)
{ {
if (!riscv_has_ext(env, RVH)) { if (!riscv_has_ext(env, RVH)) {
@ -300,6 +565,19 @@ void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
} }
env->virt = set_field(env->virt, VIRT_ONOFF, enable); env->virt = set_field(env->virt, VIRT_ONOFF, enable);
if (enable) {
/*
* The guest external interrupts from an interrupt controller are
* delivered only when the Guest/VM is running (i.e. V=1). This means
* any guest external interrupt which is triggered while the Guest/VM
* is not running (i.e. V=0) will be missed on QEMU resulting in guest
* with sluggish response to serial console input and other I/O events.
*
* To solve this, we check and inject interrupt after setting V=1.
*/
riscv_cpu_update_mip(env_archcpu(env), 0, 0);
}
} }
bool riscv_cpu_two_stage_lookup(int mmu_idx) bool riscv_cpu_two_stage_lookup(int mmu_idx)
@ -307,7 +585,7 @@ bool riscv_cpu_two_stage_lookup(int mmu_idx)
return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK; return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
} }
int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts) int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
{ {
CPURISCVState *env = &cpu->env; CPURISCVState *env = &cpu->env;
if (env->miclaim & interrupts) { if (env->miclaim & interrupts) {
@ -318,13 +596,18 @@ int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
} }
} }
uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value) uint64_t riscv_cpu_update_mip(RISCVCPU *cpu, uint64_t mask, uint64_t value)
{ {
CPURISCVState *env = &cpu->env; CPURISCVState *env = &cpu->env;
CPUState *cs = CPU(cpu); CPUState *cs = CPU(cpu);
uint32_t old = env->mip; uint64_t gein, vsgein = 0, old = env->mip;
bool locked = false; bool locked = false;
if (riscv_cpu_virt_enabled(env)) {
gein = get_field(env->hstatus, HSTATUS_VGEIN);
vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
}
if (!qemu_mutex_iothread_locked()) { if (!qemu_mutex_iothread_locked()) {
locked = true; locked = true;
qemu_mutex_lock_iothread(); qemu_mutex_lock_iothread();
@ -332,7 +615,7 @@ uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
env->mip = (env->mip & ~mask) | (value & mask); env->mip = (env->mip & ~mask) | (value & mask);
if (env->mip) { if (env->mip | vsgein) {
cpu_interrupt(cs, CPU_INTERRUPT_HARD); cpu_interrupt(cs, CPU_INTERRUPT_HARD);
} else { } else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
@ -352,6 +635,20 @@ void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
env->rdtime_fn_arg = arg; env->rdtime_fn_arg = arg;
} }
void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
int (*rmw_fn)(void *arg,
target_ulong reg,
target_ulong *val,
target_ulong new_val,
target_ulong write_mask),
void *rmw_fn_arg)
{
if (priv <= PRV_M) {
env->aia_ireg_rmw_fn[priv] = rmw_fn;
env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
}
}
void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv) void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
{ {
if (newpriv > PRV_M) { if (newpriv > PRV_M) {
@ -454,6 +751,10 @@ static int get_physical_address(CPURISCVState *env, hwaddr *physical,
MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK; int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
bool use_background = false; bool use_background = false;
hwaddr ppn;
RISCVCPU *cpu = env_archcpu(env);
int napot_bits = 0;
target_ulong napot_mask;
/* /*
* Check if we should use the background registers for the two * Check if we should use the background registers for the two
@ -622,13 +923,27 @@ restart:
return TRANSLATE_FAIL; return TRANSLATE_FAIL;
} }
hwaddr ppn = pte >> PTE_PPN_SHIFT; if (riscv_cpu_sxl(env) == MXL_RV32) {
ppn = pte >> PTE_PPN_SHIFT;
} else if (cpu->cfg.ext_svpbmt || cpu->cfg.ext_svnapot) {
ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
} else {
ppn = pte >> PTE_PPN_SHIFT;
if ((pte & ~(target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT) {
return TRANSLATE_FAIL;
}
}
if (!(pte & PTE_V)) { if (!(pte & PTE_V)) {
/* Invalid PTE */ /* Invalid PTE */
return TRANSLATE_FAIL; return TRANSLATE_FAIL;
} else if (!cpu->cfg.ext_svpbmt && (pte & PTE_PBMT)) {
return TRANSLATE_FAIL;
} else if (!(pte & (PTE_R | PTE_W | PTE_X))) { } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
/* Inner PTE, continue walking */ /* Inner PTE, continue walking */
if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
return TRANSLATE_FAIL;
}
base = ppn << PGSHIFT; base = ppn << PGSHIFT;
} else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) { } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
/* Reserved leaf PTE flags: PTE_W */ /* Reserved leaf PTE flags: PTE_W */
@ -702,8 +1017,18 @@ restart:
/* for superpage mappings, make a fake leaf PTE for the TLB's /* for superpage mappings, make a fake leaf PTE for the TLB's
benefit. */ benefit. */
target_ulong vpn = addr >> PGSHIFT; target_ulong vpn = addr >> PGSHIFT;
*physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) |
(addr & ~TARGET_PAGE_MASK); if (cpu->cfg.ext_svnapot && (pte & PTE_N)) {
napot_bits = ctzl(ppn) + 1;
if ((i != (levels - 1)) || (napot_bits != 4)) {
return TRANSLATE_FAIL;
}
}
napot_mask = (1 << napot_bits) - 1;
*physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
(vpn & (((target_ulong)1 << ptshift) - 1))
) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
/* set permissions on the TLB entry */ /* set permissions on the TLB entry */
if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) { if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
@ -1009,7 +1334,7 @@ void riscv_cpu_do_interrupt(CPUState *cs)
*/ */
bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
target_ulong deleg = async ? env->mideleg : env->medeleg; uint64_t deleg = async ? env->mideleg : env->medeleg;
target_ulong tval = 0; target_ulong tval = 0;
target_ulong htval = 0; target_ulong htval = 0;
target_ulong mtval2 = 0; target_ulong mtval2 = 0;
@ -1076,7 +1401,7 @@ void riscv_cpu_do_interrupt(CPUState *cs)
cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) { cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
/* handle the trap in S-mode */ /* handle the trap in S-mode */
if (riscv_has_ext(env, RVH)) { if (riscv_has_ext(env, RVH)) {
target_ulong hdeleg = async ? env->hideleg : env->hedeleg; uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) { if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1)) {
/* Trap to VS mode */ /* Trap to VS mode */

