MOpt Refactor & Bug fixes (#218)

* rename

* fmt

* post_exec

* post_exec

* bug fix & change type

* refactor

* clippy

* fix

* unnecessary trait

* mode in Mutator

* remove println
This commit is contained in:
Toka 2021-07-10 23:32:10 +09:00 committed by GitHub
parent aad271abf4
commit 4dea81b2a2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 229 additions and 425 deletions

View File

@ -21,7 +21,7 @@ use libafl::{
mutators::scheduled::{havoc_mutations, tokens_mutations},
mutators::token_mutations::Tokens,
observers::{HitcountsMapObserver, StdMapObserver, TimeObserver},
stages::mopt::MOptStage,
stages::mutational::StdMutationalStage,
state::{HasCorpus, HasMetadata, StdState},
stats::MultiStats,
Error,
@ -121,8 +121,8 @@ fn fuzz(corpus_dirs: &[PathBuf], objective_dir: PathBuf, broker_port: u16) -> Re
// Setup a basic mutator with a mutational stage
let mutator = StdMOptMutator::new(havoc_mutations().merge(tokens_mutations()));
let mut stages = tuple_list!(MOptStage::new(mutator, &mut state, 5)?);
let mutator = StdMOptMutator::new(&mut state, havoc_mutations().merge(tokens_mutations()), 5)?;
let mut stages = tuple_list!(StdMutationalStage::new(mutator));
/*
let mutator = StdScheduledMutator::new(havoc_mutations().merge(tokens_mutations()));

