linuxdebug/drivers/gpu/drm/arm/display/komeda/komeda_pipeline.h

566 lines
18 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* SPDX-License-Identifier: GPL-2.0 */
/*
* (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
* Author: James.Qian.Wang <james.qian.wang@arm.com>
*
*/
#ifndef _KOMEDA_PIPELINE_H_
#define _KOMEDA_PIPELINE_H_
#include <linux/types.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include "malidp_utils.h"
#include "komeda_color_mgmt.h"
#define KOMEDA_MAX_PIPELINES 2
#define KOMEDA_PIPELINE_MAX_LAYERS 4
#define KOMEDA_PIPELINE_MAX_SCALERS 2
#define KOMEDA_COMPONENT_N_INPUTS 5
/* pipeline component IDs */
enum {
KOMEDA_COMPONENT_LAYER0 = 0,
KOMEDA_COMPONENT_LAYER1 = 1,
KOMEDA_COMPONENT_LAYER2 = 2,
KOMEDA_COMPONENT_LAYER3 = 3,
KOMEDA_COMPONENT_WB_LAYER = 7, /* write back layer */
KOMEDA_COMPONENT_SCALER0 = 8,
KOMEDA_COMPONENT_SCALER1 = 9,
KOMEDA_COMPONENT_SPLITTER = 12,
KOMEDA_COMPONENT_MERGER = 14,
KOMEDA_COMPONENT_COMPIZ0 = 16, /* compositor */
KOMEDA_COMPONENT_COMPIZ1 = 17,
KOMEDA_COMPONENT_IPS0 = 20, /* post image processor */
KOMEDA_COMPONENT_IPS1 = 21,
KOMEDA_COMPONENT_TIMING_CTRLR = 22, /* timing controller */
};
#define KOMEDA_PIPELINE_LAYERS (BIT(KOMEDA_COMPONENT_LAYER0) |\
BIT(KOMEDA_COMPONENT_LAYER1) |\
BIT(KOMEDA_COMPONENT_LAYER2) |\
BIT(KOMEDA_COMPONENT_LAYER3))
#define KOMEDA_PIPELINE_SCALERS (BIT(KOMEDA_COMPONENT_SCALER0) |\
BIT(KOMEDA_COMPONENT_SCALER1))
#define KOMEDA_PIPELINE_COMPIZS (BIT(KOMEDA_COMPONENT_COMPIZ0) |\
BIT(KOMEDA_COMPONENT_COMPIZ1))
#define KOMEDA_PIPELINE_IMPROCS (BIT(KOMEDA_COMPONENT_IPS0) |\
BIT(KOMEDA_COMPONENT_IPS1))
struct komeda_component;
struct komeda_component_state;
/** komeda_component_funcs - component control functions */
struct komeda_component_funcs {
/** @validate: optional,
* component may has special requirements or limitations, this function
* supply HW the ability to do the further HW specific check.
*/
int (*validate)(struct komeda_component *c,
struct komeda_component_state *state);
/** @update: update is a active update */
void (*update)(struct komeda_component *c,
struct komeda_component_state *state);
/** @disable: disable component */
void (*disable)(struct komeda_component *c);
/** @dump_register: Optional, dump registers to seq_file */
void (*dump_register)(struct komeda_component *c, struct seq_file *seq);
};
/**
* struct komeda_component
*
* struct komeda_component describe the data flow capabilities for how to link a
* component into the display pipeline.
* all specified components are subclass of this structure.
*/
struct komeda_component {
/** @obj: treat component as private obj */
struct drm_private_obj obj;
/** @pipeline: the komeda pipeline this component belongs to */
struct komeda_pipeline *pipeline;
/** @name: component name */
char name[32];
/**
* @reg:
* component register base,
* which is initialized by chip and used by chip only
*/
u32 __iomem *reg;
/** @id: component id */
u32 id;
/**
* @hw_id: component hw id,
* which is initialized by chip and used by chip only
*/
u32 hw_id;
/**
* @max_active_inputs:
* @max_active_outputs:
*
* maximum number of inputs/outputs that can be active at the same time
* Note:
* the number isn't the bit number of @supported_inputs or
* @supported_outputs, but may be less than it, since component may not
* support enabling all @supported_inputs/outputs at the same time.