File diff suppressed because it is too large Load Diff

View File

@ -64,6 +64,7 @@ int riscv_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
case MXL_RV32: case MXL_RV32:
return gdb_get_reg32(mem_buf, tmp); return gdb_get_reg32(mem_buf, tmp);
case MXL_RV64: case MXL_RV64:
case MXL_RV128:
return gdb_get_reg64(mem_buf, tmp); return gdb_get_reg64(mem_buf, tmp);
default: default:
g_assert_not_reached(); g_assert_not_reached();
@ -84,6 +85,7 @@ int riscv_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
length = 4; length = 4;
break; break;
case MXL_RV64: case MXL_RV64:
case MXL_RV128:
if (env->xl < MXL_RV64) { if (env->xl < MXL_RV64) {
tmp = (int32_t)ldq_p(mem_buf); tmp = (int32_t)ldq_p(mem_buf);
} else { } else {
@ -420,6 +422,7 @@ void riscv_cpu_register_gdb_regs_for_features(CPUState *cs)
1, "riscv-32bit-virtual.xml", 0); 1, "riscv-32bit-virtual.xml", 0);
break; break;
case MXL_RV64: case MXL_RV64:
case MXL_RV128:
gdb_register_coprocessor(cs, riscv_gdb_get_virtual, gdb_register_coprocessor(cs, riscv_gdb_get_virtual,
riscv_gdb_set_virtual, riscv_gdb_set_virtual,
1, "riscv-64bit-virtual.xml", 0); 1, "riscv-64bit-virtual.xml", 0);

View File

@ -809,3 +809,10 @@ fcvt_l_h 1100010 00010 ..... ... ..... 1010011 @r2_rm
fcvt_lu_h 1100010 00011 ..... ... ..... 1010011 @r2_rm fcvt_lu_h 1100010 00011 ..... ... ..... 1010011 @r2_rm
fcvt_h_l 1101010 00010 ..... ... ..... 1010011 @r2_rm fcvt_h_l 1101010 00010 ..... ... ..... 1010011 @r2_rm
fcvt_h_lu 1101010 00011 ..... ... ..... 1010011 @r2_rm fcvt_h_lu 1101010 00011 ..... ... ..... 1010011 @r2_rm
# *** Svinval Standard Extension ***
sinval_vma 0001011 ..... ..... 000 00000 1110011 @sfence_vma
sfence_w_inval 0001100 00000 00000 000 00000 1110011
sfence_inval_ir 0001100 00001 00000 000 00000 1110011
hinval_vvma 0010011 ..... ..... 000 00000 1110011 @hfence_vvma
hinval_gvma 0110011 ..... ..... 000 00000 1110011 @hfence_gvma

View File

@ -19,25 +19,25 @@
*/ */
#define REQUIRE_ZBA(ctx) do { \ #define REQUIRE_ZBA(ctx) do { \
if (!RISCV_CPU(ctx->cs)->cfg.ext_zba) { \ if (ctx->cfg_ptr->ext_zba) { \
return false; \ return false; \
} \ } \
} while (0) } while (0)
#define REQUIRE_ZBB(ctx) do { \ #define REQUIRE_ZBB(ctx) do { \
if (!RISCV_CPU(ctx->cs)->cfg.ext_zbb) { \ if (ctx->cfg_ptr->ext_zbb) { \
return false; \ return false; \
} \ } \
} while (0) } while (0)
#define REQUIRE_ZBC(ctx) do { \ #define REQUIRE_ZBC(ctx) do { \
if (!RISCV_CPU(ctx->cs)->cfg.ext_zbc) { \ if (ctx->cfg_ptr->ext_zbc) { \
return false; \ return false; \
} \ } \
} while (0) } while (0)
#define REQUIRE_ZBS(ctx) do { \ #define REQUIRE_ZBS(ctx) do { \
if (!RISCV_CPU(ctx->cs)->cfg.ext_zbs) { \ if (ctx->cfg_ptr->ext_zbs) { \
return false; \ return false; \
} \ } \
} while (0) } while (0)

View File

@ -806,7 +806,7 @@ static bool trans_fence(DisasContext *ctx, arg_fence *a)
static bool trans_fence_i(DisasContext *ctx, arg_fence_i *a) static bool trans_fence_i(DisasContext *ctx, arg_fence_i *a)
{ {
if (!ctx->ext_ifencei) { if (!ctx->cfg_ptr->ext_ifencei) {
return false; return false;
} }

