// SPDX-License-Identifier: GPL-2.0-only /* * KVM PMU support for Intel CPUs * * Copyright 2011 Red Hat, Inc. and/or its affiliates. * * Authors: * Avi Kivity * Gleb Natapov */ #include #include #include #include #include "x86.h" #include "cpuid.h" #include "lapic.h" #include "nested.h" #include "pmu.h" #define MSR_PMC_FULL_WIDTH_BIT (MSR_IA32_PMC0 - MSR_IA32_PERFCTR0) static struct kvm_event_hw_type_mapping intel_arch_events[] = { [0] = { 0x3c, 0x00, PERF_COUNT_HW_CPU_CYCLES }, [1] = { 0xc0, 0x00, PERF_COUNT_HW_INSTRUCTIONS }, [2] = { 0x3c, 0x01, PERF_COUNT_HW_BUS_CYCLES }, [3] = { 0x2e, 0x4f, PERF_COUNT_HW_CACHE_REFERENCES }, [4] = { 0x2e, 0x41, PERF_COUNT_HW_CACHE_MISSES }, [5] = { 0xc4, 0x00, PERF_COUNT_HW_BRANCH_INSTRUCTIONS }, [6] = { 0xc5, 0x00, PERF_COUNT_HW_BRANCH_MISSES }, /* The above index must match CPUID 0x0A.EBX bit vector */ [7] = { 0x00, 0x03, PERF_COUNT_HW_REF_CPU_CYCLES }, }; /* mapping between fixed pmc index and intel_arch_events array */ static int fixed_pmc_events[] = {1, 0, 7}; static void reprogram_fixed_counters(struct kvm_pmu *pmu, u64 data) { struct kvm_pmc *pmc; u8 old_fixed_ctr_ctrl = pmu->fixed_ctr_ctrl; int i; pmu->fixed_ctr_ctrl = data; for (i = 0; i < pmu->nr_arch_fixed_counters; i++) { u8 new_ctrl = fixed_ctrl_field(data, i); u8 old_ctrl = fixed_ctrl_field(old_fixed_ctr_ctrl, i); if (old_ctrl == new_ctrl) continue; pmc = get_fixed_pmc(pmu, MSR_CORE_PERF_FIXED_CTR0 + i); __set_bit(INTEL_PMC_IDX_FIXED + i, pmu->pmc_in_use); reprogram_counter(pmc); } } static struct kvm_pmc *intel_pmc_idx_to_pmc(struct kvm_pmu *pmu, int pmc_idx) { if (pmc_idx < INTEL_PMC_IDX_FIXED) { return get_gp_pmc(pmu, MSR_P6_EVNTSEL0 + pmc_idx, MSR_P6_EVNTSEL0); } else { u32 idx = pmc_idx - INTEL_PMC_IDX_FIXED; return get_fixed_pmc(pmu, idx + MSR_CORE_PERF_FIXED_CTR0); } } static void reprogram_counters(struct kvm_pmu *pmu, u64 diff) { int bit; struct kvm_pmc *pmc; for_each_set_bit(bit, (unsigned long *)&diff, X86_PMC_IDX_MAX) { pmc = intel_pmc_idx_to_pmc(pmu, bit); if (pmc) reprogram_counter(pmc); } } static bool intel_hw_event_available(struct kvm_pmc *pmc) { struct kvm_pmu *pmu = pmc_to_pmu(pmc); u8 event_select = pmc->eventsel & ARCH_PERFMON_EVENTSEL_EVENT; u8 unit_mask = (pmc->eventsel & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; int i; for (i = 0; i < ARRAY_SIZE(intel_arch_events); i++) { if (intel_arch_events[i].eventsel != event_select || intel_arch_events[i].unit_mask != unit_mask) continue; /* disable event that reported as not present by cpuid */ if ((i < 7) && !(pmu->available_event_types & (1 << i))) return false; break; } return true; } /* check if a PMC is enabled by comparing it with globl_ctrl bits. */ static bool intel_pmc_is_enabled(struct kvm_pmc *pmc) { struct kvm_pmu *pmu = pmc_to_pmu(pmc); if (!intel_pmu_has_perf_global_ctrl(pmu)) return true; return test_bit(pmc->idx, (unsigned long *)&pmu->global_ctrl); } static bool intel_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); bool fixed = idx & (1u << 30); idx &= ~(3u << 30); return fixed ? idx < pmu->nr_arch_fixed_counters : idx < pmu->nr_arch_gp_counters; } static