// SPDX-License-Identifier: GPL-2.0-only #include #include #include #include #include #include #include #include #include #include #include #include "../perf_event.h" static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp); static unsigned long perf_nmi_window; /* AMD Event 0xFFF: Merge. Used with Large Increment per Cycle events */ #define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL) #define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE) /* PMC Enable and Overflow bits for PerfCntrGlobal* registers */ static u64 amd_pmu_global_cntr_mask __read_mostly; static __initconst const u64 amd_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */ [ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */ [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */ }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */ [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */ [ C(RESULT_MISS) ] = 0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */ [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */ [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */ [ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */ [ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */ [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */ [ C(RESULT_MISS) ] = 0x98e9, /* CPU Request to Memory, r */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; static __initconst const u64 amd_hw_cache_event_ids_f17h [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [C(L1D)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */ [C(RESULT_MISS)] = 0xc860, /* L2$ access from DC Miss */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = 0, [C(RESULT_MISS)] = 0, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */ [C(RESULT_MISS)] = 0, }, }, [C(L1I)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches */ [C(RESULT_MISS)] = 0x0081, /* Instruction cache misses */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0, [C(RESULT_MISS)] = 0, }, }, [C(LL)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0, [C(RESULT_MISS)] = 0, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = 0, [C(RESULT_MISS)] = 0, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0, [C(RESULT_MISS)] = 0, }, }, [C(DTLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */ [C(RESULT_MISS)] = 0xf045, /* L2 DTLB misses (PT walks) */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = 0, [C(RESULT_MISS)] = 0, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = 0, [C(RESULT_MISS)] = 0, }, }, [C(ITLB)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */ [C(RESULT_MISS)] = 0xff85, /* L1 ITLB misses, L2 misses */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, }, [C(BPU)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr. */ [C(RESULT_MISS)] = 0x00c3, /* Retired Mispredicted BI */ }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, }, [C(NODE)] = { [C(OP_READ)] = { [C(RESULT_ACCESS)] = 0, [C(RESULT_MISS)] = 0, }, [C(OP_WRITE)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, [C(OP_PREFETCH)] = { [C(RESULT_ACCESS)] = -1, [C(RESULT_MISS)] = -1, }, }, }; /* * AMD Performance Monitor K7 and later, up to and including Family 16h: */ static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = 0x0076, [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, [PERF_COUNT_HW_CACHE_REFERENCES] = 0x077d, [PERF_COUNT_HW_CACHE_MISSES] = 0x077e, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2, [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3, [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */ [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */ }; /* * AMD Performance Monitor Family 17h and later: */ static const u64 amd_f17h_perfmon_event_map[PERF_COUNT_HW_MAX] = { [PERF_COUNT_HW_CPU_CYCLES] = 0x0076, [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, [PERF_COUNT_HW_CACHE_REFERENCES] = 0xff60, [PERF_COUNT_HW_CACHE_MISSES] = 0x0964, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2, [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3, [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x0287, [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x0187, }; static u64 amd_pmu_event_map(int hw_event) { if (boot_cpu_data.x86 >= 0x17) return amd_f17h_perfmon_event_map[hw_event]; return amd_perfmon_event_map[hw_event]; } /* * Previously calculated offsets */ static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly; static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly; /* * Legacy CPUs: * 4 counters starting at 0xc0010000 each offset by 1 * * CPUs with core performance counter extensions: * 6 counters starting at 0xc0010200 each offset by 2 */ static inline int amd_pmu_addr_offset(int index, bool eventsel) { int offset; if (!index) return index; if (eventsel) offset = event_offsets[index]; else offset = count_offsets[index]; if (offset) return offset; if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE)) offset = index; else offset = index << 1; if (eventsel) event_offsets[index] = offset; else count_offsets[index] = offset; return offset; } /* * AMD64 events are detected based on their event codes. */ static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc) { return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff); } static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc) { if (!(x86_pmu.flags & PMU_FL_PAIR)) return false; switch (amd_get_event_code(hwc)) { case 0x003: return true; /* Retired SSE/AVX FLOPs */ default: return false; } } DEFINE_STATIC_CALL_RET0(amd_pmu_branch_hw_config, *x86_pmu.hw_config); static int amd_core_hw_config(struct perf_event *event) { if (event->attr.exclude_host && event->attr.exclude_guest) /* * When HO == GO == 1 the hardware treats that as GO == HO == 0 * and will count in both modes. We don't want to count in that * case so we emulate no-counting by setting US = OS = 0. */ event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR | ARCH_PERFMON_EVENTSEL_OS); else if (event->attr.exclude_host) event->hw.config |= AMD64_EVENTSEL_GUESTONLY; else if (event->attr.exclude_guest) event->hw.config |= AMD64_EVENTSEL_HOSTONLY; if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw)) event->hw.flags |= PERF_X86_EVENT_PAIR; if (has_branch_stack(event)) return static_call(amd_pmu_branch_hw_config)(event); return 0; } static inline int amd_is_nb_event(struct hw_perf_event *hwc) { return (hwc->config & 0xe0) == 0xe0; } static inline int amd_has_nb(struct cpu_hw_events *cpuc) { struct amd_nb *nb = cpuc->amd_nb; return nb && nb->nb_id != -1; } static int amd_pmu_hw_config(struct perf_event *event) { int ret; /* pass precise event sampling to ibs: */ if (event->attr.precise_ip && get_ibs_caps()) return forward_event_to_ibs(event); if (has_branch_stack(event) && !x86_pmu.lbr_nr) return -EOPNOTSUPP; ret = x86_pmu_hw_config(event); if (ret) return ret; if (event->attr.type == PERF_TYPE_RAW) event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK; return amd_core_hw_config(event); } static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { struct amd_nb *nb = cpuc->amd_nb; int i; /* * need to scan whole list because event may not have * been assigned during scheduling * * no race condition possible because event can only * be removed on one CPU at a time AND PMU is disabled * when we come here */ for (i = 0; i < x86_pmu.num_counters; i++) { if (cmpxchg(nb->owners + i, event, NULL) == event) break; } } /* * AMD64 NorthBridge events need special treatment because * counter access needs to be synchronized across all cores * of a package. Refer to BKDG section 3.12 * * NB events are events measuring L3 cache, Hypertransport * traffic. They are identified by an event code >= 0xe00. * They measure events on the NorthBride which is shared * by all cores on a package. NB events are counted on a * shared set of counters. When a NB event is programmed * in a counter, the data actually comes from a shared * counter. Thus, access to those counters needs to be * synchronized. * * We implement the synchronization such that no two cores * can be measuring NB events using the same counters. Thus, * we maintain a per-NB allocation table. The available slot * is propagated using the event_constraint structure. * * We provide only one choice for each NB event based on * the fact that only NB events have restrictions. Consequently, * if a counter is available, there is a guarantee the NB event * will be assigned to it. If no slot is available, an empty * constraint is returned and scheduling will eventually fail * for this event. * * Note that all cores attached the same NB compete for the same * counters to host NB events, this is why we use atomic ops. Some * multi-chip