View File

@ -74,7 +74,7 @@ static bool require_zve32f(DisasContext *s)
} }
/* Zve32f doesn't support FP64. (Section 18.2) */ /* Zve32f doesn't support FP64. (Section 18.2) */
return s->ext_zve32f ? s->sew <= MO_32 : true; return s->cfg_ptr->ext_zve32f ? s->sew <= MO_32 : true;
} }
static bool require_scale_zve32f(DisasContext *s) static bool require_scale_zve32f(DisasContext *s)
@ -85,7 +85,7 @@ static bool require_scale_zve32f(DisasContext *s)
} }
/* Zve32f doesn't support FP64. (Section 18.2) */ /* Zve32f doesn't support FP64. (Section 18.2) */
return s->ext_zve64f ? s->sew <= MO_16 : true; return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true;
} }
static bool require_zve64f(DisasContext *s) static bool require_zve64f(DisasContext *s)
@ -96,7 +96,7 @@ static bool require_zve64f(DisasContext *s)
} }
/* Zve64f doesn't support FP64. (Section 18.2) */ /* Zve64f doesn't support FP64. (Section 18.2) */
return s->ext_zve64f ? s->sew <= MO_32 : true; return s->cfg_ptr->ext_zve64f ? s->sew <= MO_32 : true;
} }
static bool require_scale_zve64f(DisasContext *s) static bool require_scale_zve64f(DisasContext *s)
@ -107,7 +107,7 @@ static bool require_scale_zve64f(DisasContext *s)
} }
/* Zve64f doesn't support FP64. (Section 18.2) */ /* Zve64f doesn't support FP64. (Section 18.2) */
return s->ext_zve64f ? s->sew <= MO_16 : true; return s->cfg_ptr->ext_zve64f ? s->sew <= MO_16 : true;
} }
/* Destination vector register group cannot overlap source mask register. */ /* Destination vector register group cannot overlap source mask register. */
@ -174,7 +174,8 @@ static bool do_vsetvl(DisasContext *s, int rd, int rs1, TCGv s2)
TCGv s1, dst; TCGv s1, dst;
if (!require_rvv(s) || if (!require_rvv(s) ||
!(has_ext(s, RVV) || s->ext_zve32f || s->ext_zve64f)) { !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f ||
s->cfg_ptr->ext_zve64f)) {
return false; return false;
} }
@ -210,7 +211,8 @@ static bool do_vsetivli(DisasContext *s, int rd, TCGv s1, TCGv s2)
TCGv dst; TCGv dst;
if (!require_rvv(s) || if (!require_rvv(s) ||
!(has_ext(s, RVV) || s->ext_zve32f || s->ext_zve64f)) { !(has_ext(s, RVV) || s->cfg_ptr->ext_zve32f ||
s->cfg_ptr->ext_zve64f)) {
return false; return false;
} }
@ -248,7 +250,7 @@ static bool trans_vsetivli(DisasContext *s, arg_vsetivli *a)
/* vector register offset from env */ /* vector register offset from env */
static uint32_t vreg_ofs(DisasContext *s, int reg) static uint32_t vreg_ofs(DisasContext *s, int reg)
{ {
return offsetof(CPURISCVState, vreg) + reg * s->vlen / 8; return offsetof(CPURISCVState, vreg) + reg * s->cfg_ptr->vlen / 8;
} }
/* check functions */ /* check functions */
@ -318,7 +320,8 @@ static bool vext_check_st_index(DisasContext *s, int vd, int vs2, int nf,
* when XLEN=32. (Section 18.2) * when XLEN=32. (Section 18.2)
*/ */
if (get_xl(s) == MXL_RV32) { if (get_xl(s) == MXL_RV32) {
ret &= (!has_ext(s, RVV) && s->ext_zve64f ? eew != MO_64 : true); ret &= (!has_ext(s, RVV) &&
s->cfg_ptr->ext_zve64f ? eew != MO_64 : true);
} }
return ret; return ret;
@ -454,7 +457,7 @@ static bool vext_wide_check_common(DisasContext *s, int vd, int vm)
{ {
return (s->lmul <= 2) && return (s->lmul <= 2) &&
(s->sew < MO_64) && (s->sew < MO_64) &&
((s->sew + 1) <= (s->elen >> 4)) && ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) &&
require_align(vd, s->lmul + 1) && require_align(vd, s->lmul + 1) &&
require_vm(vm, vd); require_vm(vm, vd);
} }
@ -482,7 +485,7 @@ static bool vext_narrow_check_common(DisasContext *s, int vd, int vs2,
{ {
return (s->lmul <= 2) && return (s->lmul <= 2) &&
(s->sew < MO_64) && (s->sew < MO_64) &&
((s->sew + 1) <= (s->elen >> 4)) && ((s->sew + 1) <= (s->cfg_ptr->elen >> 4)) &&
require_align(vs2, s->lmul + 1) && require_align(vs2, s->lmul + 1) &&
require_align(vd, s->lmul) && require_align(vd, s->lmul) &&
require_vm(vm, vd); require_vm(vm, vd);
@ -661,7 +664,8 @@ static bool ldst_us_trans(uint32_t vd, uint32_t rs1, uint32_t data,
* The first part is vlen in bytes, encoded in maxsz of simd_desc. * The first part is vlen in bytes, encoded in maxsz of simd_desc.
* The second part is lmul, encoded in data of simd_desc. * The second part is lmul, encoded in data of simd_desc.
*/ */
desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
@ -819,7 +823,8 @@ static bool ldst_stride_trans(uint32_t vd, uint32_t rs1, uint32_t rs2,
mask = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr();
base = get_gpr(s, rs1, EXT_NONE); base = get_gpr(s, rs1, EXT_NONE);
stride = get_gpr(s, rs2, EXT_NONE); stride = get_gpr(s, rs2, EXT_NONE);
desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
@ -925,7 +930,8 @@ static bool ldst_index_trans(uint32_t vd, uint32_t rs1, uint32_t vs2,
mask = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr();
index = tcg_temp_new_ptr(); index = tcg_temp_new_ptr();
base = get_gpr(s, rs1, EXT_NONE); base = get_gpr(s, rs1, EXT_NONE);
desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2)); tcg_gen_addi_ptr(index, cpu_env, vreg_ofs(s, vs2));
@ -1065,7 +1071,8 @@ static bool ldff_trans(uint32_t vd, uint32_t rs1, uint32_t data,
dest = tcg_temp_new_ptr(); dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr();
base = get_gpr(s, rs1, EXT_NONE); base = get_gpr(s, rs1, EXT_NONE);
desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
@ -1120,7 +1127,8 @@ static bool ldst_whole_trans(uint32_t vd, uint32_t rs1, uint32_t nf,
uint32_t data = FIELD_DP32(0, VDATA, NF, nf); uint32_t data = FIELD_DP32(0, VDATA, NF, nf);
dest = tcg_temp_new_ptr(); dest = tcg_temp_new_ptr();
desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
base = get_gpr(s, rs1, EXT_NONE); base = get_gpr(s, rs1, EXT_NONE);
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
@ -1185,7 +1193,7 @@ GEN_LDST_WHOLE_TRANS(vs8r_v, 8, true)
static inline uint32_t MAXSZ(DisasContext *s) static inline uint32_t MAXSZ(DisasContext *s)
{ {
int scale = s->lmul - 3; int scale = s->lmul - 3;
return scale < 0 ? s->vlen >> -scale : s->vlen << scale; return scale < 0 ? s->cfg_ptr->vlen >> -scale : s->cfg_ptr->vlen << scale;
} }
static bool opivv_check(DisasContext *s, arg_rmrr *a) static bool opivv_check(DisasContext *s, arg_rmrr *a)
@ -1220,7 +1228,8 @@ do_opivv_gvec(DisasContext *s, arg_rmrr *a, GVecGen3Fn *gvec_fn,
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2),
cpu_env, s->vlen / 8, s->vlen / 8, data, fn); cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data, fn);
} }
mark_vs_dirty(s); mark_vs_dirty(s);
gen_set_label(over); gen_set_label(over);
@ -1262,7 +1271,8 @@ static bool opivx_trans(uint32_t vd, uint32_t rs1, uint32_t vs2, uint32_t vm,
data = FIELD_DP32(data, VDATA, VM, vm); data = FIELD_DP32(data, VDATA, VM, vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2));
@ -1425,7 +1435,8 @@ static bool opivi_trans(uint32_t vd, uint32_t imm, uint32_t vs2, uint32_t vm,
data = FIELD_DP32(data, VDATA, VM, vm); data = FIELD_DP32(data, VDATA, VM, vm);
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2));
@ -1508,7 +1519,8 @@ static bool do_opivv_widen(DisasContext *s, arg_rmrr *a,
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs1),
vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs2),