View File

@ -3,9 +3,10 @@ use alloc::{string::ToString, vec::Vec};
use crate::{
bolts::{rands::Rand, rands::StdRand},
corpus::Corpus,
inputs::Input,
mutators::{ComposedByMutations, MutationResult, Mutator, MutatorsTuple, ScheduledMutator},
state::{HasMetadata, HasRand},
state::{HasCorpus, HasMetadata, HasRand, HasSolutions},
Error,
};
use core::{
@ -25,23 +26,21 @@ pub struct MOpt {
pub rand: StdRand,
/// The number of total findings (unique crashes and unique interesting paths). This is equivalent to `state.corpus().count() + state.solutions().count()`;
pub total_finds: usize,
/// The number of finds before switching to this mode.
pub finds_before_switch: usize,
/// The MOpt mode that we are currently using the pilot fuzzing mode or the core_fuzzing mode
pub key_module: MOptMode,
/// The number of finds before until last swarm.
pub finds_until_last_swarm: usize,
/// These w_* and g_* values are the coefficients for updating variables according to the PSO algorithms
pub w_init: f64,
pub w_end: f64,
pub w_now: f64,
pub g_now: i32,
pub g_max: i32,
pub g_now: f64,
pub g_max: f64,
/// The number of mutation operators
pub operator_num: usize,
/// The number of swarms that we want to employ during the pilot fuzzing mode
pub swarm_num: usize,
/// We'll generate testcases for `period_pilot` times before we call pso_update in core fuzzing module
/// We'll generate inputs for `period_pilot` times before we call pso_update in pilot fuzzing module
pub period_pilot: usize,
/// We'll generate testcases for `period_core` times before we call pso_update in core fuzzing module
/// We'll generate inputs for `period_core` times before we call pso_update in core fuzzing module
pub period_core: usize,
/// The number of testcases generated during this pilot fuzzing mode
pub pilot_time: usize,
@ -60,27 +59,27 @@ pub struct MOpt {
/// The fitness for each swarm, we'll calculate the fitness in the pilot fuzzing mode and use the best one in the core fuzzing mode
pub swarm_fitness: Vec<f64>,
/// (Pilot Mode) Finds by each operators. This vector is used in pso_update
pub pilot_operator_finds_pso: Vec<Vec<usize>>,
pub pilot_operator_finds: Vec<Vec<u64>>,
/// (Pilot Mode) Finds by each operator till now.
pub pilot_operator_finds_this: Vec<Vec<usize>>,
pub pilot_operator_finds_v2: Vec<Vec<u64>>,
/// (Pilot Mode) The number of mutation operator used. This vector is used in pso_update
pub pilot_operator_ctr_pso: Vec<Vec<usize>>,
pub pilot_operator_cycles: Vec<Vec<u64>>,
/// (Pilot Mode) The number of mutation operator used till now
pub pilot_operator_ctr_this: Vec<Vec<usize>>,
pub pilot_operator_cycles_v2: Vec<Vec<u64>>,
/// (Pilot Mode) The number of mutation operator used till last execution
pub pilot_operator_ctr_last: Vec<Vec<usize>>,
pub pilot_operator_cycles_v3: Vec<Vec<u64>>,
/// Vector used in pso_update
pub operator_finds_puppet: Vec<usize>,
pub operator_finds_puppet: Vec<u64>,
/// (Core Mode) Finds by each operators. This vector is used in pso_update
pub core_operator_finds_pso: Vec<usize>,
pub core_operator_finds: Vec<u64>,
/// (Core Mode) Finds by each operator till now.
pub core_operator_finds_this: Vec<usize>,
pub core_operator_finds_v2: Vec<u64>,
