// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved. * Copyright (C) 2014-2017 Mentor Graphics Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* min/typical/max system clock (xclk) frequencies */ #define OV5640_XCLK_MIN 6000000 #define OV5640_XCLK_MAX 54000000 #define OV5640_NATIVE_WIDTH 2624 #define OV5640_NATIVE_HEIGHT 1964 #define OV5640_PIXEL_ARRAY_TOP 14 #define OV5640_PIXEL_ARRAY_LEFT 16 #define OV5640_PIXEL_ARRAY_WIDTH 2592 #define OV5640_PIXEL_ARRAY_HEIGHT 1944 /* FIXME: not documented. */ #define OV5640_MIN_VBLANK 24 #define OV5640_MAX_VTS 3375 #define OV5640_DEFAULT_SLAVE_ID 0x3c #define OV5640_LINK_RATE_MAX 490000000U #define OV5640_REG_SYS_RESET02 0x3002 #define OV5640_REG_SYS_CLOCK_ENABLE02 0x3006 #define OV5640_REG_SYS_CTRL0 0x3008 #define OV5640_REG_SYS_CTRL0_SW_PWDN 0x42 #define OV5640_REG_SYS_CTRL0_SW_PWUP 0x02 #define OV5640_REG_SYS_CTRL0_SW_RST 0x82 #define OV5640_REG_CHIP_ID 0x300a #define OV5640_REG_IO_MIPI_CTRL00 0x300e #define OV5640_REG_PAD_OUTPUT_ENABLE01 0x3017 #define OV5640_REG_PAD_OUTPUT_ENABLE02 0x3018 #define OV5640_REG_PAD_OUTPUT00 0x3019 #define OV5640_REG_SYSTEM_CONTROL1 0x302e #define OV5640_REG_SC_PLL_CTRL0 0x3034 #define OV5640_REG_SC_PLL_CTRL1 0x3035 #define OV5640_REG_SC_PLL_CTRL2 0x3036 #define OV5640_REG_SC_PLL_CTRL3 0x3037 #define OV5640_REG_SLAVE_ID 0x3100 #define OV5640_REG_SCCB_SYS_CTRL1 0x3103 #define OV5640_REG_SYS_ROOT_DIVIDER 0x3108 #define OV5640_REG_AWB_R_GAIN 0x3400 #define OV5640_REG_AWB_G_GAIN 0x3402 #define OV5640_REG_AWB_B_GAIN 0x3404 #define OV5640_REG_AWB_MANUAL_CTRL 0x3406 #define OV5640_REG_AEC_PK_EXPOSURE_HI 0x3500 #define OV5640_REG_AEC_PK_EXPOSURE_MED 0x3501 #define OV5640_REG_AEC_PK_EXPOSURE_LO 0x3502 #define OV5640_REG_AEC_PK_MANUAL 0x3503 #define OV5640_REG_AEC_PK_REAL_GAIN 0x350a #define OV5640_REG_AEC_PK_VTS 0x350c #define OV5640_REG_TIMING_HS 0x3800 #define OV5640_REG_TIMING_VS 0x3802 #define OV5640_REG_TIMING_HW 0x3804 #define OV5640_REG_TIMING_VH 0x3806 #define OV5640_REG_TIMING_DVPHO 0x3808 #define OV5640_REG_TIMING_DVPVO 0x380a #define OV5640_REG_TIMING_HTS 0x380c #define OV5640_REG_TIMING_VTS 0x380e #define OV5640_REG_TIMING_HOFFS 0x3810 #define OV5640_REG_TIMING_VOFFS 0x3812 #define OV5640_REG_TIMING_TC_REG20 0x3820 #define OV5640_REG_TIMING_TC_REG21 0x3821 #define OV5640_REG_AEC_CTRL00 0x3a00 #define OV5640_REG_AEC_B50_STEP 0x3a08 #define OV5640_REG_AEC_B60_STEP 0x3a0a #define OV5640_REG_AEC_CTRL0D 0x3a0d #define OV5640_REG_AEC_CTRL0E 0x3a0e #define OV5640_REG_AEC_CTRL0F 0x3a0f #define OV5640_REG_AEC_CTRL10 0x3a10 #define OV5640_REG_AEC_CTRL11 0x3a11 #define OV5640_REG_AEC_CTRL1B 0x3a1b #define OV5640_REG_AEC_CTRL1E 0x3a1e #define OV5640_REG_AEC_CTRL1F 0x3a1f #define OV5640_REG_HZ5060_CTRL00 0x3c00 #define OV5640_REG_HZ5060_CTRL01 0x3c01 #define OV5640_REG_SIGMADELTA_CTRL0C 0x3c0c #define OV5640_REG_FRAME_CTRL01 0x4202 #define OV5640_REG_FORMAT_CONTROL00 0x4300 #define OV5640_REG_VFIFO_HSIZE 0x4602 #define OV5640_REG_VFIFO_VSIZE 0x4604 #define OV5640_REG_JPG_MODE_SELECT 0x4713 #define OV5640_REG_CCIR656_CTRL00 0x4730 #define OV5640_REG_POLARITY_CTRL00 0x4740 #define OV5640_REG_MIPI_CTRL00 0x4800 #define OV5640_REG_DEBUG_MODE 0x4814 #define OV5640_REG_PCLK_PERIOD 0x4837 #define OV5640_REG_ISP_FORMAT_MUX_CTRL 0x501f #define OV5640_REG_PRE_ISP_TEST_SET1 0x503d #define OV5640_REG_SDE_CTRL0 0x5580 #define OV5640_REG_SDE_CTRL1 0x5581 #define OV5640_REG_SDE_CTRL3 0x5583 #define OV5640_REG_SDE_CTRL4 0x5584 #define OV5640_REG_SDE_CTRL5 0x5585 #define OV5640_REG_AVG_READOUT 0x56a1 enum ov5640_mode_id { OV5640_MODE_QQVGA_160_120 = 0, OV5640_MODE_QCIF_176_144, OV5640_MODE_QVGA_320_240, OV5640_MODE_VGA_640_480, OV5640_MODE_NTSC_720_480, OV5640_MODE_PAL_720_576, OV5640_MODE_XGA_1024_768, OV5640_MODE_720P_1280_720, OV5640_MODE_1080P_1920_1080, OV5640_MODE_QSXGA_2592_1944, OV5640_NUM_MODES, }; enum ov5640_frame_rate { OV5640_15_FPS = 0, OV5640_30_FPS, OV5640_60_FPS, OV5640_NUM_FRAMERATES, }; enum ov5640_pixel_rate_id { OV5640_PIXEL_RATE_168M, OV5640_PIXEL_RATE_148M, OV5640_PIXEL_RATE_124M, OV5640_PIXEL_RATE_96M, OV5640_PIXEL_RATE_48M, OV5640_NUM_PIXEL_RATES, }; /* * The chip manual suggests 24/48/96/192 MHz pixel clocks. * * 192MHz exceeds the sysclk limits; use 168MHz as maximum pixel rate for * full resolution mode @15 FPS. */ static const u32 ov5640_pixel_rates[] = { [OV5640_PIXEL_RATE_168M] = 168000000, [OV5640_PIXEL_RATE_148M] = 148000000, [OV5640_PIXEL_RATE_124M] = 124000000, [OV5640_PIXEL_RATE_96M] = 96000000, [OV5640_PIXEL_RATE_48M] = 48000000, }; /* * MIPI CSI-2 link frequencies. * * Derived from the above defined pixel rate for bpp = (8, 16, 24) and * data_lanes = (1, 2) * * link_freq = (pixel_rate * bpp) / (2 * data_lanes) */ static const s64 ov5640_csi2_link_freqs[] = { 992000000, 888000000, 768000000, 744000000, 672000000, 672000000, 592000000, 592000000, 576000000, 576000000, 496000000, 496000000, 384000000, 384000000, 384000000, 336000000, 296000000, 288000000, 248000000, 192000000, 192000000, 192000000, 96000000, }; /* Link freq for default mode: UYVY 16 bpp, 2 data lanes. */ #define OV5640_DEFAULT_LINK_FREQ 13 enum ov5640_format_mux { OV5640_FMT_MUX_YUV422 = 0, OV5640_FMT_MUX_RGB, OV5640_FMT_MUX_DITHER, OV5640_FMT_MUX_RAW_DPC, OV5640_FMT_MUX_SNR_RAW, OV5640_FMT_MUX_RAW_CIP, }; struct ov5640_pixfmt { u32 code; u32 colorspace; u8 bpp; u8 ctrl00; enum ov5640_format_mux mux; }; static const struct ov5640_pixfmt ov5640_dvp_formats[] = { { /* YUV422, YUYV */ .code = MEDIA_BUS_FMT_JPEG_1X8, .colorspace = V4L2_COLORSPACE_JPEG, .bpp = 16, .ctrl00 = 0x30, .mux = OV5640_FMT_MUX_YUV422, }, { /* YUV422, UYVY */ .code = MEDIA_BUS_FMT_UYVY8_2X8, .colorspace = V4L2_COLORSPACE_SRGB, .bpp = 16, .ctrl00 = 0x3f, .mux = OV5640_FMT_MUX_YUV422, }, { /* YUV422, YUYV */ .code = MEDIA_BUS_FMT_YUYV8_2X8, .colorspace = V4L2_COLORSPACE_SRGB, .bpp = 16, .ctrl00 = 0x30, .mux = OV5640_FMT_MUX_YUV422, }, { /* RGB565 {g[2:0],b[4:0]},{r[4:0],g[5:3]} */ .code = MEDIA_BUS_FMT_RGB565_2X8_LE, .colorspace = V4L2_COLORSPACE_SRGB, .bpp = 16, .ctrl00 = 0x6f, .mux = OV5640_FMT_MUX_RGB, }, { /* RGB565 {r[4:0],g[5:3]},{g[2:0],b[4:0]} */ .code = MEDIA_BUS_FMT_RGB565_2X8_BE, .colorspace = V4L2_COLORSPACE_SRGB, .bpp = 16, .ctrl00 = 0x61, .mux = OV5640_FMT_MUX_RGB, }, { /* Raw, BGBG... / GRGR... */ .code = MEDIA_BUS_FMT_SBGGR8_1X8, .colorspace = V4L2_COLORSPACE_SRGB, .bpp = 8, .ctrl00 = 0x00, .mux = OV5640_FMT_MUX_RAW_DPC, }, { /* Raw bayer, GBGB... / RGRG... */ .code = MEDIA_BUS_FMT_SGBRG8_1X8, .colorspace = V4L2_COLORSPACE_SRGB, .bpp = 8, .ctrl00 = 0x01, .mux = OV5640_FMT_MUX_RAW_DPC, }, { /* Raw bayer, GRGR... / BGBG... */ .code = MEDIA_BUS_FMT_SGRBG8_1X8, .colorspace = V4L2_COLORSPACE_SRGB, .bpp = 8, .ctrl00 = 0x02, .mux = OV5640_FMT_MUX_RAW_DPC, }, { /* Raw bayer, RGRG... / GBGB... */ .code = MEDIA_BUS_FMT_SRGGB8_1X8, .colorspace = V4L2_COLORSPACE_SRGB, .bpp = 8, .ctrl00 = 0x03, .mux = OV5640_FMT_MUX_RAW_DPC, }, { /* sentinel */ } }; static const struct ov5640_pixfmt ov5640_csi2_formats[] = { { /* YUV422, YUYV */ .code = MEDIA_BUS_FMT_JPEG_1X8, .colorspace = V4L2_COLORSPACE_JPEG, .bpp = 16, .ctrl00 = 0x30, .mux = OV5640_FMT_MUX_YUV422, }, { /* YUV422, UYVY */ .code = MEDIA_BUS_FMT_UYVY8_1X16, .colorspace = V4L2_COLORSPACE_SRGB, .bpp = 16, .ctrl00 = 0x3f, .mux = OV5640_FMT_MUX_YUV422, }, { /* YUV422, YUYV */ .code = MEDIA_BUS_FMT_YUYV8_1X16, .colorspace = V4L2_COLORSPACE_SRGB, .bpp = 16, .ctrl00 = 0x30, .mux = OV5640_FMT_MUX_YUV422, }, { /* RGB565 {g[2:0],b[4:0]},{r[4:0],g[5:3]} */ .code = MEDIA_BUS_FMT_RGB565_1X16, .colorspace = V4L2_COLORSPACE_SRGB, .bpp = 16, .ctrl00 = 0x6f, .mux = OV5640_FMT_MUX_RGB, }, { /* BGR888: RGB */ .code = MEDIA_BUS_FMT_BGR888_1X24, .colorspace = V4L2_COLORSPACE_SRGB, .bpp = 24, .ctrl00 = 0x23, .mux = OV5640_FMT_MUX_RGB, }, { /* Raw, BGBG... / GRGR... */ .code = MEDIA_BUS_FMT_SBGGR8_1X8, .colorspace = V4L2_COLORSPACE_SRGB, .bpp = 8, .ctrl00 = 0x00, .mux = OV5640_FMT_MUX_RAW_DPC, }, { /* Raw bayer, GBGB... / RGRG... */ .code = MEDIA_BUS_FMT_SGBRG8_1X8, .colorspace = V4L2_COLORSPACE_SRGB, .bpp = 8, .ctrl00 = 0x01, .mux = OV5640_FMT_MUX_RAW_DPC, }, { /* Raw bayer, GRGR... / BGBG... */ .code = MEDIA_BUS_FMT_SGRBG8_1X8, .colorspace = V4L2_COLORSPACE_SRGB, .bpp = 8, .ctrl00 = 0x02, .mux = OV5640_FMT_MUX_RAW_DPC, }, { /* Raw bayer, RGRG... / GBGB... */ .code = MEDIA_BUS_FMT_SRGGB8_1X8, .colorspace = V4L2_COLORSPACE_SRGB, .bpp = 8, .ctrl00 = 0x03, .mux = OV5640_FMT_MUX_RAW_DPC, }, { /* sentinel */ } }; /* * FIXME: remove this when a subdev API becomes available * to set the MIPI CSI-2 virtual channel. */ static unsigned int virtual_channel; module_param(virtual_channel, uint, 0444); MODULE_PARM_DESC(virtual_channel, "MIPI CSI-2 virtual channel (0..3), default 0"); static const int ov5640_framerates[] = { [OV5640_15_FPS] = 15, [OV5640_30_FPS] = 30, [OV5640_60_FPS] = 60, }; /* regulator supplies */ static const char * const ov5640_supply_name[] = { "DOVDD", /* Digital I/O (1.8V) supply */ "AVDD", /* Analog (2.8V) supply */ "DVDD", /* Digital Core (1.5V) supply */ }; #define OV5640_NUM_SUPPLIES ARRAY_SIZE(ov5640_supply_name) /* * Image size under 1280 * 960 are SUBSAMPLING * Image size upper 1280 * 960 are SCALING */ enum ov5640_downsize_mode { SUBSAMPLING, SCALING, }; struct reg_value { u16 reg_addr; u8 val; u8 mask; u32 delay_ms; }; struct ov5640_timings { /* Analog crop rectangle. */ struct v4l2_rect analog_crop; /* Visibile crop: from analog crop top-left corner. */ struct v4l2_rect crop; /* Total pixels per line: width + fixed hblank. */ u32 htot; /* Default vertical blanking: frame height = height + vblank. */ u32 vblank_def; }; struct ov5640_mode_info { enum ov5640_mode_id id; enum ov5640_downsize_mode dn_mode; enum ov5640_pixel_rate_id pixel_rate; unsigned int width; unsigned int height; struct ov5640_timings dvp_timings; struct ov5640_timings csi2_timings; const struct reg_value *reg_data; u32 reg_data_size; /* Used by s_frame_interval only. */ u32 max_fps; u32 def_fps; }; struct ov5640_ctrls { struct v4l2_ctrl_handler handler; struct v4l2_ctrl *pixel_rate; struct v4l2_ctrl *link_freq; struct v4l2_ctrl *hblank; struct v4l2_ctrl *vblank; struct { struct v4l2_ctrl *auto_exp; struct v4l2_ctrl *exposure; }; struct { struct v4l2_ctrl *auto_wb; struct v4l2_ctrl *blue_balance; struct v4l2_ctrl *red_balance; }; struct { struct v4l2_ctrl *auto_gain; struct v4l2_ctrl *gain; }; struct v4l2_ctrl *brightness; struct v4l2_ctrl *light_freq; struct v4l2_ctrl *saturation; struct v4l2_ctrl *contrast; struct v4l2_ctrl *hue; struct v4l2_ctrl *test_pattern; struct v4l2_ctrl *hflip; struct v4l2_ctrl *vflip; }; struct ov5640_dev { struct i2c_client *i2c_client; struct v4l2_subdev sd; struct media_pad pad; struct v4l2_fwnode_endpoint ep; /* the parsed DT endpoint info */ struct clk *xclk; /* system clock to OV5640 */ u32 xclk_freq; struct regulator_bulk_data supplies[OV5640_NUM_SUPPLIES]; struct gpio_desc *reset_gpio; struct gpio_desc *pwdn_gpio; bool upside_down; /* lock to protect all members below */ struct mutex lock; struct v4l2_mbus_framefmt fmt; bool pending_fmt_change; const struct ov5640_mode_info *current_mode; const struct ov5640_mode_info *last_mode; enum ov5640_frame_rate current_fr; struct v4l2_fract frame_interval; s64 current_link_freq; struct ov5640_ctrls ctrls; u32 prev_sysclk, prev_hts; u32 ae_low, ae_high, ae_target; bool pending_mode_change; bool streaming; }; static inline struct ov5640_dev *to_ov5640_dev(struct v4l2_subdev *sd) { return container_of(sd, struct ov5640_dev, sd); } static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl) { return &container_of(ctrl->handler, struct ov5640_dev, ctrls.handler)->sd; } static inline bool ov5640_is_csi2(const struct ov5640_dev *sensor) { return sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY; } static inline const struct ov5640_pixfmt * ov5640_formats(struct ov5640_dev *sensor) { return ov5640_is_csi2(sensor) ? ov5640_csi2_formats : ov5640_dvp_formats; } static const struct ov5640_pixfmt * ov5640_code_to_pixfmt(struct ov5640_dev *sensor, u32 code) { const struct ov5640_pixfmt *formats = ov5640_formats(sensor); unsigned int i; for (i = 0; formats[i].code; ++i) { if (formats[i].code == code) return &formats[i]; } return &formats[0]; } static u32 ov5640_code_to_bpp(struct ov5640_dev *sensor, u32 code) { const struct ov5640_pixfmt *format = ov5640_code_to_pixfmt(sensor, code); return format->bpp; } /* * FIXME: all of these register tables are likely filled with * entries that set the register to their power-on default values, * and which are otherwise not touched by this driver. Those entries * should be identified and removed to speed register load time * over i2c. */ /* YUV422 UYVY VGA@30fps */ static const struct v4l2_mbus_framefmt ov5640_default_fmt = { .code = MEDIA_BUS_FMT_UYVY8_2X8, .width = 640, .height = 480, .colorspace = V4L2_COLORSPACE_SRGB, .ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(V4L2_COLORSPACE_SRGB), .quantization = V4L2_QUANTIZATION_FULL_RANGE, .xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(V4L2_COLORSPACE_SRGB), .field = V4L2_FIELD_NONE, }; static const struct reg_value ov5640_init_setting[] = { {0x3103, 0x11, 0, 0}, {0x3103, 0x03, 0, 0}, {0x3630, 0x36, 0, 0}, {0x3631, 0x0e, 0, 0}, {0x3632, 0xe2, 0, 0}, {0x3633, 0x12, 0, 0}, {0x3621, 0xe0, 0, 0}, {0x3704, 0xa0, 0, 0}, {0x3703, 0x5a, 0, 0}, {0x3715, 0x78, 0, 0}, {0x3717, 0x01, 0, 0}, {0x370b, 0x60, 0, 0}, {0x3705, 0x1a, 0, 0}, {0x3905, 0x02, 0, 0}, {0x3906, 0x10, 0, 0}, {0x3901, 0x0a, 0, 0}, {0x3731, 0x12, 0, 0}, {0x3600, 0x08, 0, 0}, {0x3601, 0x33, 0, 0}, {0x302d, 0x60, 0, 0}, {0x3620, 0x52, 0, 0}, {0x371b, 0x20, 0, 0}, {0x471c, 0x50, 0, 0}, {0x3a13, 0x43, 0, 0}, {0x3a18, 0x00, 0, 0}, {0x3a19, 0xf8, 0, 0}, {0x3635, 0x13, 0, 0}, {0x3636, 0x03, 0, 0}, {0x3634, 0x40, 0, 0}, {0x3622, 0x01, 0, 0}, {0x3c01, 0xa4, 0, 0}, {0x3c04, 0x28, 0, 0}, {0x3c05, 0x98, 0, 0}, {0x3c06, 0x00, 0, 0}, {0x3c07, 0x08, 0, 0}, {0x3c08, 0x00, 0, 0}, {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, {0x3820, 0x41, 0, 0}, {0x3821, 0x07, 0, 0}, {0x3814, 0x31, 0, 0}, {0x3815, 0x31, 0, 0}, {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x3000, 0x00, 0, 0}, {0x3002, 0x1c, 0, 0}, {0x3004, 0xff, 0, 0}, {0x3006, 0xc3, 0, 0}, {0x302e, 0x08, 0, 0}, {0x4300, 0x3f, 0, 0}, {0x501f, 0x00, 0, 0}, {0x440e, 0x00, 0, 0}, {0x4837, 0x0a, 0, 0}, {0x5000, 0xa7, 0, 0}, {0x5001, 0xa3, 0, 0}, {0x5180, 0xff, 0, 0}, {0x5181, 0xf2, 0, 0}, {0x5182, 0x00, 0, 0}, {0x5183, 0x14, 0, 0}, {0x5184, 0x25, 0, 0}, {0x5185, 0x24, 0, 0}, {0x5186, 0x09, 0, 0}, {0x5187, 0x09, 0, 0}, {0x5188, 0x09, 0, 0}, {0x5189, 0x88, 0, 0}, {0x518a, 0x54, 0, 0}, {0x518b, 0xee, 0, 0}, {0x518c, 0xb2, 0, 0}, {0x518d, 0x50, 0, 0}, {0x518e, 0x34, 0, 0}, {0x518f, 0x6b, 0, 0}, {0x5190, 0x46, 0, 0}, {0x5191, 0xf8, 0, 0}, {0x5192, 0x04, 0, 0}, {0x5193, 0x70, 0, 0}, {0x5194, 0xf0, 0, 0}, {0x5195, 0xf0, 0, 0}, {0x5196, 0x03, 0, 0}, {0x5197, 0x01, 0, 0}, {0x5198, 0x04, 0, 0}, {0x5199, 0x6c, 0, 0}, {0x519a, 0x04, 0, 0}, {0x519b, 0x00, 0, 0}, {0x519c, 0x09, 0, 0}, {0x519d, 0x2b, 0, 0}, {0x519e, 0x38, 0, 0}, {0x5381, 0x1e, 0, 0}, {0x5382, 0x5b, 0, 0}, {0x5383, 0x08, 0, 0}, {0x5384, 0x0a, 0, 0}, {0x5385, 0x7e, 0, 0}, {0x5386, 0x88, 0, 0}, {0x5387, 0x7c, 0, 0}, {0x5388, 0x6c, 0, 0}, {0x5389, 0x10, 0, 0}, {0x538a, 0x01, 0, 0}, {0x538b, 0x98, 0, 0}, {0x5300, 0x08, 0, 0}, {0x5301, 0x30, 0, 0}, {0x5302, 0x10, 0, 0}, {0x5303, 0x00, 0, 0}, {0x5304, 0x08, 0, 0}, {0x5305, 0x30, 0, 0}, {0x5306, 0x08, 0, 0}, {0x5307, 0x16, 0, 0}, {0x5309, 0x08, 0, 0}, {0x530a, 0x30, 0, 0}, {0x530b, 0x04, 0, 0}, {0x530c, 0x06, 0, 0}, {0x5480, 0x01, 0, 0}, {0x5481, 0x08, 0, 0}, {0x5482, 0x14, 0, 0}, {0x5483, 0x28, 0, 0}, {0x5484, 0x51, 0, 0}, {0x5485, 0x65, 0, 0}, {0x5486, 0x71, 0, 0}, {0x5487, 0x7d, 0, 0}, {0x5488, 0x87, 0, 0}, {0x5489, 0x91, 0, 0}, {0x548a, 0x9a, 0, 0}, {0x548b, 0xaa, 0, 0}, {0x548c, 0xb8, 0, 0}, {0x548d, 0xcd, 0, 0}, {0x548e, 0xdd, 0, 0}, {0x548f, 0xea, 0, 0}, {0x5490, 0x1d, 0, 0}, {0x5580, 0x02, 0, 0}, {0x5583, 0x40, 0, 0}, {0x5584, 0x10, 0, 0}, {0x5589, 0x10, 0, 0}, {0x558a, 0x00, 0, 0}, {0x558b, 0xf8, 0, 0}, {0x5800, 0x23, 0, 0}, {0x5801, 0x14, 0, 0}, {0x5802, 0x0f, 0, 0}, {0x5803, 0x0f, 0, 0}, {0x5804, 0x12, 0, 0}, {0x5805, 0x26, 0, 0}, {0x5806, 0x0c, 0, 0}, {0x5807, 0x08, 0, 0}, {0x5808, 0x05, 0, 0}, {0x5809, 0x05, 0, 0}, {0x580a, 0x08, 0, 0}, {0x580b, 0x0d, 0, 0}, {0x580c, 0x08, 0, 0}, {0x580d, 0x03, 0, 0}, {0x580e, 0x00, 0, 0}, {0x580f, 0x00, 0, 0}, {0x5810, 0x03, 0, 0}, {0x5811, 0x09, 0, 0}, {0x5812, 0x07, 0, 0}, {0x5813, 0x03, 0, 0}, {0x5814, 0x00, 0, 0}, {0x5815, 0x01, 0, 0}, {0x5816, 0x03, 0, 0}, {0x5817, 0x08, 0, 0}, {0x5818, 0x0d, 0, 0}, {0x5819, 0x08, 0, 0}, {0x581a, 0x05, 0, 0}, {0x581b, 0x06, 0, 0}, {0x581c, 0x08, 0, 0}, {0x581d, 0x0e, 0, 0}, {0x581e, 0x29, 0, 0}, {0x581f, 0x17, 0, 0}, {0x5820, 0x11, 0, 0}, {0x5821, 0x11, 0, 0}, {0x5822, 0x15, 0, 0}, {0x5823, 0x28, 0, 0}, {0x5824, 0x46, 0, 0}, {0x5825, 0x26, 0, 0}, {0x5826, 0x08, 0, 0}, {0x5827, 0x26, 0, 0}, {0x5828, 0x64, 0, 0}, {0x5829, 0x26, 0, 0}, {0x582a, 0x24, 0, 0}, {0x582b, 0x22, 0, 0}, {0x582c, 0x24, 0, 0}, {0x582d, 0x24, 0, 0}, {0x582e, 0x06, 0, 0}, {0x582f, 0x22, 0, 0}, {0x5830, 0x40, 0, 0}, {0x5831, 0x42, 0, 0}, {0x5832, 0x24, 0, 0}, {0x5833, 0x26, 0, 0}, {0x5834, 0x24, 0, 0}, {0x5835, 0x22, 0, 0}, {0x5836, 0x22, 0, 0}, {0x5837, 0x26, 0, 0}, {0x5838, 0x44, 0, 0}, {0x5839, 0x24, 0, 0}, {0x583a, 0x26, 0, 0}, {0x583b, 0x28, 0, 0}, {0x583c, 0x42, 0, 0}, {0x583d, 0xce, 0, 0}, {0x5025, 0x00, 0, 0}, {0x3a0f, 0x30, 0, 0}, {0x3a10, 0x28, 0, 0}, {0x3a1b, 0x30, 0, 0}, {0x3a1e, 0x26, 0, 0}, {0x3a11, 0x60, 0, 0}, {0x3a1f, 0x14, 0, 0}, {0x3008, 0x02, 0, 0}, {0x3c00, 0x04, 0, 300}, }; static const struct reg_value ov5640_setting_low_res[] = { {0x3c07, 0x08, 0, 0}, {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, {0x3814, 0x31, 0, 0}, {0x3815, 0x31, 0, 0}, {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x03, 0, 0}, {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, {0x3824, 0x02, 0, 0}, {0x5001, 0xa3, 0, 0}, }; static const struct reg_value ov5640_setting_720P_1280_720[] = { {0x3c07, 0x07, 0, 0}, {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, {0x3814, 0x31, 0, 0}, {0x3815, 0x31, 0, 0}, {0x3618, 0x00, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x64, 0, 0}, {0x3709, 0x52, 0, 0}, {0x370c, 0x03, 0, 0}, {0x3a02, 0x02, 0, 0}, {0x3a03, 0xe4, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0xbc, 0, 0}, {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x72, 0, 0}, {0x3a0e, 0x01, 0, 0}, {0x3a0d, 0x02, 0, 0}, {0x3a14, 0x02, 0, 0}, {0x3a15, 0xe4, 0, 0}, {0x4001, 0x02, 0, 0}, {0x4004, 0x02, 0, 0}, {0x4407, 0x04, 0, 0}, {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, {0x3824, 0x04, 0, 0}, {0x5001, 0x83, 0, 0}, }; static const struct reg_value ov5640_setting_1080P_1920_1080[] = { {0x3c07, 0x08, 0, 0}, {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, {0x3814, 0x11, 0, 0}, {0x3815, 0x11, 0, 0}, {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0}, {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0}, {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0}, {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 0}, {0x3c07, 0x07, 0, 0}, {0x3c08, 0x00, 0, 0}, {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, {0x3612, 0x2b, 0, 0}, {0x3708, 0x64, 0, 0}, {0x3a02, 0x04, 0, 0}, {0x3a03, 0x60, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x50, 0, 0}, {0x3a0a, 0x01, 0, 0}, {0x3a0b, 0x18, 0, 0}, {0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x04, 0, 0}, {0x3a15, 0x60, 0, 0}, {0x4407, 0x04, 0, 0}, {0x460b, 0x37, 0, 0}, {0x460c, 0x20, 0, 0}, {0x3824, 0x04, 0, 0}, {0x4005, 0x1a, 0, 0}, }; static const struct reg_value ov5640_setting_QSXGA_2592_1944[] = { {0x3c07, 0x08, 0, 0}, {0x3c09, 0x1c, 0, 0}, {0x3c0a, 0x9c, 0, 0}, {0x3c0b, 0x40, 0, 0}, {0x3814, 0x11, 0, 0}, {0x3815, 0x11, 0, 0}, {0x3618, 0x04, 0, 0}, {0x3612, 0x29, 0, 0}, {0x3708, 0x21, 0, 0}, {0x3709, 0x12, 0, 0}, {0x370c, 0x00, 0, 0}, {0x3a02, 0x03, 0, 0}, {0x3a03, 0xd8, 0, 0}, {0x3a08, 0x01, 0, 0}, {0x3a09, 0x27, 0, 0}, {0x3a0a, 0x00, 0, 0}, {0x3a0b, 0xf6, 0, 0}, {0x3a0e, 0x03, 0, 0}, {0x3a0d, 0x04, 0, 0}, {0x3a14, 0x03, 0, 0}, {0x3a15, 0xd8, 0, 0}, {0x4001, 0x02, 0, 0}, {0x4004, 0x06, 0, 0}, {0x4407, 0x04, 0, 0}, {0x460b, 0x35, 0, 0}, {0x460c, 0x22, 0, 0}, {0x3824, 0x02, 0, 0}, {0x5001, 0x83, 0, 70}, }; static const struct ov5640_mode_info ov5640_mode_data[OV5640_NUM_MODES] = { { /* 160x120 */ .id = OV5640_MODE_QQVGA_160_120, .dn_mode = SUBSAMPLING, .pixel_rate = OV5640_PIXEL_RATE_48M, .width = 160, .height = 120, .dvp_timings = { .analog_crop = { .left = 0, .top = 4, .width = 2624, .height = 1944, }, .crop = { .left = 16, .top = 6, .width = 160, .height = 120, }, .htot = 1896, .vblank_def = 864, }, .csi2_timings = { /* Feed the full valid pixel array to the ISP. */ .analog_crop = { .left = OV5640_PIXEL_ARRAY_LEFT, .top = OV5640_PIXEL_ARRAY_TOP, .width = OV5640_PIXEL_ARRAY_WIDTH, .height = OV5640_PIXEL_ARRAY_HEIGHT, }, /* Maintain a minimum processing margin. */ .crop = { .left = 2, .top = 4, .width = 160, .height = 120, }, .htot = 1600, .vblank_def = 878, }, .reg_data = ov5640_setting_low_res, .reg_data_size = ARRAY_SIZE(ov5640_setting_low_res), .max_fps = OV5640_30_FPS, .def_fps = OV5640_30_FPS }, { /* 176x144 */ .id = OV5640_MODE_QCIF_176_144, .dn_mode = SUBSAMPLING, .pixel_rate = OV5640_PIXEL_RATE_48M, .width = 176, .height = 144, .dvp_timings = { .analog_crop = { .left = 0, .top = 4, .width = 2624, .height = 1944, }, .crop = { .left = 16, .top = 6, .width = 176, .height = 144, }, .htot = 1896, .vblank_def = 840, }, .csi2_timings = { /* Feed the full valid pixel array to the ISP. */ .analog_crop = { .left = OV5640_PIXEL_ARRAY_LEFT, .top = OV5640_PIXEL_ARRAY_TOP, .width = OV5640_PIXEL_ARRAY_WIDTH, .height = OV5640_PIXEL_ARRAY_HEIGHT, }, /* Maintain a minimum processing margin. */ .crop = { .left = 2, .top = 4, .width = 176, .height = 144, }, .htot = 1600, .vblank_def = 854, }, .reg_data = ov5640_setting_low_res, .reg_data_size = ARRAY_SIZE(ov5640_setting_low_res), .max_fps = OV5640_30_FPS, .def_fps = OV5640_30_FPS }, { /* 320x240 */ .id = OV5640_MODE_QVGA_320_240, .dn_mode = SUBSAMPLING, .width = 320, .height = 240, .pixel_rate = OV5640_PIXEL_RATE_48M, .dvp_timings = { .analog_crop = { .left = 0, .top = 4, .width = 2624, .height = 1944, }, .crop = { .left = 16, .top = 6, .width = 320, .height = 240, }, .htot = 1896, .vblank_def = 744, }, .csi2_timings = { /* Feed the full valid pixel array to the ISP. */ .analog_crop = { .left = OV5640_PIXEL_ARRAY_LEFT, .top = OV5640_PIXEL_ARRAY_TOP, .width = OV5640_PIXEL_ARRAY_WIDTH, .height = OV5640_PIXEL_ARRAY_HEIGHT, }, /* Maintain a minimum processing margin. */ .crop = { .left = 2, .top = 4, .width = 320, .height = 240, }, .htot = 1600, .vblank_def = 760, }, .reg_data = ov5640_setting_low_res, .reg_data_size = ARRAY_SIZE(ov5640_setting_low_res), .max_fps = OV5640_30_FPS, .def_fps = OV5640_30_FPS }, { /* 640x480 */ .id = OV5640_MODE_VGA_640_480, .dn_mode = SUBSAMPLING, .pixel_rate = OV5640_PIXEL_RATE_48M, .width = 640, .height = 480, .dvp_timings = { .analog_crop = { .left = 0, .top = 4, .width = 2624, .height = 1944, }, .crop = { .left = 16, .top = 6, .width = 640, .height = 480, }, .htot = 1896, .vblank_def = 600, }, .csi2_timings = { /* Feed the full valid pixel array to the ISP. */ .analog_crop = { .left = OV5640_PIXEL_ARRAY_LEFT, .top = OV5640_PIXEL_ARRAY_TOP, .width = OV5640_PIXEL_ARRAY_WIDTH, .height = OV5640_PIXEL_ARRAY_HEIGHT, }, /* Maintain a minimum processing margin. */ .crop = { .left = 2, .top = 4, .width = 640, .height = 480, }, .htot = 1600, .vblank_def = 520, }, .reg_data = ov5640_setting_low_res, .reg_data_size = ARRAY_SIZE(ov5640_setting_low_res), .max_fps = OV5640_60_FPS, .def_fps = OV5640_30_FPS }, { /* 720x480 */ .id = OV5640_MODE_NTSC_720_480, .dn_mode = SUBSAMPLING, .width = 720, .height = 480, .pixel_rate = OV5640_PIXEL_RATE_96M, .dvp_timings = { .analog_crop = { .left = 0, .top = 4, .width = 2624, .height = 1944, }, .crop = { .left = 56, .top = 60, .width = 720, .height = 480, }, .htot = 1896, .vblank_def = 504, }, .csi2_timings = { /* Feed the full valid pixel array to the ISP. */ .analog_crop = { .left = OV5640_PIXEL_ARRAY_LEFT, .top = OV5640_PIXEL_ARRAY_TOP, .width = OV5640_PIXEL_ARRAY_WIDTH, .height = OV5640_PIXEL_ARRAY_HEIGHT, }, .crop = { .left = 56, .top = 60, .width = 720, .height = 480, }, .htot = 1896, .vblank_def = 1206, }, .reg_data = ov5640_setting_low_res, .reg_data_size = ARRAY_SIZE(ov5640_setting_low_res), .max_fps = OV5640_30_FPS, .def_fps = OV5640_30_FPS }, { /* 720x576 */ .id = OV5640_MODE_PAL_720_576, .dn_mode = SUBSAMPLING, .width = 720, .height = 576, .pixel_rate = OV5640_PIXEL_RATE_96M, .dvp_timings = { .analog_crop = { .left = 0, .top = 4, .width = 2624, .height = 1944, }, .crop = { .left = 56, .top = 6, .width = 720, .height = 576, }, .htot = 1896, .vblank_def = 408, }, .csi2_timings = { /* Feed the full valid pixel array to the ISP. */ .analog_crop = { .left = OV5640_PIXEL_ARRAY_LEFT, .top = OV5640_PIXEL_ARRAY_TOP, .width = OV5640_PIXEL_ARRAY_WIDTH, .height = OV5640_PIXEL_ARRAY_HEIGHT, }, .crop = { .left = 56, .top = 6, .width = 720, .height = 576, }, .htot = 1896, .vblank_def = 1110, }, .reg_data = ov5640_setting_low_res, .reg_data_size = ARRAY_SIZE(ov5640_setting_low_res), .max_fps = OV5640_30_FPS, .def_fps = OV5640_30_FPS }, { /* 1024x768 */ .id = OV5640_MODE_XGA_1024_768, .dn_mode = SUBSAMPLING, .pixel_rate = OV5640_PIXEL_RATE_96M, .width = 1024, .height = 768, .dvp_timings = { .analog_crop = { .left = 0, .top = 4, .width = 2624, .height = 1944, }, .crop = { .left = 16, .top = 6, .width = 1024, .height = 768, }, .htot = 1896, .vblank_def = 312, }, .csi2_timings = { .analog_crop = { .left = 0, .top = 4, .width = OV5640_NATIVE_WIDTH, .height = OV5640_PIXEL_ARRAY_HEIGHT, }, .crop = { .left = 16, .top = 6, .width = 1024, .height = 768, }, .htot = 1896, .vblank_def = 918, }, .reg_data = ov5640_setting_low_res, .reg_data_size = ARRAY_SIZE(ov5640_setting_low_res), .max_fps = OV5640_30_FPS, .def_fps = OV5640_30_FPS }, { /* 1280x720 */ .id = OV5640_MODE_720P_1280_720, .dn_mode = SUBSAMPLING, .pixel_rate = OV5640_PIXEL_RATE_124M, .width = 1280, .height = 720, .dvp_timings = { .analog_crop = { .left = 0, .top = 250, .width = 2624, .height = 1456, }, .crop = { .left = 16, .top = 4, .width = 1280, .height = 720, }, .htot = 1892, .vblank_def = 20, }, .csi2_timings = { .analog_crop = { .left = 0, .top = 250, .width = 2624, .height = 1456, }, .crop = { .left = 16, .top = 4, .width = 1280, .height = 720, }, .htot = 1600, .vblank_def = 560, }, .reg_data = ov5640_setting_720P_1280_720, .reg_data_size = ARRAY_SIZE(ov5640_setting_720P_1280_720), .max_fps = OV5640_30_FPS, .def_fps = OV5640_30_FPS }, { /* 1920x1080 */ .id = OV5640_MODE_1080P_1920_1080, .dn_mode = SCALING, .pixel_rate = OV5640_PIXEL_RATE_148M, .width = 1920, .height = 1080, .dvp_timings = { .analog_crop = { .left = 336, .top = 434, .width = 1952, .height = 1088, }, .crop = { .left = 16, .top = 4, .width = 1920, .height = 1080, }, .htot = 2500, .vblank_def = 40, }, .csi2_timings = { /* Crop the full valid pixel array in the center. */ .analog_crop = { .left = 336, .top = 434, .width = 1952, .height = 1088, }, /* Maintain a larger processing margins. */ .crop = { .left = 16, .top = 4, .width = 1920, .height = 1080, }, .htot = 2234, .vblank_def = 24, }, .reg_data = ov5640_setting_1080P_1920_1080, .reg_data_size = ARRAY_SIZE(ov5640_setting_1080P_1920_1080), .max_fps = OV5640_30_FPS, .def_fps = OV5640_30_FPS }, { /* 2592x1944 */ .id = OV5640_MODE_QSXGA_2592_1944, .dn_mode = SCALING, .pixel_rate = OV5640_PIXEL_RATE_168M, .width = OV5640_PIXEL_ARRAY_WIDTH, .height = OV5640_PIXEL_ARRAY_HEIGHT, .dvp_timings = { .analog_crop = { .left = 0, .top = 0, .width = 2624, .height = 1952, }, .crop = { .left = 16, .top = 4, .width = 2592, .height = 1944, }, .htot = 2844, .vblank_def = 24, }, .csi2_timings = { /* Give more processing margin to full resolution. */ .analog_crop = { .left = 0, .top = 0, .width = OV5640_NATIVE_WIDTH, .height = 1952, }, .crop = { .left = 16, .top = 4, .width = 2592, .height = 1944, }, .htot = 2844, .vblank_def = 24, }, .reg_data = ov5640_setting_QSXGA_2592_1944, .reg_data_size = ARRAY_SIZE(ov5640_setting_QSXGA_2592_1944), .max_fps = OV5640_15_FPS, .def_fps = OV5640_15_FPS }, }; static const struct ov5640_timings * ov5640_timings(const struct ov5640_dev *sensor, const struct ov5640_mode_info *mode) { if (ov5640_is_csi2(sensor)) return &mode->csi2_timings; return &mode->dvp_timings; } static int ov5640_init_slave_id(struct ov5640_dev *sensor) { struct i2c_client *client = sensor->i2c_client; struct i2c_msg msg; u8 buf[3]; int ret; if (client->addr == OV5640_DEFAULT_SLAVE_ID) return 0; buf[0] = OV5640_REG_SLAVE_ID >> 8; buf[1] = OV5640_REG_SLAVE_ID & 0xff; buf[2] = client->addr << 1; msg.addr = OV5640_DEFAULT_SLAVE_ID; msg.flags = 0; msg.buf = buf; msg.len = sizeof(buf); ret = i2c_transfer(client->adapter, &msg, 1); if (ret < 0) { dev_err(&client->dev, "%s: failed with %d\n", __func__, ret); return ret; } return 0; } static int ov5640_write_reg(struct ov5640_dev *sensor, u16 reg, u8 val) { struct i2c_client *client = sensor->i2c_client; struct i2c_msg msg; u8 buf[3]; int ret; buf[0] = reg >> 8; buf[1] = reg & 0xff; buf[2] = val; msg.addr = client->addr; msg.flags = client->flags; msg.buf = buf; msg.len = sizeof(buf); ret = i2c_transfer(client->adapter, &msg, 1); if (ret < 0) { dev_err(&client->dev, "%s: error: reg=%x, val=%x\n", __func__, reg, val); return ret; } return 0; } static int ov5640_read_reg(struct ov5640_dev *sensor, u16 reg, u8 *val) { struct i2c_client *client = sensor->i2c_client; struct i2c_msg msg[2]; u8 buf[2]; int ret; buf[0] = reg >> 8; buf[1] = reg & 0xff; msg[0].addr = client->addr; msg[0].flags = client->flags; msg[0].buf = buf; msg[0].len = sizeof(buf); msg[1].addr = client->addr; msg[1].flags = client->flags | I2C_M_RD; msg[1].buf = buf; msg[1].len = 1; ret = i2c_transfer(client->adapter, msg, 2); if (ret < 0) { dev_err(&client->dev, "%s: error: reg=%x\n", __func__, reg); return ret; } *val = buf[0]; return 0; } static int ov5640_read_reg16(struct ov5640_dev *sensor, u16 reg, u16 *val) { u8 hi, lo; int ret; ret = ov5640_read_reg(sensor, reg, &hi); if (ret) return ret; ret = ov5640_read_reg(sensor, reg + 1, &lo); if (ret) return ret; *val = ((u16)hi << 8) | (u16)lo; return 0; } static int ov5640_write_reg16(struct ov5640_dev *sensor, u16 reg, u16 val) { int ret; ret = ov5640_write_reg(sensor, reg, val >> 8); if (ret) return ret; return ov5640_write_reg(sensor, reg + 1, val & 0xff); } static int ov5640_mod_reg(struct ov5640_dev *sensor, u16 reg, u8 mask, u8 val) { u8 readval; int ret; ret = ov5640_read_reg(sensor, reg, &readval); if (ret) return ret; readval &= ~mask; val &= mask; val |= readval; return ov5640_write_reg(sensor, reg, val); } /* * After trying the various combinations, reading various * documentations spread around the net, and from the various * feedback, the clock tree is probably as follows: * * +--------------+ * | Ext. Clock | * +-+------------+ * | +----------+ * +->| PLL1 | - reg 0x3036, for the multiplier * +-+--------+ - reg 0x3037, bits 0-3 for the pre-divider * | +--------------+ * +->| System Clock | - reg 0x3035, bits 4-7 * +-+------------+ * | +--------------+ * +->| MIPI Divider | - reg 0x3035, bits 0-3 * | +-+------------+ * | +----------------> MIPI SCLK * | + +-----+ * | +->| / 2 |-------> MIPI BIT CLK * | +-----+ * | +--------------+ * +->| PLL Root Div | - reg 0x3037, bit 4 * +-+------------+ * | +---------+ * +->| Bit Div | - reg 0x3034, bits 0-3 * +-+-------+ * | +-------------+ * +->| SCLK Div | - reg 0x3108, bits 0-1 * | +-+-----------+ * | +---------------> SCLK * | +-------------+ * +->| SCLK 2X Div | - reg 0x3108, bits 2-3 * | +-+-----------+ * | +---------------> SCLK 2X * | +-------------+ * +->| PCLK Div | - reg 0x3108, bits 4-5 * ++------------+ * + +-----------+ * +->| P_DIV | - reg 0x3035, bits 0-3 * +-----+-----+ * +------------> PCLK * * There seems to be also constraints: * - the PLL pre-divider output rate should be in the 4-27MHz range * - the PLL multiplier output rate should be in the 500-1000MHz range * - PCLK >= SCLK * 2 in YUV, >= SCLK in Raw or JPEG */ /* * This is supposed to be ranging from 1 to 8, but the value is always * set to 3 in the vendor kernels. */ #define OV5640_PLL_PREDIV 3 #define OV5640_PLL_MULT_MIN 4 #define OV5640_PLL_MULT_MAX 252 /* * This is supposed to be ranging from 1 to 16, but the value is * always set to either 1 or 2 in the vendor kernels. */ #define OV5640_SYSDIV_MIN 1 #define OV5640_SYSDIV_MAX 16 /* * This is supposed to be ranging from 1 to 2, but the value is always * set to 2 in the vendor kernels. */ #define OV5640_PLL_ROOT_DIV 2 #define OV5640_PLL_CTRL3_PLL_ROOT_DIV_2 BIT(4) /* * We only supports 8-bit formats at the moment */ #define OV5640_BIT_DIV 2 #define OV5640_PLL_CTRL0_MIPI_MODE_8BIT 0x08 /* * This is supposed to be ranging from 1 to 8, but the value is always * set to 2 in the vendor kernels. */ #define OV5640_SCLK_ROOT_DIV 2 /* * This is hardcoded so that the consistency is maintained between SCLK and * SCLK 2x. */ #define OV5640_SCLK2X_ROOT_DIV (OV5640_SCLK_ROOT_DIV / 2) /* * This is supposed to be ranging from 1 to 8, but the value is always * set to 1 in the vendor kernels. */ #define OV5640_PCLK_ROOT_DIV 1 #define OV5640_PLL_SYS_ROOT_DIVIDER_BYPASS 0x00 static unsigned long ov5640_compute_sys_clk(struct ov5640_dev *sensor, u8 pll_prediv, u8 pll_mult, u8 sysdiv) { unsigned long sysclk = sensor->xclk_freq / pll_prediv * pll_mult; /* PLL1 output cannot exceed 1GHz. */ if (sysclk / 1000000 > 1000) return 0; return sysclk / sysdiv; } static unsigned long ov5640_calc_sys_clk(struct ov5640_dev *sensor, unsigned long rate, u8 *pll_prediv, u8 *pll_mult, u8 *sysdiv) { unsigned long best = ~0; u8 best_sysdiv = 1, best_mult = 1; u8 _sysdiv, _pll_mult; for (_sysdiv = OV5640_SYSDIV_MIN; _sysdiv <= OV5640_SYSDIV_MAX; _sysdiv++) { for (_pll_mult = OV5640_PLL_MULT_MIN; _pll_mult <= OV5640_PLL_MULT_MAX; _pll_mult++) { unsigned long _rate; /* * The PLL multiplier cannot be odd if above * 127. */ if (_pll_mult > 127 && (_pll_mult % 2)) continue; _rate = ov5640_compute_sys_clk(sensor, OV5640_PLL_PREDIV, _pll_mult, _sysdiv); /* * We have reached the maximum allowed PLL1 output, * increase sysdiv. */ if (!