struct kvm_pmc *intel_rdpmc_ecx_to_pmc(struct kvm_vcpu *vcpu, unsigned int idx, u64 *mask) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); bool fixed = idx & (1u << 30); struct kvm_pmc *counters; unsigned int num_counters; idx &= ~(3u << 30); if (fixed) { counters = pmu->fixed_counters; num_counters = pmu->nr_arch_fixed_counters; } else { counters = pmu->gp_counters; num_counters = pmu->nr_arch_gp_counters; } if (idx >= num_counters) return NULL; *mask &= pmu->counter_bitmask[fixed ? KVM_PMC_FIXED : KVM_PMC_GP]; return &counters[array_index_nospec(idx, num_counters)]; } static inline u64 vcpu_get_perf_capabilities(struct kvm_vcpu *vcpu) { if (!guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) return 0; return vcpu->arch.perf_capabilities; } static inline bool fw_writes_is_enabled(struct kvm_vcpu *vcpu) { return (vcpu_get_perf_capabilities(vcpu) & PMU_CAP_FW_WRITES) != 0; } static inline struct kvm_pmc *get_fw_gp_pmc(struct kvm_pmu *pmu, u32 msr) { if (!fw_writes_is_enabled(pmu_to_vcpu(pmu))) return NULL; return get_gp_pmc(pmu, msr, MSR_IA32_PMC0); } static bool intel_pmu_is_valid_lbr_msr(struct kvm_vcpu *vcpu, u32 index) { struct x86_pmu_lbr *records = vcpu_to_lbr_records(vcpu); bool ret = false; if (!intel_pmu_lbr_is_enabled(vcpu)) return ret; ret = (index == MSR_LBR_SELECT) || (index == MSR_LBR_TOS) || (index >= records->from && index < records->from + records->nr) || (index >= records->to && index < records->to + records->nr); if (!ret && records->info) ret = (index >= records->info && index < records->info + records->nr); return ret; } static bool intel_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); u64 perf_capabilities; int ret; switch (msr) { case MSR_CORE_PERF_FIXED_CTR_CTRL: case MSR_CORE_PERF_GLOBAL_STATUS: case MSR_CORE_PERF_GLOBAL_CTRL: case MSR_CORE_PERF_GLOBAL_OVF_CTRL: return intel_pmu_has_perf_global_ctrl(pmu); break; case MSR_IA32_PEBS_ENABLE: ret = vcpu_get_perf_capabilities(vcpu) & PERF_CAP_PEBS_FORMAT; break; case MSR_IA32_DS_AREA: ret = guest_cpuid_has(vcpu, X86_FEATURE_DS); break; case MSR_PEBS_DATA_CFG: perf_capabilities = vcpu_get_perf_capabilities(vcpu); ret = (perf_capabilities & PERF_CAP_PEBS_BASELINE) && ((perf_capabilities & PERF_CAP_PEBS_FORMAT) > 3); break; default: ret = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0) || get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0) || get_fixed_pmc(pmu, msr) || get_fw_gp_pmc(pmu, msr) || intel_pmu_is_valid_lbr_msr(vcpu, msr); break; } return ret; } static struct kvm_pmc *intel_msr_idx_to_pmc(struct kvm_vcpu *vcpu, u32 msr) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); struct kvm_pmc *pmc; pmc = get_fixed_pmc(pmu, msr); pmc = pmc ? pmc : get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0); pmc = pmc ? pmc : get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0); return pmc; } static inline void intel_pmu_release_guest_lbr_event(struct kvm_vcpu *vcpu) { struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); if (lbr_desc->event) { perf_event_release_kernel(lbr_desc->event); lbr_desc->event = NULL; vcpu_to_pmu(vcpu)->event_count--; } } int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu) { struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); struct perf_event *event; /* * The perf_event_attr is constructed in the minimum efficient way: * - set 'pinned = true' to make it task pinned so that if another * cpu pinned event reclaims LBR, the event->oncpu will be set to -1; * - set '.exclude_host = true' to record guest branches behavior; * * - set '.config = INTEL_FIXED_VLBR_EVENT' to indicates host perf * schedule the event without a real HW counter but a fake one; * check is_guest_lbr_event() and __intel_get_event_constraints(); * * - set 'sample_type = PERF_SAMPLE_BRANCH_STACK' and * 'branch_sample_type = PERF_SAMPLE_BRANCH_CALL_STACK | * PERF_SAMPLE_BRANCH_USER' to configure it as a LBR callstack * event, which helps KVM to save/restore guest LBR records * during host context switches and reduces quite a lot overhead, * check branch_user_callstack() and intel_pmu_lbr_sched_task(); */ struct perf_event_attr attr = { .type = PERF_TYPE_RAW, .size = sizeof(attr), .config = INTEL_FIXED_VLBR_EVENT, .sample_type = PERF_SAMPLE_BRANCH_STACK, .pinned = true, .exclude_host = true, .branch_sample_type = PERF_SAMPLE_BRANCH_CALL_STACK | PERF_SAMPLE_BRANCH_USER, }; if (unlikely(lbr_desc->event)) { __set_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use); return 0; } event = perf_event_create_kernel_counter(&attr, -1, current, NULL, NULL); if (IS_ERR(event)) { pr_debug_ratelimited("%s: failed %ld\n", __func__, PTR_ERR(event)); return PTR_ERR(event); } lbr_desc->event = event; pmu->event_count++; __set_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use); return 0; } /* * It's safe to access LBR msrs from guest when they have not * been passthrough since the host would help restore or reset * the LBR msrs records when the guest LBR event is scheduled in. */ static bool intel_pmu_handle_lbr_msrs_access(struct kvm_vcpu *vcpu, struct msr_data *msr_info, bool read) { struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); u32 index = msr_info->index; if (!intel_pmu_is_valid_lbr_msr(vcpu, index)) return false; if (!lbr_desc->event && intel_pmu_create_guest_lbr_event(vcpu) < 0) goto dummy; /* * Disable irq to ensure the LBR feature doesn't get reclaimed by the * host at the time the value is read from the msr, and this avoids the * host LBR value to be leaked to the guest. If LBR has been reclaimed, * return 0 on guest reads. */ local_irq_disable(); if (lbr_desc->event->state == PERF_EVENT_STATE_ACTIVE) { if (read) rdmsrl(index, msr_info->data); else wrmsrl(index, msr_info->data); __set_bit(INTEL_PMC_IDX_FIXED_VLBR, vcpu_to_pmu(vcpu)->pmc_in_use); local_irq_enable(); return true; } clear_bit(INTEL_PMC_IDX_FIXED_VLBR, vcpu_to_pmu(vcpu)->pmc_in_use); local_irq_enable(); dummy: if (read) msr_info->data = 0; return true; } static int intel_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); struct kvm_pmc *pmc; u32 msr = msr_info->index; switch (msr) { case MSR_CORE_PERF_FIXED_CTR_CTRL: msr_info->data = pmu->fixed_ctr_ctrl; return 0; case MSR_CORE_PERF_GLOBAL_STATUS: msr_info->data = pmu->global_status; return 0; case MSR_CORE_PERF_GLOBAL_CTRL: msr_info->data = pmu->global_ctrl; return 0; case MSR_CORE_PERF_GLOBAL_OVF_CTRL: msr_info->data = 0; return 0; case MSR_IA32_PEBS_ENABLE: msr_info->data = pmu->pebs_enable; return 0; case MSR_IA32_DS_AREA: msr_info->data = pmu->ds_area; return 0; case MSR_PEBS_DATA_CFG: msr_info->data = pmu->pebs_data_cfg; return 0; default: if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0)) || (pmc = get_gp_pmc(pmu, msr, MSR_IA32_PMC0))) { u64 val = pmc_read_counter(pmc); msr_info->data = val & pmu->counter_bitmask[KVM_PMC_GP]; return 0; } else if ((pmc = get_fixed_pmc(pmu, msr))) { u64 val = pmc_read_counter(pmc); msr_info->data = val & pmu->counter_bitmask[KVM_PMC_FIXED]; return 0; } else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) { msr_info->data = pmc->eventsel; return 0; } else if (intel_pmu_handle_lbr_msrs_access(vcpu, msr_info, true)) return 0; } return 1; } static int intel_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); struct kvm_pmc *pmc; u32 msr = msr_info->index; u64 data = msr_info->data; u64 reserved_bits, diff; switch (msr) { case MSR_CORE_PERF_FIXED_CTR_CTRL: if (pmu->fixed_ctr_ctrl == data) return 0; if (!(data & pmu->fixed_ctr_ctrl_mask)) { reprogram_fixed_counters(pmu, data); return 0; } break; case MSR_CORE_PERF_GLOBAL_STATUS: if (msr_info->host_initiated) { pmu->global_status = data; return 0; } break; /* RO MSR */ case MSR_CORE_PERF_GLOBAL_CTRL: if (pmu->global_ctrl == data) return 0; if (kvm_valid_perf_global_ctrl(pmu, data)) { diff = pmu->global_ctrl ^ data; pmu->global_ctrl = data; reprogram_counters(pmu, diff); return 0; } break; case MSR_CORE_PERF_GLOBAL_OVF_CTRL: if (!(data & pmu->global_ovf_ctrl_mask)) { if (!msr_info->host_initiated) pmu->global_status &= ~data; return 0; } break; case MSR_IA32_PEBS_ENABLE: if (pmu->pebs_enable == data) return 0; if (!(data & pmu->pebs_enable_mask)) { diff = pmu->pebs_enable ^ data; pmu->pebs_enable = data; reprogram_counters(pmu, diff); return 0; } break; case MSR_IA32_DS_AREA: if (msr_info->host_initiated && data && !guest_cpuid_has(vcpu, X86_FEATURE_DS)) return 1; if (is_noncanonical_address(data, vcpu)) return 1; pmu->ds_area = data; return 0; case MSR_PEBS_DATA_CFG: if (pmu->pebs_data_cfg == data) return 0; if (!(data & pmu->pebs_data_cfg_mask)) { pmu->pebs_data_cfg = data; return 0; } break; default: if ((pmc = get_gp_pmc(pmu, msr, MSR_IA32_PERFCTR0)) || (pmc = get_gp_pmc(pmu, msr, MSR_IA32_PMC0))) { if ((msr & MSR_PMC_FULL_WIDTH_BIT) && (data & ~pmu->counter_bitmask[KVM_PMC_GP])) return 1; if (!msr_info->host_initiated && !(msr & MSR_PMC_FULL_WIDTH_BIT)) data = (s64)(s32)data; pmc->counter += data - pmc_read_counter(pmc); pmc_update_sample_period(pmc); return 0; } else if ((pmc = get_fixed_pmc(pmu, msr))) { pmc->counter += data - pmc_read_counter(pmc); pmc_update_sample_period(pmc); return 0; } else if ((pmc = get_gp_pmc(pmu, msr, MSR_P6_EVNTSEL0))) { if (data == pmc->eventsel) return 0; reserved_bits = pmu->reserved_bits; if ((pmc->idx == 2) && (pmu->raw_event_mask & HSW_IN_TX_CHECKPOINTED)) reserved_bits ^= HSW_IN_TX_CHECKPOINTED; if (!