// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2007 Oracle. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "export.h" #include "transaction.h" #include "btrfs_inode.h" #include "print-tree.h" #include "volumes.h" #include "locking.h" #include "backref.h" #include "rcu-string.h" #include "send.h" #include "dev-replace.h" #include "props.h" #include "sysfs.h" #include "qgroup.h" #include "tree-log.h" #include "compression.h" #include "space-info.h" #include "delalloc-space.h" #include "block-group.h" #include "subpage.h" #ifdef CONFIG_64BIT /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI * structures are incorrect, as the timespec structure from userspace * is 4 bytes too small. We define these alternatives here to teach * the kernel about the 32-bit struct packing. */ struct btrfs_ioctl_timespec_32 { __u64 sec; __u32 nsec; } __attribute__ ((__packed__)); struct btrfs_ioctl_received_subvol_args_32 { char uuid[BTRFS_UUID_SIZE]; /* in */ __u64 stransid; /* in */ __u64 rtransid; /* out */ struct btrfs_ioctl_timespec_32 stime; /* in */ struct btrfs_ioctl_timespec_32 rtime; /* out */ __u64 flags; /* in */ __u64 reserved[16]; /* in */ } __attribute__ ((__packed__)); #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ struct btrfs_ioctl_received_subvol_args_32) #endif #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) struct btrfs_ioctl_send_args_32 { __s64 send_fd; /* in */ __u64 clone_sources_count; /* in */ compat_uptr_t clone_sources; /* in */ __u64 parent_root; /* in */ __u64 flags; /* in */ __u32 version; /* in */ __u8 reserved[28]; /* in */ } __attribute__ ((__packed__)); #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ struct btrfs_ioctl_send_args_32) struct btrfs_ioctl_encoded_io_args_32 { compat_uptr_t iov; compat_ulong_t iovcnt; __s64 offset; __u64 flags; __u64 len; __u64 unencoded_len; __u64 unencoded_offset; __u32 compression; __u32 encryption; __u8 reserved[64]; }; #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ struct btrfs_ioctl_encoded_io_args_32) #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ struct btrfs_ioctl_encoded_io_args_32) #endif /* Mask out flags that are inappropriate for the given type of inode. */ static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, unsigned int flags) { if (S_ISDIR(inode->i_mode)) return flags; else if (S_ISREG(inode->i_mode)) return flags & ~FS_DIRSYNC_FL; else return flags & (FS_NODUMP_FL | FS_NOATIME_FL); } /* * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS * ioctl. */ static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) { unsigned int iflags = 0; u32 flags = binode->flags; u32 ro_flags = binode->ro_flags; if (flags & BTRFS_INODE_SYNC) iflags |= FS_SYNC_FL; if (flags & BTRFS_INODE_IMMUTABLE) iflags |= FS_IMMUTABLE_FL; if (flags & BTRFS_INODE_APPEND) iflags |= FS_APPEND_FL; if (flags & BTRFS_INODE_NODUMP) iflags |= FS_NODUMP_FL; if (flags & BTRFS_INODE_NOATIME) iflags |= FS_NOATIME_FL; if (flags & BTRFS_INODE_DIRSYNC) iflags |= FS_DIRSYNC_FL; if (flags & BTRFS_INODE_NODATACOW) iflags |= FS_NOCOW_FL; if (ro_flags & BTRFS_INODE_RO_VERITY) iflags |= FS_VERITY_FL; if (flags & BTRFS_INODE_NOCOMPRESS) iflags |= FS_NOCOMP_FL; else if (flags & BTRFS_INODE_COMPRESS) iflags |= FS_COMPR_FL; return iflags; } /* * Update inode->i_flags based on the btrfs internal flags. */ void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) { struct btrfs_inode *binode = BTRFS_I(inode); unsigned int new_fl = 0; if (binode->flags & BTRFS_INODE_SYNC) new_fl |= S_SYNC; if (binode->flags & BTRFS_INODE_IMMUTABLE) new_fl |= S_IMMUTABLE; if (binode->flags & BTRFS_INODE_APPEND) new_fl |= S_APPEND; if (binode->flags & BTRFS_INODE_NOATIME) new_fl |= S_NOATIME; if (binode->flags & BTRFS_INODE_DIRSYNC) new_fl |= S_DIRSYNC; if (binode->ro_flags & BTRFS_INODE_RO_VERITY) new_fl |= S_VERITY; set_mask_bits(&inode->i_flags, S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | S_VERITY, new_fl); } /* * Check if @flags are a supported and valid set of FS_*_FL flags and that * the old and new flags are not conflicting */ static int check_fsflags(unsigned int old_flags, unsigned int flags) { if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ FS_NOATIME_FL | FS_NODUMP_FL | \ FS_SYNC_FL | FS_DIRSYNC_FL | \ FS_NOCOMP_FL | FS_COMPR_FL | FS_NOCOW_FL)) return -EOPNOTSUPP; /* COMPR and NOCOMP on new/old are valid */ if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) return -EINVAL; if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) return -EINVAL; /* NOCOW and compression options are mutually exclusive */ if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) return -EINVAL; if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) return -EINVAL; return 0; } static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, unsigned int flags) { if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) return -EPERM; return 0; } /* * Set flags/xflags from the internal inode flags. The remaining items of * fsxattr are zeroed. */ int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) { struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); return 0; } int btrfs_fileattr_set(struct user_namespace *mnt_userns, struct dentry *dentry, struct fileattr *fa) { struct inode *inode = d_inode(dentry); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_inode *binode = BTRFS_I(inode); struct btrfs_root *root = binode->root; struct btrfs_trans_handle *trans; unsigned int fsflags, old_fsflags; int ret; const char *comp = NULL; u32 binode_flags; if (btrfs_root_readonly(root)) return -EROFS; if (fileattr_has_fsx(fa)) return -EOPNOTSUPP; fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); old_fsflags = btrfs_inode_flags_to_fsflags(binode); ret = check_fsflags(old_fsflags, fsflags); if (ret) return ret; ret = check_fsflags_compatible(fs_info, fsflags); if (ret) return ret; binode_flags = binode->flags; if (fsflags & FS_SYNC_FL) binode_flags |= BTRFS_INODE_SYNC; else binode_flags &= ~BTRFS_INODE_SYNC; if (fsflags & FS_IMMUTABLE_FL) binode_flags |= BTRFS_INODE_IMMUTABLE; else binode_flags &= ~BTRFS_INODE_IMMUTABLE; if (fsflags & FS_APPEND_FL) binode_flags |= BTRFS_INODE_APPEND; else binode_flags &= ~BTRFS_INODE_APPEND; if (fsflags & FS_NODUMP_FL) binode_flags |= BTRFS_INODE_NODUMP; else binode_flags &= ~BTRFS_INODE_NODUMP; if (fsflags & FS_NOATIME_FL) binode_flags |= BTRFS_INODE_NOATIME; else binode_flags &= ~BTRFS_INODE_NOATIME; /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ if (!fa->flags_valid) { /* 1 item for the inode */ trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) return PTR_ERR(trans); goto update_flags; } if (fsflags & FS_DIRSYNC_FL) binode_flags |= BTRFS_INODE_DIRSYNC; else binode_flags &= ~BTRFS_INODE_DIRSYNC; if (fsflags & FS_NOCOW_FL) { if (S_ISREG(inode->i_mode)) { /* * It's safe to turn csums off here, no extents exist. * Otherwise we want the flag to reflect the real COW * status of the file and will not set it. */ if (inode->i_size == 0) binode_flags |= BTRFS_INODE_NODATACOW | BTRFS_INODE_NODATASUM; } else { binode_flags |= BTRFS_INODE_NODATACOW; } } else { /* * Revert back under same assumptions as above */ if (S_ISREG(inode->i_mode)) { if (inode->i_size == 0) binode_flags &= ~(BTRFS_INODE_NODATACOW | BTRFS_INODE_NODATASUM); } else { binode_flags &= ~BTRFS_INODE_NODATACOW; } } /* * The COMPRESS flag can only be changed by users, while the NOCOMPRESS * flag may be changed automatically if compression code won't make * things smaller. */ if (fsflags & FS_NOCOMP_FL) { binode_flags &= ~BTRFS_INODE_COMPRESS; binode_flags |= BTRFS_INODE_NOCOMPRESS; } else if (fsflags & FS_COMPR_FL) { if (IS_SWAPFILE(inode)) return -ETXTBSY; binode_flags |= BTRFS_INODE_COMPRESS; binode_flags &= ~BTRFS_INODE_NOCOMPRESS; comp = btrfs_compress_type2str(fs_info->compress_type); if (!comp || comp[0] == 0) comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); } else { binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); } /* * 1 for inode item * 2 for properties */ trans = btrfs_start_transaction(root, 3); if (IS_ERR(trans)) return PTR_ERR(trans); if (comp) { ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, strlen(comp), 0); if (ret) { btrfs_abort_transaction(trans, ret); goto out_end_trans; } } else { ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 0, 0); if (ret && ret != -ENODATA) { btrfs_abort_transaction(trans, ret); goto out_end_trans; } } update_flags: binode->flags = binode_flags; btrfs_sync_inode_flags_to_i_flags(inode); inode_inc_iversion(inode); inode->i_ctime = current_time(inode); ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); out_end_trans: btrfs_end_transaction(trans); return ret; } /* * Start exclusive operation @type, return true on success */ bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, enum btrfs_exclusive_operation type) { bool ret = false; spin_lock(&fs_info->super_lock); if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { fs_info->exclusive_operation = type; ret = true; } spin_unlock(&fs_info->super_lock); return ret; } /* * Conditionally allow to enter the exclusive operation in case it's compatible * with the running one. This must be paired with btrfs_exclop_start_unlock and * btrfs_exclop_finish. * * Compatibility: * - the same type is already running * - when trying to add a device and balance has been paused * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller * must check the condition first that would allow none -> @type */ bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, enum btrfs_exclusive_operation type) { spin_lock(&fs_info->super_lock); if (fs_info->exclusive_operation == type || (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && type == BTRFS_EXCLOP_DEV_ADD)) return true; spin_unlock(&fs_info->super_lock); return false; } void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) { spin_unlock(&fs_info->super_lock); } void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) { spin_lock(&fs_info->super_lock); WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); spin_unlock(&fs_info->super_lock); sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); } void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, enum