*/
u8 max_active_inputs;
/** @max_active_outputs: maximum number of outputs */
u8 max_active_outputs;
/**
* @supported_inputs:
* @supported_outputs:
*
* bitmask of BIT(component->id) for the supported inputs/outputs,
* describes the possibilities of how a component is linked into a
* pipeline.
*/
u32 supported_inputs;
/** @supported_outputs: bitmask of supported output componenet ids */
u32 supported_outputs;
/**
* @funcs: chip functions to access HW
*/
const struct komeda_component_funcs *funcs;
};
/**
* struct komeda_component_output
*
* a component has multiple outputs, if want to know where the data
* comes from, only know the component is not enough, we still need to know
* its output port
*/
struct komeda_component_output {
/** @component: indicate which component the data comes from */
struct komeda_component *component;
/**
* @output_port:
* the output port of the &komeda_component_output.component
*/
u8 output_port;
};
/**
* struct komeda_component_state
*
* component_state is the data flow configuration of the component, and it's
* the superclass of all specific component_state like @komeda_layer_state,
* @komeda_scaler_state
*/
struct komeda_component_state {
/** @obj: tracking component_state by drm_atomic_state */
struct drm_private_state obj;
/** @component: backpointer to the component */
struct komeda_component *component;
/**
* @binding_user:
* currently bound user, the user can be @crtc, @plane or @wb_conn,
* which is valid decided by @component and @inputs
*
* - Layer: its user always is plane.
* - compiz/improc/timing_ctrlr: the user is crtc.
* - wb_layer: wb_conn;
* - scaler: plane when input is layer, wb_conn if input is compiz.
*/
union {
/** @crtc: backpointer for user crtc */
struct drm_crtc *crtc;
/** @plane: backpointer for user plane */
struct drm_plane *plane;
/** @wb_conn: backpointer for user wb_connector */
struct drm_connector *wb_conn;
void *binding_user;
};
/**
* @active_inputs:
*
* active_inputs is bitmask of @inputs index
*
* - active_inputs = changed_active_inputs | unchanged_active_inputs
* - affected_inputs = old->active_inputs | new->active_inputs;
* - disabling_inputs = affected_inputs ^ active_inputs;
* - changed_inputs = disabling_inputs | changed_active_inputs;
*
* NOTE:
* changed_inputs doesn't include all active_input but only
* @changed_active_inputs, and this bitmask can be used in chip
* level for dirty update.
*/
u16 active_inputs;
/** @changed_active_inputs: bitmask of the changed @active_inputs */
u16 changed_active_inputs;
/** @affected_inputs: bitmask for affected @inputs */
u16 affected_inputs;
/**
* @inputs:
*
* the specific inputs[i] only valid on BIT(i) has been set in
* @active_inputs, if not the inputs[i] is undefined.
*/
struct komeda_component_output inputs[KOMEDA_COMPONENT_N_INPUTS];
};
static inline u16 component_disabling_inputs(struct komeda_component_state *st)
{
return st->affected_inputs ^ st->active_inputs;
}
static inline u16 component_changed_inputs(struct komeda_component_state *st)
{
return component_disabling_inputs(st) | st->changed_active_inputs;
}
#define for_each_changed_input(st, i) \
for ((i) = 0; (i) < (st)->component->max_active_inputs; (i)++) \
if (has_bit((i), component_changed_inputs(st)))
#define to_comp(__c) (((__c) == NULL) ? NULL : &((__c)->base))
#define to_cpos(__c) ((struct komeda_component **)&(__c))
struct komeda_layer {
struct komeda_component base;
/* accepted h/v input range before rotation */
struct malidp_range hsize_in, vsize_in;
u32 layer_type; /* RICH, SIMPLE or WB */
u32 line_sz;
u32 yuv_line_sz; /* maximum line size for YUV422 and YUV420 */
u32 supported_rots;
/* komeda supports layer split which splits a whole image to two parts
* left and right and handle them by two individual layer processors
* Note: left/right are always according to the final display rect,
* not the source buffer.