/// (Core Mode) The number of mutation operator used. This vector is used in pso_update
pub core_operator_ctr_pso: Vec<usize>,
pub core_operator_cycles: Vec<u64>,
/// (Core Mode) The number of mutation operator used till now
pub core_operator_ctr_this: Vec<usize>,
pub core_operator_cycles_v2: Vec<u64>,
/// (Core Mode) The number of mutation operator used till last execution
pub core_operator_ctr_last: Vec<usize>,
pub core_operator_cycles_v3: Vec<u64>,
}
crate::impl_serdeany!(MOpt);
@ -89,8 +88,7 @@ impl fmt::Debug for MOpt {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("MOpt")
.field("\ntotal_finds", &self.total_finds)
.field("\nfinds_before_switch", &self.finds_before_switch)
.field("\nkey_module", &self.key_module)
.field("\nfinds_until_last_swarm", &self.finds_until_last_swarm)
.field("\nw_init", &self.w_init)
.field("\nw_end", &self.w_end)
.field("\nw_now", &self.g_now)
@ -104,42 +102,43 @@ impl fmt::Debug for MOpt {
.field("\n\nv_now", &self.v_now)
.field("\n\nprobability_now", &self.probability_now)
.field("\n\nswarm_fitness", &self.swarm_fitness)
.field(
"\n\npilot_operator_finds_pso",
&self.pilot_operator_finds_pso,
)
.field("\n\npilot_operator_finds", &self.pilot_operator_finds)
.field(
"\n\npilot_operator_finds_this",
&self.pilot_operator_finds_this,
&self.pilot_operator_finds_v2,
)
.field("\n\npilot_operator_ctr_pso", &self.pilot_operator_ctr_pso)
.field("\n\npilot_operator_ctr_this", &self.pilot_operator_ctr_this)
.field("\n\npilot_operator_ctr_last", &self.pilot_operator_ctr_last)
.field("\n\noperator_finds_puppuet", &self.operator_finds_puppet)
.field("\n\ncore_operator_finds_pso", &self.core_operator_finds_pso)
.field("\n\npilot_operator_cycles", &self.pilot_operator_cycles)
.field(
"\n\ncore_operator_finds_this",
&self.core_operator_finds_this,
"\n\npilot_operator_cycles_v2",
&self.pilot_operator_cycles_v2,
)
.field("\n\ncore_operator_ctr_pso", &self.core_operator_ctr_pso)
.field("\n\ncore_operator_ctr_this", &self.core_operator_ctr_this)
.field("\n\ncore_operator_ctr_last", &self.core_operator_ctr_last)
.field(
"\n\npilot_operator_cycles_v3",
&self.pilot_operator_cycles_v3,
)
.field("\n\noperator_finds_puppuet", &self.operator_finds_puppet)
.field("\n\ncore_operator_finds", &self.core_operator_finds)
.field("\n\ncore_operator_finds_v2", &self.core_operator_finds_v2)
.field("\n\ncore_operator_cycles", &self.core_operator_cycles)
.field("\n\ncore_operator_cycles_v2", &self.core_operator_cycles_v2)
.field("\n\ncore_operator_cycles_v3", &self.core_operator_cycles_v3)
.finish()
}
}
const PERIOD_PILOT_COEF: f64 = 5000.0;
impl MOpt {
pub fn new(operator_num: usize, swarm_num: usize) -> Result<Self, Error> {
let mut mopt = Self {
rand: StdRand::with_seed(0),
total_finds: 0,
finds_before_switch: 0,
key_module: MOptMode::Pilotfuzzing,
finds_until_last_swarm: 0,
w_init: 0.9,
w_end: 0.3,
w_now: 0.0,
g_now: 0,
g_max: 5000,
g_now: 0.0,
g_max: 5000.0,
operator_num,
swarm_num,
period_pilot: 50000,
@ -154,100 +153,29 @@ impl MOpt {
v_now: vec![vec![0.0; operator_num]; swarm_num],
probability_now: vec![vec![0.0; operator_num]; swarm_num],
swarm_fitness: vec![0.0; swarm_num],