(data & reserved_bits)) { pmc->eventsel = data; reprogram_counter(pmc); return 0; } } else if (intel_pmu_handle_lbr_msrs_access(vcpu, msr_info, false)) return 0; } return 1; } static void setup_fixed_pmc_eventsel(struct kvm_pmu *pmu) { size_t size = ARRAY_SIZE(fixed_pmc_events); struct kvm_pmc *pmc; u32 event; int i; for (i = 0; i < pmu->nr_arch_fixed_counters; i++) { pmc = &pmu->fixed_counters[i]; event = fixed_pmc_events[array_index_nospec(i, size)]; pmc->eventsel = (intel_arch_events[event].unit_mask << 8) | intel_arch_events[event].eventsel; } } static void intel_pmu_refresh(struct kvm_vcpu *vcpu) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); struct kvm_cpuid_entry2 *entry; union cpuid10_eax eax; union cpuid10_edx edx; u64 perf_capabilities; u64 counter_mask; int i; pmu->nr_arch_gp_counters = 0; pmu->nr_arch_fixed_counters = 0; pmu->counter_bitmask[KVM_PMC_GP] = 0; pmu->counter_bitmask[KVM_PMC_FIXED] = 0; pmu->version = 0; pmu->reserved_bits = 0xffffffff00200000ull; pmu->raw_event_mask = X86_RAW_EVENT_MASK; pmu->global_ctrl_mask = ~0ull; pmu->global_ovf_ctrl_mask = ~0ull; pmu->fixed_ctr_ctrl_mask = ~0ull; pmu->pebs_enable_mask = ~0ull; pmu->pebs_data_cfg_mask = ~0ull; entry = kvm_find_cpuid_entry(vcpu, 0xa); if (!entry || !vcpu->kvm->arch.enable_pmu) return; eax.full = entry->eax; edx.full = entry->edx; pmu->version = eax.split.version_id; if (!pmu->version) return; pmu->nr_arch_gp_counters = min_t(int, eax.split.num_counters, kvm_pmu_cap.num_counters_gp); eax.split.bit_width = min_t(int, eax.split.bit_width, kvm_pmu_cap.bit_width_gp); pmu->counter_bitmask[KVM_PMC_GP] = ((u64)1 << eax.split.bit_width) - 1; eax.split.mask_length = min_t(int, eax.split.mask_length, kvm_pmu_cap.events_mask_len); pmu->available_event_types = ~entry->ebx & ((1ull << eax.split.mask_length) - 1); if (pmu->version == 1) { pmu->nr_arch_fixed_counters = 0; } else { pmu->nr_arch_fixed_counters = min3(ARRAY_SIZE(fixed_pmc_events), (size_t) edx.split.num_counters_fixed, (size_t)kvm_pmu_cap.num_counters_fixed); edx.split.bit_width_fixed = min_t(int, edx.split.bit_width_fixed, kvm_pmu_cap.bit_width_fixed); pmu->counter_bitmask[KVM_PMC_FIXED] = ((u64)1 << edx.split.bit_width_fixed) - 1; setup_fixed_pmc_eventsel(pmu); } for (i = 0; i < pmu->nr_arch_fixed_counters; i++) pmu->fixed_ctr_ctrl_mask &= ~(0xbull << (i * 4)); counter_mask = ~(((1ull << pmu->nr_arch_gp_counters) - 1) | (((1ull << pmu->nr_arch_fixed_counters) - 1) << INTEL_PMC_IDX_FIXED)); pmu->global_ctrl_mask = counter_mask; pmu->global_ovf_ctrl_mask = pmu->global_ctrl_mask & ~(MSR_CORE_PERF_GLOBAL_OVF_CTRL_OVF_BUF | MSR_CORE_PERF_GLOBAL_OVF_CTRL_COND_CHGD); if (vmx_pt_mode_is_host_guest()) pmu->global_ovf_ctrl_mask &= ~MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI; entry = kvm_find_cpuid_entry_index(vcpu, 7, 0); if (entry && (boot_cpu_has(X86_FEATURE_HLE) || boot_cpu_has(X86_FEATURE_RTM)) && (entry->ebx & (X86_FEATURE_HLE|X86_FEATURE_RTM))) { pmu->reserved_bits ^= HSW_IN_TX; pmu->raw_event_mask |= (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); } bitmap_set(pmu->all_valid_pmc_idx, 