btrfs_exclusive_operation op) { switch (op) { case BTRFS_EXCLOP_BALANCE_PAUSED: spin_lock(&fs_info->super_lock); ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || fs_info->exclusive_operation == BTRFS_EXCLOP_NONE || fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; spin_unlock(&fs_info->super_lock); break; case BTRFS_EXCLOP_BALANCE: spin_lock(&fs_info->super_lock); ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; spin_unlock(&fs_info->super_lock); break; default: btrfs_warn(fs_info, "invalid exclop balance operation %d requested", op); } } static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) { return put_user(inode->i_generation, arg); } static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, void __user *arg) { struct btrfs_device *device; struct fstrim_range range; u64 minlen = ULLONG_MAX; u64 num_devices = 0; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; /* * btrfs_trim_block_group() depends on space cache, which is not * available in zoned filesystem. So, disallow fitrim on a zoned * filesystem for now. */ if (btrfs_is_zoned(fs_info)) return -EOPNOTSUPP; /* * If the fs is mounted with nologreplay, which requires it to be * mounted in RO mode as well, we can not allow discard on free space * inside block groups, because log trees refer to extents that are not * pinned in a block group's free space cache (pinning the extents is * precisely the first phase of replaying a log tree). */ if (btrfs_test_opt(fs_info, NOLOGREPLAY)) return -EROFS; rcu_read_lock(); list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, dev_list) { if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) continue; num_devices++; minlen = min_t(u64, bdev_discard_granularity(device->bdev), minlen); } rcu_read_unlock(); if (!num_devices) return -EOPNOTSUPP; if (copy_from_user(&range, arg, sizeof(range))) return -EFAULT; /* * NOTE: Don't truncate the range using super->total_bytes. Bytenr of * block group is in the logical address space, which can be any * sectorsize aligned bytenr in the range [0, U64_MAX]. */ if (range.len < fs_info->sb->s_blocksize) return -EINVAL; range.minlen = max(range.minlen, minlen); ret = btrfs_trim_fs(fs_info, &range); if (ret < 0) return ret; if (copy_to_user(arg, &range, sizeof(range))) return -EFAULT; return 0; } int __pure btrfs_is_empty_uuid(u8 *uuid) { int i; for (i = 0; i < BTRFS_UUID_SIZE; i++) { if (uuid[i]) return 0; } return 1; } /* * Calculate the number of transaction items to reserve for creating a subvolume * or snapshot, not including the inode, directory entries, or parent directory. */ static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) { /* * 1 to add root block * 1 to add root item * 1 to add root ref * 1 to add root backref * 1 to add UUID item * 1 to add qgroup info * 1 to add qgroup limit * * Ideally the last two would only be accounted if qgroups are enabled, * but that can change between now and the time we would insert them. */ unsigned int num_items = 7; if (inherit) { /* 2 to add qgroup relations for each inherited qgroup */ num_items += 2 * inherit->num_qgroups; } return num_items; } static noinline int create_subvol(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *dentry, struct btrfs_qgroup_inherit *inherit) { struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); struct btrfs_trans_handle *trans; struct btrfs_key key; struct btrfs_root_item *root_item; struct btrfs_inode_item *inode_item; struct extent_buffer *leaf; struct btrfs_root *root = BTRFS_I(dir)->root; struct btrfs_root *new_root; struct btrfs_block_rsv block_rsv; struct timespec64 cur_time = current_time(dir); struct btrfs_new_inode_args new_inode_args = { .dir = dir, .dentry = dentry, .subvol = true, }; unsigned int trans_num_items; int ret; dev_t anon_dev; u64 objectid; root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); if (!root_item) return -ENOMEM; ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); if (ret) goto out_root_item; /* * Don't create subvolume whose level is not zero. Or qgroup will be * screwed up since it assumes subvolume qgroup's level to be 0. */ if (btrfs_qgroup_level(objectid)) { ret = -ENOSPC; goto out_root_item; } ret = get_anon_bdev(&anon_dev); if (ret < 0) goto out_root_item; new_inode_args.inode = btrfs_new_subvol_inode(mnt_userns, dir); if (!new_inode_args.inode) { ret = -ENOMEM; goto out_anon_dev; } ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); if (ret) goto out_inode; trans_num_items += create_subvol_num_items(inherit); btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, trans_num_items, false); if (ret) goto out_new_inode_args; trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { ret = PTR_ERR(trans); btrfs_subvolume_release_metadata(root, &block_rsv); goto out_new_inode_args; } trans->block_rsv = &block_rsv; trans->bytes_reserved = block_rsv.size; ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); if (ret) goto out; leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, BTRFS_NESTING_NORMAL); if (IS_ERR(leaf)) { ret = PTR_ERR(leaf); goto out; } btrfs_mark_buffer_dirty(leaf); inode_item = &root_item->inode; btrfs_set_stack_inode_generation(inode_item, 1); btrfs_set_stack_inode_size(inode_item, 3); btrfs_set_stack_inode_nlink(inode_item, 1); btrfs_set_stack_inode_nbytes(inode_item, fs_info->nodesize); btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); btrfs_set_root_flags(root_item, 0); btrfs_set_root_limit(root_item, 0); btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); btrfs_set_root_bytenr(root_item, leaf->start); btrfs_set_root_generation(root_item, trans->transid); btrfs_set_root_level(root_item, 0); btrfs_set_root_refs(root_item, 1); btrfs_set_root_used(root_item, leaf->len); btrfs_set_root_last_snapshot(root_item, 0); btrfs_set_root_generation_v2(root_item, btrfs_root_generation(root_item)); generate_random_guid(root_item->uuid); btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); root_item->ctime = root_item->otime; btrfs_set_root_ctransid(root_item, trans->transid); btrfs_set_root_otransid(root_item, trans->transid); btrfs_tree_unlock(leaf); btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); key.objectid = objectid; key.offset = 0; key.type = BTRFS_ROOT_ITEM_KEY; ret = btrfs_insert_root(trans, fs_info->tree_root, &key, root_item); if (ret) { /* * Since we don't abort the transaction in this case, free the * tree block so that we don't leak space and leave the * filesystem in an inconsistent state (an extent item in the * extent tree with a backreference for a root that does not * exists). */ btrfs_tree_lock(leaf); btrfs_clean_tree_block(leaf); btrfs_tree_unlock(leaf); btrfs_free_tree_block(trans, objectid, leaf, 0, 1); free_extent_buffer(leaf); goto out; } free_extent_buffer(leaf); leaf = NULL; new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); if (IS_ERR(new_root)) { ret = PTR_ERR(new_root); btrfs_abort_transaction(trans, ret); goto out; } /* anon_dev is owned by new_root now. */ anon_dev = 0; BTRFS_I(new_inode_args.inode)->root = new_root; /* ... and new_root is owned by new_inode_args.inode now. */ ret = btrfs_record_root_in_trans(trans, new_root); if (ret) { btrfs_abort_transaction(trans, ret); goto out; } ret = btrfs_uuid_tree_add(trans, root_item->uuid, BTRFS_UUID_KEY_SUBVOL, objectid); if (ret) { btrfs_abort_transaction(trans, ret); goto out; } ret = btrfs_create_new_inode(trans, &new_inode_args); if (ret) { btrfs_abort_transaction(trans, ret); goto out; } d_instantiate_new(dentry, new_inode_args.inode); new_inode_args.inode = NULL; out: trans->block_rsv = NULL; trans->bytes_reserved = 0; btrfs_subvolume_release_metadata(root, &block_rsv); if (ret) btrfs_end_transaction(trans); else ret = btrfs_commit_transaction(trans); out_new_inode_args: btrfs_new_inode_args_destroy(&new_inode_args); out_inode: iput(new_inode_args.inode); out_anon_dev: if (anon_dev) free_anon_bdev(anon_dev); out_root_item: kfree(root_item); return ret; } static int create_snapshot(struct btrfs_root *root, struct inode *dir, struct dentry *dentry, bool readonly, struct btrfs_qgroup_inherit *inherit) { struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); struct inode *inode; struct btrfs_pending_snapshot *pending_snapshot; unsigned int trans_num_items; struct btrfs_trans_handle *trans; int ret; /* We do not support snapshotting right now. */ if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { btrfs_warn(fs_info, "extent tree v2 doesn't support snapshotting yet"); return -EOPNOTSUPP; } if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) return -EINVAL; if (atomic_read(&root->nr_swapfiles)) { btrfs_warn(fs_info, "cannot snapshot subvolume with active swapfile"); return -ETXTBSY; } pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); if (!pending_snapshot) return -ENOMEM; ret = get_anon_bdev(&pending_snapshot->anon_dev); if (ret < 0) goto free_pending; pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), GFP_KERNEL); pending_snapshot->path = btrfs_alloc_path(); if (!pending_snapshot->root_item || !pending_snapshot->path) { ret = -ENOMEM; goto free_pending; } btrfs_init_block_rsv(&pending_snapshot->block_rsv, BTRFS_BLOCK_RSV_TEMP); /* * 1 to add dir item * 1 to add dir index * 1 to update parent inode item */ trans_num_items = create_subvol_num_items(inherit) + 3; ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, &pending_snapshot->block_rsv, trans_num_items, false); if (ret) goto free_pending; pending_snapshot->dentry = dentry; pending_snapshot->root = root; pending_snapshot->readonly = readonly; pending_snapshot->dir = dir; pending_snapshot->inherit = inherit; trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto fail; } trans->pending_snapshot = pending_snapshot; ret = btrfs_commit_transaction(trans); if (ret) goto fail; ret = pending_snapshot->error; if (ret) goto fail; ret = btrfs_orphan_cleanup(pending_snapshot->snap); if (ret) goto fail; inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); if (IS_ERR(inode)) { ret = PTR_ERR(inode); goto fail; } d_instantiate(dentry, inode); ret = 