*/
struct komeda_layer *right;
};
struct komeda_layer_state {
struct komeda_component_state base;
/* layer specific configuration state */
u16 hsize, vsize;
u32 rot;
u16 afbc_crop_l;
u16 afbc_crop_r;
u16 afbc_crop_t;
u16 afbc_crop_b;
dma_addr_t addr[3];
};
struct komeda_scaler {
struct komeda_component base;
struct malidp_range hsize, vsize;
u32 max_upscaling;
u32 max_downscaling;
u8 scaling_split_overlap; /* split overlap for scaling */
u8 enh_split_overlap; /* split overlap for image enhancement */
};
struct komeda_scaler_state {
struct komeda_component_state base;
u16 hsize_in, vsize_in;
u16 hsize_out, vsize_out;
u16 total_hsize_in, total_vsize_in;
u16 total_hsize_out; /* total_xxxx are size before split */
u16 left_crop, right_crop;
u8 en_scaling : 1,
en_alpha : 1, /* enable alpha processing */
en_img_enhancement : 1,
en_split : 1,
right_part : 1; /* right part of split image */
};
struct komeda_compiz {
struct komeda_component base;
struct malidp_range hsize, vsize;
};
struct komeda_compiz_input_cfg {
u16 hsize, vsize;
u16 hoffset, voffset;
u8 pixel_blend_mode, layer_alpha;
};
struct komeda_compiz_state {
struct komeda_component_state base;
/* composition size */
u16 hsize, vsize;
struct komeda_compiz_input_cfg cins[KOMEDA_COMPONENT_N_INPUTS];
};
struct komeda_merger {
struct komeda_component base;
struct malidp_range hsize_merged;
struct malidp_range vsize_merged;
};
struct komeda_merger_state {
struct komeda_component_state base;
u16 hsize_merged;
u16 vsize_merged;
};
struct komeda_splitter {
struct komeda_component base;
struct malidp_range hsize, vsize;
};
struct komeda_splitter_state {
struct komeda_component_state base;
u16 hsize, vsize;
u16 overlap;
};
struct komeda_improc {
struct komeda_component base;
u32 supported_color_formats; /* DRM_RGB/YUV444/YUV420*/
u32 supported_color_depths; /* BIT(8) | BIT(10)*/
u8 supports_degamma : 1;
u8 supports_csc : 1;
u8 supports_gamma : 1;
};
struct komeda_improc_state {
struct komeda_component_state base;
u8 color_format, color_depth;
u16 hsize, vsize;
u32 fgamma_coeffs[KOMEDA_N_GAMMA_COEFFS];
u32 ctm_coeffs[KOMEDA_N_CTM_COEFFS];
};
/* display timing controller */
struct komeda_timing_ctrlr {
struct komeda_component base;
u8 supports_dual_link : 1;
};
struct komeda_timing_ctrlr_state {
struct komeda_component_state base;
};
/* Why define A separated structure but not use plane_state directly ?
* 1. Komeda supports layer_split which means a plane_state can be split and
* handled by two layers, one layer only handle half of plane image.