0, pmu->nr_arch_gp_counters); bitmap_set(pmu->all_valid_pmc_idx, INTEL_PMC_MAX_GENERIC, pmu->nr_arch_fixed_counters); perf_capabilities = vcpu_get_perf_capabilities(vcpu); if (cpuid_model_is_consistent(vcpu) && (perf_capabilities & PMU_CAP_LBR_FMT)) x86_perf_get_lbr(&lbr_desc->records); else lbr_desc->records.nr = 0; if (lbr_desc->records.nr) bitmap_set(pmu->all_valid_pmc_idx, INTEL_PMC_IDX_FIXED_VLBR, 1); if (perf_capabilities & PERF_CAP_PEBS_FORMAT) { if (perf_capabilities & PERF_CAP_PEBS_BASELINE) { pmu->pebs_enable_mask = counter_mask; pmu->reserved_bits &= ~ICL_EVENTSEL_ADAPTIVE; for (i = 0; i < pmu->nr_arch_fixed_counters; i++) { pmu->fixed_ctr_ctrl_mask &= ~(1ULL << (INTEL_PMC_IDX_FIXED + i * 4)); } pmu->pebs_data_cfg_mask = ~0xff00000full; } else { pmu->pebs_enable_mask = ~((1ull << pmu->nr_arch_gp_counters) - 1); } } } static void intel_pmu_init(struct kvm_vcpu *vcpu) { int i; struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); for (i = 0; i < KVM_INTEL_PMC_MAX_GENERIC; i++) { pmu->gp_counters[i].type = KVM_PMC_GP; pmu->gp_counters[i].vcpu = vcpu; pmu->gp_counters[i].idx = i; pmu->gp_counters[i].current_config = 0; } for (i = 0; i < KVM_PMC_MAX_FIXED; i++) { pmu->fixed_counters[i].type = KVM_PMC_FIXED; pmu->fixed_counters[i].vcpu = vcpu; pmu->fixed_counters[i].idx = i + INTEL_PMC_IDX_FIXED; pmu->fixed_counters[i].current_config = 0; } vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; lbr_desc->records.nr = 0; lbr_desc->event = NULL; lbr_desc->msr_passthrough = false; } static void intel_pmu_reset(struct kvm_vcpu *vcpu) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); struct kvm_pmc *pmc = NULL; int i; for (i = 0; i < KVM_INTEL_PMC_MAX_GENERIC; i++) { pmc = &pmu->gp_counters[i]; pmc_stop_counter(pmc); pmc->counter = pmc->eventsel = 0; } for (i = 0; i < KVM_PMC_MAX_FIXED; i++) { pmc = &pmu->fixed_counters[i]; pmc_stop_counter(pmc); pmc->counter = 0; } pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0; intel_pmu_release_guest_lbr_event(vcpu); } /* * Emulate LBR_On_PMI behavior for 1 < pmu.version < 4. * * If Freeze_LBR_On_PMI = 1, the LBR is frozen on PMI and * the KVM emulates to clear the LBR bit (bit 0) in IA32_DEBUGCTL. * * Guest needs to re-enable LBR to resume branches recording. */ static void intel_pmu_legacy_freezing_lbrs_on_pmi(struct kvm_vcpu *vcpu) { u64 data = vmcs_read64(GUEST_IA32_DEBUGCTL); if (data & DEBUGCTLMSR_FREEZE_LBRS_ON_PMI) { data &= ~DEBUGCTLMSR_LBR; vmcs_write64(GUEST_IA32_DEBUGCTL, data); } } static void intel_pmu_deliver_pmi(struct kvm_vcpu *vcpu) { u8 version = vcpu_to_pmu(vcpu)->version; if (!intel_pmu_lbr_is_enabled(vcpu)) return; if (version > 1 && version < 4) intel_pmu_legacy_freezing_lbrs_on_pmi(vcpu); } static void vmx_update_intercept_for_lbr_msrs(struct kvm_vcpu *vcpu, bool set) { struct x86_pmu_lbr *lbr = vcpu_to_lbr_records(vcpu); int i; for (i = 0; i < lbr->nr; i++) { vmx_set_intercept_for_msr(vcpu, lbr->from + i, MSR_TYPE_RW, set); vmx_set_intercept_for_msr(vcpu, lbr->to + i, MSR_TYPE_RW, set); if (lbr->info) vmx_set_intercept_for_msr(vcpu, lbr->info + i, MSR_TYPE_RW, set); } vmx_set_intercept_for_msr(vcpu, MSR_LBR_SELECT, MSR_TYPE_RW, set); vmx_set_intercept_for_msr(vcpu, MSR_LBR_TOS, MSR_TYPE_RW, set); } static inline void vmx_disable_lbr_msrs_passthrough(struct kvm_vcpu *vcpu) { struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); if (!lbr_desc->msr_passthrough) return; vmx_update_intercept_for_lbr_msrs(vcpu, true); lbr_desc->msr_passthrough = false; } static inline void vmx_enable_lbr_msrs_passthrough(struct kvm_vcpu *vcpu) { struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); if (lbr_desc->msr_passthrough) return; vmx_update_intercept_for_lbr_msrs(vcpu, false); lbr_desc->msr_passthrough = true; } /* * Higher priority host perf events (e.g. cpu pinned) could reclaim the * pmu resources (e.g. LBR) that were assigned to the guest. This is * usually done via ipi calls (more details in perf_install_in_context). * * Before entering the non-root mode (with irq disabled here), double * confirm that the pmu features enabled to the guest are not reclaimed * by higher priority host events. Otherwise, disallow vcpu's access to * the reclaimed features. */ void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu) { struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); struct lbr_desc *lbr_desc = vcpu_to_lbr_desc(vcpu); if (!lbr_desc->event) { vmx_disable_lbr_msrs_passthrough(vcpu); if (vmcs_read64(GUEST_IA32_DEBUGCTL) & DEBUGCTLMSR_LBR) goto warn; if (test_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use)) goto warn; return; } if (lbr_desc->event->state < PERF_EVENT_STATE_ACTIVE) { vmx_disable_lbr_msrs_passthrough(vcpu); __clear_bit(INTEL_PMC_IDX_FIXED_VLBR, pmu->pmc_in_use); goto warn; } else vmx_enable_lbr_msrs_passthrough(vcpu); return; warn: pr_warn_ratelimited("kvm: vcpu-%d: fail to passthrough LBR.\n", vcpu->vcpu_id); } static void intel_pmu_cleanup(struct kvm_vcpu *vcpu) { if (!(vmcs_read64(GUEST_IA32_DEBUGCTL) & DEBUGCTLMSR_LBR)) intel_pmu_release_guest_lbr_event(vcpu); } void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu) { struct kvm_pmc *pmc = NULL; int bit, hw_idx; for_each_set_bit(bit, (unsigned long *)&pmu->global_ctrl, X86_PMC_IDX_MAX) { pmc = intel_pmc_idx_to_pmc(pmu, bit); if (!pmc || !pmc_speculative_in_use(pmc) || !intel_pmc_is_enabled(pmc) || !pmc->perf_event) continue; /* * A negative index indicates the event isn't mapped to a * physical counter in the host, e.g. due to contention. */ hw_idx = pmc->perf_event->hw.idx; if (hw_idx != pmc->idx && hw_idx > -1) pmu->host_cross_mapped_mask |= BIT_ULL(hw_idx); } } struct kvm_pmu_ops intel_pmu_ops __initdata = { .hw_event_available = intel_hw_event_available, .pmc_is_enabled = intel_pmc_is_enabled, .pmc_idx_to_pmc = intel_pmc_idx_to_pmc, .rdpmc_ecx_to_pmc = intel_rdpmc_ecx_to_pmc, .msr_idx_to_pmc = intel_msr_idx_to_pmc, .is_valid_rdpmc_ecx = intel_is_valid_rdpmc_ecx, .is_valid_msr = intel_is_valid_msr, .get_msr = intel_pmu_get_msr, .set_msr = intel_pmu_set_msr, .refresh = intel_pmu_refresh, .init = intel_pmu_init, .reset = intel_pmu_reset, .deliver_pmi = intel_pmu_deliver_pmi, .cleanup = intel_pmu_cleanup, };