_rate) break; /* * Prefer rates above the expected clock rate than * below, even if that means being less precise. */ if (_rate < rate) continue; if (abs(rate - _rate) < abs(rate - best)) { best = _rate; best_sysdiv = _sysdiv; best_mult = _pll_mult; } if (_rate == rate) goto out; } } out: *sysdiv = best_sysdiv; *pll_prediv = OV5640_PLL_PREDIV; *pll_mult = best_mult; return best; } /* * ov5640_set_mipi_pclk() - Calculate the clock tree configuration values * for the MIPI CSI-2 output. */ static int ov5640_set_mipi_pclk(struct ov5640_dev *sensor) { u8 bit_div, mipi_div, pclk_div, sclk_div, sclk2x_div, root_div; u8 prediv, mult, sysdiv; unsigned long link_freq; unsigned long sysclk; u8 pclk_period; u32 sample_rate; u32 num_lanes; int ret; /* Use the link freq computed at ov5640_update_pixel_rate() time. */ link_freq = sensor->current_link_freq; /* * - mipi_div - Additional divider for the MIPI lane clock. * * Higher link frequencies would make sysclk > 1GHz. * Keep the sysclk low and do not divide in the MIPI domain. */ if (link_freq > OV5640_LINK_RATE_MAX) mipi_div = 1; else mipi_div = 2; sysclk = link_freq * mipi_div; ov5640_calc_sys_clk(sensor, sysclk, &prediv, &mult, &sysdiv); /* * Adjust PLL parameters to maintain the MIPI_SCLK-to-PCLK ratio. * * - root_div = 2 (fixed) * - bit_div : MIPI 8-bit = 2; MIPI 10-bit = 2.5 * - pclk_div = 1 (fixed) * - p_div = (2 lanes ? mipi_div : 2 * mipi_div) * * This results in the following MIPI_SCLK depending on the number * of lanes: * * - 2 lanes: MIPI_SCLK = (4 or 5) * PCLK * - 1 lanes: MIPI_SCLK = (8 or 10) * PCLK */ root_div = OV5640_PLL_CTRL3_PLL_ROOT_DIV_2; bit_div = OV5640_PLL_CTRL0_MIPI_MODE_8BIT; pclk_div = ilog2(OV5640_PCLK_ROOT_DIV); /* * Scaler clock: * - YUV: PCLK >= 2 * SCLK * - RAW or JPEG: PCLK >= SCLK * - sclk2x_div = sclk_div / 2 */ sclk_div = ilog2(OV5640_SCLK_ROOT_DIV); sclk2x_div = ilog2(OV5640_SCLK2X_ROOT_DIV); /* * Set the pixel clock period expressed in ns with 1-bit decimal * (0x01=0.5ns). * * The register is very briefly documented. In the OV5645 datasheet it * is described as (2 * pclk period), and from testing it seems the * actual definition is 2 * 8-bit sample period. * * 2 * sample_period = (mipi_clk * 2 * num_lanes / bpp) * (bpp / 8) / 2 */ num_lanes = sensor->ep.bus.mipi_csi2.num_data_lanes; sample_rate = (link_freq * mipi_div * num_lanes * 2) / 16; pclk_period = 2000000000UL / sample_rate; /* Program the clock tree registers. */ ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0, 0x0f, bit_div); if (ret) return ret; ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1, 0xff, (sysdiv << 4) | mipi_div); if (ret) return ret; ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 0xff, mult); if (ret) return ret; ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3, 0x1f, root_div | prediv); if (ret) return ret; ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x3f, (pclk_div << 4) | (sclk2x_div << 2) | sclk_div); if (ret) return ret; return ov5640_write_reg(sensor, OV5640_REG_PCLK_PERIOD, pclk_period); } static u32 ov5640_calc_pixel_rate(struct ov5640_dev *sensor) { const struct ov5640_mode_info *mode = sensor->current_mode; const struct ov5640_timings *timings = &mode->dvp_timings; u32 rate; rate = timings->htot * (timings->crop.height + timings->vblank_def); rate *= ov5640_framerates[sensor->current_fr]; return rate; } static unsigned long ov5640_calc_pclk(struct ov5640_dev *sensor, unsigned long rate, u8 *pll_prediv, u8 *pll_mult, u8 *sysdiv, u8 *pll_rdiv, u8 *bit_div, u8 *pclk_div) { unsigned long _rate = rate * OV5640_PLL_ROOT_DIV * OV5640_BIT_DIV * OV5640_PCLK_ROOT_DIV; _rate = ov5640_calc_sys_clk(sensor, _rate, pll_prediv, pll_mult, sysdiv); *pll_rdiv = OV5640_PLL_ROOT_DIV; *bit_div = OV5640_BIT_DIV; *pclk_div = OV5640_PCLK_ROOT_DIV; return _rate / *pll_rdiv / *bit_div / *pclk_div; } static int ov5640_set_dvp_pclk(struct ov5640_dev *sensor) { u8 prediv, mult, sysdiv, pll_rdiv, bit_div, pclk_div; u32 rate; int ret; rate = ov5640_calc_pixel_rate(sensor); rate *= ov5640_code_to_bpp(sensor, sensor->fmt.code); rate /= sensor->ep.bus.parallel.bus_width; ov5640_calc_pclk(sensor, rate, &prediv, &mult, &sysdiv, &pll_rdiv, &bit_div, &pclk_div); if (bit_div == 2) bit_div = 8; ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL0, 0x0f, bit_div); if (ret) return ret; /* * We need to set sysdiv according to the clock, and to clear * the MIPI divider. */ ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL1, 0xff, sysdiv << 4); if (ret) return ret; ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL2, 0xff, mult); if (ret) return ret; ret = ov5640_mod_reg(sensor, OV5640_REG_SC_PLL_CTRL3, 0x1f, prediv | ((pll_rdiv - 1) << 4)); if (ret) return ret; return ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x30, (ilog2(pclk_div) << 4)); } /* set JPEG framing sizes */ static int ov5640_set_jpeg_timings(struct ov5640_dev *sensor, const struct ov5640_mode_info *mode) { int ret; /* * compression mode 3 timing * * Data is transmitted with programmable width (VFIFO_HSIZE). * No padding done. Last line may have less data. Varying * number of lines per frame, depending on amount of data. */ ret = ov5640_mod_reg(sensor, OV5640_REG_JPG_MODE_SELECT, 0x7, 0x3); if (ret < 0) return ret; ret = ov5640_write_reg16(sensor, OV5640_REG_VFIFO_HSIZE, mode->width); if (ret < 0) return ret; return ov5640_write_reg16(sensor, OV5640_REG_VFIFO_VSIZE, mode->height); } /* download ov5640 settings to sensor through i2c */ static int ov5640_set_timings(struct ov5640_dev *sensor, const struct ov5640_mode_info *mode) { const struct ov5640_timings *timings; const struct v4l2_rect *analog_crop; const struct v4l2_rect *crop; int ret; if (sensor->fmt.code == MEDIA_BUS_FMT_JPEG_1X8) { ret = ov5640_set_jpeg_timings(sensor, mode); if (ret < 0) return ret; } timings = ov5640_timings(sensor, mode); analog_crop = &timings->analog_crop; crop = &timings->crop; ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HS, analog_crop->left); if (ret < 0) return ret; ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_VS, analog_crop->top); if (ret < 0) return ret; ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HW, analog_crop->left + analog_crop->width - 1); if (ret < 0) return ret; ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_VH, analog_crop->top + analog_crop->height - 1); if (ret < 0) return ret; ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HOFFS, crop->left); if (ret < 0) return ret; ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_VOFFS, crop->top); if (ret < 0) return ret; ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPHO, mode->width); if (ret < 0) return ret; ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_DVPVO, mode->height); if (ret < 0) return ret; ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_HTS, timings->htot); if (ret < 0) return ret; ret = ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, mode->height + timings->vblank_def); if (ret < 0) return ret; return 0; } static void ov5640_load_regs(struct ov5640_dev *sensor, const struct reg_value *regs, unsigned int regnum) { unsigned int i; u32 delay_ms; u16 reg_addr; u8 mask, val; int ret = 0; for (i = 0; i < regnum; ++i, ++regs) { delay_ms = regs->delay_ms; reg_addr = regs->reg_addr; val = regs->val; mask = regs->mask; /* remain in power down mode for DVP */ if (regs->reg_addr == OV5640_REG_SYS_CTRL0 && val == OV5640_REG_SYS_CTRL0_SW_PWUP && !ov5640_is_csi2(sensor)) continue; if (mask) ret = ov5640_mod_reg(sensor, reg_addr, mask, val); else ret = ov5640_write_reg(sensor, reg_addr, val); if (ret) break; if (delay_ms) usleep_range(1000 * delay_ms, 1000 * delay_ms + 100); } } static int ov5640_set_autoexposure(struct ov5640_dev *sensor, bool on) { return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL, BIT(0), on ? 0 : BIT(0)); } /* read exposure, in number of line periods */ static int ov5640_get_exposure(struct ov5640_dev *sensor) { int exp, ret; u8 temp; ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_HI, &temp); if (ret) return ret; exp = ((int)temp & 0x0f) << 16; ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_MED, &temp); if (ret) return ret; exp |= ((int)temp << 8); ret = ov5640_read_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_LO, &temp); if (ret) return ret; exp |= (int)temp; return exp >> 4; } /* write exposure, given number of line periods */ static int ov5640_set_exposure(struct ov5640_dev *sensor, u32 exposure) { int ret; exposure <<= 4; ret = ov5640_write_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_LO, exposure & 0xff); if (ret) return ret; ret = ov5640_write_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_MED, (exposure >> 8) & 0xff); if (ret) return ret; return ov5640_write_reg(sensor, OV5640_REG_AEC_PK_EXPOSURE_HI, (exposure >> 16) & 0x0f); } static int ov5640_get_gain(struct ov5640_dev *sensor) { u16 gain; int ret; ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, &gain); if (ret) return ret; return gain & 0x3ff; } static int ov5640_set_gain(struct ov5640_dev *sensor, int gain) { return ov5640_write_reg16(sensor, OV5640_REG_AEC_PK_REAL_GAIN, (u16)gain & 0x3ff); } static int ov5640_set_autogain(struct ov5640_dev *sensor, bool on) { return ov5640_mod_reg(sensor, OV5640_REG_AEC_PK_MANUAL, BIT(1), on ? 0 : BIT(1)); } static int ov5640_set_stream_dvp(struct ov5640_dev *sensor, bool on) { return ov5640_write_reg(sensor, OV5640_REG_SYS_CTRL0, on ? OV5640_REG_SYS_CTRL0_SW_PWUP : OV5640_REG_SYS_CTRL0_SW_PWDN); } static int ov5640_set_stream_mipi(struct ov5640_dev *sensor, bool on) { int ret; /* * Enable/disable the MIPI interface * * 0x300e = on ? 0x45 : 0x40 * * FIXME: the sensor manual (version 2.03) reports * [7:5] = 000 : 1 data lane mode * [7:5] = 001 : 2 data lanes mode * But this settings do not work, while the following ones * have been validated for 2 data lanes mode. * * [7:5] = 010 : 2 data lanes mode * [4] = 0 : Power up MIPI HS Tx * [3] = 0 : Power up MIPI LS Rx * [2] = 1/0 : MIPI interface enable/disable * [1:0] = 01/00: FIXME: 'debug' */ ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, on ? 0x45 : 0x40); if (ret) return ret; return ov5640_write_reg(sensor, OV5640_REG_FRAME_CTRL01, on ? 0x00 : 0x0f); } static int ov5640_get_sysclk(struct ov5640_dev *sensor) { /* calculate sysclk */ u32 xvclk = sensor->xclk_freq / 10000; u32 multiplier, prediv, VCO, sysdiv, pll_rdiv; u32 sclk_rdiv_map[] = {1, 2, 4, 8}; u32 bit_div2x = 1, sclk_rdiv, sysclk; u8 temp1, temp2; int ret; ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL0, &temp1); if (ret) return ret; temp2 = temp1 & 0x0f; if (temp2 == 8 || temp2 == 10) bit_div2x = temp2 / 2; ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL1, &temp1); if (ret) return ret; sysdiv = temp1 >> 4; if (sysdiv == 0) sysdiv = 16; ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL2, &temp1); if (ret) return ret; multiplier = temp1; ret = ov5640_read_reg(sensor, OV5640_REG_SC_PLL_CTRL3, &temp1); if (ret) return ret; prediv = temp1 & 0x0f; pll_rdiv = ((temp1 >> 4) & 0x01) + 1; ret = ov5640_read_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, &temp1); if (ret) return ret; temp2 = temp1 & 0x03; sclk_rdiv = sclk_rdiv_map[temp2]; if (!prediv || !sysdiv || !pll_rdiv || !bit_div2x) return -EINVAL; VCO = xvclk * multiplier / prediv; sysclk = VCO / sysdiv / pll_rdiv * 2 / bit_div2x / sclk_rdiv; return sysclk; } static int ov5640_set_night_mode(struct ov5640_dev *sensor) { /* read HTS from register settings */ u8 mode; int ret; ret = ov5640_read_reg(sensor, OV5640_REG_AEC_CTRL00, &mode); if (ret) return ret; mode &= 0xfb; return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL00, mode); } static int ov5640_get_hts(struct ov5640_dev *sensor) { /* read HTS from register settings */ u16 hts; int ret; ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_HTS, &hts); if (ret) return ret; return hts; } static int ov5640_get_vts(struct ov5640_dev *sensor) { u16 vts; int ret; ret = ov5640_read_reg16(sensor, OV5640_REG_TIMING_VTS, &vts); if (ret) return ret; return vts; } static int ov5640_set_vts(struct ov5640_dev *sensor, int vts) { return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, vts); } static int ov5640_get_light_freq(struct ov5640_dev *sensor) { /* get banding filter value */ int ret, light_freq = 0; u8 temp, temp1; ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL01, &temp); if (ret) return ret; if (temp & 0x80) { /* manual */ ret = ov5640_read_reg(sensor, OV5640_REG_HZ5060_CTRL00, &temp1); if (ret) return ret; if (temp1 & 0x04) { /* 50Hz */ light_freq = 50; } else { /* 60Hz */ light_freq = 60; } } else { /* auto */ ret = ov5640_read_reg(sensor, OV5640_REG_SIGMADELTA_CTRL0C, &temp1); if (ret) return ret; if (temp1 & 0x01) { /* 50Hz */ light_freq = 50; } else { /* 60Hz */ } } return light_freq; } static int ov5640_set_bandingfilter(struct ov5640_dev *sensor) { u32 band_step60, max_band60, band_step50, max_band50, prev_vts; int