* 2. Fix up the user properties according to HW's capabilities, like user
* set rotation to R180, but HW only supports REFLECT_X+Y. the rot here is
* after drm_rotation_simplify()
*/
struct komeda_data_flow_cfg {
struct komeda_component_output input;
u16 in_x, in_y, in_w, in_h;
u32 out_x, out_y, out_w, out_h;
u16 total_in_h, total_in_w;
u16 total_out_w;
u16 left_crop, right_crop, overlap;
u32 rot;
int blending_zorder;
u8 pixel_blend_mode, layer_alpha;
u8 en_scaling : 1,
en_img_enhancement : 1,
en_split : 1,
is_yuv : 1,
right_part : 1; /* right part of display image if split enabled */
};
struct komeda_pipeline_funcs {
/* check if the aclk (main engine clock) can satisfy the clock
* requirements of the downscaling that specified by dflow
*/
int (*downscaling_clk_check)(struct komeda_pipeline *pipe,
struct drm_display_mode *mode,
unsigned long aclk_rate,
struct komeda_data_flow_cfg *dflow);
/* dump_register: Optional, dump registers to seq_file */
void (*dump_register)(struct komeda_pipeline *pipe,
struct seq_file *sf);
};
/**
* struct komeda_pipeline
*
* Represent a complete display pipeline and hold all functional components.
*/
struct komeda_pipeline {
/** @obj: link pipeline as private obj of drm_atomic_state */
struct drm_private_obj obj;
/** @mdev: the parent komeda_dev */
struct komeda_dev *mdev;
/** @pxlclk: pixel clock */
struct clk *pxlclk;
/** @id: pipeline id */
int id;
/** @avail_comps: available components mask of pipeline */
u32 avail_comps;
/**
* @standalone_disabled_comps:
*
* When disable the pipeline, some components can not be disabled
* together with others, but need a sparated and standalone disable.
* The standalone_disabled_comps are the components which need to be
* disabled standalone, and this concept also introduce concept of
* two phase.
* phase 1: for disabling the common components.
* phase 2: for disabling the standalong_disabled_comps.
*/
u32 standalone_disabled_comps;
/** @n_layers: the number of layer on @layers */
int n_layers;
/** @layers: the pipeline layers */
struct komeda_layer *layers[KOMEDA_PIPELINE_MAX_LAYERS];
/** @n_scalers: the number of scaler on @scalers */
int n_scalers;
/** @scalers: the pipeline scalers */
struct komeda_scaler *scalers[KOMEDA_PIPELINE_MAX_SCALERS];
/** @compiz: compositor */
struct komeda_compiz *compiz;
/** @splitter: for split the compiz output to two half data flows */
struct komeda_splitter *splitter;
/** @merger: merger */
struct komeda_merger *merger;
/** @wb_layer: writeback layer */
struct komeda_layer *wb_layer;
/** @improc: post image processor */
struct komeda_improc *improc;
/** @ctrlr: timing controller */
struct komeda_timing_ctrlr *ctrlr;
/** @funcs: chip private pipeline functions */
const struct komeda_pipeline_funcs *funcs;
/** @of_node: pipeline dt node */
struct device_node *of_node;
/** @of_output_port: pipeline output port */
struct device_node *of_output_port;
/** @of_output_links: output connector device nodes */
struct device_node *of_output_links[2];
/** @dual_link: true if of_output_links[0] and [1] are both valid */
bool dual_link;
};
/**
* struct komeda_pipeline_state
*
* NOTE:
* Unlike the pipeline, pipeline_state doesnt gather any component_state
* into it. It because all component will be managed by drm_atomic_state.