0; pending_snapshot->anon_dev = 0; fail: /* Prevent double freeing of anon_dev */ if (ret && pending_snapshot->snap) pending_snapshot->snap->anon_dev = 0; btrfs_put_root(pending_snapshot->snap); btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); free_pending: if (pending_snapshot->anon_dev) free_anon_bdev(pending_snapshot->anon_dev); kfree(pending_snapshot->root_item); btrfs_free_path(pending_snapshot->path); kfree(pending_snapshot); return ret; } /* copy of may_delete in fs/namei.c() * Check whether we can remove a link victim from directory dir, check * whether the type of victim is right. * 1. We can't do it if dir is read-only (done in permission()) * 2. We should have write and exec permissions on dir * 3. We can't remove anything from append-only dir * 4. We can't do anything with immutable dir (done in permission()) * 5. If the sticky bit on dir is set we should either * a. be owner of dir, or * b. be owner of victim, or * c. have CAP_FOWNER capability * 6. If the victim is append-only or immutable we can't do anything with * links pointing to it. * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. * 9. We can't remove a root or mountpoint. * 10. We don't allow removal of NFS sillyrenamed files; it's handled by * nfs_async_unlink(). */ static int btrfs_may_delete(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *victim, int isdir) { int error; if (d_really_is_negative(victim)) return -ENOENT; BUG_ON(d_inode(victim->d_parent) != dir); audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); if (error) return error; if (IS_APPEND(dir)) return -EPERM; if (check_sticky(mnt_userns, dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) return -EPERM; if (isdir) { if (!d_is_dir(victim)) return -ENOTDIR; if (IS_ROOT(victim)) return -EBUSY; } else if (d_is_dir(victim)) return -EISDIR; if (IS_DEADDIR(dir)) return -ENOENT; if (victim->d_flags & DCACHE_NFSFS_RENAMED) return -EBUSY; return 0; } /* copy of may_create in fs/namei.c() */ static inline int btrfs_may_create(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *child) { if (d_really_is_positive(child)) return -EEXIST; if (IS_DEADDIR(dir)) return -ENOENT; if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) return -EOVERFLOW; return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); } /* * Create a new subvolume below @parent. This is largely modeled after * sys_mkdirat and vfs_mkdir, but we only do a single component lookup * inside this filesystem so it's quite a bit simpler. */ static noinline int btrfs_mksubvol(const struct path *parent, struct user_namespace *mnt_userns, const char *name, int namelen, struct btrfs_root *snap_src, bool readonly, struct btrfs_qgroup_inherit *inherit) { struct inode *dir = d_inode(parent->dentry); struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); struct dentry *dentry; int error; error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); if (error == -EINTR) return error; dentry = lookup_one(mnt_userns, name, parent->dentry, namelen); error = PTR_ERR(dentry); if (IS_ERR(dentry)) goto out_unlock; error = btrfs_may_create(mnt_userns, dir, dentry); if (error) goto out_dput; /* * even if this name doesn't exist, we may get hash collisions. * check for them now when we can safely fail */ error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, dir->i_ino, name, namelen); if (error) goto out_dput; down_read(&fs_info->subvol_sem); if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) goto out_up_read; if (snap_src) error = create_snapshot(snap_src, dir, dentry, readonly, inherit); else error = create_subvol(mnt_userns, dir, dentry, inherit); if (!error) fsnotify_mkdir(dir, dentry); out_up_read: up_read(&fs_info->subvol_sem); out_dput: dput(dentry); out_unlock: btrfs_inode_unlock(dir, 0); return error; } static noinline int btrfs_mksnapshot(const struct path *parent, struct user_namespace *mnt_userns, const char *name, int namelen, struct btrfs_root *root, bool readonly, struct btrfs_qgroup_inherit *inherit) { int ret; bool snapshot_force_cow = false; /* * Force new buffered writes to reserve space even when NOCOW is * possible. This is to avoid later writeback (running dealloc) to * fallback to COW mode and unexpectedly fail with ENOSPC. */ btrfs_drew_read_lock(&root->snapshot_lock); ret = btrfs_start_delalloc_snapshot(root, false); if (ret) goto out; /* * All previous writes have started writeback in NOCOW mode, so now * we force future writes to fallback to COW mode during snapshot * creation. */ atomic_inc(&root->snapshot_force_cow); snapshot_force_cow = true; btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); ret = btrfs_mksubvol(parent, mnt_userns, name, namelen, root, readonly, inherit); out: if (snapshot_force_cow) atomic_dec(&root->snapshot_force_cow); btrfs_drew_read_unlock(&root->snapshot_lock); return ret; } /* * Defrag specific helper to get an extent map. * * Differences between this and btrfs_get_extent() are: * * - No extent_map will be added to inode->extent_tree * To reduce memory usage in the long run. * * - Extra optimization to skip file extents older than @newer_than * By using btrfs_search_forward() we can skip entire file ranges that * have extents created in past transactions, because btrfs_search_forward() * will not visit leaves and nodes with a generation smaller than given * minimal generation threshold (@newer_than). * * Return valid em if we find a file extent matching the requirement. * Return NULL if we can not find a file extent matching the requirement. * * Return ERR_PTR() for error. */ static struct extent_map *defrag_get_extent(struct btrfs_inode *inode, u64 start, u64 newer_than) { struct btrfs_root *root = inode->root; struct btrfs_file_extent_item *fi; struct btrfs_path path = { 0 }; struct extent_map *em; struct btrfs_key key; u64 ino = btrfs_ino(inode); int ret; em = alloc_extent_map(); if (!em) { ret = -ENOMEM; goto err; } key.objectid = ino; key.type = BTRFS_EXTENT_DATA_KEY; key.offset = start; if (newer_than) { ret = btrfs_search_forward(root, &key, &path, newer_than); if (ret < 0) goto err; /* Can't find anything newer */ if (ret > 0) goto not_found; } else { ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (ret < 0) goto err; } if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) { /* * If btrfs_search_slot() makes path to point beyond nritems, * we should not have an empty leaf, as this inode must at * least have its INODE_ITEM. */ ASSERT(btrfs_header_nritems(path.nodes[0])); path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1; } btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); /* Perfect match, no need to go one slot back */ if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY && key.offset == start) goto iterate; /* We didn't find a perfect match, needs to go one slot back */ if (path.slots[0] > 0) { btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY) path.slots[0]--; } iterate: /* Iterate through the path to find a file extent covering @start */ while (true) { u64 extent_end; if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) goto next; btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]); /* * We may go one slot back to INODE_REF/XATTR item, then * need to go forward until we reach an EXTENT_DATA. * But we should still has the correct ino as key.objectid. */ if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY) goto next; /* It's beyond our target range, definitely not extent found */ if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY) goto not_found; /* * | |<- File extent ->| * \- start * * This means there is a hole between start and key.offset. */ if (key.offset > start) { em->start = start; em->orig_start = start; em->block_start = EXTENT_MAP_HOLE; em->len = key.offset - start; break; } fi = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_file_extent_item); extent_end = btrfs_file_extent_end(&path); /* * |<- file extent ->| | * \- start * * We haven't reached start, search next slot. */ if (extent_end <= start) goto next; /* Now this extent covers @start, convert it to em */ btrfs_extent_item_to_extent_map(inode, &path, fi, false, em); break; next: ret = btrfs_next_item(root, &path); if (ret < 0) goto err; if (ret > 0) goto not_found; } btrfs_release_path(&path); return em; not_found: btrfs_release_path(&path); free_extent_map(em); return NULL; err: btrfs_release_path(&path); free_extent_map(em); return ERR_PTR(ret); } static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, u64 newer_than, bool locked) { struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; struct extent_map *em; const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; /* * hopefully we have this extent in the tree already, try without * the full extent lock */ read_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, start, sectorsize); read_unlock(&em_tree->lock); /* * We can get a merged extent, in that case, we need to re-search * tree to get the original em for defrag. * * If @newer_than is 0 or em::generation < newer_than, we can trust * this em, as either we don't care about the generation, or the * merged extent map will be rejected anyway. */ if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) && newer_than && em->generation >= newer_than) { free_extent_map(em); em = NULL; } if (!em) { struct extent_state *cached = NULL; u64 end = start + sectorsize - 1; /* get the big lock and read metadata off disk */ if (!locked) lock_extent(io_tree, start, end, &cached); em = defrag_get_extent(BTRFS_I(inode), start, newer_than); if (!locked) unlock_extent(io_tree, start, end, &cached); if (IS_ERR(em)) return NULL; } return em; } static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info, const struct extent_map *em) { if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) return BTRFS_MAX_COMPRESSED; return fs_info->max_extent_size; } static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, u32 extent_thresh, u64 newer_than, bool locked) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct extent_map *next; bool ret = false; /* this is the last extent */ if (em->start + em->len >= i_size_read(inode)) return