pilot_operator_finds_pso: vec![vec![0; operator_num]; swarm_num],
pilot_operator_finds_this: vec![vec![0; operator_num]; swarm_num],
pilot_operator_ctr_pso: vec![vec![0; operator_num]; swarm_num],
pilot_operator_ctr_this: vec![vec![0; operator_num]; swarm_num],
pilot_operator_ctr_last: vec![vec![0; operator_num]; swarm_num],
pilot_operator_finds: vec![vec![0; operator_num]; swarm_num],
pilot_operator_finds_v2: vec![vec![0; operator_num]; swarm_num],
pilot_operator_cycles: vec![vec![0; operator_num]; swarm_num],
pilot_operator_cycles_v2: vec![vec![0; operator_num]; swarm_num],
pilot_operator_cycles_v3: vec![vec![0; operator_num]; swarm_num],
operator_finds_puppet: vec![0; operator_num],
core_operator_finds_pso: vec![0; operator_num],
core_operator_finds_this: vec![0; operator_num],
core_operator_ctr_pso: vec![0; operator_num],
core_operator_ctr_this: vec![0; operator_num],
core_operator_ctr_last: vec![0; operator_num],
core_operator_finds: vec![0; operator_num],
core_operator_finds_v2: vec![0; operator_num],
core_operator_cycles: vec![0; operator_num],
core_operator_cycles_v2: vec![0; operator_num],
core_operator_cycles_v3: vec![0; operator_num],
};
mopt.pso_initialize()?;
Ok(mopt)
}
/// Initialize `core_operator_*` values
pub fn init_core_module(&mut self) -> Result<(), Error> {
for i in 0..self.operator_num {
self.core_operator_ctr_this[i] = self.core_operator_ctr_pso[i];
self.core_operator_ctr_last[i] = self.core_operator_ctr_pso[i];
self.core_operator_finds_this[i] = self.core_operator_finds_pso[i]
}
let mut swarm_eff = 0.0;
let mut best_swarm = 0;
for i in 0..self.swarm_num {
if self.swarm_fitness[i] > swarm_eff {
swarm_eff = self.swarm_fitness[i];
best_swarm = i;
}
}
self.swarm_now = best_swarm;
Ok(())
}
#[inline]
pub fn update_pilot_operator_ctr_last(&mut self, swarm_now: usize) {
for i in 0..self.operator_num {
self.pilot_operator_ctr_last[swarm_now][i] = self.pilot_operator_ctr_this[swarm_now][i]
}
}
#[inline]
pub fn update_core_operator_ctr_last(&mut self) {
for i in 0..self.operator_num {
self.core_operator_ctr_last[i] = self.core_operator_ctr_this[i];
}
}
/// Finds the local optimum for each operator
/// See <https://github.com/puppet-meteor/MOpt-AFL/blob/master/MOpt/afl-fuzz.c#L8709>
#[allow(clippy::cast_precision_loss)]
pub fn update_pilot_operator_ctr_pso(&mut self, swarm_now: usize) {
let mut eff = 0.0;
for i in 0..self.operator_num {
if self.pilot_operator_ctr_this[swarm_now][i]
> self.pilot_operator_ctr_pso[swarm_now][i]
{
eff = ((self.pilot_operator_finds_this[swarm_now][i]
- self.pilot_operator_finds_pso[swarm_now][i]) as f64)
/ ((self.pilot_operator_ctr_this[swarm_now][i]
- self.pilot_operator_ctr_pso[swarm_now][i]) as f64)
}
if self.eff_best[swarm_now][i] < eff {
self.eff_best[swarm_now][i] = eff;
self.l_best[swarm_now][i] = self.x_now[swarm_now][i];
}
self.pilot_operator_finds_pso[swarm_now][i] =
self.pilot_operator_finds_this[swarm_now][i];
self.pilot_operator_ctr_pso[swarm_now][i] = self.pilot_operator_ctr_this[swarm_now][i];
}
}
#[inline]
pub fn update_core_operator_ctr_pso(&mut self) {
for i in 0..self.operator_num {
self.core_operator_finds_pso[i] = self.core_operator_finds_this[i];