CPUs may have more than one NB. * * Given that resources are allocated (cmpxchg), they must be * eventually freed for others to use. This is accomplished by * calling __amd_put_nb_event_constraints() * * Non NB events are not impacted by this restriction. */ static struct event_constraint * __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, struct event_constraint *c) { struct hw_perf_event *hwc = &event->hw; struct amd_nb *nb = cpuc->amd_nb; struct perf_event *old; int idx, new = -1; if (!c) c = &unconstrained; if (cpuc->is_fake) return c; /* * detect if already present, if so reuse * * cannot merge with actual allocation * because of possible holes * * event can already be present yet not assigned (in hwc->idx) * because of successive calls to x86_schedule_events() from * hw_perf_group_sched_in() without hw_perf_enable() */ for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) { if (new == -1 || hwc->idx == idx) /* assign free slot, prefer hwc->idx */ old = cmpxchg(nb->owners + idx, NULL, event); else if (nb->owners[idx] == event) /* event already present */ old = event; else continue; if (old && old != event) continue; /* reassign to this slot */ if (new != -1) cmpxchg(nb->owners + new, event, NULL); new = idx; /* already present, reuse */ if (old == event) break; } if (new == -1) return &emptyconstraint; return &nb->event_constraints[new]; } static struct amd_nb *amd_alloc_nb(int cpu) { struct amd_nb *nb; int i; nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu)); if (!nb) return NULL; nb->nb_id = -1; /* * initialize all possible NB constraints */ for (i = 0; i < x86_pmu.num_counters; i++) { __set_bit(i, nb->event_constraints[i].idxmsk); nb->event_constraints[i].weight = 1; } return nb; } typedef void (amd_pmu_branch_reset_t)(void); DEFINE_STATIC_CALL_NULL(amd_pmu_branch_reset, amd_pmu_branch_reset_t); static void amd_pmu_cpu_reset(int cpu) { if (x86_pmu.lbr_nr) static_call(amd_pmu_branch_reset)(); if (x86_pmu.version < 2) return; /* Clear enable bits i.e. PerfCntrGlobalCtl.PerfCntrEn */ wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 0); /* Clear overflow bits i.e. PerfCntrGLobalStatus.PerfCntrOvfl */ wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, amd_pmu_global_cntr_mask); } static int amd_pmu_cpu_prepare(int cpu) { struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); cpuc->lbr_sel = kzalloc_node(sizeof(struct er_account), GFP_KERNEL, cpu_to_node(cpu)); if (!cpuc->lbr_sel) return -ENOMEM; WARN_ON_ONCE(cpuc->amd_nb); if (!x86_pmu.amd_nb_constraints) return 0; cpuc->amd_nb = amd_alloc_nb(cpu); if (cpuc->amd_nb) return 0; kfree(cpuc->lbr_sel); cpuc->lbr_sel = NULL; return -ENOMEM; } static void amd_pmu_cpu_starting(int cpu) { struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED]; struct amd_nb *nb; int i, nb_id; cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY; if (!x86_pmu.amd_nb_constraints) return; nb_id = topology_die_id(cpu); WARN_ON_ONCE(nb_id == BAD_APICID); for_each_online_cpu(i) { nb = per_cpu(cpu_hw_events, i).amd_nb; if (WARN_ON_ONCE(!nb)) continue; if (nb->nb_id == nb_id) { *onln = cpuc->amd_nb; cpuc->amd_nb = nb; break; } } cpuc->amd_nb->nb_id = nb_id; cpuc->amd_nb->refcnt++; amd_pmu_cpu_reset(cpu); } static void amd_pmu_cpu_dead(int cpu) { struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); kfree(cpuhw->lbr_sel); cpuhw->lbr_sel = NULL; if (!x86_pmu.amd_nb_constraints) return; if (cpuhw->amd_nb) { struct amd_nb *nb = cpuhw->amd_nb; if (nb->nb_id == -1 || --nb->refcnt == 0) kfree(nb); cpuhw->amd_nb = NULL; } amd_pmu_cpu_reset(cpu); } static inline void amd_pmu_set_global_ctl(u64 ctl) { wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, ctl); } static inline u64 amd_pmu_get_global_status(void) { u64 status; /* PerfCntrGlobalStatus is read-only */ rdmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, status); return status; } static inline void amd_pmu_ack_global_status(u64 status) { /* * PerfCntrGlobalStatus is read-only but an overflow acknowledgment * mechanism exists; writing 1 to a bit in PerfCntrGlobalStatusClr * clears the same bit in PerfCntrGlobalStatus */ wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, status); } static bool amd_pmu_test_overflow_topbit(int idx) { u64 counter; rdmsrl(x86_pmu_event_addr(idx), counter); return !