false; /* * Here we need to pass @newer_then when checking the next extent, or * we will hit a case we mark current extent for defrag, but the next * one will not be a target. * This will just cause extra IO without really reducing the fragments. */ next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked); /* No more em or hole */ if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) goto out; if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags)) goto out; /* * If the next extent is at its max capacity, defragging current extent * makes no sense, as the total number of extents won't change. */ if (next->len >= get_extent_max_capacity(fs_info, em)) goto out; /* Skip older extent */ if (next->generation < newer_than) goto out; /* Also check extent size */ if (next->len >= extent_thresh) goto out; ret = true; out: free_extent_map(next); return ret; } /* * Prepare one page to be defragged. * * This will ensure: * * - Returned page is locked and has been set up properly. * - No ordered extent exists in the page. * - The page is uptodate. * * NOTE: Caller should also wait for page writeback after the cluster is * prepared, here we don't do writeback wait for each page. */ static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, pgoff_t index) { struct address_space *mapping = inode->vfs_inode.i_mapping; gfp_t mask = btrfs_alloc_write_mask(mapping); u64 page_start = (u64)index << PAGE_SHIFT; u64 page_end = page_start + PAGE_SIZE - 1; struct extent_state *cached_state = NULL; struct page *page; int ret; again: page = find_or_create_page(mapping, index, mask); if (!page) return ERR_PTR(-ENOMEM); /* * Since we can defragment files opened read-only, we can encounter * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We * can't do I/O using huge pages yet, so return an error for now. * Filesystem transparent huge pages are typically only used for * executables that explicitly enable them, so this isn't very * restrictive. */ if (PageCompound(page)) { unlock_page(page); put_page(page); return ERR_PTR(-ETXTBSY); } ret = set_page_extent_mapped(page); if (ret < 0) { unlock_page(page); put_page(page); return ERR_PTR(ret); } /* Wait for any existing ordered extent in the range */ while (1) { struct btrfs_ordered_extent *ordered; lock_extent(&inode->io_tree, page_start, page_end, &cached_state); ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); if (!ordered) break; unlock_page(page); btrfs_start_ordered_extent(ordered, 1); btrfs_put_ordered_extent(ordered); lock_page(page); /* * We unlocked the page above, so we need check if it was * released or not. */ if (page->mapping != mapping || !PagePrivate(page)) { unlock_page(page); put_page(page); goto again; } } /* * Now the page range has no ordered extent any more. Read the page to * make it uptodate. */ if (!PageUptodate(page)) { btrfs_read_folio(NULL, page_folio(page)); lock_page(page); if (page->mapping != mapping || !PagePrivate(page)) { unlock_page(page); put_page(page); goto again; } if (!PageUptodate(page)) { unlock_page(page); put_page(page); return ERR_PTR(-EIO); } } return page; } struct defrag_target_range { struct list_head list; u64 start; u64 len; }; /* * Collect all valid target extents. * * @start: file offset to lookup * @len: length to lookup * @extent_thresh: file extent size threshold, any extent size >= this value * will be ignored * @newer_than: only defrag extents newer than this value * @do_compress: whether the defrag is doing compression * if true, @extent_thresh will be ignored and all regular * file extents meeting @newer_than will be targets. * @locked: if the range has already held extent lock * @target_list: list of targets file extents */ static int defrag_collect_targets(struct btrfs_inode *inode, u64 start, u64 len, u32 extent_thresh, u64 newer_than, bool do_compress, bool locked, struct list_head *target_list, u64 *last_scanned_ret) { struct btrfs_fs_info *fs_info = inode->root->fs_info; bool last_is_target = false; u64 cur = start; int ret = 0; while (cur < start + len) { struct extent_map *em; struct defrag_target_range *new; bool next_mergeable = true; u64 range_len; last_is_target = false; em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked); if (!em) break; /* * If the file extent is an inlined one, we may still want to * defrag it (fallthrough) if it will cause a regular extent. * This is for users who want to convert inline extents to * regular ones through max_inline= mount option. */ if (em->block_start == EXTENT_MAP_INLINE && em->len <= inode->root->fs_info->max_inline) goto next; /* Skip hole/delalloc/preallocated extents */ if (em->block_start == EXTENT_MAP_HOLE || em->block_start == EXTENT_MAP_DELALLOC || test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) goto next; /* Skip older extent */ if (em->generation < newer_than) goto next; /* This em is under writeback, no need to defrag */ if (em->generation == (u64)-1) goto next; /* * Our start offset might be in the middle of an existing extent * map, so take that into account. */ range_len = em->len - (cur - em->start); /* * If this range of the extent map is already flagged for delalloc, * skip it, because: * * 1) We could deadlock later, when trying to reserve space for * delalloc, because in case we can't immediately reserve space * the flusher can start delalloc and wait for the respective * ordered extents to complete. The deadlock would happen * because we do the space reservation while holding the range * locked, and starting writeback, or finishing an ordered * extent, requires locking the range; * * 2) If there's delalloc there, it means there's dirty pages for * which writeback has not started yet (we clean the delalloc * flag when starting writeback and after creating an ordered * extent). If we mark pages in an adjacent range for defrag, * then we will have a larger contiguous range for delalloc, * very likely resulting in a larger extent after writeback is * triggered (except in a case of free space fragmentation). */ if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1, EXTENT_DELALLOC, 0, NULL)) goto next; /* * For do_compress case, we want to compress all valid file * extents, thus no @extent_thresh or mergeable check. */ if (do_compress) goto add; /* Skip too large extent */ if (range_len >= extent_thresh) goto next; /* * Skip extents already at its max capacity, this is mostly for * compressed extents, which max cap is only 128K. */ if (em->len >= get_extent_max_capacity(fs_info, em)) goto next; /* * Normally there are no more extents after an inline one, thus * @next_mergeable will normally be false and not defragged. * So if an inline extent passed all above checks, just add it * for defrag, and be converted to regular extents. */ if (em->block_start == EXTENT_MAP_INLINE) goto add; next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, extent_thresh, newer_than, locked); if (!next_mergeable) { struct defrag_target_range *last; /* Empty target list, no way to merge with last entry */ if (list_empty(target_list)) goto next; last = list_entry(target_list->prev, struct defrag_target_range, list); /* Not mergeable with last entry */ if (last->start + last->len != cur) goto next; /* Mergeable, fall through to add it to @target_list. */ } add: last_is_target = true; range_len = min(extent_map_end(em), start + len) - cur; /* * This one is a good target, check if it can be merged into * last range of the target list. */ if (!list_empty(target_list)) { struct defrag_target_range *last; last = list_entry(target_list->prev, struct defrag_target_range, list); ASSERT(last->start + last->len <= cur); if (last->start + last->len == cur) { /* Mergeable, enlarge the last entry */ last->len += range_len; goto next; } /* Fall through to allocate a new entry */ } /* Allocate new defrag_target_range */ new = kmalloc(sizeof(*new), GFP_NOFS); if (!new) { free_extent_map(em); ret = -ENOMEM; break; } new->start = cur; new->len = range_len; list_add_tail(&new->list, target_list); next: cur = extent_map_end(em); free_extent_map(em); } if (ret < 0) { struct defrag_target_range *entry; struct defrag_target_range *tmp; list_for_each_entry_safe(entry, tmp, target_list, list) { list_del_init(&entry->list); kfree(entry); } } if (!ret && last_scanned_ret) { /* * If the last extent is not a target, the caller can skip to * the end of that extent. * Otherwise, we can only go the end of the specified range. */ if (!last_is_target) *last_scanned_ret = max(cur, *last_scanned_ret); else *last_scanned_ret = max(start + len, *last_scanned_ret); } return ret; } #define CLUSTER_SIZE (SZ_256K) static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); /* * Defrag one contiguous target range. * * @inode: target inode * @target: target range to defrag * @pages: locked pages covering the defrag range * @nr_pages: number of locked pages * * Caller should ensure: * * - Pages are prepared * Pages should be locked, no ordered extent in the pages range, * no writeback. * * - Extent bits are locked */ static int defrag_one_locked_target(struct btrfs_inode *inode, struct defrag_target_range *target, struct page **pages, int nr_pages, struct extent_state **cached_state) { struct btrfs_fs_info *fs_info = inode->root->fs_info; struct extent_changeset *data_reserved = NULL; const u64 start = target->start; const u64 len = target->len; unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; unsigned long start_index = start >> PAGE_SHIFT; unsigned long first_index = page_index(pages[0]); int ret = 0; int i; ASSERT(last_index - first_index + 1 <= nr_pages); ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); if (ret < 0) return ret; clear_extent_bit(&inode->io_tree, start, start + len - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, cached_state); set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state); /* Update the page status */ for (i = start_index - first_index; i <= last_index - first_index; i++) { ClearPageChecked(pages[i]); btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len); } btrfs_delalloc_release_extents(inode, len); extent_changeset_free(data_reserved); return