ret; /* read preview PCLK */ ret = ov5640_get_sysclk(sensor); if (ret < 0) return ret; if (ret == 0) return -EINVAL; sensor->prev_sysclk = ret; /* read preview HTS */ ret = ov5640_get_hts(sensor); if (ret < 0) return ret; if (ret == 0) return -EINVAL; sensor->prev_hts = ret; /* read preview VTS */ ret = ov5640_get_vts(sensor); if (ret < 0) return ret; prev_vts = ret; /* calculate banding filter */ /* 60Hz */ band_step60 = sensor->prev_sysclk * 100 / sensor->prev_hts * 100 / 120; ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B60_STEP, band_step60); if (ret) return ret; if (!band_step60) return -EINVAL; max_band60 = (int)((prev_vts - 4) / band_step60); ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0D, max_band60); if (ret) return ret; /* 50Hz */ band_step50 = sensor->prev_sysclk * 100 / sensor->prev_hts; ret = ov5640_write_reg16(sensor, OV5640_REG_AEC_B50_STEP, band_step50); if (ret) return ret; if (!band_step50) return -EINVAL; max_band50 = (int)((prev_vts - 4) / band_step50); return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0E, max_band50); } static int ov5640_set_ae_target(struct ov5640_dev *sensor, int target) { /* stable in high */ u32 fast_high, fast_low; int ret; sensor->ae_low = target * 23 / 25; /* 0.92 */ sensor->ae_high = target * 27 / 25; /* 1.08 */ fast_high = sensor->ae_high << 1; if (fast_high > 255) fast_high = 255; fast_low = sensor->ae_low >> 1; ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL0F, sensor->ae_high); if (ret) return ret; ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL10, sensor->ae_low); if (ret) return ret; ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1B, sensor->ae_high); if (ret) return ret; ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1E, sensor->ae_low); if (ret) return ret; ret = ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL11, fast_high); if (ret) return ret; return ov5640_write_reg(sensor, OV5640_REG_AEC_CTRL1F, fast_low); } static int ov5640_get_binning(struct ov5640_dev *sensor) { u8 temp; int ret; ret = ov5640_read_reg(sensor, OV5640_REG_TIMING_TC_REG21, &temp); if (ret) return ret; return temp & BIT(0); } static int ov5640_set_binning(struct ov5640_dev *sensor, bool enable) { int ret; /* * TIMING TC REG21: * - [0]: Horizontal binning enable */ ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, BIT(0), enable ? BIT(0) : 0); if (ret) return ret; /* * TIMING TC REG20: * - [0]: Undocumented, but hardcoded init sequences * are always setting REG21/REG20 bit 0 to same value... */ return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20, BIT(0), enable ? BIT(0) : 0); } static int ov5640_set_virtual_channel(struct ov5640_dev *sensor) { struct i2c_client *client = sensor->i2c_client; u8 temp, channel = virtual_channel; int ret; if (channel > 3) { dev_err(&client->dev, "%s: wrong virtual_channel parameter, expected (0..3), got %d\n", __func__, channel); return -EINVAL; } ret = ov5640_read_reg(sensor, OV5640_REG_DEBUG_MODE, &temp); if (ret) return ret; temp &= ~(3 << 6); temp |= (channel << 6); return ov5640_write_reg(sensor, OV5640_REG_DEBUG_MODE, temp); } static const struct ov5640_mode_info * ov5640_find_mode(struct ov5640_dev *sensor, int width, int height, bool nearest) { const struct ov5640_mode_info *mode; mode = v4l2_find_nearest_size(ov5640_mode_data, ARRAY_SIZE(ov5640_mode_data), width, height, width, height); if (!mode || (!nearest && (mode->width != width || mode->height != height))) return NULL; return mode; } /* * sensor changes between scaling and subsampling, go through * exposure calculation */ static int ov5640_set_mode_exposure_calc(struct ov5640_dev *sensor, const struct ov5640_mode_info *mode) { u32 prev_shutter, prev_gain16; u32 cap_shutter, cap_gain16; u32 cap_sysclk, cap_hts, cap_vts; u32 light_freq, cap_bandfilt, cap_maxband; u32 cap_gain16_shutter; u8 average; int ret; if (!mode->reg_data) return -EINVAL; /* read preview shutter */ ret = ov5640_get_exposure(sensor); if (ret < 0) return ret; prev_shutter = ret; ret = ov5640_get_binning(sensor); if (ret < 0) return ret; if (ret && mode->id != OV5640_MODE_720P_1280_720 && mode->id != OV5640_MODE_1080P_1920_1080) prev_shutter *= 2; /* read preview gain */ ret = ov5640_get_gain(sensor); if (ret < 0) return ret; prev_gain16 = ret; /* get average */ ret = ov5640_read_reg(sensor, OV5640_REG_AVG_READOUT, &average); if (ret) return ret; /* turn off night mode for capture */ ret = ov5640_set_night_mode(sensor); if (ret < 0) return ret; /* Write capture setting */ ov5640_load_regs(sensor, mode->reg_data, mode->reg_data_size); ret = ov5640_set_timings(sensor, mode); if (ret < 0) return ret; /* read capture VTS */ ret = ov5640_get_vts(sensor); if (ret < 0) return ret; cap_vts = ret; ret = ov5640_get_hts(sensor); if (ret < 0) return ret; if (ret == 0) return -EINVAL; cap_hts = ret; ret = ov5640_get_sysclk(sensor); if (ret < 0) return ret; if (ret == 0) return -EINVAL; cap_sysclk = ret; /* calculate capture banding filter */ ret = ov5640_get_light_freq(sensor); if (ret < 0) return ret; light_freq = ret; if (light_freq == 60) { /* 60Hz */ cap_bandfilt = cap_sysclk * 100 / cap_hts * 100 / 120; } else { /* 50Hz */ cap_bandfilt = cap_sysclk * 100 / cap_hts; } if (!sensor->prev_sysclk) { ret = ov5640_get_sysclk(sensor); if (ret < 0) return ret; if (ret == 0) return -EINVAL; sensor->prev_sysclk = ret; } if (!cap_bandfilt) return -EINVAL; cap_maxband = (int)((cap_vts - 4) / cap_bandfilt); /* calculate capture shutter/gain16 */ if (average > sensor->ae_low && average < sensor->ae_high) { /* in stable range */ cap_gain16_shutter = prev_gain16 * prev_shutter * cap_sysclk / sensor->prev_sysclk * sensor->prev_hts / cap_hts * sensor->ae_target / average; } else { cap_gain16_shutter = prev_gain16 * prev_shutter * cap_sysclk / sensor->prev_sysclk * sensor->prev_hts / cap_hts; } /* gain to shutter */ if (cap_gain16_shutter < (cap_bandfilt * 16)) { /* shutter < 1/100 */ cap_shutter = cap_gain16_shutter / 16; if (cap_shutter < 1) cap_shutter = 1; cap_gain16 = cap_gain16_shutter / cap_shutter; if (cap_gain16 < 16) cap_gain16 = 16; } else { if (cap_gain16_shutter > (cap_bandfilt * cap_maxband * 16)) { /* exposure reach max */ cap_shutter = cap_bandfilt * cap_maxband; if (!cap_shutter) return -EINVAL; cap_gain16 = cap_gain16_shutter / cap_shutter; } else { /* 1/100 < (cap_shutter = n/100) =< max */ cap_shutter = ((int)(cap_gain16_shutter / 16 / cap_bandfilt)) * cap_bandfilt; if (!cap_shutter) return -EINVAL; cap_gain16 = cap_gain16_shutter / cap_shutter; } } /* set capture gain */ ret = ov5640_set_gain(sensor, cap_gain16); if (ret) return ret; /* write capture shutter */ if (cap_shutter > (cap_vts - 4)) { cap_vts = cap_shutter + 4; ret = ov5640_set_vts(sensor, cap_vts); if (ret < 0) return ret; } /* set exposure */ return ov5640_set_exposure(sensor, cap_shutter); } /* * if sensor changes inside scaling or subsampling * change mode directly */ static int ov5640_set_mode_direct(struct ov5640_dev *sensor, const struct ov5640_mode_info *mode) { if (!mode->reg_data) return -EINVAL; /* Write capture setting */ ov5640_load_regs(sensor, mode->reg_data, mode->reg_data_size); return ov5640_set_timings(sensor, mode); } static int ov5640_set_mode(struct ov5640_dev *sensor) { const struct ov5640_mode_info *mode = sensor->current_mode; const struct ov5640_mode_info *orig_mode = sensor->last_mode; enum ov5640_downsize_mode dn_mode, orig_dn_mode; bool auto_gain = sensor->ctrls.auto_gain->val == 1; bool auto_exp = sensor->ctrls.auto_exp->val == V4L2_EXPOSURE_AUTO; int ret; dn_mode = mode->dn_mode; orig_dn_mode = orig_mode->dn_mode; /* auto gain and exposure must be turned off when changing modes */ if (auto_gain) { ret = ov5640_set_autogain(sensor, false); if (ret) return ret; } if (auto_exp) { ret = ov5640_set_autoexposure(sensor, false); if (ret) goto restore_auto_gain; } if (ov5640_is_csi2(sensor)) ret = ov5640_set_mipi_pclk(sensor); else ret = ov5640_set_dvp_pclk(sensor); if (ret < 0) return 0; if ((dn_mode == SUBSAMPLING && orig_dn_mode == SCALING) || (dn_mode == SCALING && orig_dn_mode == SUBSAMPLING)) { /* * change between subsampling and scaling * go through exposure calculation */ ret = ov5640_set_mode_exposure_calc(sensor, mode); } else { /* * change inside subsampling or scaling * download firmware directly */ ret = ov5640_set_mode_direct(sensor, mode); } if (ret < 0) goto restore_auto_exp_gain; /* restore auto gain and exposure */ if (auto_gain) ov5640_set_autogain(sensor, true); if (auto_exp) ov5640_set_autoexposure(sensor, true); ret = ov5640_set_binning(sensor, dn_mode != SCALING); if (ret < 0) return ret; ret = ov5640_set_ae_target(sensor, sensor->ae_target); if (ret < 0) return ret; ret = ov5640_get_light_freq(sensor); if (ret < 0) return ret; ret = ov5640_set_bandingfilter(sensor); if (ret < 0) return ret; ret = ov5640_set_virtual_channel(sensor); if (ret < 0) return ret; sensor->pending_mode_change = false; sensor->last_mode = mode; return 0; restore_auto_exp_gain: if (auto_exp) ov5640_set_autoexposure(sensor, true); restore_auto_gain: if (auto_gain) ov5640_set_autogain(sensor, true); return ret; } static int ov5640_set_framefmt(struct ov5640_dev *sensor, struct v4l2_mbus_framefmt *format); /* restore the last set video mode after chip power-on */ static int ov5640_restore_mode(struct ov5640_dev *sensor) { int ret; /* first load the initial register values */ ov5640_load_regs(sensor, ov5640_init_setting, ARRAY_SIZE(ov5640_init_setting)); ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_ROOT_DIVIDER, 0x3f, (ilog2(OV5640_SCLK2X_ROOT_DIV) << 2) | ilog2(OV5640_SCLK_ROOT_DIV)); if (ret) return ret; /* now restore the last capture mode */ ret = ov5640_set_mode(sensor); if (ret < 0) return ret; return ov5640_set_framefmt(sensor, &sensor->fmt); } static void ov5640_power(struct ov5640_dev *sensor, bool enable) { gpiod_set_value_cansleep(sensor->pwdn_gpio, enable ? 0 : 1); } /* * From section 2.7 power up sequence: * t0 + t1 + t2 >= 5ms Delay from DOVDD stable to PWDN pull down * t3 >= 1ms Delay from PWDN pull down to RESETB pull up * t4 >= 20ms Delay from RESETB pull up to SCCB (i2c) stable * * Some modules don't expose RESETB/PWDN pins directly, instead providing a * "PWUP" GPIO which is wired through appropriate delays and inverters to the * pins. * * In such cases, this gpio should be mapped to pwdn_gpio in the driver, and we * should still toggle the pwdn_gpio below with the appropriate delays, while * the calls to reset_gpio will be ignored. */ static void ov5640_powerup_sequence(struct ov5640_dev *sensor) { if (sensor->pwdn_gpio) { gpiod_set_value_cansleep(sensor->reset_gpio, 1); /* camera power cycle */ ov5640_power(sensor, false); usleep_range(5000, 10000); /* t2 */ ov5640_power(sensor, true); usleep_range(1000, 2000); /* t3 */ gpiod_set_value_cansleep(sensor->reset_gpio, 0); } else { /* software reset */ ov5640_write_reg(sensor, OV5640_REG_SYS_CTRL0, OV5640_REG_SYS_CTRL0_SW_RST); } usleep_range(20000, 25000); /* t4 */ /* * software standby: allows registers programming; * exit at restore_mode() for CSI, s_stream(1) for DVP */ ov5640_write_reg(sensor, OV5640_REG_SYS_CTRL0, OV5640_REG_SYS_CTRL0_SW_PWDN); } static int ov5640_set_power_on(struct ov5640_dev *sensor) { struct i2c_client *client = sensor->i2c_client; int ret; ret = clk_prepare_enable(sensor->xclk); if (ret) { dev_err(&client->dev, "%s: failed to enable clock\n", __func__); return ret; } ret = regulator_bulk_enable(OV5640_NUM_SUPPLIES, sensor->supplies); if (ret) { dev_err(&client->dev, "%s: failed to enable regulators\n", __func__); goto xclk_off; } ov5640_powerup_sequence(sensor); ret = ov5640_init_slave_id(sensor); if (ret) goto power_off; return 0; power_off: ov5640_power(sensor, false); regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies); xclk_off: clk_disable_unprepare(sensor->xclk); return ret; } static void ov5640_set_power_off(struct ov5640_dev *sensor) { ov5640_power(sensor, false); regulator_bulk_disable(OV5640_NUM_SUPPLIES, sensor->supplies); clk_disable_unprepare(sensor->xclk); } static int ov5640_set_power_mipi(struct ov5640_dev *sensor, bool on) { int ret; if (!on) { /* Reset MIPI bus settings to their default values. */ ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x58); ov5640_write_reg(sensor, OV5640_REG_MIPI_CTRL00, 0x04); ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT00, 0x00); return 0; } /* * Power up MIPI HS Tx and LS Rx; 2 data lanes mode * * 0x300e = 0x40 * [7:5] = 010 : 2 data lanes mode (see FIXME note in * "ov5640_set_stream_mipi()") * [4] = 0 : Power up MIPI HS Tx * [3] = 0 : Power up MIPI LS Rx * [2] = 1 : MIPI interface enabled */ ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x44); if (ret) return ret; /* * Gate clock and set LP11 in 'no packets mode' (idle) * * 0x4800 = 0x24 * [5] = 1 : Gate clock when 'no packets' * [2] = 1 : MIPI bus in LP11 when 'no packets' */ ret = ov5640_write_reg(sensor, OV5640_REG_MIPI_CTRL00, 0x24); if (ret) return ret; /* * Set data lanes and clock in LP11 when 'sleeping' * * 0x3019 = 0x70 * [6] = 1 : MIPI data lane 2 in LP11 when 'sleeping' * [5] = 1 : MIPI data lane 1 in LP11 when 'sleeping' * [4] = 1 : MIPI clock lane in LP11 when 'sleeping' */ ret = ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT00, 0x70); if (ret) return ret; /* Give lanes some time to coax into LP11 state. */ usleep_range(500, 1000); return 0; } static int ov5640_set_power_dvp(struct ov5640_dev *sensor, bool on) { unsigned int flags = sensor->ep.bus.parallel.flags; bool bt656 = sensor->ep.bus_type == V4L2_MBUS_BT656; u8 polarities = 0; int ret; if (!on) { /* Reset settings to their default values. */ ov5640_write_reg(sensor, OV5640_REG_CCIR656_CTRL00, 0x00); ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x58); ov5640_write_reg(sensor, OV5640_REG_POLARITY_CTRL00, 0x20); ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE01, 0x00); ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE02, 0x00); return 0; } /* * Note about parallel port configuration. * * When configured in parallel mode, the OV5640 will * output 10 bits data on DVP data lines [9:0]. * If only 8 bits data are wanted, the 8 bits data lines * of the camera interface must be physically connected * on the DVP data lines [9:2]. * * Control lines polarity can be configured through * devicetree endpoint control lines properties. * If no endpoint control lines properties are set, * polarity will be as below: * - VSYNC: active high * - HREF: active low * - PCLK: active low * * VSYNC & HREF are not configured if BT656 bus mode is selected */ /* * BT656 embedded synchronization configuration * * CCIR656 CTRL00 * - [7]: SYNC code selection (0: auto generate sync code, * 1: sync code from regs 0x4732-0x4735) * - [6]: f value in CCIR656 SYNC code when fixed f value * - [5]: Fixed f value * - [4:3]: Blank toggle data options (00: data=1'h040/1'h200, * 01: data from regs 0x4736-0x4738, 10: always keep 0) * - [1]: Clip data disable * - [0]: CCIR656 mode enable * * Default CCIR656 SAV/EAV mode with default codes * SAV=0xff000080 & EAV=0xff00009d is enabled here with settings: * - CCIR656 mode enable * - auto generation of sync codes * - blank toggle data 1'h040/1'h200 * - clip reserved data (0x00 & 0xff changed to 0x01 & 0xfe) */ ret = ov5640_write_reg(sensor, OV5640_REG_CCIR656_CTRL00, bt656 ? 0x01 : 0x00); if (ret) return ret; /* * configure parallel port control lines polarity * * POLARITY CTRL0 * - [5]: PCLK polarity (0: active low, 1: active high) * - [1]: HREF polarity (0: active low, 1: active high) * - [0]: VSYNC polarity (mismatch here between * datasheet and hardware, 0 is active high * and 1 is active low...) */ if (!bt656) { if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH) polarities |= BIT(1); if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW) polarities |= BIT(0); } if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING) polarities |= BIT(5); ret = ov5640_write_reg(sensor, OV5640_REG_POLARITY_CTRL00, polarities); if (ret) return ret; /* * powerdown MIPI TX/RX PHY & enable DVP * * MIPI CONTROL 00 * [4] = 1 : Power down MIPI HS Tx * [3] = 1 : Power down MIPI LS Rx * [2] = 0 : DVP enable (MIPI disable) */ ret = ov5640_write_reg(sensor, OV5640_REG_IO_MIPI_CTRL00, 0x18); if (ret) return ret; /* * enable VSYNC/HREF/PCLK DVP control lines * & D[9:6] DVP data lines * * PAD OUTPUT ENABLE 01 * - 6: VSYNC output enable * - 5: HREF output enable * - 4: PCLK output enable * - [3:0]: D[9:6] output enable */ ret = ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE01, bt656 ? 0x1f : 0x7f); if (ret) return ret; /* * enable D[5:0] DVP data lines * * PAD OUTPUT ENABLE 02 * - [7:2]: D[5:0] output enable */ return ov5640_write_reg(sensor, OV5640_REG_PAD_OUTPUT_ENABLE02, 0xfc); } static int ov5640_set_power(struct ov5640_dev *sensor, bool on) { int ret = 0; if (on) { ret = ov5640_set_power_on(sensor); if (ret) return ret; ret = ov5640_restore_mode(sensor); if (ret) goto power_off; } if (sensor->ep.bus_type == V4L2_MBUS_CSI2_DPHY) ret = ov5640_set_power_mipi(sensor, on); else ret = ov5640_set_power_dvp(sensor, on); if (ret) goto power_off; if (!on) ov5640_set_power_off(sensor); return 0; power_off: ov5640_set_power_off(sensor); return ret; } static int ov5640_sensor_suspend(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct ov5640_dev *ov5640 = to_ov5640_dev(sd); return ov5640_set_power(ov5640, false); } static int ov5640_sensor_resume(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct ov5640_dev *ov5640 = to_ov5640_dev(sd); return ov5640_set_power(ov5640, true); } /* --------------- Subdev Operations --------------- */ static int ov5640_try_frame_interval(struct ov5640_dev *sensor, struct v4l2_fract *fi, u32 width, u32 height) { const struct ov5640_mode_info *mode; enum ov5640_frame_rate rate = OV5640_15_FPS; int minfps, maxfps, best_fps, fps; int i; minfps = ov5640_framerates[OV5640_15_FPS]; maxfps = ov5640_framerates[OV5640_60_FPS]; if (fi->numerator == 0) { fi->denominator = maxfps; fi->numerator = 1; rate = OV5640_60_FPS; goto find_mode; } fps = clamp_val(DIV_ROUND_CLOSEST(fi->denominator, fi->numerator), minfps, maxfps); best_fps = minfps; for (i = 0; i < ARRAY_SIZE(ov5640_framerates); i++) { int curr_fps = ov5640_framerates[i]; if (abs(curr_fps - fps) < abs(best_fps - fps)) { best_fps = curr_fps; rate = i; } } fi->numerator = 1; fi->denominator = best_fps; find_mode: mode = ov5640_find_mode(sensor, width, height, false); return mode ? rate : -EINVAL; } static int ov5640_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct ov5640_dev *sensor = to_ov5640_dev(sd); struct v4l2_mbus_framefmt *fmt; if (format->pad != 0) return -EINVAL; mutex_lock(&sensor->lock); if (format->which == V4L2_SUBDEV_FORMAT_TRY) fmt = v4l2_subdev_get_try_format(&sensor->sd, sd_state, format->pad); else fmt = &sensor->fmt; format->format = *fmt; mutex_unlock(&sensor->lock); return 0; } static int ov5640_try_fmt_internal(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt, enum ov5640_frame_rate fr, const struct ov5640_mode_info **new_mode) { struct ov5640_dev *sensor = to_ov5640_dev(sd); const struct ov5640_mode_info *mode; const struct ov5640_pixfmt *pixfmt; unsigned int bpp; mode = ov5640_find_mode(sensor, fmt->width, fmt->height, true); if (!mode) return -EINVAL; pixfmt = ov5640_code_to_pixfmt(sensor, fmt->code); bpp = pixfmt->bpp; /* * Adjust mode according to bpp: * - 8bpp modes work for resolution >= 1280x720 * - 24bpp modes work resolution < 1280x720 */ if (bpp == 8 && mode->width < 1280) mode = &ov5640_mode_data[OV5640_MODE_720P_1280_720]; else if (bpp == 24 && mode->width > 1024) mode = &ov5640_mode_data[OV5640_MODE_XGA_1024_768]; fmt->width = mode->width; fmt->height = mode->height; if (new_mode) *new_mode = mode; fmt->code = pixfmt->code; fmt->colorspace = pixfmt->colorspace; fmt->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt->colorspace); fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; fmt->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt->colorspace); return 0; } static int ov5640_update_pixel_rate(struct ov5640_dev *sensor) { const struct ov5640_mode_info *mode = sensor->current_mode; enum ov5640_pixel_rate_id pixel_rate_id = mode->pixel_rate; struct v4l2_mbus_framefmt *fmt = &sensor->fmt; const struct ov5640_timings *timings; s32 exposure_val, exposure_max; unsigned int hblank; unsigned int i = 0; u32 pixel_rate; s64 link_freq; u32 num_lanes; u32 vblank; u32 bpp; /* * Update the pixel rate control value. * * For DVP mode, maintain the pixel rate calculation using fixed FPS. */ if (!ov5640_is_csi2(sensor)) { __v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate, ov5640_calc_pixel_rate(sensor)); return 0; } /* * The MIPI CSI-2 link frequency should comply with the CSI-2 * specification and be lower than 1GHz. * * Start from the suggested pixel_rate for the current mode and * progressively slow it down if it exceeds 1GHz. */ num_lanes = sensor->ep.bus.mipi_csi2.num_data_lanes; bpp = ov5640_code_to_bpp(sensor, fmt->code); do { pixel_rate = ov5640_pixel_rates[pixel_rate_id]; link_freq = pixel_rate * bpp / (2 * num_lanes); } while (link_freq >= 1000000000U && ++pixel_rate_id < OV5640_NUM_PIXEL_RATES); sensor->current_link_freq = link_freq; /* * Higher link rates require the clock tree to be programmed with * 'mipi_div' = 1; this has the effect of halving the actual output * pixel rate in the MIPI domain. * * Adjust the pixel rate and link frequency control value to report it * correctly to userspace. */ if (link_freq > OV5640_LINK_RATE_MAX) { pixel_rate /= 2; link_freq /= 2; } for (i = 0; i < ARRAY_SIZE(ov5640_csi2_link_freqs); ++i) { if (ov5640_csi2_link_freqs[i] == link_freq) break; } WARN_ON(i == ARRAY_SIZE(ov5640_csi2_link_freqs)); __v4l2_ctrl_s_ctrl_int64(sensor->ctrls.pixel_rate, pixel_rate); __v4l2_ctrl_s_ctrl(sensor->ctrls.link_freq, i); timings = ov5640_timings(sensor, mode); hblank = timings->htot - mode->width; __v4l2_ctrl_modify_range(sensor->ctrls.hblank, hblank, hblank, 1, hblank); vblank = timings->vblank_def; if (sensor->current_fr != mode->def_fps) { /* * Compute the vertical blanking according to the framerate * configured with s_frame_interval. */ int fie_num = sensor->frame_interval.numerator; int fie_denom = sensor->frame_interval.denominator; vblank = ((fie_num * pixel_rate / fie_denom) / timings->htot) - mode->height; } __v4l2_ctrl_modify_range(sensor->ctrls.vblank, OV5640_MIN_VBLANK, OV5640_MAX_VTS - mode->height, 1, vblank); __v4l2_ctrl_s_ctrl(sensor->ctrls.vblank, vblank); exposure_max = timings->crop.height + vblank - 4; exposure_val = clamp_t(s32, sensor->ctrls.exposure->val, sensor->ctrls.exposure->minimum, exposure_max); __v4l2_ctrl_modify_range(sensor->ctrls.exposure, sensor->ctrls.exposure->minimum, exposure_max, 1, exposure_val); return 0; } static int ov5640_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct ov5640_dev *sensor = to_ov5640_dev(sd); const struct ov5640_mode_info *new_mode; struct v4l2_mbus_framefmt *mbus_fmt = &format->format; int ret; if (format->pad != 0) return -EINVAL; mutex_lock(&sensor->lock); if (sensor->streaming) { ret = -EBUSY; goto out; } ret = ov5640_try_fmt_internal(sd, mbus_fmt, sensor->current_fr, &new_mode); if (ret) goto out; if (format->which == V4L2_SUBDEV_FORMAT_TRY) { *v4l2_subdev_get_try_format(sd, sd_state, 0) = *mbus_fmt; goto out; } if (new_mode != sensor->current_mode) { sensor->current_fr = new_mode->def_fps; sensor->current_mode = new_mode; sensor->pending_mode_change = true; } if (mbus_fmt->code != sensor->fmt.code) sensor->pending_fmt_change = true; /* update format even if code is unchanged, resolution