MOpt scheduler (#161)

* add the struct for MOpt globals

* constants

* RAND_C

* more comments & reorder class members

* select_algorithm

* no_std fixes

* clippy fixes

* MOptMutator

* MutatorsTuple has HasLen

* MOptStage

* pso_update

* HasMOpt trait

* ScheduledMutator, core_fuzzing

* clippy fix

* fmt

* core_fuzzing

* core_fuzzing done

* fix

* pilot_mutate

* pilot_fuzzing

* pilot_fuzzing done

* MOpt metadata

* Make MOptMutator into a trait

* initialize_mopt

* No getter/setters

* fmt

* fixed compiler warnings & clippy warnings

* Comments

* fix type paramter, integrate into libpng

* fmt

* fmt

* No HasMOpt

* fmt

* improve

* pso_initialize, various fixes

* clippy

* fmt

* always pacemaker mode

* fmt

* fix

* less noisy fmt::Debug

Co-authored-by: Dominik Maier <domenukk@gmail.com>
Co-authored-by: Andrea Fioraldi <andreafioraldi@gmail.com>
This commit is contained in:
Toka 2021-07-05 20:54:15 +09:00 committed by GitHub
parent fbeec3ca6c
commit 849ff1fa04
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 874 additions and 2 deletions

View File

@ -17,10 +17,11 @@ use libafl::{
feedbacks::{CrashFeedback, MapFeedbackState, MaxMapFeedback, TimeFeedback, TimeoutFeedback}, feedbacks::{CrashFeedback, MapFeedbackState, MaxMapFeedback, TimeFeedback, TimeoutFeedback},
fuzzer::{Fuzzer, StdFuzzer}, fuzzer::{Fuzzer, StdFuzzer},
inputs::{BytesInput, HasTargetBytes}, inputs::{BytesInput, HasTargetBytes},
mutators::scheduled::{havoc_mutations, tokens_mutations, StdScheduledMutator}, mutators::mopt_mutator::StdMOptMutator,
mutators::scheduled::{havoc_mutations, tokens_mutations},
mutators::token_mutations::Tokens, mutators::token_mutations::Tokens,
observers::{HitcountsMapObserver, StdMapObserver, TimeObserver}, observers::{HitcountsMapObserver, StdMapObserver, TimeObserver},
stages::mutational::StdMutationalStage, stages::mopt::MOptStage,
state::{HasCorpus, HasMetadata, StdState}, state::{HasCorpus, HasMetadata, StdState},
stats::MultiStats, stats::MultiStats,
Error, Error,
@ -119,8 +120,14 @@ fn fuzz(corpus_dirs: &[PathBuf], objective_dir: PathBuf, broker_port: u16) -> Re
} }
// Setup a basic mutator with a mutational stage // Setup a basic mutator with a mutational stage
let mutator = StdMOptMutator::new(havoc_mutations().merge(tokens_mutations()));
let mut stages = tuple_list!(MOptStage::new(mutator, &mut state, 5)?);
/*
let mutator = StdScheduledMutator::new(havoc_mutations().merge(tokens_mutations())); let mutator = StdScheduledMutator::new(havoc_mutations().merge(tokens_mutations()));
let mut stages = tuple_list!(StdMutationalStage::new(mutator)); let mut stages = tuple_list!(StdMutationalStage::new(mutator));
*/
// A minimization+queue policy to get testcasess from the corpus // A minimization+queue policy to get testcasess from the corpus
let scheduler = IndexesLenTimeMinimizerCorpusScheduler::new(QueueCorpusScheduler::new()); let scheduler = IndexesLenTimeMinimizerCorpusScheduler::new(QueueCorpusScheduler::new());

View File

@ -72,6 +72,8 @@ pub enum Error {
IllegalArgument(String), IllegalArgument(String),
/// Forkserver related Error /// Forkserver related Error
Forkserver(String), Forkserver(String),
/// MOpt related Error
MOpt(String),
/// Shutting down, not really an error. /// Shutting down, not really an error.
ShuttingDown, ShuttingDown,
/// Something else happened /// Something else happened
@ -96,6 +98,7 @@ impl fmt::Display for Error {
Self::IllegalState(s) => write!(f, "Illegal state: {0}", &s), Self::IllegalState(s) => write!(f, "Illegal state: {0}", &s),
Self::IllegalArgument(s) => write!(f, "Illegal argument: {0}", &s), Self::IllegalArgument(s) => write!(f, "Illegal argument: {0}", &s),
Self::Forkserver(s) => write!(f, "Forkserver : {0}", &s), Self::Forkserver(s) => write!(f, "Forkserver : {0}", &s),
Self::MOpt(s) => write!(f, "MOpt: {0}", &s),
Self::ShuttingDown => write!(f, "Shutting down!"), Self::ShuttingDown => write!(f, "Shutting down!"),
Self::Unknown(s) => write!(f, "Unknown error: {0}", &s), Self::Unknown(s) => write!(f, "Unknown error: {0}", &s),
} }