self.core_operator_ctr_pso[i] = self.core_operator_ctr_this[i];
}
}
#[allow(clippy::cast_precision_loss)]
pub fn pso_initialize(&mut self) -> Result<(), Error> {
if self.g_now > self.g_max {
self.g_now = 0;
self.g_now = 0.0;
}
self.w_now = (self.w_init - self.w_end) * f64::from(self.g_max - self.g_now)
/ f64::from(self.g_max)
+ self.w_end;
self.w_now =
(self.w_init - self.w_end) * (self.g_max - self.g_now) / self.g_max + self.w_end;
for swarm in 0..self.swarm_num {
let mut total_x_now = 0.0;
@ -305,29 +233,28 @@ impl MOpt {
/// See <https://github.com/puppet-meteor/MOpt-AFL/blob/master/MOpt/afl-fuzz.c#L10623>
#[allow(clippy::cast_precision_loss)]
pub fn pso_update(&mut self) -> Result<(), Error> {
self.g_now += 1;
self.g_now += 1.0;
if self.g_now > self.g_max {
self.g_now = 0;
self.g_now = 0.0;
}
self.w_now = (self.w_init - self.w_end) * f64::from(self.g_max - self.g_now)
/ f64::from(self.g_max)
+ self.w_end;
self.w_now =
((self.w_init - self.w_end) * (self.g_max - self.g_now) / self.g_max) + self.w_end;
let mut operator_find_sum = 0;
let mut operator_finds_sum = 0;
for i in 0..self.operator_num {
self.operator_finds_puppet[i] = self.core_operator_ctr_pso[i];
self.operator_finds_puppet[i] = self.core_operator_finds[i];
for j in 0..self.swarm_num {
self.operator_finds_puppet[i] += self.pilot_operator_finds_pso[j][i];
self.operator_finds_puppet[i] += self.pilot_operator_finds[j][i];
}
operator_find_sum += self.operator_finds_puppet[i];
operator_finds_sum += self.operator_finds_puppet[i];
}
for i in 0..self.operator_num {
if self.operator_finds_puppet[i] > 0 {
self.g_best[i] =
(self.operator_finds_puppet[i] as f64) / (operator_find_sum as f64);
(self.operator_finds_puppet[i] as f64) / (operator_finds_sum as f64);
}
}
@ -369,8 +296,7 @@ impl MOpt {
}
self.swarm_now = 0;
self.key_module = MOptMode::Pilotfuzzing;
//println!("Mopt struct:\n{:?}", self);
// After pso_update, go back to pilot-fuzzing module
Ok(())
}
@ -419,23 +345,29 @@ pub enum MOptMode {
Corefuzzing,
}
pub struct StdMOptMutator<I, MT, R, S>
pub struct StdMOptMutator<C, I, MT, R, S, SC>
where
C: Corpus<I>,
I: Input,
MT: MutatorsTuple<I, S>,
R: Rand,
S: HasRand<R> + HasMetadata,
S: HasRand<R> + HasMetadata + HasCorpus<C, I> + HasSolutions<SC, I>,
SC: Corpus<I>,
{
mode: MOptMode,
finds_before: usize,
mutations: MT,
phantom: PhantomData<(I, R, S)>,
phantom: PhantomData<(C, I, R, S, SC)>,
}
impl<I, MT, R, S> Debug for StdMOptMutator<I, MT, R, S>
impl<C, I, MT, R, S, SC> Debug for StdMOptMutator<C, I, MT, R, S, SC>
where
C: Corpus<I>,
I: Input,
MT: MutatorsTuple<I, S>,
R: Rand,
S: HasRand<R> + HasMetadata,
S: HasRand<R> + HasMetadata + HasCorpus<C, I> + HasSolutions<SC, I>,
SC: Corpus<I>,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
@ -447,12 +379,14 @@ where
}
}
impl<I, MT, R, S> Mutator<I, S> for StdMOptMutator<I, MT, R, S>
impl<C, I, MT, R, S, SC> Mutator<I, S> for StdMOptMutator<C, I, MT, R, S, SC>
where
C: Corpus<I>,
I: Input,
MT: MutatorsTuple<I, S>,
R: Rand,
S: HasRand<R> + HasMetadata,
S: HasRand<R> + HasMetadata + HasCorpus<C, I> + HasSolutions<SC, I>,
SC: Corpus<I>,
{
#[inline]
fn mutate(
@ -461,22 +395,145 @@ where
input: &mut I,
stage_idx: i32,
) -> Result<MutationResult, Error> {