cpu_env, s->vlen / 8, s->vlen / 8, cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8,
data, fn); data, fn);
mark_vs_dirty(s); mark_vs_dirty(s);
gen_set_label(over); gen_set_label(over);
@ -1587,7 +1599,8 @@ static bool do_opiwv_widen(DisasContext *s, arg_rmrr *a,
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs1),
vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs2),
cpu_env, s->vlen / 8, s->vlen / 8, data, fn); cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data, fn);
mark_vs_dirty(s); mark_vs_dirty(s);
gen_set_label(over); gen_set_label(over);
return true; return true;
@ -1663,7 +1676,8 @@ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \ vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \ vreg_ofs(s, a->rs2), cpu_env, \
s->vlen / 8, s->vlen / 8, data, \ s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew]); \ fns[s->sew]); \
mark_vs_dirty(s); \ mark_vs_dirty(s); \
gen_set_label(over); \ gen_set_label(over); \
@ -1843,7 +1857,8 @@ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \ vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \ vreg_ofs(s, a->rs2), cpu_env, \
s->vlen / 8, s->vlen / 8, data, \ s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew]); \ fns[s->sew]); \
mark_vs_dirty(s); \ mark_vs_dirty(s); \
gen_set_label(over); \ gen_set_label(over); \
@ -1963,7 +1978,8 @@ static bool vmulh_vv_check(DisasContext *s, arg_rmrr *a)
* are not included for EEW=64 in Zve64*. (Section 18.2) * are not included for EEW=64 in Zve64*. (Section 18.2)
*/ */
return opivv_check(s, a) && return opivv_check(s, a) &&
(!has_ext(s, RVV) && s->ext_zve64f ? s->sew != MO_64 : true); (!has_ext(s, RVV) &&
s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true);
} }
static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a) static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a)
@ -1976,7 +1992,8 @@ static bool vmulh_vx_check(DisasContext *s, arg_rmrr *a)
* are not included for EEW=64 in Zve64*. (Section 18.2) * are not included for EEW=64 in Zve64*. (Section 18.2)
*/ */
return opivx_check(s, a) && return opivx_check(s, a) &&
(!has_ext(s, RVV) && s->ext_zve64f ? s->sew != MO_64 : true); (!has_ext(s, RVV) &&
s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true);
} }
GEN_OPIVV_GVEC_TRANS(vmul_vv, mul) GEN_OPIVV_GVEC_TRANS(vmul_vv, mul)
@ -2046,7 +2063,8 @@ static bool trans_vmv_v_v(DisasContext *s, arg_vmv_v_v *a)
tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over); tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_vl, 0, over);
tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1), tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, a->rs1),
cpu_env, s->vlen / 8, s->vlen / 8, data, cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data,
fns[s->sew]); fns[s->sew]);
gen_set_label(over); gen_set_label(over);
} }
@ -2083,7 +2101,8 @@ static bool trans_vmv_v_x(DisasContext *s, arg_vmv_v_x *a)
}; };
tcg_gen_ext_tl_i64(s1_i64, s1); tcg_gen_ext_tl_i64(s1_i64, s1);
desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd));
fns[s->sew](dest, s1_i64, cpu_env, desc); fns[s->sew](dest, s1_i64, cpu_env, desc);
@ -2123,7 +2142,8 @@ static bool trans_vmv_v_i(DisasContext *s, arg_vmv_v_i *a)
s1 = tcg_constant_i64(simm); s1 = tcg_constant_i64(simm);
dest = tcg_temp_new_ptr(); dest = tcg_temp_new_ptr();
desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd));
fns[s->sew](dest, s1, cpu_env, desc); fns[s->sew](dest, s1, cpu_env, desc);
@ -2176,7 +2196,8 @@ static bool vsmul_vv_check(DisasContext *s, arg_rmrr *a)
* for EEW=64 in Zve64*. (Section 18.2) * for EEW=64 in Zve64*. (Section 18.2)
*/ */
return opivv_check(s, a) && return opivv_check(s, a) &&
(!has_ext(s, RVV) && s->ext_zve64f ? s->sew != MO_64 : true); (!has_ext(s, RVV) &&
s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true);
} }
static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a) static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a)
@ -2187,7 +2208,8 @@ static bool vsmul_vx_check(DisasContext *s, arg_rmrr *a)
* for EEW=64 in Zve64*. (Section 18.2) * for EEW=64 in Zve64*. (Section 18.2)
*/ */
return opivx_check(s, a) && return opivx_check(s, a) &&
(!has_ext(s, RVV) && s->ext_zve64f ? s->sew != MO_64 : true); (!has_ext(s, RVV) &&
s->cfg_ptr->ext_zve64f ? s->sew != MO_64 : true);
} }
GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check) GEN_OPIVV_TRANS(vsmul_vv, vsmul_vv_check)
@ -2275,7 +2297,8 @@ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \ vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \ vreg_ofs(s, a->rs2), cpu_env, \
s->vlen / 8, s->vlen / 8, data, \ s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew - 1]); \ fns[s->sew - 1]); \
mark_vs_dirty(s); \ mark_vs_dirty(s); \
gen_set_label(over); \ gen_set_label(over); \
@ -2302,7 +2325,8 @@ static bool opfvf_trans(uint32_t vd, uint32_t rs1, uint32_t vs2,
dest = tcg_temp_new_ptr(); dest = tcg_temp_new_ptr();
mask = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr(); src2 = tcg_temp_new_ptr();
desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd)); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, vd));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2)); tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, vs2));
@ -2391,7 +2415,8 @@ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \ vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \ vreg_ofs(s, a->rs2), cpu_env, \
s->vlen / 8, s->vlen / 8, data, \ s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew - 1]); \ fns[s->sew - 1]); \
mark_vs_dirty(s); \ mark_vs_dirty(s); \
gen_set_label(over); \ gen_set_label(over); \
@ -2464,7 +2489,8 @@ static bool trans_##NAME(DisasContext *s, arg_rmrr *a) \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \ vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \ vreg_ofs(s, a->rs2), cpu_env, \
s->vlen / 8, s->vlen / 8, data, \ s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew - 1]); \ fns[s->sew - 1]); \
mark_vs_dirty(s); \ mark_vs_dirty(s); \
gen_set_label(over); \ gen_set_label(over); \
@ -2583,7 +2609,8 @@ static bool do_opfv(DisasContext *s, arg_rmr *a,
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs2), cpu_env, vreg_ofs(s, a->rs2), cpu_env,
s->vlen / 8, s->vlen / 8, data, fn); s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data, fn);
mark_vs_dirty(s); mark_vs_dirty(s);
gen_set_label(over); gen_set_label(over);
return true; return true;
@ -2696,7 +2723,8 @@ static bool trans_vfmv_v_f(DisasContext *s, arg_vfmv_v_f *a)
do_nanbox(s, t1, cpu_fpr[a->rs1]); do_nanbox(s, t1, cpu_fpr[a->rs1]);
dest = tcg_temp_new_ptr(); dest = tcg_temp_new_ptr();
desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd)); tcg_gen_addi_ptr(dest, cpu_env, vreg_ofs(s, a->rd));
fns[s->sew - 1](dest, t1, cpu_env, desc); fns[s->sew - 1](dest, t1, cpu_env, desc);
@ -2782,7 +2810,8 @@ static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs2), cpu_env, \ vreg_ofs(s, a->rs2), cpu_env, \
s->vlen / 8, s->vlen / 8, data, \ s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew - 1]); \ fns[s->sew - 1]); \
mark_vs_dirty(s); \ mark_vs_dirty(s); \
gen_set_label(over); \ gen_set_label(over); \
@ -2831,7 +2860,8 @@ static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