might change */ sensor->fmt = *mbus_fmt; ov5640_update_pixel_rate(sensor); out: mutex_unlock(&sensor->lock); return ret; } static int ov5640_get_selection(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_selection *sel) { struct ov5640_dev *sensor = to_ov5640_dev(sd); const struct ov5640_mode_info *mode = sensor->current_mode; const struct ov5640_timings *timings; switch (sel->target) { case V4L2_SEL_TGT_CROP: { mutex_lock(&sensor->lock); timings = ov5640_timings(sensor, mode); sel->r = timings->analog_crop; mutex_unlock(&sensor->lock); return 0; } case V4L2_SEL_TGT_NATIVE_SIZE: case V4L2_SEL_TGT_CROP_BOUNDS: sel->r.top = 0; sel->r.left = 0; sel->r.width = OV5640_NATIVE_WIDTH; sel->r.height = OV5640_NATIVE_HEIGHT; return 0; case V4L2_SEL_TGT_CROP_DEFAULT: sel->r.top = OV5640_PIXEL_ARRAY_TOP; sel->r.left = OV5640_PIXEL_ARRAY_LEFT; sel->r.width = OV5640_PIXEL_ARRAY_WIDTH; sel->r.height = OV5640_PIXEL_ARRAY_HEIGHT; return 0; } return -EINVAL; } static int ov5640_set_framefmt(struct ov5640_dev *sensor, struct v4l2_mbus_framefmt *format) { bool is_jpeg = format->code == MEDIA_BUS_FMT_JPEG_1X8; const struct ov5640_pixfmt *pixfmt; int ret = 0; pixfmt = ov5640_code_to_pixfmt(sensor, format->code); /* FORMAT CONTROL00: YUV and RGB formatting */ ret = ov5640_write_reg(sensor, OV5640_REG_FORMAT_CONTROL00, pixfmt->ctrl00); if (ret) return ret; /* FORMAT MUX CONTROL: ISP YUV or RGB */ ret = ov5640_write_reg(sensor, OV5640_REG_ISP_FORMAT_MUX_CTRL, pixfmt->mux); if (ret) return ret; /* * TIMING TC REG21: * - [5]: JPEG enable */ ret = ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, BIT(5), is_jpeg ? BIT(5) : 0); if (ret) return ret; /* * SYSTEM RESET02: * - [4]: Reset JFIFO * - [3]: Reset SFIFO * - [2]: Reset JPEG */ ret = ov5640_mod_reg(sensor, OV5640_REG_SYS_RESET02, BIT(4) | BIT(3) | BIT(2), is_jpeg ? 0 : (BIT(4) | BIT(3) | BIT(2))); if (ret) return ret; /* * CLOCK ENABLE02: * - [5]: Enable JPEG 2x clock * - [3]: Enable JPEG clock */ return ov5640_mod_reg(sensor, OV5640_REG_SYS_CLOCK_ENABLE02, BIT(5) | BIT(3), is_jpeg ? (BIT(5) | BIT(3)) : 0); } /* * Sensor Controls. */ static int ov5640_set_ctrl_hue(struct ov5640_dev *sensor, int value) { int ret; if (value) { ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(0), BIT(0)); if (ret) return ret; ret = ov5640_write_reg16(sensor, OV5640_REG_SDE_CTRL1, value); } else { ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(0), 0); } return ret; } static int ov5640_set_ctrl_contrast(struct ov5640_dev *sensor, int value) { int ret; if (value) { ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(2), BIT(2)); if (ret) return ret; ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL5, value & 0xff); } else { ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(2), 0); } return ret; } static int ov5640_set_ctrl_saturation(struct ov5640_dev *sensor, int value) { int ret; if (value) { ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(1), BIT(1)); if (ret) return ret; ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL3, value & 0xff); if (ret) return ret; ret = ov5640_write_reg(sensor, OV5640_REG_SDE_CTRL4, value & 0xff); } else { ret = ov5640_mod_reg(sensor, OV5640_REG_SDE_CTRL0, BIT(1), 0); } return ret; } static int ov5640_set_ctrl_white_balance(struct ov5640_dev *sensor, int awb) { int ret; ret = ov5640_mod_reg(sensor, OV5640_REG_AWB_MANUAL_CTRL, BIT(0), awb ? 0 : 1); if (ret) return ret; if (!awb) { u16 red = (u16)sensor->ctrls.red_balance->val; u16 blue = (u16)sensor->ctrls.blue_balance->val; ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_R_GAIN, red); if (ret) return ret; ret = ov5640_write_reg16(sensor, OV5640_REG_AWB_B_GAIN, blue); } return ret; } static int ov5640_set_ctrl_exposure(struct ov5640_dev *sensor, enum v4l2_exposure_auto_type auto_exposure) { struct ov5640_ctrls *ctrls = &sensor->ctrls; bool auto_exp = (auto_exposure == V4L2_EXPOSURE_AUTO); int ret = 0; if (ctrls->auto_exp->is_new) { ret = ov5640_set_autoexposure(sensor, auto_exp); if (ret) return ret; } if (!auto_exp && ctrls->exposure->is_new) { u16 max_exp; ret = ov5640_read_reg16(sensor, OV5640_REG_AEC_PK_VTS, &max_exp); if (ret) return ret; ret = ov5640_get_vts(sensor); if (ret < 0) return ret; max_exp += ret; ret = 0; if (ctrls->exposure->val < max_exp) ret = ov5640_set_exposure(sensor, ctrls->exposure->val); } return ret; } static int ov5640_set_ctrl_gain(struct ov5640_dev *sensor, bool auto_gain) { struct ov5640_ctrls *ctrls = &sensor->ctrls; int ret = 0; if (ctrls->auto_gain->is_new) { ret = ov5640_set_autogain(sensor, auto_gain); if (ret) return ret; } if (!auto_gain && ctrls->gain->is_new) ret = ov5640_set_gain(sensor, ctrls->gain->val); return ret; } static const char * const test_pattern_menu[] = { "Disabled", "Color bars", "Color bars w/ rolling bar", "Color squares", "Color squares w/ rolling bar", }; #define OV5640_TEST_ENABLE BIT(7) #define OV5640_TEST_ROLLING BIT(6) /* rolling horizontal bar */ #define OV5640_TEST_TRANSPARENT BIT(5) #define OV5640_TEST_SQUARE_BW BIT(4) /* black & white squares */ #define OV5640_TEST_BAR_STANDARD (0 << 2) #define OV5640_TEST_BAR_VERT_CHANGE_1 (1 << 2) #define OV5640_TEST_BAR_HOR_CHANGE (2 << 2) #define OV5640_TEST_BAR_VERT_CHANGE_2 (3 << 2) #define OV5640_TEST_BAR (0 << 0) #define OV5640_TEST_RANDOM (1 << 0) #define OV5640_TEST_SQUARE (2 << 0) #define OV5640_TEST_BLACK (3 << 0) static const u8 test_pattern_val[] = { 0, OV5640_TEST_ENABLE | OV5640_TEST_BAR_VERT_CHANGE_1 | OV5640_TEST_BAR, OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | OV5640_TEST_BAR_VERT_CHANGE_1 | OV5640_TEST_BAR, OV5640_TEST_ENABLE | OV5640_TEST_SQUARE, OV5640_TEST_ENABLE | OV5640_TEST_ROLLING | OV5640_TEST_SQUARE, }; static int ov5640_set_ctrl_test_pattern(struct ov5640_dev *sensor, int value) { return ov5640_write_reg(sensor, OV5640_REG_PRE_ISP_TEST_SET1, test_pattern_val[value]); } static int ov5640_set_ctrl_light_freq(struct ov5640_dev *sensor, int value) { int ret; ret = ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL01, BIT(7), (value == V4L2_CID_POWER_LINE_FREQUENCY_AUTO) ? 0 : BIT(7)); if (ret) return ret; return ov5640_mod_reg(sensor, OV5640_REG_HZ5060_CTRL00, BIT(2), (value == V4L2_CID_POWER_LINE_FREQUENCY_50HZ) ? BIT(2) : 0); } static int ov5640_set_ctrl_hflip(struct ov5640_dev *sensor, int value) { /* * If sensor is mounted upside down, mirror logic is inversed. * * Sensor is a BSI (Back Side Illuminated) one, * so image captured is physically mirrored. * This is why mirror logic is inversed in * order to cancel this mirror effect. */ /* * TIMING TC REG21: * - [2]: ISP mirror * - [1]: Sensor mirror */ return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG21, BIT(2) | BIT(1), (!(value ^ sensor->upside_down)) ? (BIT(2) | BIT(1)) : 0); } static int ov5640_set_ctrl_vflip(struct ov5640_dev *sensor, int value) { /* If sensor is mounted upside down, flip logic is inversed */ /* * TIMING TC REG20: * - [2]: ISP vflip * - [1]: Sensor vflip */ return ov5640_mod_reg(sensor, OV5640_REG_TIMING_TC_REG20, BIT(2) | BIT(1), (value ^ sensor->upside_down) ? (BIT(2) | BIT(1)) : 0); } static int ov5640_set_ctrl_vblank(struct ov5640_dev *sensor, int value) { const struct ov5640_mode_info *mode = sensor->current_mode; /* Update the VTOT timing register value. */ return ov5640_write_reg16(sensor, OV5640_REG_TIMING_VTS, mode->height + value); } static int ov5640_g_volatile_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = ctrl_to_sd(ctrl); struct ov5640_dev *sensor = to_ov5640_dev(sd); int val; /* v4l2_ctrl_lock() locks our own mutex */ if (!pm_runtime_get_if_in_use(&sensor->i2c_client->dev)) return 0; switch (ctrl->id) { case V4L2_CID_AUTOGAIN: val = ov5640_get_gain(sensor); if (val < 0) return val; sensor->ctrls.gain->val = val; break; case V4L2_CID_EXPOSURE_AUTO: val = ov5640_get_exposure(sensor); if (val < 0) return val; sensor->ctrls.exposure->val = val; break; } pm_runtime_put_autosuspend(&sensor->i2c_client->dev); return 0; } static int ov5640_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = ctrl_to_sd(ctrl); struct ov5640_dev *sensor = to_ov5640_dev(sd); const struct ov5640_mode_info *mode = sensor->current_mode; const struct ov5640_timings *timings; unsigned int exp_max; int ret; /* v4l2_ctrl_lock() locks our own mutex */ switch (ctrl->id) { case V4L2_CID_VBLANK: /* Update the exposure range to the newly programmed vblank. */ timings = ov5640_timings(sensor, mode); exp_max = mode->height + ctrl->val - 4; __v4l2_ctrl_modify_range(sensor->ctrls.exposure, sensor->ctrls.exposure->minimum, exp_max, sensor->ctrls.exposure->step, timings->vblank_def); break; } /* * If the device is not powered up by the host driver do * not apply any controls to H/W at this time. Instead * the controls will be restored at start streaming time. */ if (!pm_runtime_get_if_in_use(&sensor->i2c_client->dev)) return 0; switch (ctrl->id) { case V4L2_CID_AUTOGAIN: ret = ov5640_set_ctrl_gain(sensor, ctrl->val); break; case V4L2_CID_EXPOSURE_AUTO: ret = ov5640_set_ctrl_exposure(sensor, ctrl->val); break; case V4L2_CID_AUTO_WHITE_BALANCE: ret = ov5640_set_ctrl_white_balance(sensor, ctrl->val); break; case V4L2_CID_HUE: ret = ov5640_set_ctrl_hue(sensor, ctrl->val); break; case V4L2_CID_CONTRAST: ret = ov5640_set_ctrl_contrast(sensor, ctrl->val); break; case V4L2_CID_SATURATION: ret = ov5640_set_ctrl_saturation(sensor, ctrl->val); break; case V4L2_CID_TEST_PATTERN: ret = ov5640_set_ctrl_test_pattern(sensor, ctrl->val); break; case V4L2_CID_POWER_LINE_FREQUENCY: ret = ov5640_set_ctrl_light_freq(sensor, ctrl->val); break; case V4L2_CID_HFLIP: ret = ov5640_set_ctrl_hflip(sensor, ctrl->val); break; case V4L2_CID_VFLIP: ret = ov5640_set_ctrl_vflip(sensor, ctrl->val); break; case V4L2_CID_VBLANK: ret = ov5640_set_ctrl_vblank(sensor, ctrl->val); break; default: ret = -EINVAL; break; } pm_runtime_put_autosuspend(&sensor->i2c_client->dev); return ret; } static const struct v4l2_ctrl_ops ov5640_ctrl_ops = { .g_volatile_ctrl = ov5640_g_volatile_ctrl, .s_ctrl = ov5640_s_ctrl, }; static int ov5640_init_controls(struct ov5640_dev *sensor) { const struct ov5640_mode_info *mode = sensor->current_mode; const struct v4l2_ctrl_ops *ops = &ov5640_ctrl_ops; struct ov5640_ctrls *ctrls = &sensor->ctrls; struct v4l2_ctrl_handler *hdl = &ctrls->handler; struct v4l2_fwnode_device_properties props; const struct ov5640_timings *timings; unsigned int max_vblank; unsigned int hblank; int ret; v4l2_ctrl_handler_init(hdl, 32); /* we can use our own mutex for the ctrl lock */ hdl->lock = &sensor->lock; /* Clock related controls */ ctrls->pixel_rate = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE, ov5640_pixel_rates[OV5640_NUM_PIXEL_RATES - 1], ov5640_pixel_rates[0], 1, ov5640_pixel_rates[mode->pixel_rate]); ctrls->link_freq = v4l2_ctrl_new_int_menu(hdl, ops, V4L2_CID_LINK_FREQ, ARRAY_SIZE(ov5640_csi2_link_freqs) - 1, OV5640_DEFAULT_LINK_FREQ, ov5640_csi2_link_freqs); timings = ov5640_timings(sensor, mode); hblank = timings->htot - mode->width; ctrls->hblank = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HBLANK, hblank, hblank, 1, hblank); max_vblank = OV5640_MAX_VTS - mode->height; ctrls->vblank = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VBLANK, OV5640_MIN_VBLANK, max_vblank, 1, timings->vblank_def); /* Auto/manual white balance */ ctrls->auto_wb = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1); ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE, 0, 4095, 1, 0); ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE, 0, 4095, 1, 0); /* Auto/manual exposure */ ctrls->auto_exp = v4l2_ctrl_new_std_menu(hdl, ops, V4L2_CID_EXPOSURE_AUTO, V4L2_EXPOSURE_MANUAL, 0, V4L2_EXPOSURE_AUTO); ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE, 0, 65535, 1, 0); /* Auto/manual gain */ ctrls->auto_gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_AUTOGAIN, 