self.finds_before = state.corpus().count() + state.solutions().count();
self.scheduled_mutate(state, input, stage_idx)
}
#[allow(clippy::cast_precision_loss)]
fn post_exec(
&mut self,
state: &mut S,
_stage_idx: i32,
_corpus_idx: Option<usize>,
) -> Result<(), Error> {
let before = self.finds_before;
let after = state.corpus().count() + state.solutions().count();
let mopt = state.metadata_mut().get_mut::<MOpt>().unwrap();
let key_module = self.mode;
match key_module {
MOptMode::Corefuzzing => {
mopt.core_time += 1;
if after > before {
let diff = after - before;
mopt.total_finds += diff;
for i in 0..mopt.operator_num {
if mopt.core_operator_cycles_v2[i] > mopt.core_operator_cycles_v3[i] {
mopt.core_operator_finds_v2[i] += diff as u64;
}
}
}
if mopt.core_time > mopt.period_core {
mopt.core_time = 0;
let total_finds = mopt.total_finds;
mopt.finds_until_last_swarm = total_finds;
for i in 0..mopt.operator_num {
mopt.core_operator_finds[i] = mopt.core_operator_finds_v2[i];
mopt.core_operator_cycles[i] = mopt.core_operator_cycles_v2[i];
}
mopt.pso_update()?;
self.mode = MOptMode::Pilotfuzzing;
}
}
MOptMode::Pilotfuzzing => {
mopt.pilot_time += 1;
let swarm_now = mopt.swarm_now;
if after > before {
let diff = after - before;
mopt.total_finds += diff;
for i in 0..mopt.operator_num {
if mopt.pilot_operator_cycles_v2[swarm_now][i]
> mopt.pilot_operator_cycles_v3[swarm_now][i]
{
mopt.pilot_operator_finds_v2[swarm_now][i] += diff as u64;
}
}
}
if mopt.pilot_time > mopt.period_pilot {
let new_finds = mopt.total_finds - mopt.finds_until_last_swarm;
let f = (new_finds as f64) / ((mopt.pilot_time as f64) / (PERIOD_PILOT_COEF));
mopt.swarm_fitness[swarm_now] = f;
mopt.pilot_time = 0;
let total_finds = mopt.total_finds;
mopt.finds_until_last_swarm = total_finds;
for i in 0..mopt.operator_num {
let mut eff = 0.0;
if mopt.pilot_operator_cycles_v2[swarm_now][i]
> mopt.pilot_operator_cycles[swarm_now][i]
{
eff = ((mopt.pilot_operator_finds_v2[swarm_now][i]
- mopt.pilot_operator_finds[swarm_now][i])
as f64)
/ ((mopt.pilot_operator_cycles_v2[swarm_now][i]
- mopt.pilot_operator_cycles[swarm_now][i])
as f64)
}
if mopt.eff_best[swarm_now][i] < eff {
mopt.eff_best[swarm_now][i] = eff;
mopt.l_best[swarm_now][i] = mopt.x_now[swarm_now][i];
}
mopt.pilot_operator_finds[swarm_now][i] =
mopt.pilot_operator_finds_v2[swarm_now][i];
mopt.pilot_operator_cycles[swarm_now][i] =
mopt.pilot_operator_cycles_v2[swarm_now][i];
}
mopt.swarm_now += 1;
if mopt.swarm_num == 1 {
// If there's only 1 swarm, then no core_fuzzing mode.
mopt.pso_update()?;
} else if mopt.swarm_now == mopt.swarm_num {
self.mode = MOptMode::Corefuzzing;
for i in 0..mopt.operator_num {
mopt.core_operator_cycles_v2[i] = mopt.core_operator_cycles[i];
mopt.core_operator_cycles_v3[i] = mopt.core_operator_cycles[i];
mopt.core_operator_finds_v2[i] = mopt.core_operator_finds[i]
}
let mut swarm_eff = 0.0;
let mut best_swarm = 0;
for i in 0..mopt.swarm_num {
if mopt.swarm_fitness[i] > swarm_eff {
swarm_eff = mopt.swarm_fitness[i];
best_swarm = i;
}
}
mopt.swarm_now = best_swarm;
}
}
}
}
Ok(())
}
}
impl<I, MT, R, S> StdMOptMutator<I, MT, R, S>
impl<C, I, MT, R, S, SC> StdMOptMutator<C, I, MT, R, S, SC>