data = FIELD_DP32(data, VDATA, VM, a->vm); \ data = FIELD_DP32(data, VDATA, VM, a->vm); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs2), cpu_env, \ vreg_ofs(s, a->rs2), cpu_env, \
s->vlen / 8, s->vlen / 8, data, \ s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew]); \ fns[s->sew]); \
mark_vs_dirty(s); \ mark_vs_dirty(s); \
gen_set_label(over); \ gen_set_label(over); \
@ -2896,7 +2926,8 @@ static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs2), cpu_env, \ vreg_ofs(s, a->rs2), cpu_env, \
s->vlen / 8, s->vlen / 8, data, \ s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew - 1]); \ fns[s->sew - 1]); \
mark_vs_dirty(s); \ mark_vs_dirty(s); \
gen_set_label(over); \ gen_set_label(over); \
@ -2947,7 +2978,8 @@ static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
data = FIELD_DP32(data, VDATA, VM, a->vm); \ data = FIELD_DP32(data, VDATA, VM, a->vm); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs2), cpu_env, \ vreg_ofs(s, a->rs2), cpu_env, \
s->vlen / 8, s->vlen / 8, data, \ s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, \
fns[s->sew]); \ fns[s->sew]); \
mark_vs_dirty(s); \ mark_vs_dirty(s); \
gen_set_label(over); \ gen_set_label(over); \
@ -2986,7 +3018,7 @@ GEN_OPIVV_TRANS(vredxor_vs, reduction_check)
static bool reduction_widen_check(DisasContext *s, arg_rmrr *a) static bool reduction_widen_check(DisasContext *s, arg_rmrr *a)
{ {
return reduction_check(s, a) && (s->sew < MO_64) && return reduction_check(s, a) && (s->sew < MO_64) &&
((s->sew + 1) <= (s->elen >> 4)); ((s->sew + 1) <= (s->cfg_ptr->elen >> 4));
} }
GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check) GEN_OPIVV_WIDEN_TRANS(vwredsum_vs, reduction_widen_check)
@ -3034,7 +3066,8 @@ static bool trans_##NAME(DisasContext *s, arg_r *a) \
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \ tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), \
vreg_ofs(s, a->rs1), \ vreg_ofs(s, a->rs1), \
vreg_ofs(s, a->rs2), cpu_env, \ vreg_ofs(s, a->rs2), cpu_env, \
s->vlen / 8, s->vlen / 8, data, fn); \ s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, data, fn); \
mark_vs_dirty(s); \ mark_vs_dirty(s); \
gen_set_label(over); \ gen_set_label(over); \
return true; \ return true; \
@ -3067,7 +3100,8 @@ static bool trans_vcpop_m(DisasContext *s, arg_rmr *a)
mask = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr(); src2 = tcg_temp_new_ptr();
dst = dest_gpr(s, a->rd); dst = dest_gpr(s, a->rd);
desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
@ -3099,7 +3133,8 @@ static bool trans_vfirst_m(DisasContext *s, arg_rmr *a)
mask = tcg_temp_new_ptr(); mask = tcg_temp_new_ptr();
src2 = tcg_temp_new_ptr(); src2 = tcg_temp_new_ptr();
dst = dest_gpr(s, a->rd); dst = dest_gpr(s, a->rd);
desc = tcg_constant_i32(simd_desc(s->vlen / 8, s->vlen / 8, data)); desc = tcg_constant_i32(simd_desc(s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data));
tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2)); tcg_gen_addi_ptr(src2, cpu_env, vreg_ofs(s, a->rs2));
tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0)); tcg_gen_addi_ptr(mask, cpu_env, vreg_ofs(s, 0));
@ -3134,7 +3169,8 @@ static bool trans_##NAME(DisasContext *s, arg_rmr *a) \
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \ data = FIELD_DP32(data, VDATA, LMUL, s->lmul); \
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \ tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), \
vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \ vreg_ofs(s, 0), vreg_ofs(s, a->rs2), \
cpu_env, s->vlen / 8, s->vlen / 8, \ cpu_env, s->cfg_ptr->vlen / 8, \
s->cfg_ptr->vlen / 8, \
data, fn); \ data, fn); \
mark_vs_dirty(s); \ mark_vs_dirty(s); \
gen_set_label(over); \ gen_set_label(over); \
@ -3174,7 +3210,8 @@ static bool trans_viota_m(DisasContext *s, arg_viota_m *a)
}; };
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs2), cpu_env, vreg_ofs(s, a->rs2), cpu_env,
s->vlen / 8, s->vlen / 8, data, fns[s->sew]); s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data, fns[s->sew]);
mark_vs_dirty(s); mark_vs_dirty(s);
gen_set_label(over); gen_set_label(over);
return true; return true;
@ -3200,7 +3237,8 @@ static bool trans_vid_v(DisasContext *s, arg_vid_v *a)
gen_helper_vid_v_w, gen_helper_vid_v_d, gen_helper_vid_v_w, gen_helper_vid_v_d,
}; };
tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), tcg_gen_gvec_2_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
cpu_env, s->vlen / 8, s->vlen / 8, cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8,
data, fns[s->sew]); data, fns[s->sew]);
mark_vs_dirty(s); mark_vs_dirty(s);
gen_set_label(over); gen_set_label(over);
@ -3554,7 +3592,8 @@ static bool trans_vrgather_vx(DisasContext *s, arg_rmrr *a)
if (a->vm && s->vl_eq_vlmax) { if (a->vm && s->vl_eq_vlmax) {
int scale = s->lmul - (s->sew + 3); int scale = s->lmul - (s->sew + 3);
int vlmax = scale < 0 ? s->vlen >> -scale : s->vlen << scale; int vlmax = scale < 0 ?
s->cfg_ptr->vlen >> -scale : s->cfg_ptr->vlen << scale;
TCGv_i64 dest = tcg_temp_new_i64(); TCGv_i64 dest = tcg_temp_new_i64();
if (a->rs1 == 0) { if (a->rs1 == 0) {
@ -3586,7 +3625,8 @@ static bool trans_vrgather_vi(DisasContext *s, arg_rmrr *a)
if (a->vm && s->vl_eq_vlmax) { if (a->vm && s->vl_eq_vlmax) {
int scale = s->lmul - (s->sew + 3); int scale = s->lmul - (s->sew + 3);
int vlmax = scale < 0 ? s->vlen >> -scale : s->vlen << scale; int vlmax = scale < 0 ?
s->cfg_ptr->vlen >> -scale : s->cfg_ptr->vlen << scale;
if (a->rs1 >= vlmax) { if (a->rs1 >= vlmax) {
tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd), tcg_gen_gvec_dup_imm(MO_64, vreg_ofs(s, a->rd),
MAXSZ(s), MAXSZ(s), 0); MAXSZ(s), MAXSZ(s), 0);
@ -3638,7 +3678,8 @@ static bool trans_vcompress_vm(DisasContext *s, arg_r *a)
data = FIELD_DP32(data, VDATA, LMUL, s->lmul); data = FIELD_DP32(data, VDATA, LMUL, s->lmul);
tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), tcg_gen_gvec_4_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2), vreg_ofs(s, a->rs1), vreg_ofs(s, a->rs2),
cpu_env, s->vlen / 8, s->vlen / 8, data, cpu_env, s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data,
fns[s->sew]); fns[s->sew]);
mark_vs_dirty(s); mark_vs_dirty(s);
gen_set_label(over); gen_set_label(over);
@ -3657,7 +3698,7 @@ static bool trans_##NAME(DisasContext *s, arg_##NAME * a) \
if (require_rvv(s) && \ if (require_rvv(s) && \
QEMU_IS_ALIGNED(a->rd, LEN) && \ QEMU_IS_ALIGNED(a->rd, LEN) && \
QEMU_IS_ALIGNED(a->rs2, LEN)) { \ QEMU_IS_ALIGNED(a->rs2, LEN)) { \
uint32_t maxsz = (s->vlen >> 3) * LEN; \ uint32_t maxsz = (s->cfg_ptr->vlen >> 3) * LEN; \
if (s->vstart == 0) { \ if (s->vstart == 0) { \
/* EEW = 8 */ \ /* EEW = 8 */ \
tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \ tcg_gen_gvec_mov(MO_8, vreg_ofs(s, a->rd), \
@ -3742,7 +3783,8 @@ static bool int_ext_op(DisasContext *s, arg_rmr *a, uint8_t seq)
tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0), tcg_gen_gvec_3_ptr(vreg_ofs(s, a->rd), vreg_ofs(s, 0),
vreg_ofs(s, a->rs2), cpu_env, vreg_ofs(s, a->rs2), cpu_env,
s->vlen / 8, s->vlen / 8, data, fn); s->cfg_ptr->vlen / 8,
s->cfg_ptr->vlen / 8, data, fn);
mark_vs_dirty(s); mark_vs_dirty(s);
gen_set_label(over); gen_set_label(over);