0, 1, 1, 1); ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_ANALOGUE_GAIN, 0, 1023, 1, 0); ctrls->saturation = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_SATURATION, 0, 255, 1, 64); ctrls->hue = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HUE, 0, 359, 1, 0); ctrls->contrast = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_CONTRAST, 0, 255, 1, 0); ctrls->test_pattern = v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN, ARRAY_SIZE(test_pattern_menu) - 1, 0, 0, test_pattern_menu); ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 0, 1, 1, 0); ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 0, 1, 1, 0); ctrls->light_freq = v4l2_ctrl_new_std_menu(hdl, ops, V4L2_CID_POWER_LINE_FREQUENCY, V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0, V4L2_CID_POWER_LINE_FREQUENCY_50HZ); if (hdl->error) { ret = hdl->error; goto free_ctrls; } ret = v4l2_fwnode_device_parse(&sensor->i2c_client->dev, &props); if (ret) goto free_ctrls; if (props.rotation == 180) sensor->upside_down = true; ret = v4l2_ctrl_new_fwnode_properties(hdl, ops, &props); if (ret) goto free_ctrls; ctrls->pixel_rate->flags |= V4L2_CTRL_FLAG_READ_ONLY; ctrls->link_freq->flags |= V4L2_CTRL_FLAG_READ_ONLY; ctrls->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY; ctrls->gain->flags |= V4L2_CTRL_FLAG_VOLATILE; ctrls->exposure->flags |= V4L2_CTRL_FLAG_VOLATILE; v4l2_ctrl_auto_cluster(3, &ctrls->auto_wb, 0, false); v4l2_ctrl_auto_cluster(2, &ctrls->auto_gain, 0, true); v4l2_ctrl_auto_cluster(2, &ctrls->auto_exp, 1, true); sensor->sd.ctrl_handler = hdl; return 0; free_ctrls: v4l2_ctrl_handler_free(hdl); return ret; } static int ov5640_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) { struct ov5640_dev *sensor = to_ov5640_dev(sd); u32 bpp = ov5640_code_to_bpp(sensor, fse->code); unsigned int index = fse->index; if (fse->pad != 0) return -EINVAL; if (!bpp) return -EINVAL; /* Only low-resolution modes are supported for 24bpp formats. */ if (bpp == 24 && index >= OV5640_MODE_720P_1280_720) return -EINVAL; /* FIXME: Low resolution modes don't work in 8bpp formats. */ if (bpp == 8) index += OV5640_MODE_720P_1280_720; if (index >= OV5640_NUM_MODES) return -EINVAL; fse->min_width = ov5640_mode_data[index].width; fse->max_width = fse->min_width; fse->min_height = ov5640_mode_data[index].height; fse->max_height = fse->min_height; return 0; } static int ov5640_enum_frame_interval( struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_interval_enum *fie) { struct ov5640_dev *sensor = to_ov5640_dev(sd); struct v4l2_fract tpf; int ret; if (fie->pad != 0) return -EINVAL; if (fie->index >= OV5640_NUM_FRAMERATES) return -EINVAL; tpf.numerator = 1; tpf.denominator = ov5640_framerates[fie->index]; ret = ov5640_try_frame_interval(sensor, &tpf, fie->width, fie->height); if (ret < 0) return -EINVAL; fie->interval = tpf; return 0; } static int ov5640_g_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval *fi) { struct ov5640_dev *sensor = to_ov5640_dev(sd); mutex_lock(&sensor->lock); fi->interval = sensor->frame_interval; mutex_unlock(&sensor->lock); return 0; } static int ov5640_s_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval *fi) { struct ov5640_dev *sensor = to_ov5640_dev(sd); const struct ov5640_mode_info *mode; int frame_rate, ret = 0; if (fi->pad != 0) return -EINVAL; mutex_lock(&sensor->lock); if (sensor->streaming) { ret = -EBUSY; goto out; } mode = sensor->current_mode; frame_rate = ov5640_try_frame_interval(sensor, &fi->interval, mode->width, mode->height); if (frame_rate < 0) { /* Always return a valid frame interval value */ fi->interval = sensor->frame_interval; goto out; } mode = ov5640_find_mode(sensor, mode->width, mode->height, true); if (!mode) { ret = -EINVAL; goto out; } if (ov5640_framerates[frame_rate] > ov5640_framerates[mode->max_fps]) { ret = -EINVAL; goto out; } if (mode != sensor->current_mode || frame_rate != sensor->current_fr) { sensor->current_fr = frame_rate; sensor->frame_interval = fi->interval; sensor->current_mode = mode; sensor->pending_mode_change = true; ov5640_update_pixel_rate(sensor); } out: mutex_unlock(&sensor->lock); return ret; } static int ov5640_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { struct ov5640_dev *sensor = to_ov5640_dev(sd); const struct ov5640_pixfmt *formats; unsigned int num_formats; if (ov5640_is_csi2(sensor)) { formats = ov5640_csi2_formats; num_formats = ARRAY_SIZE(ov5640_csi2_formats) - 1; } else { formats = ov5640_dvp_formats; num_formats = ARRAY_SIZE(ov5640_dvp_formats) - 1; } if (code->index >= num_formats) return -EINVAL; code->code = formats[code->index].code; return 0; } static int ov5640_s_stream(struct v4l2_subdev *sd, int enable) { struct ov5640_dev *sensor = to_ov5640_dev(sd); int ret = 0; if (enable) { ret = pm_runtime_resume_and_get(&sensor->i2c_client->dev); if (ret < 0) return ret; ret = v4l2_ctrl_handler_setup(&sensor->ctrls.handler); if (ret) { pm_runtime_put(&sensor->i2c_client->dev); return ret; } } mutex_lock(&sensor->lock); if (sensor->streaming == !enable) { if (enable && sensor->pending_mode_change) { ret = ov5640_set_mode(sensor); if (ret) goto out; } if (enable && sensor->pending_fmt_change) { ret = ov5640_set_framefmt(sensor, &sensor->fmt); if (ret) goto out; sensor->pending_fmt_change = false; } if (ov5640_is_csi2(sensor)) ret = ov5640_set_stream_mipi(sensor, enable); else ret = ov5640_set_stream_dvp(sensor, enable); if (!ret) sensor->streaming = enable; } out: mutex_unlock(&sensor->lock); if (!enable || ret) pm_runtime_put_autosuspend(&sensor->i2c_client->dev); return ret; } static int ov5640_init_cfg(struct v4l2_subdev *sd, struct v4l2_subdev_state *state) { struct v4l2_mbus_framefmt *fmt = v4l2_subdev_get_try_format(sd, state, 0); struct v4l2_rect *crop = v4l2_subdev_get_try_crop(sd, state, 0); *fmt = ov5640_default_fmt; crop->left = OV5640_PIXEL_ARRAY_LEFT; crop->top = OV5640_PIXEL_ARRAY_TOP; crop->width = OV5640_PIXEL_ARRAY_WIDTH; crop->height = OV5640_PIXEL_ARRAY_HEIGHT; return 0; } static const struct v4l2_subdev_core_ops ov5640_core_ops = { .log_status = v4l2_ctrl_subdev_log_status, .subscribe_event = v4l2_ctrl_subdev_subscribe_event, .unsubscribe_event = v4l2_event_subdev_unsubscribe, }; static const struct v4l2_subdev_video_ops ov5640_video_ops = { .g_frame_interval = ov5640_g_frame_interval, .s_frame_interval = ov5640_s_frame_interval, .s_stream = ov5640_s_stream, }; static const struct v4l2_subdev_pad_ops ov5640_pad_ops = { .init_cfg = ov5640_init_cfg, .enum_mbus_code = ov5640_enum_mbus_code, .get_fmt = ov5640_get_fmt, .set_fmt = ov5640_set_fmt, .get_selection = ov5640_get_selection, .enum_frame_size = ov5640_enum_frame_size, .enum_frame_interval = ov5640_enum_frame_interval, }; static const struct v4l2_subdev_ops ov5640_subdev_ops = { .core = &ov5640_core_ops, .video = &ov5640_video_ops, .pad = &ov5640_pad_ops, }; static int ov5640_get_regulators(struct ov5640_dev *sensor) { int i; for (i = 0; i < OV5640_NUM_SUPPLIES; i++) sensor->supplies[i].supply = ov5640_supply_name[i]; return devm_regulator_bulk_get(&sensor->i2c_client->dev, OV5640_NUM_SUPPLIES, sensor->supplies); } static int ov5640_check_chip_id(struct ov5640_dev *sensor) { struct i2c_client *client = sensor->i2c_client; int ret = 0; u16 chip_id; ret = ov5640_read_reg16(sensor, OV5640_REG_CHIP_ID, &chip_id); if (ret) { dev_err(&client->dev, "%s: failed to read chip identifier\n", __func__); return ret; } if (chip_id != 0x5640) { dev_err(&client->dev, "%s: wrong chip identifier, expected 0x5640, got 0x%x\n", __func__, chip_id); return -ENXIO; } return 0; } static int ov5640_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct fwnode_handle *endpoint; struct ov5640_dev *sensor; int ret; sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL); if (!sensor) return -ENOMEM; sensor->i2c_client = client; /* * default init sequence initialize sensor to * YUV422 UYVY VGA@30fps */ sensor->fmt = ov5640_default_fmt; sensor->frame_interval.numerator = 1; sensor->frame_interval.denominator = ov5640_framerates[OV5640_30_FPS]; sensor->current_fr = OV5640_30_FPS; sensor->current_mode = &ov5640_mode_data[OV5640_MODE_VGA_640_480]; sensor->last_mode = sensor->current_mode; sensor->current_link_freq = ov5640_csi2_link_freqs[OV5640_DEFAULT_LINK_FREQ]; sensor->ae_target = 52; endpoint = fwnode_graph_get_next_endpoint(dev_fwnode(&client->dev), NULL); if (!endpoint) { dev_err(dev, "endpoint node not found\n"); return -EINVAL; } ret = v4l2_fwnode_endpoint_parse(endpoint, &sensor->ep); fwnode_handle_put(endpoint); if (ret) { dev_err(dev, "Could not parse endpoint\n"); return ret; } if (sensor->ep.bus_type != V4L2_MBUS_PARALLEL && sensor->ep.bus_type != V4L2_MBUS_CSI2_DPHY && sensor->ep.bus_type != V4L2_MBUS_BT656) { dev_err(dev, "Unsupported bus type %d\n", sensor->ep.bus_type); return -EINVAL; } /* get system clock (xclk) */ sensor->xclk = devm_clk_get(dev, "xclk"); if (IS_ERR(sensor->xclk)) { dev_err(dev, "failed to get xclk\n"); return PTR_ERR(sensor->xclk); } sensor->xclk_freq = clk_get_rate(sensor->xclk); if (sensor->xclk_freq < OV5640_XCLK_MIN || sensor->xclk_freq > OV5640_XCLK_MAX) { dev_err(dev, "xclk frequency out of range: %d Hz\n", sensor->xclk_freq); return -EINVAL; } /* request optional power down pin */ sensor->pwdn_gpio = devm_gpiod_get_optional(dev, "powerdown", GPIOD_OUT_HIGH); if (IS_ERR(sensor->pwdn_gpio)) return PTR_ERR(sensor->pwdn_gpio); /* request optional reset pin */ sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(sensor->reset_gpio)) return PTR_ERR(sensor->reset_gpio); v4l2_i2c_subdev_init(&sensor->sd, client, &ov5640_subdev_ops); sensor->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; sensor->pad.flags = MEDIA_PAD_FL_SOURCE; sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad); if (ret) return ret; ret = ov5640_get_regulators(sensor); if (ret) goto entity_cleanup; mutex_init(&sensor->lock); ret = ov5640_init_controls(sensor); if (ret) goto entity_cleanup; ret = ov5640_sensor_resume(dev); if (ret) { dev_err(dev, "failed to power on\n"); goto entity_cleanup; } pm_runtime_set_active(dev); pm_runtime_get_noresume(dev); pm_runtime_enable(dev); ret = ov5640_check_chip_id(sensor); if (ret) goto err_pm_runtime; ret = v4l2_async_register_subdev_sensor(&sensor->sd); if (ret) goto err_pm_runtime; pm_runtime_set_autosuspend_delay(dev, 1000); pm_runtime_use_autosuspend(dev); pm_runtime_put_autosuspend(dev); return 0; err_pm_runtime: pm_runtime_put_noidle(dev); pm_runtime_disable(dev); v4l2_ctrl_handler_free(&sensor->ctrls.handler); ov5640_sensor_suspend(dev); entity_cleanup: media_entity_cleanup(&sensor->sd.entity); mutex_destroy(&sensor->lock); return ret; } static void ov5640_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ov5640_dev *sensor = to_ov5640_dev(sd); struct device *dev = &client->dev; pm_runtime_disable(dev); if (!pm_runtime_status_suspended(dev)) ov5640_sensor_suspend(dev); pm_runtime_set_suspended(dev); v4l2_async_unregister_subdev(&sensor->sd); media_entity_cleanup(&sensor->sd.entity); v4l2_ctrl_handler_free(&sensor->ctrls.handler); mutex_destroy(&sensor->lock); } static const struct dev_pm_ops ov5640_pm_ops = { SET_RUNTIME_PM_OPS(ov5640_sensor_suspend, ov5640_sensor_resume, NULL) }; static const struct i2c_device_id ov5640_id[] = { {"ov5640", 0}, {}, }; MODULE_DEVICE_TABLE(i2c, ov5640_id); static const struct of_device_id ov5640_dt_ids[] = { { .compatible = "ovti,ov5640" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, ov5640_dt_ids); static struct i2c_driver ov5640_i2c_driver = { .driver = { .name = "ov5640", .of_match_table = ov5640_dt_ids, .pm = &ov5640_pm_ops, }, .id_table = ov5640_id, .probe_new = ov5640_probe, .remove = ov5640_remove, }; module_i2c_driver(ov5640_i2c_driver); MODULE_DESCRIPTION("OV5640 MIPI Camera Subdev Driver"); MODULE_LICENSE("GPL");