View File

@ -6,6 +6,8 @@ pub mod mutations;
pub use mutations::*; pub use mutations::*;
pub mod token_mutations; pub mod token_mutations;
pub use token_mutations::*; pub use token_mutations::*;
pub mod mopt_mutator;
pub use mopt_mutator::*;
use crate::{ use crate::{
bolts::tuples::{HasLen, Named}, bolts::tuples::{HasLen, Named},

View File

@ -0,0 +1,620 @@
//! The `MOpt` mutator scheduler, see <https://github.com/puppet-meteor/MOpt-AFL> and <https://www.usenix.org/conference/usenixsecurity19/presentation/lyu>
use alloc::{string::ToString, vec::Vec};
use crate::{
bolts::{rands::Rand, rands::StdRand},
inputs::Input,
mutators::{ComposedByMutations, MutationResult, Mutator, MutatorsTuple, ScheduledMutator},
state::{HasMetadata, HasRand},
Error,
};
use core::{
fmt::{self, Debug},
marker::PhantomData,
};
use serde::{Deserialize, Serialize};
/// A Struct for managing MOpt-mutator parameters
/// There are 2 modes for `MOpt` scheduler, the core fuzzing mode and the pilot fuzzing mode
/// In short, in the pilot fuzzing mode, the fuzzer employs several `swarms` to compute the probability to choose the mutation operator
/// On the other hand, in the core fuzzing mode, the fuzzer chooses the best `swarms`, which was determined during the pilot fuzzing mode, to compute the probability to choose the operation operator
/// With the current implementation we are always in the pacemaker fuzzing mode.
#[derive(Serialize, Deserialize, Clone)]
pub struct MOpt {
/// Random number generator
pub rand: StdRand,
/// The number of total findings (unique crashes and unique interesting paths). This is equivalent to `state.corpus().count() + state.solutions().count()`;
pub total_finds: usize,
/// The number of finds before switching to this mode.
pub finds_before_switch: usize,
/// The MOpt mode that we are currently using the pilot fuzzing mode or the core_fuzzing mode
pub key_module: MOptMode,
/// These w_* and g_* values are the coefficients for updating variables according to the PSO algorithms
pub w_init: f64,
pub w_end: f64,
pub w_now: f64,
pub g_now: i32,
pub g_max: i32,
/// The number of mutation operators
pub operator_num: usize,
/// The number of swarms that we want to employ during the pilot fuzzing mode
pub swarm_num: usize,
/// We'll generate testcases for `period_pilot` times before we call pso_update in core fuzzing module
pub period_pilot: usize,
/// We'll generate testcases for `period_core` times before we call pso_update in core fuzzing module
pub period_core: usize,
/// The number of testcases generated during this pilot fuzzing mode
pub pilot_time: usize,
/// The number of testcases generated during this core fuzzing mode
pub core_time: usize,
/// The swarm identifier that we are currently using in the pilot fuzzing mode
pub swarm_now: usize,
/// These are the parameters for the PSO algorithm
x_now: Vec<Vec<f64>>,
l_best: Vec<Vec<f64>>,
eff_best: Vec<Vec<f64>>,
g_best: Vec<f64>,
v_now: Vec<Vec<f64>>,
/// The probability that we want to use to choose the mutation operator.
probability_now: Vec<Vec<f64>>,
/// The fitness for each swarm, we'll calculate the fitness in the pilot fuzzing mode and use the best one in the core fuzzing mode
pub swarm_fitness: Vec<f64>,
/// (Pilot Mode) Finds by each operators. This vector is used in pso_update
pub pilot_operator_finds_pso: Vec<Vec<usize>>,
/// (Pilot Mode) Finds by each operator till now.
pub pilot_operator_finds_this: Vec<Vec<usize>>,
/// (Pilot Mode) The number of mutation operator used. This vector is used in pso_update