(counter & BIT_ULL(x86_pmu.cntval_bits - 1)); } static bool amd_pmu_test_overflow_status(int idx) { return amd_pmu_get_global_status() & BIT_ULL(idx); } DEFINE_STATIC_CALL(amd_pmu_test_overflow, amd_pmu_test_overflow_topbit); /* * When a PMC counter overflows, an NMI is used to process the event and * reset the counter. NMI latency can result in the counter being updated * before the NMI can run, which can result in what appear to be spurious * NMIs. This function is intended to wait for the NMI to run and reset * the counter to avoid possible unhandled NMI messages. */ #define OVERFLOW_WAIT_COUNT 50 static void amd_pmu_wait_on_overflow(int idx) { unsigned int i; /* * Wait for the counter to be reset if it has overflowed. This loop * should exit very, very quickly, but just in case, don't wait * forever... */ for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) { if (!static_call(amd_pmu_test_overflow)(idx)) break; /* Might be in IRQ context, so can't sleep */ udelay(1); } } static void amd_pmu_check_overflow(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); int idx; /* * This shouldn't be called from NMI context, but add a safeguard here * to return, since if we're in NMI context we can't wait for an NMI * to reset an overflowed counter value. */ if (in_nmi()) return; /* * Check each counter for overflow and wait for it to be reset by the * NMI if it has overflowed. This relies on the fact that all active * counters are always enabled when this function is called and * ARCH_PERFMON_EVENTSEL_INT is always set. */ for (idx = 0; idx < x86_pmu.num_counters; idx++) { if (!test_bit(idx, cpuc->active_mask)) continue; amd_pmu_wait_on_overflow(idx); } } static void amd_pmu_enable_event(struct perf_event *event) { x86_pmu_enable_event(event); } static void amd_pmu_enable_all(int added) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); int idx; amd_brs_enable_all(); for (idx = 0; idx < x86_pmu.num_counters; idx++) { /* only activate events which are marked as active */ if (!test_bit(idx, cpuc->active_mask)) continue; amd_pmu_enable_event(cpuc->events[idx]); } } static void amd_pmu_v2_enable_event(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; /* * Testing cpu_hw_events.enabled should be skipped in this case unlike * in x86_pmu_enable_event(). * * Since cpu_hw_events.enabled is set only after returning from * x86_pmu_start(), the PMCs must be programmed and kept ready. * Counting starts only after x86_pmu_enable_all() is called. */ __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); } static __always_inline void amd_pmu_core_enable_all(void) { amd_pmu_set_global_ctl(amd_pmu_global_cntr_mask); } static void amd_pmu_v2_enable_all(int added) { amd_pmu_lbr_enable_all(); amd_pmu_core_enable_all(); } static void amd_pmu_disable_event(struct perf_event *event) { x86_pmu_disable_event(event); /* * This can be called from NMI context (via x86_pmu_stop). The counter * may have overflowed, but either way, we'll never see it get reset * by the NMI if we're already in the NMI. And the NMI latency support * below will take care of any pending NMI that might have been * generated by the overflow. */ if (in_nmi()) return; amd_pmu_wait_on_overflow(event->hw.idx); } static void amd_pmu_disable_all(void) { amd_brs_disable_all(); x86_pmu_disable_all(); amd_pmu_check_overflow(); } static __always_inline void amd_pmu_core_disable_all(void) { amd_pmu_set_global_ctl(0); } static void amd_pmu_v2_disable_all(void) { amd_pmu_core_disable_all(); amd_pmu_lbr_disable_all(); amd_pmu_check_overflow(); } DEFINE_STATIC_CALL_NULL(amd_pmu_branch_add, *x86_pmu.add); static void amd_pmu_add_event(struct perf_event *event) { if (needs_branch_stack(event)) static_call(amd_pmu_branch_add)(event); } DEFINE_STATIC_CALL_NULL(amd_pmu_branch_del, *x86_pmu.del); static void amd_pmu_del_event(struct perf_event *event) { if (needs_branch_stack(event)) static_call(amd_pmu_branch_del)(event); } /* * Because of NMI latency, if multiple PMC counters are active or other sources * of NMIs are received, the perf NMI handler can handle one or more overflowed * PMC counters outside of the NMI associated with the PMC overflow. If the NMI * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel * back-to-back NMI support won't be active. This PMC handler needs to take into * account that this can occur, otherwise this could result in