View File

@ -17,13 +17,13 @@
*/ */
#define REQUIRE_ZFH(ctx) do { \ #define REQUIRE_ZFH(ctx) do { \
if (!ctx->ext_zfh) { \ if (!ctx->cfg_ptr->ext_zfh) { \
return false; \ return false; \
} \ } \
} while (0) } while (0)
#define REQUIRE_ZFH_OR_ZFHMIN(ctx) do { \ #define REQUIRE_ZFH_OR_ZFHMIN(ctx) do { \
if (!(ctx->ext_zfh || ctx->ext_zfhmin)) { \ if (!(ctx->cfg_ptr->ext_zfh || ctx->cfg_ptr->ext_zfhmin)) { \
return false; \ return false; \
} \ } \
} while (0) } while (0)

View File

@ -0,0 +1,75 @@
/*
* RISC-V translation routines for the Svinval Standard Instruction Set.
*
* Copyright (c) 2020-2022 PLCT lab
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define REQUIRE_SVINVAL(ctx) do { \
if (!ctx->cfg_ptr->ext_svinval) { \
return false; \
} \
} while (0)
static bool trans_sinval_vma(DisasContext *ctx, arg_sinval_vma *a)
{
REQUIRE_SVINVAL(ctx);
/* Do the same as sfence.vma currently */
REQUIRE_EXT(ctx, RVS);
#ifndef CONFIG_USER_ONLY
gen_helper_tlb_flush(cpu_env);
return true;
#endif
return false;
}
static bool trans_sfence_w_inval(DisasContext *ctx, arg_sfence_w_inval *a)
{
REQUIRE_SVINVAL(ctx);
REQUIRE_EXT(ctx, RVS);
/* Do nothing currently */
return true;
}
static bool trans_sfence_inval_ir(DisasContext *ctx, arg_sfence_inval_ir *a)
{
REQUIRE_SVINVAL(ctx);
REQUIRE_EXT(ctx, RVS);
/* Do nothing currently */
return true;
}
static bool trans_hinval_vvma(DisasContext *ctx, arg_hinval_vvma *a)
{
REQUIRE_SVINVAL(ctx);
/* Do the same as hfence.vvma currently */
REQUIRE_EXT(ctx, RVH);
#ifndef CONFIG_USER_ONLY
gen_helper_hyp_tlb_flush(cpu_env);
return true;
#endif
return false;
}
static bool trans_hinval_gvma(DisasContext *ctx, arg_hinval_gvma *a)
{
REQUIRE_SVINVAL(ctx);
/* Do the same as hfence.gvma currently */
REQUIRE_EXT(ctx, RVH);
#ifndef CONFIG_USER_ONLY
gen_helper_hyp_gvma_tlb_flush(cpu_env);
return true;
#endif
return false;
}

View File

@ -0,0 +1,39 @@
/*
* RISC-V translation routines for the XVentanaCondOps extension.
*
* Copyright (c) 2021-2022 VRULL GmbH.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
static bool gen_vt_condmask(DisasContext *ctx, arg_r *a, TCGCond cond)
{
TCGv dest = dest_gpr(ctx, a->rd);
TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE);
TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE);
tcg_gen_movcond_tl(cond, dest, src2, ctx->zero, src1, ctx->zero);
gen_set_gpr(ctx, a->rd, dest);
return true;
}
static bool trans_vt_maskc(DisasContext *ctx, arg_r *a)
{
return gen_vt_condmask(ctx, a, TCG_COND_NE);
}
static bool trans_vt_maskcn(DisasContext *ctx, arg_r *a)
{
return gen_vt_condmask(ctx, a, TCG_COND_EQ);
}