pub pilot_operator_ctr_pso: Vec<Vec<usize>>,
/// (Pilot Mode) The number of mutation operator used till now
pub pilot_operator_ctr_this: Vec<Vec<usize>>,
/// (Pilot Mode) The number of mutation operator used till last execution
pub pilot_operator_ctr_last: Vec<Vec<usize>>,
/// Vector used in pso_update
pub operator_finds_puppet: Vec<usize>,
/// (Core Mode) Finds by each operators. This vector is used in pso_update
pub core_operator_finds_pso: Vec<usize>,
/// (Core Mode) Finds by each operator till now.
pub core_operator_finds_this: Vec<usize>,
/// (Core Mode) The number of mutation operator used. This vector is used in pso_update
pub core_operator_ctr_pso: Vec<usize>,
/// (Core Mode) The number of mutation operator used till now
pub core_operator_ctr_this: Vec<usize>,
/// (Core Mode) The number of mutation operator used till last execution
pub core_operator_ctr_last: Vec<usize>,
}
crate::impl_serdeany!(MOpt);
impl fmt::Debug for MOpt {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("MOpt")
.field("\ntotal_finds", &self.total_finds)
.field("\nfinds_before_switch", &self.finds_before_switch)
.field("\nkey_module", &self.key_module)
.field("\nw_init", &self.w_init)
.field("\nw_end", &self.w_end)
.field("\nw_now", &self.g_now)
.field("\ng_now", &self.g_max)
.field("\npilot_time", &self.pilot_time)
.field("\ncore_time", &self.core_time)
.field("\n\nx_now", &self.x_now)
.field("\n\nl_best", &self.l_best)
.field("\n\neff_best", &self.eff_best)
.field("\n\ng_best", &self.g_best)
.field("\n\nv_now", &self.v_now)
.field("\n\nprobability_now", &self.probability_now)
.field("\n\nswarm_fitness", &self.swarm_fitness)
.field(
"\n\npilot_operator_finds_pso",
&self.pilot_operator_finds_pso,
)
.field(
"\n\npilot_operator_finds_this",
&self.pilot_operator_finds_this,
)
.field("\n\npilot_operator_ctr_pso", &self.pilot_operator_ctr_pso)
.field("\n\npilot_operator_ctr_this", &self.pilot_operator_ctr_this)
.field("\n\npilot_operator_ctr_last", &self.pilot_operator_ctr_last)
.field("\n\noperator_finds_puppuet", &self.operator_finds_puppet)
.field("\n\ncore_operator_finds_pso", &self.core_operator_finds_pso)
.field(
"\n\ncore_operator_finds_this",
&self.core_operator_finds_this,
)
.field("\n\ncore_operator_ctr_pso", &self.core_operator_ctr_pso)
.field("\n\ncore_operator_ctr_this", &self.core_operator_ctr_this)
.field("\n\ncore_operator_ctr_last", &self.core_operator_ctr_last)
.finish()
}
}
impl MOpt {
pub fn new(operator_num: usize, swarm_num: usize) -> Result<Self, Error> {
let mut mopt = Self {
rand: StdRand::with_seed(0),
total_finds: 0,
finds_before_switch: 0,
key_module: MOptMode::Pilotfuzzing,
w_init: 0.9,
w_end: 0.3,
w_now: 0.0,
g_now: 0,
g_max: 5000,
operator_num,
swarm_num,
period_pilot: 50000,
period_core: 500000,
pilot_time: 0,
core_time: 0,
swarm_now: 0,
x_now: vec![vec![0.0; operator_num]; swarm_num],
l_best: vec![vec![0.0; operator_num]; swarm_num],
eff_best: vec![vec![0.0; operator_num]; swarm_num],
g_best: vec![0.0; operator_num],
v_now: vec![vec![0.0; operator_num]; swarm_num],
probability_now: vec![vec![0.0; operator_num]; swarm_num],
swarm_fitness: vec![0.0; swarm_num],
pilot_operator_finds_pso: vec![vec![0; operator_num]; swarm_num],
pilot_operator_finds_this: vec![vec![0; operator_num]; swarm_num],
pilot_operator_ctr_pso: vec![vec![0; operator_num]; swarm_num],
pilot_operator_ctr_this: vec![vec![0; operator_num]; swarm_num],
pilot_operator_ctr_last: vec![vec![0; operator_num]; swarm_num],
operator_finds_puppet: vec![0; operator_num],