unknown NMI * messages being issued. Examples of this is PMC overflow while in the NMI * handler when multiple PMCs are active or PMC overflow while handling some * other source of an NMI. * * Attempt to mitigate this by creating an NMI window in which un-handled NMIs * received during this window will be claimed. This prevents extending the * window past when it is possible that latent NMIs should be received. The * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has * handled a counter. When an un-handled NMI is received, it will be claimed * only if arriving within that window. */ static inline int amd_pmu_adjust_nmi_window(int handled) { /* * If a counter was handled, record a timestamp such that un-handled * NMIs will be claimed if arriving within that window. */ if (handled) { this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window); return handled; } if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp))) return NMI_DONE; return NMI_HANDLED; } static int amd_pmu_handle_irq(struct pt_regs *regs) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); int handled; int pmu_enabled; /* * Save the PMU state. * It needs to be restored when leaving the handler. */ pmu_enabled = cpuc->enabled; cpuc->enabled = 0; amd_brs_disable_all(); /* Drain BRS is in use (could be inactive) */ if (cpuc->lbr_users) amd_brs_drain(); /* Process any counter overflows */ handled = x86_pmu_handle_irq(regs); cpuc->enabled = pmu_enabled; if (pmu_enabled) amd_brs_enable_all(); return amd_pmu_adjust_nmi_window(handled); } static int amd_pmu_v2_handle_irq(struct pt_regs *regs) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); struct perf_sample_data data; struct hw_perf_event *hwc; struct perf_event *event; int handled = 0, idx; u64 status, mask; bool pmu_enabled; /* * Save the PMU state as it needs to be restored when leaving the * handler */ pmu_enabled = cpuc->enabled; cpuc->enabled = 0; /* Stop counting but do not disable LBR */ amd_pmu_core_disable_all(); status = amd_pmu_get_global_status(); /* Check if any overflows are pending */ if (!status) goto done; /* Read branch records before unfreezing */ if (status & GLOBAL_STATUS_LBRS_FROZEN) { amd_pmu_lbr_read(); status &= ~GLOBAL_STATUS_LBRS_FROZEN; } for (idx = 0; idx < x86_pmu.num_counters; idx++) { if (!test_bit(idx, cpuc->active_mask)) continue; event = cpuc->events[idx]; hwc = &event->hw; x86_perf_event_update(event); mask = BIT_ULL(idx); if (!(status & mask)) continue; /* Event overflow */ handled++; status &= ~mask; perf_sample_data_init(&data, 0, hwc->last_period); if (!x86_perf_event_set_period(event)) continue; if (has_branch_stack(event)) { data.br_stack = &cpuc->lbr_stack; data.sample_flags |= PERF_SAMPLE_BRANCH_STACK; } if (perf_event_overflow(event, &data, regs)) x86_pmu_stop(event, 0); } /* * It should never be the case that some overflows are not handled as * the corresponding PMCs are expected to be inactive according to the * active_mask */ WARN_ON(status > 0); /* Clear overflow and freeze bits */ amd_pmu_ack_global_status(~status); /* * Unmasking the LVTPC is not required as the Mask (M) bit of the LVT * PMI entry is not set by the local APIC when a PMC overflow occurs */ inc_irq_stat(apic_perf_irqs); done: cpuc->enabled = pmu_enabled; /* Resume counting only if PMU is active */ if (pmu_enabled) amd_pmu_core_enable_all(); return amd_pmu_adjust_nmi_window(handled); } static struct event_constraint * amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { /* * if not NB event or no NB, then no constraints */ if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))) return &unconstrained; return __amd_get_nb_event_constraints(cpuc, event, NULL); } static void amd_put_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)) __amd_put_nb_event_constraints(cpuc, event); } PMU_FORMAT_ATTR(event, "config:0-7,32-35"); PMU_FORMAT_ATTR(umask, "config:8-15" ); PMU_FORMAT_ATTR(edge, "config:18" ); PMU_FORMAT_ATTR(inv, "config:23" ); PMU_FORMAT_ATTR(cmask, "config:24-31" ); static struct attribute *amd_format_attr[] = { &format_attr_event.attr, &format_attr_umask.attr, &format_attr_edge.attr, &format_attr_inv.attr, &format_attr_cmask.attr, NULL, }; /* AMD Family 15h */ #define AMD_EVENT_TYPE_MASK 0x000000F0ULL #define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL #define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL #define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL #define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL #define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL #define AMD_EVENT_EX_LS 0x000000C0ULL #define AMD_EVENT_DE 0x000000D0ULL #define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL /* * AMD family 15h event code/PMC mappings: * * type = event_code & 0x0F0: * * 0x000 FP PERF_CTL[5:3] * 0x010 FP PERF_CTL[5:3] * 0x020 LS PERF_CTL[5:0] * 0x030 LS PERF_CTL[5:0] * 0x040 DC PERF_CTL[5:0] * 0x050 DC PERF_CTL[5:0] * 0x060 CU PERF_CTL[2:0] * 0x070 CU PERF_CTL[2:0] * 0x080 IC/DE PERF_CTL[2:0] * 0x090 IC/DE PERF_CTL[2:0] * 0x0A0 --- * 0x0B0 --- * 0x0C0 EX/LS PERF_CTL[5:0] * 0x0D0 DE PERF_CTL[2:0] * 0x0E0 NB NB_PERF_CTL[3:0] * 0x0F0 NB NB_PERF_CTL[3:0] * * Exceptions: * * 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*) * 0x003 FP PERF_CTL[3] * 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*) * 0x00B FP PERF_CTL[3] * 0x00D FP PERF_CTL[3] * 0x023 DE PERF_CTL[2:0] * 0x02D LS PERF_CTL[3] * 0x02E LS PERF_CTL[3,0] * 0x031 LS PERF_CTL[2:0] (**) * 0x043 CU PERF_CTL[2:0] * 0x045 CU PERF_CTL[2:0] * 0x046 CU PERF_CTL[2:0] * 0x054 CU PERF_CTL[2:0] * 0x055 CU PERF_CTL[2:0] * 0x08F IC PERF_CTL[0] * 0x187 DE PERF_CTL[0] * 0x188 DE PERF_CTL[0] * 0x0DB EX PERF_CTL[5:0] * 0x0DC LS PERF_CTL[5:0] * 0x0DD LS PERF_CTL[5:0] * 0x0DE LS PERF_CTL[5:0] * 0x0DF LS PERF_CTL[5:0] * 0x1C0 EX PERF_CTL[5:3] * 0x1D6 EX PERF_CTL[5:0] * 0x1D8 EX PERF_CTL[5:0] * * (*) depending on the umask all FPU counters may be used * (**) only one unitmask enabled at a time */ static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0); static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0); static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0); static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0); static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0); static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0); static struct event_constraint * amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; unsigned int event_code = amd_get_event_code(hwc); switch (event_code & AMD_EVENT_TYPE_MASK) { case AMD_EVENT_FP: switch (event_code) { case 0x000: if (!(hwc->config & 0x0000F000ULL)) break; if (!(hwc->config & 0x00000F00ULL)) break; return &amd_f15_PMC3; case 0x004: if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1) break; return &amd_f15_PMC3; case 0x003: case 0x00B: case 0x00D: return &amd_f15_PMC3; } return &amd_f15_PMC53; case AMD_EVENT_LS: case AMD_EVENT_DC: case AMD_EVENT_EX_LS: switch (event_code) { case 0x023: case 0x043: case 0x045: case 0x046: case 0x054: case 0x055: return &amd_f15_PMC20; case 0x02D: return &amd_f15_PMC3; case 0x02E: return &amd_f15_PMC30; case 0x031: if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1) return &amd_f15_PMC20; return &emptyconstraint; case 0x1C0: return &amd_f15_PMC53; default: return &amd_f15_PMC50; } case AMD_EVENT_CU: case AMD_EVENT_IC_DE: case AMD_EVENT_DE: switch (event_code) { case 0x08F: case 0x187: case 0x188: return &amd_f15_PMC0; case 0x0DB ... 0x0DF: case 0x1D6: case 0x1D8: return &amd_f15_PMC50; default: return &amd_f15_PMC20; } case AMD_EVENT_NB: /* moved to uncore.c */ return &emptyconstraint; default: return &emptyconstraint; } } static struct event_constraint pair_constraint; static struct event_constraint * amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; if (amd_is_pair_event_code(hwc)) return &pair_constraint; return &unconstrained; } static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc, struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; if (is_counter_pair(hwc)) --cpuc->n_pair; } /* * Because of the way BRS operates with an inactive and active phases, and * the link to one counter, it is not possible to have two events using BRS * scheduled at the same time. There would be an issue with enforcing the * period of each one and given that the BRS saturates, it would not be possible * to guarantee correlated content for all events. Therefore, in situations * where multiple events want to use BRS, the kernel enforces mutual exclusion. * Exclusion is enforced by chosing only one counter for events using BRS. * The event scheduling logic will then automatically multiplex the * events and ensure that at most one event is