where
C: Corpus<I>,
I: Input,
MT: MutatorsTuple<I, S>,
R: Rand,
S: HasRand<R> + HasMetadata,
S: HasRand<R> + HasMetadata + HasCorpus<C, I> + HasSolutions<SC, I>,
SC: Corpus<I>,
{
pub fn new(mutations: MT) -> Self {
Self {
pub fn new(state: &mut S, mutations: MT, swarm_num: usize) -> Result<Self, Error> {
state.add_metadata::<MOpt>(MOpt::new(mutations.len(), swarm_num)?);
Ok(Self {
mode: MOptMode::Pilotfuzzing,
finds_before: 0,
mutations,
phantom: PhantomData,
}
})
}
fn core_mutate(
&mut self,
@ -484,13 +541,11 @@ where
input: &mut I,
stage_idx: i32,
) -> Result<MutationResult, Error> {
// TODO
let mut r = MutationResult::Skipped;
state
.metadata_mut()
.get_mut::<MOpt>()
.unwrap()
.update_core_operator_ctr_last();
let mopt = state.metadata_mut().get_mut::<MOpt>().unwrap();
for i in 0..mopt.operator_num {
mopt.core_operator_cycles_v3[i] = mopt.core_operator_cycles_v2[i];
}
for _i in 0..self.iterations(state, input) {
let idx = self.schedule(state, input);
@ -505,9 +560,8 @@ where
.metadata_mut()
.get_mut::<MOpt>()
.unwrap()
.core_operator_ctr_this[idx] += 1;
.core_operator_cycles_v2[idx] += 1;
}
Ok(r)
}
@ -522,7 +576,11 @@ where
{
let mopt = state.metadata_mut().get_mut::<MOpt>().unwrap();
swarm_now = mopt.swarm_now;
mopt.update_pilot_operator_ctr_last(swarm_now);
for i in 0..mopt.operator_num {
mopt.pilot_operator_cycles_v3[swarm_now][i] =
mopt.pilot_operator_cycles_v2[swarm_now][i];
}
}
for _i in 0..self.iterations(state, input) {
@ -538,19 +596,21 @@ where
.metadata_mut()
.get_mut::<MOpt>()
.unwrap()
.pilot_operator_ctr_this[swarm_now][idx] += 1;
.pilot_operator_cycles_v2[swarm_now][idx] += 1;
}
Ok(r)
}
}
impl<I, MT, R, S> ComposedByMutations<I, MT, S> for StdMOptMutator<I, MT, R, S>
impl<C, I, MT, R, S, SC> ComposedByMutations<I, MT, S> for StdMOptMutator<C, I, MT, R, S, SC>
where
C: Corpus<I>,
I: Input,
MT: MutatorsTuple<I, S>,
R: Rand,
S: HasRand<R> + HasMetadata,
S: HasRand<R> + HasMetadata + HasCorpus<C, I> + HasSolutions<SC, I>,
SC: Corpus<I>,
{
/// Get the mutations
#[inline]
@ -565,12 +625,14 @@ where
}
}
impl<I, MT, R, S> ScheduledMutator<I, MT, S> for StdMOptMutator<I, MT, R, S>
impl<C, I, MT, R, S, SC> ScheduledMutator<I, MT, S> for StdMOptMutator<C, I, MT, R, S, SC>
where
C: Corpus<I>,
I: Input,
MT: MutatorsTuple<I, S>,
R: Rand,
S: HasRand<R> + HasMetadata,
S: HasRand<R> + HasMetadata + HasCorpus<C, I> + HasSolutions<SC, I>,
SC: Corpus<I>,
{
/// Compute the number of iterations used to apply stacked mutations
fn iterations(&self, state: &mut S, _: &I) -> u64 {
@ -593,28 +655,10 @@ where
input: &mut I,
stage_idx: i32,
) -> Result<MutationResult, Error> {
let mode = state.metadata().get::<MOpt>().unwrap().key_module;
let mode = self.mode;
match mode {
MOptMode::Corefuzzing => self.core_mutate(state, input, stage_idx),
MOptMode::Pilotfuzzing => self.pilot_mutate(state, input, stage_idx),
}
}
}
pub trait MOptMutator<I, MT, R, S>: ScheduledMutator<I, MT, S>
where
I: Input,
MT: MutatorsTuple<I, S>,
R: Rand,
S: HasRand<R> + HasMetadata,
{
}
impl<I, MT, R, S> MOptMutator<I, MT, R, S> for StdMOptMutator<I, MT, R, S>
where
I: Input,
MT: MutatorsTuple<I, S>,
R: Rand,
S: HasRand<R> + HasMetadata,
{
}