core_operator_finds_pso: vec![0; operator_num],
core_operator_finds_this: vec![0; operator_num],
core_operator_ctr_pso: vec![0; operator_num],
core_operator_ctr_this: vec![0; operator_num],
core_operator_ctr_last: vec![0; operator_num],
};
mopt.pso_initialize()?;
Ok(mopt)
}
/// Initialize `core_operator_*` values
pub fn init_core_module(&mut self) -> Result<(), Error> {
for i in 0..self.operator_num {
self.core_operator_ctr_this[i] = self.core_operator_ctr_pso[i];
self.core_operator_ctr_last[i] = self.core_operator_ctr_pso[i];
self.core_operator_finds_this[i] = self.core_operator_finds_pso[i]
}
let mut swarm_eff = 0.0;
let mut best_swarm = 0;
for i in 0..self.swarm_num {
if self.swarm_fitness[i] > swarm_eff {
swarm_eff = self.swarm_fitness[i];
best_swarm = i;
}
}
self.swarm_now = best_swarm;
Ok(())
}
#[inline]
pub fn update_pilot_operator_ctr_last(&mut self, swarm_now: usize) {
for i in 0..self.operator_num {
self.pilot_operator_ctr_last[swarm_now][i] = self.pilot_operator_ctr_this[swarm_now][i]
}
}
#[inline]
pub fn update_core_operator_ctr_last(&mut self) {
for i in 0..self.operator_num {
self.core_operator_ctr_last[i] = self.core_operator_ctr_this[i];
}
}
/// Finds the local optimum for each operator
/// See <https://github.com/puppet-meteor/MOpt-AFL/blob/master/MOpt/afl-fuzz.c#L8709>
#[allow(clippy::cast_precision_loss)]
pub fn update_pilot_operator_ctr_pso(&mut self, swarm_now: usize) {
let mut eff = 0.0;
for i in 0..self.operator_num {
if self.pilot_operator_ctr_this[swarm_now][i]
> self.pilot_operator_ctr_pso[swarm_now][i]
{
eff = ((self.pilot_operator_finds_this[swarm_now][i]
- self.pilot_operator_finds_pso[swarm_now][i]) as f64)
/ ((self.pilot_operator_ctr_this[swarm_now][i]
- self.pilot_operator_ctr_pso[swarm_now][i]) as f64)
}
if self.eff_best[swarm_now][i] < eff {
self.eff_best[swarm_now][i] = eff;
self.l_best[swarm_now][i] = self.x_now[swarm_now][i];
}
self.pilot_operator_finds_pso[swarm_now][i] =
self.pilot_operator_finds_this[swarm_now][i];
self.pilot_operator_ctr_pso[swarm_now][i] = self.pilot_operator_ctr_this[swarm_now][i];
}
}
#[inline]
pub fn update_core_operator_ctr_pso(&mut self) {
for i in 0..self.operator_num {
self.core_operator_finds_pso[i] = self.core_operator_finds_this[i];
self.core_operator_ctr_pso[i] = self.core_operator_ctr_this[i];
}
}
#[allow(clippy::cast_precision_loss)]
pub fn pso_initialize(&mut self) -> Result<(), Error> {
if self.g_now > self.g_max {
self.g_now = 0;
}
self.w_now = (self.w_init - self.w_end) * f64::from(self.g_max - self.g_now)
/ f64::from(self.g_max)
+ self.w_end;
for swarm in 0..self.swarm_num {
let mut total_x_now = 0.0;
let mut x_sum = 0.0;
for i in 0..self.operator_num {
self.x_now[swarm][i] = (self.rand.below(7000) as f64) * 0.0001 + 0.1;
total_x_now += self.x_now[swarm][i];
self.v_now[swarm][i] = 0.1;
self.l_best[swarm][i] = 0.5;
self.g_best[i] = 0.5;
}
for i in 0..self.operator_num {
self.x_now[swarm][i] /= total_x_now
}
for i in 0..self.operator_num {
self.v_now[swarm][i] = self.w_now * self.v_now[swarm][i]
+ (self.rand.below(1000) as f64)
* 0.001
* (self.l_best[swarm][i] - self.x_now[swarm][i])
+ (self.rand.below(1000) as f64)
* 0.001
* (self.g_best[i] - self.x_now[swarm][i]);
self.x_now[swarm][i] += self.v_now[swarm][i];
if self.x_now[swarm][i] > V_MAX {
self.x_now[swarm][i] = V_MAX;
} else if self.x_now[swarm][i] < V_MIN {
self.x_now[swarm][i] = V_MIN;
}
x_sum += self.x_now[swarm][i]
}
for i in 0..self.operator_num {
self.x_now[swarm][i] /= x_sum;
if i == 0 {
self.probability_now[swarm][i] = self.x_now[swarm][i];