actively using BRS. * * The BRS counter could be any counter, but there is no constraint on Fam19h, * therefore all counters are equal and thus we pick the first one: PMC0 */ static struct event_constraint amd_fam19h_brs_cntr0_constraint = EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK); static struct event_constraint amd_fam19h_brs_pair_cntr0_constraint = __EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK, 1, 0, PERF_X86_EVENT_PAIR); static struct event_constraint * amd_get_event_constraints_f19h(struct cpu_hw_events *cpuc, int idx, struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; bool has_brs = has_amd_brs(hwc); /* * In case BRS is used with an event requiring a counter pair, * the kernel allows it but only on counter 0 & 1 to enforce * multiplexing requiring to protect BRS in case of multiple * BRS users */ if (amd_is_pair_event_code(hwc)) { return has_brs ? &amd_fam19h_brs_pair_cntr0_constraint : &pair_constraint; } if (has_brs) return &amd_fam19h_brs_cntr0_constraint; return &unconstrained; } static ssize_t amd_event_sysfs_show(char *page, u64 config) { u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) | (config & AMD64_EVENTSEL_EVENT) >> 24; return x86_event_sysfs_show(page, config, event); } static void amd_pmu_limit_period(struct perf_event *event, s64 *left) { /* * Decrease period by the depth of the BRS feature to get the last N * taken branches and approximate the desired period */ if (has_branch_stack(event) && *left > x86_pmu.lbr_nr) *left -= x86_pmu.lbr_nr; } static __initconst const struct x86_pmu amd_pmu = { .name = "AMD", .handle_irq = amd_pmu_handle_irq, .disable_all = amd_pmu_disable_all, .enable_all = amd_pmu_enable_all, .enable = amd_pmu_enable_event, .disable = amd_pmu_disable_event, .hw_config = amd_pmu_hw_config, .schedule_events = x86_schedule_events, .eventsel = MSR_K7_EVNTSEL0, .perfctr = MSR_K7_PERFCTR0, .addr_offset = amd_pmu_addr_offset, .event_map = amd_pmu_event_map, .max_events = ARRAY_SIZE(amd_perfmon_event_map), .num_counters = AMD64_NUM_COUNTERS, .add = amd_pmu_add_event, .del = amd_pmu_del_event, .cntval_bits = 48, .cntval_mask = (1ULL << 48) - 1, .apic = 1, /* use highest bit to detect overflow */ .max_period = (1ULL << 47) - 1, .get_event_constraints = amd_get_event_constraints, .put_event_constraints = amd_put_event_constraints, .format_attrs = amd_format_attr, .events_sysfs_show = amd_event_sysfs_show, .cpu_prepare = amd_pmu_cpu_prepare, .cpu_starting = amd_pmu_cpu_starting, .cpu_dead = amd_pmu_cpu_dead, .amd_nb_constraints = 1, }; static ssize_t branches_show(struct device *cdev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr); } static DEVICE_ATTR_RO(branches); static struct attribute *amd_pmu_branches_attrs[] = { &dev_attr_branches.attr, NULL, }; static umode_t amd_branches_is_visible(struct kobject *kobj, struct attribute *attr, int i) { return x86_pmu.lbr_nr ? attr->mode : 0; } static struct attribute_group group_caps_amd_branches = { .name = "caps", .attrs = amd_pmu_branches_attrs, .is_visible = amd_branches_is_visible, }; #ifdef CONFIG_PERF_EVENTS_AMD_BRS EVENT_ATTR_STR(branch-brs, amd_branch_brs, "event=" __stringify(AMD_FAM19H_BRS_EVENT)"\n"); static struct attribute *amd_brs_events_attrs[] = { EVENT_PTR(amd_branch_brs), NULL, }; static umode_t amd_brs_is_visible(struct kobject *kobj, struct attribute *attr, int i) { return static_cpu_has(X86_FEATURE_BRS) && x86_pmu.lbr_nr ? attr->mode : 0; } static struct attribute_group group_events_amd_brs = { .name = "events", .attrs = amd_brs_events_attrs, .is_visible = amd_brs_is_visible, }; #endif /* CONFIG_PERF_EVENTS_AMD_BRS */ static const struct attribute_group *amd_attr_update[] = { &group_caps_amd_branches, #ifdef CONFIG_PERF_EVENTS_AMD_BRS &group_events_amd_brs, #endif NULL, }; static int __init amd_core_pmu_init(void) { union cpuid_0x80000022_ebx ebx; u64 even_ctr_mask = 0ULL; int i; if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE)) return 0; /* Avoid calculating the value each time in the NMI handler */ perf_nmi_window = msecs_to_jiffies(100); /* * If core performance counter extensions exists, we must use * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also * amd_pmu_addr_offset(). */ x86_pmu.eventsel = MSR_F15H_PERF_CTL; x86_pmu.perfctr = MSR_F15H_PERF_CTR; x86_pmu.num_counters = AMD64_NUM_COUNTERS_CORE; /* Check