View File

@ -11,9 +11,6 @@ pub use mutational::{MutationalStage, StdMutationalStage};
pub mod tracing;
pub use tracing::{ShadowTracingStage, TracingStage};
pub mod mopt;
pub use mopt::*;
//pub mod power;
//pub use power::PowerMutationalStage;
use crate::Error;

View File

@ -1,237 +0,0 @@
use core::marker::PhantomData;
use crate::{
bolts::rands::Rand,
corpus::Corpus,
fuzzer::Evaluator,
inputs::Input,
mutators::{MOpt, MOptMode, MOptMutator, MutatorsTuple},
stages::{MutationalStage, Stage},
state::{HasClientPerfStats, HasCorpus, HasMetadata, HasRand, HasSolutions},
Error,
};
const PERIOD_PILOT_COEF: f64 = 5000.0;
#[derive(Clone, Debug)]
pub struct MOptStage<C, E, EM, I, M, MT, R, S, SC, Z>
where
C: Corpus<I>,
M: MOptMutator<I, MT, R, S>,
MT: MutatorsTuple<I, S>,
I: Input,
R: Rand,
S: HasClientPerfStats + HasCorpus<C, I> + HasSolutions<SC, I> + HasRand<R> + HasMetadata,
SC: Corpus<I>,
Z: Evaluator<E, EM, I, S>,
{
mutator: M,
#[allow(clippy::type_complexity)]
phantom: PhantomData<(C, E, EM, I, MT, R, S, SC, Z)>,
}
impl<C, E, EM, I, M, MT, R, S, SC, Z> MutationalStage<C, E, EM, I, M, S, Z>
for MOptStage<C, E, EM, I, M, MT, R, S, SC, Z>
where
C: Corpus<I>,
M: MOptMutator<I, MT, R, S>,
MT: MutatorsTuple<I, S>,
I: Input,
R: Rand,
S: HasClientPerfStats + HasCorpus<C, I> + HasSolutions<SC, I> + HasRand<R> + HasMetadata,
SC: Corpus<I>,
Z: Evaluator<E, EM, I, S>,
{
/// The mutator, added to this stage
#[inline]
fn mutator(&self) -> &M {
&self.mutator
}
/// The list of mutators, added to this stage (as mutable ref)
#[inline]
fn mutator_mut(&mut self) -> &mut M {
&mut self.mutator
}
/// Gets the number of iterations as a random number
fn iterations(&self, state: &mut S) -> usize {
// TODO: we want to use calculate_score here
1 + state.rand_mut().below(128) as usize
}
#[allow(
clippy::cast_possible_wrap,
clippy::cast_precision_loss,
clippy::too_many_lines
)]
fn perform_mutational(
&mut self,
fuzzer: &mut Z,
executor: &mut E,
state: &mut S,
manager: &mut EM,
corpus_idx: usize,
) -> Result<(), Error> {
let key_module = state.metadata().get::<MOpt>().unwrap().key_module;
match key_module {
MOptMode::Corefuzzing => {
let num = self.iterations(state);
for stage_id in 0..num {
let mut input = state
.corpus()
.get(corpus_idx)?
.borrow_mut()
.load_input()?
.clone();
self.mutator_mut()
.mutate(state, &mut input, stage_id as i32)?;
let finds_before = state.corpus().count() + state.solutions().count();
let (_, corpus_idx) = fuzzer.evaluate_input(state, executor, manager, input)?;
self.mutator_mut()
.post_exec(state, stage_id as i32, corpus_idx)?;
let finds_after = state.corpus().count() + state.solutions().count();
let mopt = state.metadata_mut().get_mut::<MOpt>().unwrap();
mopt.core_time += 1;
if finds_after > finds_before {
let diff = finds_after - finds_before;
mopt.total_finds += diff;
for i in 0..mopt.operator_num {
if mopt.core_operator_ctr_this[i] > mopt.core_operator_ctr_last[i] {
mopt.core_operator_finds_this[i] += diff;
}
}
}
if mopt.core_time > mopt.period_core {
// Make a call to pso_update()
mopt.core_time = 0;
let total_finds = mopt.total_finds;
mopt.finds_before_switch = total_finds;
mopt.update_core_operator_ctr_pso();
mopt.pso_update()?;
}
}
}
MOptMode::Pilotfuzzing => {
let num = self.iterations(state);
for stage_id in 0..num {
let mut input = state
.corpus()
.get(corpus_idx)?
.borrow_mut()
.load_input()?
.clone();
self.mutator_mut()
.mutate(state, &mut input, stage_id as i32)?;
let finds_before = state.corpus().count() + state.solutions().count();
let (_, corpus_idx) = fuzzer.evaluate_input(state, executor, manager, input)?;
self.mutator_mut()
.post_exec(state, stage_id as i32, corpus_idx)?;
let finds_after = state.corpus().count() + state.solutions().count();
let mopt = state.metadata_mut().get_mut::<MOpt>().unwrap();
mopt.pilot_time += 1;
let swarm_now = mopt.swarm_now;
if finds_after > finds_before {
let diff = finds_after - finds_before;
mopt.total_finds += diff;
for i in 0..mopt.operator_num {
if mopt.pilot_operator_ctr_this[swarm_now][i]
> mopt.pilot_operator_ctr_last[swarm_now][i]
{
mopt.pilot_operator_finds_this[swarm_now][i] += diff;
}
}
}
if mopt.pilot_time > mopt.period_pilot {
let new_finds = mopt.total_finds - mopt.finds_before_switch;
let f =
(new_finds as f64) / ((mopt.pilot_time as f64) / (PERIOD_PILOT_COEF));
mopt.swarm_fitness[swarm_now] = f;
mopt.pilot_time = 0;
let total_finds = mopt.total_finds;
mopt.finds_before_switch = total_finds;
mopt.update_pilot_operator_ctr_pso(swarm_now);
mopt.swarm_now += 1;
if mopt.swarm_now == mopt.swarm_num {
// Move to CORE_FUZING mode
mopt.key_module = MOptMode::Corefuzzing;
mopt.init_core_module()?;
}
}
}
}
}
Ok(())
}
}
impl<C, E, EM, I, M, MT, R, S, SC, Z> Stage<E, EM, S, Z>
for MOptStage<C, E, EM, I, M, MT, R, S, SC, Z>
where
C: Corpus<I>,
M: MOptMutator<I, MT, R, S>,
MT: MutatorsTuple<I, S>,
I: Input,
R: Rand,
S: HasClientPerfStats + HasCorpus<C, I> + HasSolutions<SC, I> + HasRand<R> + HasMetadata,
SC: Corpus<I>,
Z: Evaluator<E, EM, I, S>,
{
#[inline]
fn perform(
&mut self,
fuzzer: &mut Z,
executor: &mut E,
state: &mut S,
manager: &mut EM,
corpus_idx: usize,
) -> Result<(), Error> {
self.perform_mutational(fuzzer, executor, state, manager, corpus_idx)
}
}
impl<C, E, EM, I, M, MT, R, S, SC, Z> MOptStage<C, E, EM, I, M, MT, R, S, SC, Z>
where
C: Corpus<I>,
M: MOptMutator<I, MT, R, S>,
MT: MutatorsTuple<I, S>,
I: Input,
R: Rand,
S: HasClientPerfStats + HasCorpus<C, I> + HasSolutions<SC, I> + HasRand<R> + HasMetadata,
SC: Corpus<I>,
Z: Evaluator<E, EM, I, S>,
{
/// Creates a new default mutational stage
pub fn new(mutator: M, state: &mut S, swarm_num: usize) -> Result<Self, Error> {
state.add_metadata::<MOpt>(MOpt::new(mutator.mutations().len(), swarm_num)?);
Ok(Self {
mutator,
phantom: PhantomData,
})
}
}