} else {
self.probability_now[swarm][i] =
self.probability_now[swarm][i - 1] + self.x_now[swarm][i];
}
}
if self.probability_now[swarm][self.operator_num - 1] < 0.99
|| self.probability_now[swarm][self.operator_num - 1] > 1.01
{
return Err(Error::MOpt("Error in pso_update".to_string()));
}
}
Ok(())
}
/// Update the PSO algorithm parameters
/// See <https://github.com/puppet-meteor/MOpt-AFL/blob/master/MOpt/afl-fuzz.c#L10623>
#[allow(clippy::cast_precision_loss)]
pub fn pso_update(&mut self) -> Result<(), Error> {
self.g_now += 1;
if self.g_now > self.g_max {
self.g_now = 0;
}
self.w_now = (self.w_init - self.w_end) * f64::from(self.g_max - self.g_now)
/ f64::from(self.g_max)
+ self.w_end;
let mut operator_find_sum = 0;
for i in 0..self.operator_num {
self.operator_finds_puppet[i] = self.core_operator_ctr_pso[i];
for j in 0..self.swarm_num {
self.operator_finds_puppet[i] += self.pilot_operator_finds_pso[j][i];
}
operator_find_sum += self.operator_finds_puppet[i];
}
for i in 0..self.operator_num {
if self.operator_finds_puppet[i] > 0 {
self.g_best[i] =
(self.operator_finds_puppet[i] as f64) / (operator_find_sum as f64);
}
}
for swarm in 0..self.swarm_num {
let mut x_sum = 0.0;
for i in 0..self.operator_num {
self.probability_now[swarm][i] = 0.0;
self.v_now[swarm][i] = self.w_now * self.v_now[swarm][i]
+ (self.rand.below(1000) as f64)
* 0.001
* (self.l_best[swarm][i] - self.x_now[swarm][i])
+ (self.rand.below(1000) as f64)
* 0.001
* (self.g_best[i] - self.x_now[swarm][i]);
self.x_now[swarm][i] += self.v_now[swarm][i];
if self.x_now[swarm][i] > V_MAX {
self.x_now[swarm][i] = V_MAX;
} else if self.x_now[swarm][i] < V_MIN {
self.x_now[swarm][i] = V_MIN;
}
x_sum += self.x_now[swarm][i];
}
for i in 0..self.operator_num {
self.x_now[swarm][i] /= x_sum;
if i == 0 {
self.probability_now[swarm][i] = self.x_now[swarm][i];
} else {
self.probability_now[swarm][i] =
self.probability_now[swarm][i - 1] + self.x_now[swarm][i];
}
}
if self.probability_now[swarm][self.operator_num - 1] < 0.99
|| self.probability_now[swarm][self.operator_num - 1] > 1.01
{
return Err(Error::MOpt("Error in pso_update".to_string()));
}
}
self.swarm_now = 0;
self.key_module = MOptMode::Pilotfuzzing;
//println!("Mopt struct:\n{:?}", self);
Ok(())
}
/// This function is used to decide the operator that we want to apply next
/// see <https://github.com/puppet-meteor/MOpt-AFL/blob/master/MOpt/afl-fuzz.c#L397>
#[allow(clippy::cast_precision_loss)]
pub fn select_algorithm(&mut self) -> Result<usize, Error> {
let mut res = 0;
let mut sentry = 0;
let operator_num = self.operator_num;
// Fetch a random sele value
let select_prob: f64 = self.probability_now[self.swarm_now][operator_num - 1]
* ((self.rand.below(10000) as f64) * 0.0001);
for i in 0..operator_num {
if i == 0 {
if select_prob < self.probability_now[self.swarm_now][i] {
res = i;
break;
}
} else if select_prob < self.probability_now[self.swarm_now][i] {
res = i;
sentry = 1;
break;
}
}
if (sentry == 1 && select_prob < self.probability_now[self.swarm_now][res - 1])
|| (res + 1 < operator_num
&& select_prob > self.probability_now[self.swarm_now][res + 1])
{
return Err(Error::MOpt("Error in select_algorithm".to_string()));
}
Ok(res)
}
}
const V_MAX: f64 = 1.0;
const V_MIN: f64 = 0.05;
#[derive(Serialize, Deserialize, Clone, Copy, Debug)]
pub enum MOptMode {
Pilotfuzzing,
Corefuzzing,
}
pub struct StdMOptMutator<I, MT, R, S>
where
I: Input,
MT: MutatorsTuple<I, S>,
R: Rand,
S: HasRand<R> + HasMetadata,
{
mutations: MT,
phantom: PhantomData<(I, R, S)>,