*/
struct komeda_pipeline_state {
/** @obj: tracking pipeline_state by drm_atomic_state */
struct drm_private_state obj;
/** @pipe: backpointer to the pipeline */
struct komeda_pipeline *pipe;
/** @crtc: currently bound crtc */
struct drm_crtc *crtc;
/**
* @active_comps:
*
* bitmask - BIT(component->id) of active components
*/
u32 active_comps;
};
#define to_layer(c) container_of(c, struct komeda_layer, base)
#define to_compiz(c) container_of(c, struct komeda_compiz, base)
#define to_scaler(c) container_of(c, struct komeda_scaler, base)
#define to_splitter(c) container_of(c, struct komeda_splitter, base)
#define to_merger(c) container_of(c, struct komeda_merger, base)
#define to_improc(c) container_of(c, struct komeda_improc, base)
#define to_ctrlr(c) container_of(c, struct komeda_timing_ctrlr, base)
#define to_layer_st(c) container_of(c, struct komeda_layer_state, base)
#define to_compiz_st(c) container_of(c, struct komeda_compiz_state, base)
#define to_scaler_st(c) container_of(c, struct komeda_scaler_state, base)
#define to_splitter_st(c) container_of(c, struct komeda_splitter_state, base)
#define to_merger_st(c) container_of(c, struct komeda_merger_state, base)
#define to_improc_st(c) container_of(c, struct komeda_improc_state, base)
#define to_ctrlr_st(c) container_of(c, struct komeda_timing_ctrlr_state, base)
#define priv_to_comp_st(o) container_of(o, struct komeda_component_state, obj)
#define priv_to_pipe_st(o) container_of(o, struct komeda_pipeline_state, obj)
/* pipeline APIs */
struct komeda_pipeline *
komeda_pipeline_add(struct komeda_dev *mdev, size_t size,
const struct komeda_pipeline_funcs *funcs);
void komeda_pipeline_destroy(struct komeda_dev *mdev,
struct komeda_pipeline *pipe);
struct komeda_pipeline *
komeda_pipeline_get_slave(struct komeda_pipeline *master);
int komeda_assemble_pipelines(struct komeda_dev *mdev);
struct komeda_component *
komeda_pipeline_get_component(struct komeda_pipeline *pipe, int id);
struct komeda_component *
komeda_pipeline_get_first_component(struct komeda_pipeline *pipe,
u32 comp_mask);
void komeda_pipeline_dump_register(struct komeda_pipeline *pipe,
struct seq_file *sf);
/* component APIs */
extern __printf(10, 11)
struct komeda_component *
komeda_component_add(struct komeda_pipeline *pipe,
size_t comp_sz, u32 id, u32 hw_id,
const struct komeda_component_funcs *funcs,
u8 max_active_inputs, u32 supported_inputs,
u8 max_active_outputs, u32 __iomem *reg,
const char *name_fmt, ...);
void komeda_component_destroy(struct komeda_dev *mdev,
struct komeda_component *c);
static inline struct komeda_component *
komeda_component_pickup_output(struct komeda_component *c, u32 avail_comps)
{
u32 avail_inputs = c->supported_outputs & (avail_comps);
return komeda_pipeline_get_first_component(c->pipeline, avail_inputs);
}
struct komeda_plane_state;
struct komeda_crtc_state;
struct komeda_crtc;
void pipeline_composition_size(struct komeda_crtc_state *kcrtc_st,
u16 *hsize, u16 *vsize);
int komeda_build_layer_data_flow(struct komeda_layer *layer,
struct komeda_plane_state *kplane_st,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow);
int komeda_build_wb_data_flow(struct komeda_layer *wb_layer,
struct drm_connector_state *conn_st,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow);
int komeda_build_display_data_flow(struct komeda_crtc *kcrtc,
struct komeda_crtc_state *kcrtc_st);
int komeda_build_layer_split_data_flow(struct komeda_layer *left,
struct komeda_plane_state *kplane_st,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow);
int komeda_build_wb_split_data_flow(struct komeda_layer *wb_layer,
struct drm_connector_state *conn_st,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow);
int komeda_release_unclaimed_resources(struct komeda_pipeline *pipe,
struct komeda_crtc_state *kcrtc_st);
struct komeda_pipeline_state *
komeda_pipeline_get_old_state(struct komeda_pipeline *pipe,
struct drm_atomic_state *state);
bool komeda_pipeline_disable(struct komeda_pipeline *pipe,
struct drm_atomic_state *old_state);
void komeda_pipeline_update(struct komeda_pipeline *pipe,
struct drm_atomic_state *old_state);
void komeda_complete_data_flow_cfg(struct komeda_layer *layer,
struct komeda_data_flow_cfg *dflow,
struct drm_framebuffer *fb);
#endif /* _KOMEDA_PIPELINE_H_*/