View File

@ -78,19 +78,24 @@ static bool hyper_needed(void *opaque)
static const VMStateDescription vmstate_hyper = { static const VMStateDescription vmstate_hyper = {
.name = "cpu/hyper", .name = "cpu/hyper",
.version_id = 1, .version_id = 2,
.minimum_version_id = 1, .minimum_version_id = 2,
.needed = hyper_needed, .needed = hyper_needed,
.fields = (VMStateField[]) { .fields = (VMStateField[]) {
VMSTATE_UINTTL(env.hstatus, RISCVCPU), VMSTATE_UINTTL(env.hstatus, RISCVCPU),
VMSTATE_UINTTL(env.hedeleg, RISCVCPU), VMSTATE_UINTTL(env.hedeleg, RISCVCPU),
VMSTATE_UINTTL(env.hideleg, RISCVCPU), VMSTATE_UINT64(env.hideleg, RISCVCPU),
VMSTATE_UINTTL(env.hcounteren, RISCVCPU), VMSTATE_UINTTL(env.hcounteren, RISCVCPU),
VMSTATE_UINTTL(env.htval, RISCVCPU), VMSTATE_UINTTL(env.htval, RISCVCPU),
VMSTATE_UINTTL(env.htinst, RISCVCPU), VMSTATE_UINTTL(env.htinst, RISCVCPU),
VMSTATE_UINTTL(env.hgatp, RISCVCPU), VMSTATE_UINTTL(env.hgatp, RISCVCPU),
VMSTATE_UINTTL(env.hgeie, RISCVCPU),
VMSTATE_UINTTL(env.hgeip, RISCVCPU),
VMSTATE_UINT64(env.htimedelta, RISCVCPU), VMSTATE_UINT64(env.htimedelta, RISCVCPU),
VMSTATE_UINTTL(env.hvictl, RISCVCPU),
VMSTATE_UINT8_ARRAY(env.hviprio, RISCVCPU, 64),
VMSTATE_UINT64(env.vsstatus, RISCVCPU), VMSTATE_UINT64(env.vsstatus, RISCVCPU),
VMSTATE_UINTTL(env.vstvec, RISCVCPU), VMSTATE_UINTTL(env.vstvec, RISCVCPU),
VMSTATE_UINTTL(env.vsscratch, RISCVCPU), VMSTATE_UINTTL(env.vsscratch, RISCVCPU),
@ -98,6 +103,7 @@ static const VMStateDescription vmstate_hyper = {
VMSTATE_UINTTL(env.vscause, RISCVCPU), VMSTATE_UINTTL(env.vscause, RISCVCPU),
VMSTATE_UINTTL(env.vstval, RISCVCPU), VMSTATE_UINTTL(env.vstval, RISCVCPU),
VMSTATE_UINTTL(env.vsatp, RISCVCPU), VMSTATE_UINTTL(env.vsatp, RISCVCPU),
VMSTATE_UINTTL(env.vsiselect, RISCVCPU),
VMSTATE_UINTTL(env.mtval2, RISCVCPU), VMSTATE_UINTTL(env.mtval2, RISCVCPU),
VMSTATE_UINTTL(env.mtinst, RISCVCPU), VMSTATE_UINTTL(env.mtinst, RISCVCPU),
@ -233,6 +239,8 @@ const VMStateDescription vmstate_riscv_cpu = {
.fields = (VMStateField[]) { .fields = (VMStateField[]) {
VMSTATE_UINTTL_ARRAY(env.gpr, RISCVCPU, 32), VMSTATE_UINTTL_ARRAY(env.gpr, RISCVCPU, 32),
VMSTATE_UINT64_ARRAY(env.fpr, RISCVCPU, 32), VMSTATE_UINT64_ARRAY(env.fpr, RISCVCPU, 32),
VMSTATE_UINT8_ARRAY(env.miprio, RISCVCPU, 64),
VMSTATE_UINT8_ARRAY(env.siprio, RISCVCPU, 64),
VMSTATE_UINTTL(env.pc, RISCVCPU), VMSTATE_UINTTL(env.pc, RISCVCPU),
VMSTATE_UINTTL(env.load_res, RISCVCPU), VMSTATE_UINTTL(env.load_res, RISCVCPU),
VMSTATE_UINTTL(env.load_val, RISCVCPU), VMSTATE_UINTTL(env.load_val, RISCVCPU),
@ -251,10 +259,10 @@ const VMStateDescription vmstate_riscv_cpu = {
VMSTATE_UINTTL(env.resetvec, RISCVCPU), VMSTATE_UINTTL(env.resetvec, RISCVCPU),
VMSTATE_UINTTL(env.mhartid, RISCVCPU), VMSTATE_UINTTL(env.mhartid, RISCVCPU),
VMSTATE_UINT64(env.mstatus, RISCVCPU), VMSTATE_UINT64(env.mstatus, RISCVCPU),
VMSTATE_UINTTL(env.mip, RISCVCPU), VMSTATE_UINT64(env.mip, RISCVCPU),
VMSTATE_UINT32(env.miclaim, RISCVCPU), VMSTATE_UINT64(env.miclaim, RISCVCPU),
VMSTATE_UINTTL(env.mie, RISCVCPU), VMSTATE_UINT64(env.mie, RISCVCPU),
VMSTATE_UINTTL(env.mideleg, RISCVCPU), VMSTATE_UINT64(env.mideleg, RISCVCPU),
VMSTATE_UINTTL(env.satp, RISCVCPU), VMSTATE_UINTTL(env.satp, RISCVCPU),
VMSTATE_UINTTL(env.stval, RISCVCPU), VMSTATE_UINTTL(env.stval, RISCVCPU),
VMSTATE_UINTTL(env.medeleg, RISCVCPU), VMSTATE_UINTTL(env.medeleg, RISCVCPU),
@ -265,6 +273,8 @@ const VMStateDescription vmstate_riscv_cpu = {
VMSTATE_UINTTL(env.mepc, RISCVCPU), VMSTATE_UINTTL(env.mepc, RISCVCPU),
VMSTATE_UINTTL(env.mcause, RISCVCPU), VMSTATE_UINTTL(env.mcause, RISCVCPU),
VMSTATE_UINTTL(env.mtval, RISCVCPU), VMSTATE_UINTTL(env.mtval, RISCVCPU),
VMSTATE_UINTTL(env.miselect, RISCVCPU),
VMSTATE_UINTTL(env.siselect, RISCVCPU),
VMSTATE_UINTTL(env.scounteren, RISCVCPU), VMSTATE_UINTTL(env.scounteren, RISCVCPU),
VMSTATE_UINTTL(env.mcounteren, RISCVCPU), VMSTATE_UINTTL(env.mcounteren, RISCVCPU),
VMSTATE_UINTTL(env.sscratch, RISCVCPU), VMSTATE_UINTTL(env.sscratch, RISCVCPU),

View File

@ -4,6 +4,7 @@ dir = meson.current_source_dir()
gen = [ gen = [
decodetree.process('insn16.decode', extra_args: ['--static-decode=decode_insn16', '--insnwidth=16']), decodetree.process('insn16.decode', extra_args: ['--static-decode=decode_insn16', '--insnwidth=16']),
decodetree.process('insn32.decode', extra_args: '--static-decode=decode_insn32'), decodetree.process('insn32.decode', extra_args: '--static-decode=decode_insn32'),
decodetree.process('XVentanaCondOps.decode', extra_args: '--static-decode=decode_XVentanaCodeOps'),
] ]
riscv_ss = ss.source_set() riscv_ss = ss.source_set()