}
impl<I, MT, R, S> Debug for StdMOptMutator<I, MT, R, S>
where
I: Input,
MT: MutatorsTuple<I, S>,
R: Rand,
S: HasRand<R> + HasMetadata,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"StdMOptMutator with {} mutations for Input type {}",
self.mutations.len(),
core::any::type_name::<I>()
)
}
}
impl<I, MT, R, S> Mutator<I, S> for StdMOptMutator<I, MT, R, S>
where
I: Input,
MT: MutatorsTuple<I, S>,
R: Rand,
S: HasRand<R> + HasMetadata,
{
#[inline]
fn mutate(
&mut self,
state: &mut S,
input: &mut I,
stage_idx: i32,
) -> Result<MutationResult, Error> {
self.scheduled_mutate(state, input, stage_idx)
}
}
impl<I, MT, R, S> StdMOptMutator<I, MT, R, S>
where
I: Input,
MT: MutatorsTuple<I, S>,
R: Rand,
S: HasRand<R> + HasMetadata,
{
pub fn new(mutations: MT) -> Self {
Self {
mutations,
phantom: PhantomData,
}
}
fn core_mutate(
&mut self,
state: &mut S,
input: &mut I,
stage_idx: i32,
) -> Result<MutationResult, Error> {
// TODO
let mut r = MutationResult::Skipped;
state
.metadata_mut()
.get_mut::<MOpt>()
.unwrap()
.update_core_operator_ctr_last();
for _i in 0..self.iterations(state, input) {
let idx = self.schedule(state, input);
let outcome = self
.mutations_mut()
.get_and_mutate(idx, state, input, stage_idx)?;
if outcome == MutationResult::Mutated {
r = MutationResult::Mutated;
}
state
.metadata_mut()
.get_mut::<MOpt>()
.unwrap()
.core_operator_ctr_this[idx] += 1;
}
Ok(r)
}
fn pilot_mutate(
&mut self,
state: &mut S,
input: &mut I,
stage_idx: i32,
) -> Result<MutationResult, Error> {
let mut r = MutationResult::Skipped;
let swarm_now;
{
let mopt = state.metadata_mut().get_mut::<MOpt>().unwrap();
swarm_now = mopt.swarm_now;
mopt.update_pilot_operator_ctr_last(swarm_now);
}
for _i in 0..self.iterations(state, input) {
let idx = self.schedule(state, input);
let outcome = self
.mutations_mut()
.get_and_mutate(idx, state, input, stage_idx)?;
if outcome == MutationResult::Mutated {
r = MutationResult::Mutated;
}
state
.metadata_mut()
.get_mut::<MOpt>()
.unwrap()
.pilot_operator_ctr_this[swarm_now][idx] += 1;
}
Ok(r)
}
}
impl<I, MT, R, S> ComposedByMutations<I, MT, S> for StdMOptMutator<I, MT, R, S>
where
I: Input,
MT: MutatorsTuple<I, S>,
R: Rand,
S: HasRand<R> + HasMetadata,
{
/// Get the mutations
#[inline]
fn mutations(&self) -> &MT {
&self.mutations
}
// Get the mutations (mut)
#[inline]
fn mutations_mut(&mut self) -> &mut MT {
&mut self.mutations
}
}
impl<I, MT, R, S> ScheduledMutator<I, MT, S> for StdMOptMutator<I, MT, R, S>
where
I: Input,
MT: MutatorsTuple<I, S>,
R: Rand,
S: HasRand<R> + HasMetadata,
{
/// Compute the number of iterations used to apply stacked mutations
fn iterations(&self, state: &mut S, _: &I) -> u64 {
1 << (1 + state.rand_mut().below(6))
}
/// Get the next mutation to apply
fn schedule(&self, state: &mut S, _: &I) -> usize {
state
.metadata_mut()
.get_mut::<MOpt>()
.unwrap()
.select_algorithm()
.unwrap()
}
fn scheduled_mutate(
&mut self,
state: &mut S,
input: &mut I,
stage_idx: i32,
) -> Result<MutationResult, Error> {
let mode = state.metadata().get::<MOpt>().unwrap().key_module;
match mode {
MOptMode::Corefuzzing => self.core_mutate(state, input, stage_idx),
MOptMode::Pilotfuzzing => self.pilot_mutate(state, input, stage_idx),
}
}
}
pub trait MOptMutator<I, MT, R, S>: ScheduledMutator<I, MT, S>
where
I: Input,
MT: MutatorsTuple<I, S>,
R: Rand,
S: HasRand<R> + HasMetadata,
{
}
impl<I, MT, R, S> MOptMutator<I, MT, R, S> for StdMOptMutator<I, MT, R, S>
where
I: Input,
MT: MutatorsTuple<I, S>,
R: Rand,
S: HasRand<R> + HasMetadata,
{
}