for Performance Monitoring v2 support */ if (boot_cpu_has(X86_FEATURE_PERFMON_V2)) { ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES); /* Update PMU version for later usage */ x86_pmu.version = 2; /* Find the number of available Core PMCs */ x86_pmu.num_counters = ebx.split.num_core_pmc; amd_pmu_global_cntr_mask = (1ULL << x86_pmu.num_counters) - 1; /* Update PMC handling functions */ x86_pmu.enable_all = amd_pmu_v2_enable_all; x86_pmu.disable_all = amd_pmu_v2_disable_all; x86_pmu.enable = amd_pmu_v2_enable_event; x86_pmu.handle_irq = amd_pmu_v2_handle_irq; static_call_update(amd_pmu_test_overflow, amd_pmu_test_overflow_status); } /* * AMD Core perfctr has separate MSRs for the NB events, see * the amd/uncore.c driver. */ x86_pmu.amd_nb_constraints = 0; if (boot_cpu_data.x86 == 0x15) { pr_cont("Fam15h "); x86_pmu.get_event_constraints = amd_get_event_constraints_f15h; } if (boot_cpu_data.x86 >= 0x17) { pr_cont("Fam17h+ "); /* * Family 17h and compatibles have constraints for Large * Increment per Cycle events: they may only be assigned an * even numbered counter that has a consecutive adjacent odd * numbered counter following it. */ for (i = 0; i < x86_pmu.num_counters - 1; i += 2) even_ctr_mask |= BIT_ULL(i); pair_constraint = (struct event_constraint) __EVENT_CONSTRAINT(0, even_ctr_mask, 0, x86_pmu.num_counters / 2, 0, PERF_X86_EVENT_PAIR); x86_pmu.get_event_constraints = amd_get_event_constraints_f17h; x86_pmu.put_event_constraints = amd_put_event_constraints_f17h; x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE; x86_pmu.flags |= PMU_FL_PAIR; } /* LBR and BRS are mutually exclusive features */ if (!amd_pmu_lbr_init()) { /* LBR requires flushing on context switch */ x86_pmu.sched_task = amd_pmu_lbr_sched_task; static_call_update(amd_pmu_branch_hw_config, amd_pmu_lbr_hw_config); static_call_update(amd_pmu_branch_reset, amd_pmu_lbr_reset); static_call_update(amd_pmu_branch_add, amd_pmu_lbr_add); static_call_update(amd_pmu_branch_del, amd_pmu_lbr_del); } else if (!amd_brs_init()) { /* * BRS requires special event constraints and flushing on ctxsw. */ x86_pmu.get_event_constraints = amd_get_event_constraints_f19h; x86_pmu.sched_task = amd_pmu_brs_sched_task; x86_pmu.limit_period = amd_pmu_limit_period; static_call_update(amd_pmu_branch_hw_config, amd_brs_hw_config); static_call_update(amd_pmu_branch_reset, amd_brs_reset); static_call_update(amd_pmu_branch_add, amd_pmu_brs_add); static_call_update(amd_pmu_branch_del, amd_pmu_brs_del); /* * put_event_constraints callback same as Fam17h, set above */ /* branch sampling must be stopped when entering low power */ amd_brs_lopwr_init(); } x86_pmu.attr_update = amd_attr_update; pr_cont("core perfctr, "); return 0; } __init int amd_pmu_init(void) { int ret; /* Performance-monitoring supported from K7 and later: */ if (boot_cpu_data.x86 < 6) return -ENODEV; x86_pmu = amd_pmu; ret = amd_core_pmu_init(); if (ret) return ret; if (num_possible_cpus() == 1) { /* * No point in allocating data structures to serialize * against other CPUs, when there is only the one CPU. */ x86_pmu.amd_nb_constraints = 0; } if (boot_cpu_data.x86 >= 0x17) memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids)); else memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids)); return 0; } static inline void amd_pmu_reload_virt(void) { if (x86_pmu.version >= 2) { /* * Clear global enable bits, reprogram the PERF_CTL * registers with updated perf_ctr_virt_mask and then * set global enable bits once again */ amd_pmu_v2_disable_all(); amd_pmu_enable_all(0); amd_pmu_v2_enable_all(0); return; } amd_pmu_disable_all(); amd_pmu_enable_all(0); } void amd_pmu_enable_virt(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); cpuc->perf_ctr_virt_mask = 0; /* Reload all events */ amd_pmu_reload_virt(); } EXPORT_SYMBOL_GPL(amd_pmu_enable_virt); void amd_pmu_disable_virt(void) { struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); /* * We only mask out the Host-only bit so that host-only counting works * when SVM is disabled. If someone sets up a guest-only counter when * SVM is disabled the Guest-only bits still gets set and the counter * will not count anything. */ cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY; /* Reload all events */ amd_pmu_reload_virt(); } EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);