View File

@ -76,11 +76,7 @@ typedef struct DisasContext {
int frm; int frm;
RISCVMXL ol; RISCVMXL ol;
bool virt_enabled; bool virt_enabled;
bool ext_ifencei; const RISCVCPUConfig *cfg_ptr;
bool ext_zfh;
bool ext_zfhmin;
bool ext_zve32f;
bool ext_zve64f;
bool hlsx; bool hlsx;
/* vector extension */ /* vector extension */
bool vill; bool vill;
@ -98,8 +94,6 @@ typedef struct DisasContext {
*/ */
int8_t lmul; int8_t lmul;
uint8_t sew; uint8_t sew;
uint16_t vlen;
uint16_t elen;
target_ulong vstart; target_ulong vstart;
bool vl_eq_vlmax; bool vl_eq_vlmax;
uint8_t ntemp; uint8_t ntemp;
@ -117,6 +111,19 @@ static inline bool has_ext(DisasContext *ctx, uint32_t ext)
return ctx->misa_ext & ext; return ctx->misa_ext & ext;
} }
static bool always_true_p(DisasContext *ctx __attribute__((__unused__)))
{
return true;
}
#define MATERIALISE_EXT_PREDICATE(ext) \
static bool has_ ## ext ## _p(DisasContext *ctx) \
{ \
return ctx->cfg_ptr->ext_ ## ext ; \
}
MATERIALISE_EXT_PREDICATE(XVentanaCondOps);
#ifdef TARGET_RISCV32 #ifdef TARGET_RISCV32
#define get_xl(ctx) MXL_RV32 #define get_xl(ctx) MXL_RV32
#elif defined(CONFIG_USER_ONLY) #elif defined(CONFIG_USER_ONLY)
@ -855,21 +862,37 @@ static uint32_t opcode_at(DisasContextBase *dcbase, target_ulong pc)
#include "insn_trans/trans_rvb.c.inc" #include "insn_trans/trans_rvb.c.inc"
#include "insn_trans/trans_rvzfh.c.inc" #include "insn_trans/trans_rvzfh.c.inc"
#include "insn_trans/trans_privileged.c.inc" #include "insn_trans/trans_privileged.c.inc"
#include "insn_trans/trans_svinval.c.inc"
#include "insn_trans/trans_xventanacondops.c.inc"
/* Include the auto-generated decoder for 16 bit insn */ /* Include the auto-generated decoder for 16 bit insn */
#include "decode-insn16.c.inc" #include "decode-insn16.c.inc"
/* Include decoders for factored-out extensions */
#include "decode-XVentanaCondOps.c.inc"
static void decode_opc(CPURISCVState *env, DisasContext *ctx, uint16_t opcode) static void decode_opc(CPURISCVState *env, DisasContext *ctx, uint16_t opcode)
{ {
/* check for compressed insn */ /*
* A table with predicate (i.e., guard) functions and decoder functions
* that are tested in-order until a decoder matches onto the opcode.
*/
static const struct {
bool (*guard_func)(DisasContext *);
bool (*decode_func)(DisasContext *, uint32_t);
} decoders[] = {
{ always_true_p, decode_insn32 },
{ has_XVentanaCondOps_p, decode_XVentanaCodeOps },
};
/* Check for compressed insn */
if (extract16(opcode, 0, 2) != 3) { if (extract16(opcode, 0, 2) != 3) {
if (!has_ext(ctx, RVC)) { if (!has_ext(ctx, RVC)) {
gen_exception_illegal(ctx); gen_exception_illegal(ctx);
} else { } else {
ctx->opcode = opcode; ctx->opcode = opcode;
ctx->pc_succ_insn = ctx->base.pc_next + 2; ctx->pc_succ_insn = ctx->base.pc_next + 2;
if (!decode_insn16(ctx, opcode)) { if (decode_insn16(ctx, opcode)) {
gen_exception_illegal(ctx); return;
} }
} }
} else { } else {
@ -879,10 +902,16 @@ static void decode_opc(CPURISCVState *env, DisasContext *ctx, uint16_t opcode)
ctx->base.pc_next + 2)); ctx->base.pc_next + 2));
ctx->opcode = opcode32; ctx->opcode = opcode32;
ctx->pc_succ_insn = ctx->base.pc_next + 4; ctx->pc_succ_insn = ctx->base.pc_next + 4;
if (!decode_insn32(ctx, opcode32)) {
for (size_t i = 0; i < ARRAY_SIZE(decoders); ++i) {
if (decoders[i].guard_func(ctx) &&
decoders[i].decode_func(ctx, opcode32)) {
return;
}
}
}
gen_exception_illegal(ctx); gen_exception_illegal(ctx);
}
}
} }
static void riscv_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs) static void riscv_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
@ -908,13 +937,7 @@ static void riscv_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
#endif #endif
ctx->misa_ext = env->misa_ext; ctx->misa_ext = env->misa_ext;
ctx->frm = -1; /* unknown rounding mode */ ctx->frm = -1; /* unknown rounding mode */
ctx->ext_ifencei = cpu->cfg.ext_ifencei; ctx->cfg_ptr = &(cpu->cfg);
ctx->ext_zfh = cpu->cfg.ext_zfh;
ctx->ext_zfhmin = cpu->cfg.ext_zfhmin;
ctx->ext_zve32f = cpu->cfg.ext_zve32f;
ctx->ext_zve64f = cpu->cfg.ext_zve64f;
ctx->vlen = cpu->cfg.vlen;
ctx->elen = cpu->cfg.elen;
ctx->mstatus_hs_fs = FIELD_EX32(tb_flags, TB_FLAGS, MSTATUS_HS_FS); ctx->mstatus_hs_fs = FIELD_EX32(tb_flags, TB_FLAGS, MSTATUS_HS_FS);
ctx->mstatus_hs_vs = FIELD_EX32(tb_flags, TB_FLAGS, MSTATUS_HS_VS); ctx->mstatus_hs_vs = FIELD_EX32(tb_flags, TB_FLAGS, MSTATUS_HS_VS);
ctx->hlsx = FIELD_EX32(tb_flags, TB_FLAGS, HLSX); ctx->hlsx = FIELD_EX32(tb_flags, TB_FLAGS, HLSX);

View File

@ -71,6 +71,7 @@ target_ulong HELPER(vsetvl)(CPURISCVState *env, target_ulong s1,
env->vl = vl; env->vl = vl;
env->vtype = s2; env->vtype = s2;
env->vstart = 0; env->vstart = 0;
env->vill = 0;
return vl; return vl;
} }