View File

@ -11,6 +11,9 @@ pub use mutational::{MutationalStage, StdMutationalStage};
pub mod tracing; pub mod tracing;
pub use tracing::{ShadowTracingStage, TracingStage}; pub use tracing::{ShadowTracingStage, TracingStage};
pub mod mopt;
pub use mopt::*;
//pub mod power; //pub mod power;
//pub use power::PowerMutationalStage; //pub use power::PowerMutationalStage;
use crate::Error; use crate::Error;

237
libafl/src/stages/mopt.rs Normal file
View File

@ -0,0 +1,237 @@
use core::marker::PhantomData;
use crate::{
bolts::rands::Rand,
corpus::Corpus,
fuzzer::Evaluator,
inputs::Input,
mutators::{MOpt, MOptMode, MOptMutator, MutatorsTuple},
stages::{MutationalStage, Stage},
state::{HasClientPerfStats, HasCorpus, HasMetadata, HasRand, HasSolutions},
Error,
};
const PERIOD_PILOT_COEF: f64 = 5000.0;
#[derive(Clone, Debug)]
pub struct MOptStage<C, E, EM, I, M, MT, R, S, SC, Z>
where
C: Corpus<I>,
M: MOptMutator<I, MT, R, S>,
MT: MutatorsTuple<I, S>,
I: Input,
R: Rand,
S: HasClientPerfStats + HasCorpus<C, I> + HasSolutions<SC, I> + HasRand<R> + HasMetadata,
SC: Corpus<I>,
Z: Evaluator<E, EM, I, S>,
{
mutator: M,
#[allow(clippy::type_complexity)]
phantom: PhantomData<(C, E, EM, I, MT, R, S, SC, Z)>,
}
impl<C, E, EM, I, M, MT, R, S, SC, Z> MutationalStage<C, E, EM, I, M, S, Z>
for MOptStage<C, E, EM, I, M, MT, R, S, SC, Z>
where
C: Corpus<I>,
M: MOptMutator<I, MT, R, S>,
MT: MutatorsTuple<I, S>,
I: Input,
R: Rand,
S: HasClientPerfStats + HasCorpus<C, I> + HasSolutions<SC, I> + HasRand<R> + HasMetadata,
SC: Corpus<I>,
Z: Evaluator<E, EM, I, S>,
{
/// The mutator, added to this stage
#[inline]
fn mutator(&self) -> &M {
&self.mutator
}
/// The list of mutators, added to this stage (as mutable ref)
#[inline]
fn mutator_mut(&mut self) -> &mut M {
&mut self.mutator
}
/// Gets the number of iterations as a random number
fn iterations(&self, state: &mut S) -> usize {
// TODO: we want to use calculate_score here
1 + state.rand_mut().below(128) as usize
}
#[allow(
clippy::cast_possible_wrap,
clippy::cast_precision_loss,
clippy::too_many_lines
)]
fn perform_mutational(
&mut self,
fuzzer: &mut Z,
executor: &mut E,
state: &mut S,
manager: &mut EM,
corpus_idx: usize,
) -> Result<(), Error> {
let key_module = state.metadata().get::<MOpt>().unwrap().key_module;
match key_module {
MOptMode::Corefuzzing => {
let num = self.iterations(state);
for stage_id in 0..num {
let mut input = state
.corpus()
.get(corpus_idx)?
.borrow_mut()
.load_input()?
.clone();
self.mutator_mut()
.mutate(state, &mut input, stage_id as i32)?;
let finds_before = state.corpus().count() + state.solutions().count();
let (_, corpus_idx) = fuzzer.evaluate_input(state, executor, manager, input)?;
self.mutator_mut()
.post_exec(state, stage_id as i32, corpus_idx)?;
let finds_after = state.corpus().count() + state.solutions().count();
let mopt = state.metadata_mut().get_mut::<MOpt>().unwrap();
mopt.core_time += 1;
if finds_after > finds_before {
let diff = finds_after - finds_before;
mopt.total_finds += diff;
for i in 0..mopt.operator_num {
if mopt.core_operator_ctr_this[i] > mopt.core_operator_ctr_last[i] {
mopt.core_operator_finds_this[i] += diff;
}
}
}
if mopt.core_time > mopt.period_core {
// Make a call to pso_update()
mopt.core_time = 0;
let total_finds = mopt.total_finds;
mopt.finds_before_switch = total_finds;
mopt.update_core_operator_ctr_pso();
mopt.pso_update()?;
}
}
}
MOptMode::Pilotfuzzing => {
let num = self.iterations(state);
for stage_id in 0..num {
let mut input = state
.corpus()
.get(corpus_idx)?
.borrow_mut()
.load_input()?
.clone();
self.mutator_mut()
.mutate(state, &mut input, stage_id as i32)?;
let finds_before = state.corpus().count() + state.solutions().count();
let (_, corpus_idx) = fuzzer.evaluate_input(state, executor, manager, input)?;
self.mutator_mut()
.post_exec(state, stage_id as i32, corpus_idx)?;
let finds_after = state.corpus().count() + state.solutions().count();
let mopt = state.metadata_mut().get_mut::<MOpt>().unwrap();
mopt.pilot_time += 1;
let swarm_now = mopt.swarm_now;
if finds_after > finds_before {
let diff = finds_after - finds_before;
mopt.total_finds += diff;
for i in 0..mopt.operator_num {
if mopt.pilot_operator_ctr_this[swarm_now][i]
> mopt.pilot_operator_ctr_last[swarm_now][i]
{
mopt.pilot_operator_finds_this[swarm_now][i] += diff;
}
}
}
if mopt.pilot_time > mopt.period_pilot {
let new_finds = mopt.total_finds - mopt.finds_before_switch;
let f =
(new_finds as f64) / ((mopt.pilot_time as f64) / (PERIOD_PILOT_COEF));
mopt.swarm_fitness[swarm_now] = f;
mopt.pilot_time = 0;
let total_finds = mopt.total_finds;
mopt.finds_before_switch = total_finds;
mopt.update_pilot_operator_ctr_pso(swarm_now);
mopt.swarm_now += 1;
if mopt.swarm_now == mopt.swarm_num {
// Move to CORE_FUZING mode
mopt.key_module = MOptMode::Corefuzzing;
mopt.init_core_module()?;
}
}
}
}
}
Ok(())
}
}
impl<C, E, EM, I, M, MT, R, S, SC, Z> Stage<E, EM, S, Z>
for MOptStage<C, E, EM, I, M, MT, R, S, SC, Z>
where
C: Corpus<I>,
M: MOptMutator<I, MT, R, S>,
MT: MutatorsTuple<I, S>,
I: Input,
R: Rand,
S: HasClientPerfStats + HasCorpus<C, I> + HasSolutions<SC, I> + HasRand<R> + HasMetadata,
SC: Corpus<I>,
Z: Evaluator<E, EM, I, S>,
{
#[inline]
fn perform(
&mut self,
fuzzer: &mut Z,
executor: &mut E,
state: &mut S,
manager: &mut EM,
corpus_idx: usize,
) -> Result<(), Error> {
self.perform_mutational(fuzzer, executor, state, manager, corpus_idx)
}
}
impl<C, E, EM, I, M, MT, R, S, SC, Z> MOptStage<C, E, EM, I, M, MT, R, S, SC, Z>
where
C: Corpus<I>,
M: MOptMutator<I, MT, R, S>,
MT: MutatorsTuple<I, S>,
I: Input,
R: Rand,
S: HasClientPerfStats + HasCorpus<C, I> + HasSolutions<SC, I> + HasRand<R> + HasMetadata,
SC: Corpus<I>,
Z: Evaluator<E, EM, I, S>,
{
/// Creates a new default mutational stage
pub fn new(mutator: M, state: &mut S, swarm_num: usize) -> Result<Self, Error> {
state.add_metadata::<MOpt>(MOpt::new(mutator.mutations().len(), swarm_num)?);
Ok(Self {
mutator,
phantom: PhantomData,
})
}
}