ret; } static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, u32 extent_thresh, u64 newer_than, bool do_compress, u64 *last_scanned_ret) { struct extent_state *cached_state = NULL; struct defrag_target_range *entry; struct defrag_target_range *tmp; LIST_HEAD(target_list); struct page **pages; const u32 sectorsize = inode->root->fs_info->sectorsize; u64 last_index = (start + len - 1) >> PAGE_SHIFT; u64 start_index = start >> PAGE_SHIFT; unsigned int nr_pages = last_index - start_index + 1; int ret = 0; int i; ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); if (!pages) return -ENOMEM; /* Prepare all pages */ for (i = 0; i < nr_pages; i++) { pages[i] = defrag_prepare_one_page(inode, start_index + i); if (IS_ERR(pages[i])) { ret = PTR_ERR(pages[i]); pages[i] = NULL; goto free_pages; } } for (i = 0; i < nr_pages; i++) wait_on_page_writeback(pages[i]); /* Lock the pages range */ lock_extent(&inode->io_tree, start_index << PAGE_SHIFT, (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, &cached_state); /* * Now we have a consistent view about the extent map, re-check * which range really needs to be defragged. * * And this time we have extent locked already, pass @locked = true * so that we won't relock the extent range and cause deadlock. */ ret = defrag_collect_targets(inode, start, len, extent_thresh, newer_than, do_compress, true, &target_list, last_scanned_ret); if (ret < 0) goto unlock_extent; list_for_each_entry(entry, &target_list, list) { ret = defrag_one_locked_target(inode, entry, pages, nr_pages, &cached_state); if (ret < 0) break; } list_for_each_entry_safe(entry, tmp, &target_list, list) { list_del_init(&entry->list); kfree(entry); } unlock_extent: unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT, (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, &cached_state); free_pages: for (i = 0; i < nr_pages; i++) { if (pages[i]) { unlock_page(pages[i]); put_page(pages[i]); } } kfree(pages); return ret; } static int defrag_one_cluster(struct btrfs_inode *inode, struct file_ra_state *ra, u64 start, u32 len, u32 extent_thresh, u64 newer_than, bool do_compress, unsigned long *sectors_defragged, unsigned long max_sectors, u64 *last_scanned_ret) { const u32 sectorsize = inode->root->fs_info->sectorsize; struct defrag_target_range *entry; struct defrag_target_range *tmp; LIST_HEAD(target_list); int ret; ret = defrag_collect_targets(inode, start, len, extent_thresh, newer_than, do_compress, false, &target_list, NULL); if (ret < 0) goto out; list_for_each_entry(entry, &target_list, list) { u32 range_len = entry->len; /* Reached or beyond the limit */ if (max_sectors && *sectors_defragged >= max_sectors) { ret = 1; break; } if (max_sectors) range_len = min_t(u32, range_len, (max_sectors - *sectors_defragged) * sectorsize); /* * If defrag_one_range() has updated last_scanned_ret, * our range may already be invalid (e.g. hole punched). * Skip if our range is before last_scanned_ret, as there is * no need to defrag the range anymore. */ if (entry->start + range_len <= *last_scanned_ret) continue; if (ra) page_cache_sync_readahead(inode->vfs_inode.i_mapping, ra, NULL, entry->start >> PAGE_SHIFT, ((entry->start + range_len - 1) >> PAGE_SHIFT) - (entry->start >> PAGE_SHIFT) + 1); /* * Here we may not defrag any range if holes are punched before * we locked the pages. * But that's fine, it only affects the @sectors_defragged * accounting. */ ret = defrag_one_range(inode, entry->start, range_len, extent_thresh, newer_than, do_compress, last_scanned_ret); if (ret < 0) break; *sectors_defragged += range_len >> inode->root->fs_info->sectorsize_bits; } out: list_for_each_entry_safe(entry, tmp, &target_list, list) { list_del_init(&entry->list); kfree(entry); } if (ret >= 0) *last_scanned_ret = max(*last_scanned_ret, start + len); return ret; } /* * Entry point to file defragmentation. * * @inode: inode to be defragged * @ra: readahead state (can be NUL) * @range: defrag options including range and flags * @newer_than: minimum transid to defrag * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode * will be defragged. * * Return <0 for error. * Return >=0 for the number of sectors defragged, and range->start will be updated * to indicate the file offset where next defrag should be started at. * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without * defragging all the range). */ int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, struct btrfs_ioctl_defrag_range_args *range, u64 newer_than, unsigned long max_to_defrag) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); unsigned long sectors_defragged = 0; u64 isize = i_size_read(inode); u64 cur; u64 last_byte; bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; bool ra_allocated = false; int compress_type = BTRFS_COMPRESS_ZLIB; int ret = 0; u32 extent_thresh = range->extent_thresh; pgoff_t start_index; if (isize == 0) return 0; if (range->start >= isize) return -EINVAL; if (do_compress) { if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) return -EINVAL; if (range->compress_type) compress_type = range->compress_type; } if (extent_thresh == 0) extent_thresh = SZ_256K; if (range->start + range->len > range->start) { /* Got a specific range */ last_byte = min(isize, range->start + range->len); } else { /* Defrag until file end */ last_byte = isize; } /* Align the range */ cur = round_down(range->start, fs_info->sectorsize); last_byte = round_up(last_byte, fs_info->sectorsize) - 1; /* * If we were not given a ra, allocate a readahead context. As * readahead is just an optimization, defrag will work without it so * we don't error out. */ if (!ra) { ra_allocated = true; ra = kzalloc(sizeof(*ra), GFP_KERNEL); if (ra) file_ra_state_init(ra, inode->i_mapping); } /* * Make writeback start from the beginning of the range, so that the * defrag range can be written sequentially. */ start_index = cur >> PAGE_SHIFT; if (start_index < inode->i_mapping->writeback_index) inode->i_mapping->writeback_index = start_index; while (cur < last_byte) { const unsigned long prev_sectors_defragged = sectors_defragged; u64 last_scanned = cur; u64 cluster_end; if (btrfs_defrag_cancelled(fs_info)) { ret = -EAGAIN; break; } /* We want the cluster end at page boundary when possible */ cluster_end = (((cur >> PAGE_SHIFT) + (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; cluster_end = min(cluster_end, last_byte); btrfs_inode_lock(inode, 0); if (IS_SWAPFILE(inode)) { ret = -ETXTBSY; btrfs_inode_unlock(inode, 0); break; } if (!(inode->i_sb->s_flags & SB_ACTIVE)) { btrfs_inode_unlock(inode, 0); break; } if (do_compress) BTRFS_I(inode)->defrag_compress = compress_type; ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, cluster_end + 1 - cur, extent_thresh, newer_than, do_compress, §ors_defragged, max_to_defrag, &last_scanned); if (sectors_defragged > prev_sectors_defragged) balance_dirty_pages_ratelimited(inode->i_mapping); btrfs_inode_unlock(inode, 0); if (ret < 0) break; cur = max(cluster_end + 1, last_scanned); if (ret > 0) { ret = 0; break; } cond_resched(); } if (ra_allocated) kfree(ra); /* * Update range.start for autodefrag, this will indicate where to start * in next run. */ range->start = cur; if (sectors_defragged) { /* * We have defragged some sectors, for compression case they * need to be written back immediately. */ if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { filemap_flush(inode->i_mapping); if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &BTRFS_I(inode)->runtime_flags)) filemap_flush(inode->i_mapping); } if (range->compress_type == BTRFS_COMPRESS_LZO) btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); else if (range->compress_type == BTRFS_COMPRESS_ZSTD) btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); ret = sectors_defragged; } if (do_compress) { btrfs_inode_lock(inode, 0); BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; btrfs_inode_unlock(inode, 0); } return ret; } /* * Try to start exclusive operation @type or cancel it if it's running. * * Return: * 0 - normal mode, newly claimed op started * >0 - normal mode, something else is running, * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space * ECANCELED - cancel mode, successful cancel * ENOTCONN - cancel mode, operation not running anymore */ static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, enum btrfs_exclusive_operation type, bool cancel) { if (!cancel) { /* Start normal op */ if (!btrfs_exclop_start(fs_info, type)) return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; /* Exclusive operation is now claimed */ return 0; } /* Cancel running op */ if (btrfs_exclop_start_try_lock(fs_info, type)) { /* * This blocks any exclop finish from setting it to NONE, so we * request cancellation. Either it runs and we will wait for it, * or it has finished and no waiting will happen. */ atomic_inc(&fs_info->reloc_cancel_req); btrfs_exclop_start_unlock(fs_info); if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, TASK_INTERRUPTIBLE); return -ECANCELED; } /* Something else is running or none */ return -ENOTCONN; } static noinline int btrfs_ioctl_resize(struct file *file, void __user *arg) { BTRFS_DEV_LOOKUP_ARGS(args); struct inode *inode = file_inode(file); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); u64 new_size; u64 old_size; u64 devid = 1; struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_ioctl_vol_args *vol_args; struct btrfs_trans_handle *trans; struct btrfs_device *device = NULL; char *sizestr; char *retptr; char *devstr = NULL; int ret = 0; int mod = 0; bool cancel; if (!capable(CAP_SYS_ADMIN)) return -EPERM; ret = mnt_want_write_file(file); if (ret) return ret; /* * Read the arguments before checking exclusivity to be able to * distinguish regular resize and cancel */ vol_args = memdup_user(arg, sizeof(*vol_args)); if (IS_ERR(vol_args)) { ret = PTR_ERR(vol_args); goto out_drop; } vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; sizestr = vol_args->name; cancel = (strcmp("cancel", sizestr) == 0); ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); if (ret) goto out_free; /* Exclusive operation is now claimed */ devstr = strchr(sizestr, ':'); if (devstr) { sizestr = devstr + 1; *devstr = '\0'; devstr = vol_args->name; ret = kstrtoull(devstr, 10, &devid); if (ret) goto out_finish; if (!devid) { ret = -EINVAL; goto out_finish; } btrfs_info(fs_info, "resizing devid %llu", devid); } args.devid = devid; device = btrfs_find_device(fs_info->fs_devices, &args); if (!device) { btrfs_info(fs_info, "resizer unable to find device %llu", devid); ret = -ENODEV; goto out_finish; } if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { btrfs_info(fs_info, "resizer unable to apply on readonly device %llu", devid); ret = -EPERM; goto out_finish; } if (!strcmp(sizestr, "max")) new_size = bdev_nr_bytes(device->bdev); else { if (sizestr[0] == '-') { mod = -1; sizestr++; } else if (sizestr[0] == '+') { mod = 1; sizestr++; } new_size = memparse(sizestr, &retptr); if (*retptr != '\0' || new_size == 0) { ret = -EINVAL; goto out_finish; } } if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { ret = -EPERM; goto out_finish; } old_size = btrfs_device_get_total_bytes(device); if (mod < 0) { if (new_size > old_size) { ret = -EINVAL; goto out_finish; } new_size = old_size - new_size; } else if (mod > 0) { if (new_size > ULLONG_MAX - old_size) { ret = -ERANGE; goto out_finish; } new_size = old_size + new_size; } if (new_size < SZ_256M) { ret = -EINVAL; goto out_finish; } if (new_size > bdev_nr_bytes(device->bdev)) { ret = -EFBIG; goto out_finish; } new_size = round_down(new_size, fs_info->sectorsize); if (new_size > old_size) { trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out_finish; } ret = btrfs_grow_device(trans, device, new_size); btrfs_commit_transaction(trans); } else if (new_size < old_size) { ret = btrfs_shrink_device(device, new_size); } /* equal, nothing need to do */ if (ret == 0 && new_size != old_size) btrfs_info_in_rcu(fs_info, "resize device %s (devid %llu) from %llu to %llu", rcu_str_deref(device->name), device->devid, old_size, new_size); out_finish: btrfs_exclop_finish(fs_info); out_free: kfree(vol_args); out_drop: mnt_drop_write_file(file); return ret; } static noinline int __btrfs_ioctl_snap_create(struct file *file, struct user_namespace *mnt_userns, const char *name, unsigned long fd, int subvol, bool readonly, struct btrfs_qgroup_inherit *inherit) { int namelen; int ret = 0; if (!S_ISDIR(file_inode(file)->i_mode)) return -ENOTDIR; ret = mnt_want_write_file(file); if (ret) goto out; namelen = strlen(name); if (strchr(name, '/')) { ret = -EINVAL; goto out_drop_write; } if (name[0] == '.' && (namelen == 1 || (name[1] == '.' && namelen == 2))) { ret = -EEXIST; goto out_drop_write; } if (subvol) { ret = btrfs_mksubvol(&file->f_path, mnt_userns, name, namelen, NULL, readonly, inherit); } else { struct fd src = fdget(fd); struct inode *src_inode; if (!src.file) { ret = -EINVAL; goto out_drop_write; } src_inode = file_inode(src.file); if (src_inode->i_sb != file_inode(file)->i_sb) { btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, "Snapshot src from another FS"); ret = -EXDEV; } else if (!inode_owner_or_capable(mnt_userns, src_inode)) { /* * Subvolume creation is not restricted, but snapshots * are limited to own subvolumes only */ ret = -EPERM; } else { ret = btrfs_mksnapshot(&file->f_path, mnt_userns, name, namelen, BTRFS_I(src_inode)->root, readonly, inherit); } fdput(src); } out_drop_write: mnt_drop_write_file(file); out: return ret; } static noinline int btrfs_ioctl_snap_create(struct file *file, void __user *arg, int subvol) { struct btrfs_ioctl_vol_args *vol_args; int ret; if (!S_ISDIR(file_inode(file)->i_mode)) return -ENOTDIR; vol_args = memdup_user(arg, sizeof(*vol_args)); if (IS_ERR(vol_args)) return PTR_ERR(vol_args); vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), vol_args->name, vol_args->fd, subvol, false, NULL); kfree(vol_args); return ret; } static noinline int btrfs_ioctl_snap_create_v2(struct file *file, void __user *arg, int subvol) { struct btrfs_ioctl_vol_args_v2 *vol_args; int ret; bool readonly = false; struct btrfs_qgroup_inherit *inherit = NULL; if (!S_ISDIR(file_inode(file)->i_mode)) return -ENOTDIR; vol_args = memdup_user(arg, sizeof(*vol_args)); if (IS_ERR(vol_args)) return PTR_ERR(vol_args); vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { ret = -EOPNOTSUPP; goto free_args; } if (vol_args->flags & BTRFS_SUBVOL_RDONLY) readonly = true; if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { u64 nums; if (vol_args->size < sizeof(*inherit) || vol_args->size > PAGE_SIZE) { ret = -EINVAL; goto free_args; } inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); if (IS_ERR(inherit)) { ret = PTR_ERR(inherit); goto free_args; } if (inherit->num_qgroups > PAGE_SIZE || inherit->num_ref_copies > PAGE_SIZE || inherit->num_excl_copies > PAGE_SIZE) { ret = -EINVAL; goto free_inherit; } nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 2 * inherit->num_excl_copies; if (vol_args->size != struct_size(inherit, qgroups, nums)) { ret = -EINVAL; goto free_inherit; } } ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), vol_args->name, vol_args->fd, subvol, readonly, inherit); if (ret) goto free_inherit; free_inherit: kfree(inherit); free_args: kfree(vol_args); return ret; } static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, void __user *arg) { struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_root *root = BTRFS_I(inode)->root; int ret = 0; u64 flags = 0; if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) return -EINVAL; down_read(&fs_info->subvol_sem); if (btrfs_root_readonly(root)) flags |= BTRFS_SUBVOL_RDONLY; up_read(&fs_info->subvol_sem); if (copy_to_user(arg, &flags, sizeof(flags))) ret = -EFAULT; return ret; } static noinline int btrfs_ioctl_subvol_setflags(struct file *file, void __user *arg) { struct inode *inode = file_inode(file); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_trans_handle *trans; u64 root_flags; u64 flags; int ret = 0; if (!inode_owner_or_capable(file_mnt_user_ns(file), inode)) return -EPERM; ret = mnt_want_write_file(file); if (ret) goto out; if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { ret = -EINVAL; goto out_drop_write; } if (copy_from_user(&flags, arg, sizeof(flags))) { ret = -EFAULT; goto out_drop_write; } if (flags & ~BTRFS_SUBVOL_RDONLY) { ret = -EOPNOTSUPP; goto out_drop_write; } down_write(&fs_info->subvol_sem); /* nothing to do */ if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) goto out_drop_sem; root_flags = btrfs_root_flags(&root->root_item); if (flags & BTRFS_SUBVOL_RDONLY) { btrfs_set_root_flags(&root->root_item, root_flags | BTRFS_ROOT_SUBVOL_RDONLY); } else { /* * Block RO -> RW transition if this subvolume is involved in * send */ spin_lock(&root->root_item_lock); if (root->send_in_progress == 0) { btrfs_set_root_flags(&root->root_item, root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); spin_unlock(&root->root_item_lock); } else { spin_unlock(&root->root_item_lock); btrfs_warn(fs_info, "Attempt to set subvolume %llu read-write during send", root->root_key.objectid); ret = -EPERM; goto out_drop_sem; } } trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out_reset; } ret = btrfs_update_root(trans, fs_info->tree_root, &root->root_key, &root->root_item); if (ret < 0) { btrfs_end_transaction(trans); goto out_reset; } ret = btrfs_commit_transaction(trans); out_reset: if (ret) btrfs_set_root_flags(&root->root_item, root_flags); out_drop_sem: up_write(&fs_info->subvol_sem); out_drop_write: mnt_drop_write_file(file); out: return ret; } static noinline int key_in_sk(struct btrfs_key *key, struct btrfs_ioctl_search_key *sk) { struct btrfs_key test; int ret; test.objectid = sk->min_objectid; test.type = sk->min_type; test.offset = sk->min_offset; ret = btrfs_comp_cpu_keys(key, &test); if (ret < 0) return 0; test.objectid = sk->max_objectid; test.type = sk->max_type; test.offset = sk->max_offset; ret = btrfs_comp_cpu_keys(key, &test); if (ret > 0) return 0; return 1; } static noinline int copy_to_sk(struct btrfs_path *path, struct btrfs_key *key, struct btrfs_ioctl_search_key *sk, size_t *buf_size, char __user *ubuf, unsigned long *sk_offset, int *num_found) { u64 found_transid; struct extent_buffer *leaf; struct btrfs_ioctl_search_header sh; struct btrfs_key test; unsigned long item_off; unsigned long item_len; int nritems; int i; int slot; int ret = 0; leaf = path->nodes[0]; slot = path->slots[0]; nritems = btrfs_header_nritems(leaf); if (btrfs_header_generation(leaf) > sk->max_transid) { i = nritems; goto advance_key; } found_transid = btrfs_header_generation(leaf); for (i = slot; i < nritems; i++) { item_off = btrfs_item_ptr_offset(leaf, i); item_len = btrfs_item_size(leaf, i); btrfs_item_key_to_cpu(leaf, key, i); if (!key_in_sk(key, sk)) continue; if (sizeof(sh) + item_len > *buf_size) { if (*num_found) { ret = 1; goto out; } /* * return one empty item back for v1, which does not * handle -EOVERFLOW */ *buf_size = sizeof(sh) + item_len; item_len = 0; ret = -EOVERFLOW; } if (sizeof(sh) + item_len + *sk_offset > *buf_size) { ret = 1; goto out; } sh.objectid = key->objectid; sh.offset = key->offset; sh.type = key->type; sh.len = item_len; sh.transid = found_transid; /* * Copy search result header. If we fault then loop again so we * can fault in the pages and -EFAULT there if there's a * problem. Otherwise we'll fault and then copy the buffer in * properly this next time through */ if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { ret = 0; goto out; } *sk_offset += sizeof(sh); if (item_len) { char __user *up = ubuf + *sk_offset; /* * Copy the item, same behavior as above, but reset the * * sk_offset so we copy the full thing again. */ if (read_extent_buffer_to_user_nofault(leaf, up, item_off, item_len)) { ret = 0; *sk_offset -= sizeof(sh); goto out; } *sk_offset += item_len; } (*num_found)++; if (ret) /* -EOVERFLOW from above */ goto out; if (*num_found >= sk->nr_items) { ret = 1; goto out; } } advance_key: ret = 0; test.objectid = sk->max_objectid; test.type = sk->max_type; test.offset = sk->max_offset; if (btrfs_comp_cpu_keys(key, &test) >= 0) ret = 1; else if (key->offset < (u64)-1) key->offset++; else if (key->type < (u8)-1) { key->offset = 0; key->type++; } else if (key->objectid < (u64)-1) { key->offset = 0; key->type = 0; key->objectid++; } else ret = 1; out: /* * 0: all items from this leaf copied, continue with next * 1: * more items can be copied, but unused buffer is too small * * all items were found * Either way, it will stops the loop which iterates to the next * leaf * -EOVERFLOW: item was to large for buffer * -EFAULT: could not copy extent buffer back to userspace */ return ret; } static noinline int search_ioctl(struct inode *inode, struct btrfs_ioctl_search_key *sk, size_t *buf_size, char __user *ubuf) { struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); struct btrfs_root *root; struct btrfs_key key; struct btrfs_path *path; int ret; int num_found = 0; unsigned long sk_offset = 0; if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { *buf_size = sizeof(struct btrfs_ioctl_search_header); return -EOVERFLOW; } path = btrfs_alloc_path(); if (!path) return -ENOMEM; if (sk->tree_id == 0) { /* search the root of the inode that was passed */ root = btrfs_grab_root(BTRFS_I(inode)->root); } else { root = btrfs_get_fs_root(info, sk->tree_id, true); if (IS_ERR(root)) { btrfs_free_path(path); return PTR_ERR(root); } } key.objectid = sk->min_objectid; key.type = sk->min_type; key.offset = sk->min_offset; while (1) { ret = -EFAULT; /* * Ensure that the whole user buffer is faulted in at sub-page * granularity, otherwise the loop may live-lock. */ if (fault_in_subpage_writeable(ubuf + sk_offset, *buf_size - sk_offset)) break; ret = btrfs_search_forward(root, &key, path, sk->min_transid); if (ret != 0) { if (ret > 0) ret = 0; goto err; } ret = copy_to_sk(path, &key, sk, buf_size, ubuf, &sk_offset, &num_found); btrfs_release_path(path); if (ret) break; } if (ret > 0) ret = 0; err: sk->nr_items = num_found; btrfs_put_root(root); btrfs_free_path(path); return ret; } static noinline int btrfs_ioctl_tree_search(struct inode *inode, void __user *argp) { struct btrfs_ioctl_search_args __user *uargs = argp; struct btrfs_ioctl_search_key sk; int ret; size_t buf_size; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(&sk, &uargs->key, sizeof(sk))) return -EFAULT; buf_size = sizeof(uargs->buf); ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); /* * In the origin implementation an overflow is handled by returning a * search header with a len of zero, so reset ret. */ if (ret == -EOVERFLOW) ret = 0; if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) ret = -EFAULT; return ret; } static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, void __user *argp) { struct btrfs_ioctl_search_args_v2 __user *uarg = argp; struct btrfs_ioctl_search_args_v2 args; int ret; size_t buf_size; const size_t buf_limit = SZ_16M; if (!capable(CAP_SYS_ADMIN)) return -EPERM; /* copy search header and buffer size */ if (copy_from_user(&args, uarg, sizeof(args))) return -EFAULT; buf_size = args.buf_size; /* limit result size to 16MB */ if (buf_size > buf_limit) buf_size = buf_limit; ret = search_ioctl(inode, &args.key, &buf_size, (char __user *)(&uarg->buf[0])); if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) ret = -EFAULT; else if (ret == -EOVERFLOW && copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) ret = -EFAULT; return ret; } /* * Search INODE_REFs to identify path name of 'dirid' directory * in a 'tree_id' tree. and sets path name to 'name'. */ static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, u64 tree_id, u64 dirid, char *name) { struct btrfs_root *root; struct btrfs_key key; char *ptr; int ret = -1; int slot; int len; int total_len = 0; struct btrfs_inode_ref *iref; struct extent_buffer *l; struct btrfs_path *path; if (dirid == BTRFS_FIRST_FREE_OBJECTID) { name[0]='\0'; return 0; } path = btrfs_alloc_path(); if (!path) return -ENOMEM; ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; root = btrfs_get_fs_root(info, tree_id, true); if (IS_ERR(root)) { ret = PTR_ERR(root); root = NULL; goto out; } key.objectid = dirid; key.type = BTRFS_INODE_REF_KEY; key.offset = (u64)-1; while (1) { ret = btrfs_search_backwards(root, &key, path); if (ret < 0) goto out; else if (ret > 0) { ret = -ENOENT; goto out; } l = path->nodes[0]; slot = path->slots[0]; iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); len = btrfs_inode_ref_name_len(l, iref); ptr -= len + 1; total_len += len + 1; if (ptr < name) { ret = -ENAMETOOLONG; goto out; } *(ptr + len) = '/'; read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); if (key.offset == BTRFS_FIRST_FREE_OBJECTID) break; btrfs_release_path(path); key.objectid = key.offset; key.offset = (u64)-1; dirid = key.objectid; } memmove(name, ptr, total_len); name[total_len] = '\0'; ret = 0; out: btrfs_put_root(root); btrfs_free_path(path); return ret; } static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns, struct inode *inode, struct btrfs_ioctl_ino_lookup_user_args *args) { struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; struct super_block *sb = inode->i_sb; struct btrfs_key upper_limit = BTRFS_I(inode)->location; u64 treeid = BTRFS_I(inode)->root->root_key.objectid; u64 dirid = args->dirid; unsigned long item_off; unsigned long item_len; struct btrfs_inode_ref *iref; struct btrfs_root_ref *rref; struct btrfs_root *root = NULL; struct btrfs_path *path; struct btrfs_key key, key2; struct extent_buffer *leaf; struct inode *temp_inode; char *ptr; int slot; int len; int total_len = 0; int ret; path = btrfs_alloc_path(); if (!path) return -ENOMEM; /* * If the bottom subvolume does not exist directly under upper_limit, * construct the path in from the bottom up. */ if (dirid != upper_limit.objectid) { ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; root = btrfs_get_fs_root(fs_info, treeid, true); if (IS_ERR(root)) { ret = PTR_ERR(root); goto out; } key.objectid = dirid; key.type = BTRFS_INODE_REF_KEY; key.offset = (u64)-1; while (1) { ret = btrfs_search_backwards(root, &key, path); if (ret < 0) goto out_put; else if (ret > 0) { ret = -ENOENT; goto out_put; } leaf = path->nodes[0]; slot = path->slots[0]; iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); len = btrfs_inode_ref_name_len(leaf, iref); ptr -= len + 1; total_len += len + 1; if (ptr < args->path) { ret = -ENAMETOOLONG; goto out_put; } *(ptr + len) = '/'; read_extent_buffer(leaf, ptr, (unsigned long)(iref + 1), len); /* Check the read+exec permission of this directory */ ret = btrfs_previous_item(root, path, dirid, BTRFS_INODE_ITEM_KEY); if (ret < 0) { goto out_put; } else if (ret > 0) { ret = -ENOENT; goto out_put; } leaf = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(leaf, &key2, slot); if (key2.objectid != dirid) { ret = -ENOENT; goto out_put; } /* * We don't need the path anymore, so release it and * avoid deadlocks and lockdep warnings in case * btrfs_iget() needs to lookup the inode from its root * btree and lock the same leaf. */ btrfs_release_path(path); temp_inode = btrfs_iget(sb, key2.objectid, root); if (IS_ERR(temp_inode)) { ret = PTR_ERR(temp_inode); goto out_put; } ret = inode_permission(mnt_userns, temp_inode, MAY_READ | MAY_EXEC); iput(temp_inode); if (ret) { ret = -EACCES; goto out_put; } if (key.offset == upper_limit.objectid) break; if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { ret = -EACCES; goto out_put; } key.objectid = key.offset; key.offset = (u64)-1; dirid = key.objectid; } memmove(args->path, ptr, total_len); args->path[total_len] = '\0'; btrfs_put_root(root); root = NULL; btrfs_release_path(path); } /* Get the bottom subvolume's name from ROOT_REF */ key.objectid = treeid; key.type = BTRFS_ROOT_REF_KEY; key.offset = args->treeid; ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); if (ret < 0) { goto out; } else if (ret > 0) { ret = -ENOENT; goto out; } leaf = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(leaf, &key, slot); item_off = btrfs_item_ptr_offset(leaf, slot); item_len = btrfs_item_size(leaf, slot); /* Check if dirid in ROOT_REF corresponds to passed dirid */ rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { ret = -EINVAL; goto out; } /* Copy subvolume's name */ item_off += sizeof(struct btrfs_root_ref); item_len -= sizeof(struct btrfs_root_ref); read_extent_buffer(leaf, args->name, item_off, item_len); args->name[item_len] = 0; out_put: btrfs_put_root(root); out: btrfs_free_path(path); return ret; } static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, void __user *argp) { struct btrfs_ioctl_ino_lookup_args *args; int ret = 0; args = memdup_user(argp, sizeof(*args)); if (IS_ERR(args)) return PTR_ERR(args); /* * Unprivileged query to obtain the containing subvolume root id. The * path is reset so it's consistent with btrfs_search_path_in_tree. */ if (args->treeid == 0) args->treeid = root->root_key.objectid; if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { args->name[0] = 0; goto out; } if (!capable(CAP_SYS_ADMIN)) { ret = -EPERM; goto out; } ret = btrfs_search_path_in_tree(root->fs_info, args->treeid, args->objectid, args->name); out: if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) ret = -EFAULT; kfree(args); return ret; } /* * Version of ino_lookup ioctl (unprivileged) * * The main differences from ino_lookup ioctl are: * * 1. Read + Exec permission will be checked using inode_permission() during * path construction. -EACCES will be returned in case of failure. * 2. Path construction will be stopped at the inode number which corresponds * to the fd with which this ioctl is called. If constructed path does not * exist under fd's inode, -EACCES will be returned. * 3. The name of bottom subvolume is also searched and filled. */ static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) { struct btrfs_ioctl_ino_lookup_user_args *args; struct inode *inode; int ret; args = memdup_user(argp, sizeof(*args)); if (IS_ERR(args)) return PTR_ERR(args); inode = file_inode(file); if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { /* * The subvolume does not exist under fd with which this is * called */ kfree(args); return -EACCES; } ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args); if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) ret = -EFAULT; kfree(args); return ret; } /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) { struct btrfs_ioctl_get_subvol_info_args *subvol_info; struct btrfs_fs_info *fs_info; struct btrfs_root *root; struct btrfs_path *path; struct btrfs_key key; struct btrfs_root_item *root_item; struct btrfs_root_ref *rref; struct extent_buffer *leaf; unsigned long item_off; unsigned long item_len; int slot; int ret = 0; path = btrfs_alloc_path(); if (!path) return -ENOMEM; subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); if (!subvol_info) { btrfs_free_path(path); return -ENOMEM; } fs_info = BTRFS_I(inode)->root->fs_info; /* Get root_item of inode's subvolume */ key.objectid = BTRFS_I(inode)->root->root_key.objectid; root = btrfs_get_fs_root(fs_info, key.objectid, true); if (IS_ERR(root)) { ret = PTR_ERR(root); goto out_free; } root_item = &root->root_item; subvol_info->treeid = key.objectid; subvol_info->generation = btrfs_root_generation(root_item); subvol_info->flags = btrfs_root_flags(root_item); memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); memcpy(subvol_info->parent_uuid, root_item->parent_uuid, BTRFS_UUID_SIZE); memcpy(subvol_info->received_uuid, root_item->received_uuid, BTRFS_UUID_SIZE); subvol_info->ctransid = btrfs_root_ctransid(root_item); subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); subvol_info->otransid = btrfs_root_otransid(root_item); subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); subvol_info->stransid = btrfs_root_stransid(root_item); subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); subvol_info->rtransid = btrfs_root_rtransid(root_item); subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); if (key.objectid != BTRFS_FS_TREE_OBJECTID) { /* Search root tree for ROOT_BACKREF of this subvolume */ key.type = BTRFS_ROOT_BACKREF_KEY; key.offset = 0; ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); if (ret < 0) { goto out; } else if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { ret = btrfs_next_leaf(fs_info->tree_root, path); if (ret < 0) { goto out; } else if (ret > 0) { ret = -EUCLEAN; goto out; } } leaf = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(leaf, &key, slot); if (key.objectid == subvol_info->treeid && key.type == BTRFS_ROOT_BACKREF_KEY) { subvol_info->parent_id = key.offset; rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); item_off = btrfs_item_ptr_offset(leaf, slot) + sizeof(struct btrfs_root_ref); item_len = btrfs_item_size(leaf, slot) - sizeof(struct btrfs_root_ref); read_extent_buffer(leaf, subvol_info->name, item_off, item_len); } else { ret = -ENOENT; goto out; } } btrfs_free_path(path); path = NULL; if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) ret = -EFAULT; out: btrfs_put_root(root); out_free: btrfs_free_path(path); kfree(subvol_info); return ret; } /* * Return ROOT_REF information of the subvolume containing this inode * except the subvolume name. */ static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, void __user *argp) { struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; struct btrfs_root_ref *rref; struct btrfs_path *path; struct btrfs_key key; struct extent_buffer *leaf; u64 objectid; int slot; int ret; u8 found; path = btrfs_alloc_path(); if (!path) return -ENOMEM; rootrefs = memdup_user(argp, sizeof(*rootrefs)); if (IS_ERR(rootrefs)) { btrfs_free_path(path); return PTR_ERR(rootrefs); } objectid = root->root_key.objectid; key.objectid = objectid; key.type = BTRFS_ROOT_REF_KEY; key.offset = rootrefs->min_treeid; found = 0; root = root->fs_info->tree_root; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) { goto out; } else if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { ret = btrfs_next_leaf(root, path); if (ret < 0) { goto out; } else if (ret > 0) { ret = -EUCLEAN; goto out; } } while (1) { leaf = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(leaf, &key, slot); if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { ret = 0; goto out; } if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { ret = -EOVERFLOW; goto out; } rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); rootrefs->rootref[found].treeid = key.offset; rootrefs->rootref[found].dirid = btrfs_root_ref_dirid(leaf, rref); found++; ret = btrfs_next_item(root, path); if (ret < 0) { goto out; } else if (ret > 0) { ret = -EUCLEAN; goto out; } } out: btrfs_free_path(path); if (!ret || ret == -EOVERFLOW) { rootrefs->num_items = found; /* update min_treeid for next search */ if (found) rootrefs->min_treeid = rootrefs->rootref[found - 1].treeid + 1; if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) ret = -EFAULT; } kfree(rootrefs); return ret; } static noinline int btrfs_ioctl_snap_destroy(struct file *file, void __user *arg, bool destroy_v2) { struct dentry *parent = file->f_path.dentry; struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); struct dentry *dentry; struct inode *dir = d_inode(parent); struct inode *inode; struct btrfs_root *root = BTRFS_I(dir)->root; struct btrfs_root *dest = NULL; struct btrfs_ioctl_vol_args *vol_args = NULL; struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; struct user_namespace *mnt_userns = file_mnt_user_ns(file); char *subvol_name, *subvol_name_ptr = NULL; int subvol_namelen; int err = 0; bool destroy_parent = false; /* We don't support snapshots with extent tree v2 yet. */ if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { btrfs_err(fs_info, "extent tree v2 doesn't support snapshot deletion yet"); return -EOPNOTSUPP; } if (destroy_v2) { vol_args2 = memdup_user(arg, sizeof(*vol_args2)); if (IS_ERR(vol_args2)) return PTR_ERR(vol_args2); if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { err = -EOPNOTSUPP; goto out; } /* * If SPEC_BY_ID is not set, we are looking for the subvolume by * name, same as v1 currently does. */ if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; subvol_name = vol_args2->name; err = mnt_want_write_file(file); if (err) goto out; } else { struct inode *old_dir; if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { err = -EINVAL; goto out; } err = mnt_want_write_file(file); if (err) goto out; dentry = btrfs_get_dentry(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID, vol_args2->subvolid, 0, 0); if (IS_ERR(dentry)) { err = PTR_ERR(dentry); goto out_drop_write; } /* * Change the default parent since the subvolume being * deleted can be outside of the current mount point. */ parent = btrfs_get_parent(dentry); /* * At this point dentry->d_name can point to '/' if the * subvolume we want to destroy is outsite of the * current mount point, so we need to release the * current dentry and execute the lookup to return a new * one with ->d_name pointing to the * /subvol_name. */ dput(dentry); if (IS_ERR(parent)) { err = PTR_ERR(parent); goto out_drop_write; } old_dir = dir; dir = d_inode(parent); /* * If v2 was used with SPEC_BY_ID, a new parent was * allocated since the subvolume can be outside of the * current mount point. Later on we need to release this * new parent dentry. */ destroy_parent = true; /* * On idmapped mounts, deletion via subvolid is * restricted to subvolumes that are immediate * ancestors of the inode referenced by the file * descriptor in the ioctl. Otherwise the idmapping * could potentially be abused to delete subvolumes * anywhere in the filesystem the user wouldn't be able * to delete without an idmapped mount. */ if (old_dir != dir && mnt_userns != &init_user_ns) { err = -EOPNOTSUPP; goto free_parent; } subvol_name_ptr = btrfs_get_subvol_name_from_objectid( fs_info, vol_args2->subvolid); if (IS_ERR(subvol_name_ptr)) { err = PTR_ERR(subvol_name_ptr); goto free_parent; } /* subvol_name_ptr is already nul terminated */ subvol_name = (char *)kbasename(subvol_name_ptr); } } else { vol_args = memdup_user(arg, sizeof(*vol_args)); if (IS_ERR(vol_args)) return PTR_ERR(vol_args); vol_args->name[BTRFS_PATH_NAME_MAX] = 0; subvol_name = vol_args->name; err = mnt_want_write_file(file); if (err) goto out; } subvol_namelen = strlen(subvol_name); if (strchr(subvol_name, '/') || strncmp(subvol_name, "..", subvol_namelen) == 0) { err = -EINVAL; goto free_subvol_name; } if (!S_ISDIR(dir->i_mode)) { err = -ENOTDIR; goto free_subvol_name; } err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); if (err == -EINTR) goto free_subvol_name; dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen); if (IS_ERR(dentry)) { err = PTR_ERR(dentry); goto out_unlock_dir; } if (d_really_is_negative(dentry)) { err = -ENOENT; goto out_dput; } inode = d_inode(dentry); dest = BTRFS_I(inode)->root; if (!capable(CAP_SYS_ADMIN)) { /* * Regular user. Only allow this with a special mount * option, when the user has write+exec access to the * subvol root, and when rmdir(2) would have been * allowed. * * Note that this is _not_ check that the subvol is * empty or doesn't contain data that we wouldn't * otherwise be able to delete. * * Users who want to delete empty subvols should try * rmdir(2). */ err = -EPERM; if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) goto out_dput; /* * Do not allow deletion if the parent dir is the same * as the dir to be deleted. That means the ioctl * must be called on the dentry referencing the root * of the subvol, not a random directory contained * within it. */ err = -EINVAL; if (root == dest) goto out_dput; err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC); if (err) goto out_dput; } /* check if subvolume may be deleted by a user */ err = btrfs_may_delete(mnt_userns, dir, dentry, 1); if (err) goto out_dput; if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { err = -EINVAL; goto out_dput; } btrfs_inode_lock(inode, 0); err = btrfs_delete_subvolume(dir, dentry); btrfs_inode_unlock(inode, 0); if (!err) d_delete_notify(dir, dentry); out_dput: dput(dentry); out_unlock_dir: btrfs_inode_unlock(dir, 0); free_subvol_name: kfree(subvol_name_ptr); free_parent: if (destroy_parent) dput(parent); out_drop_write: mnt_drop_write_file(file); out: kfree(vol_args2); kfree(vol_args); return err; } static int btrfs_ioctl_defrag(struct file *file, void __user *argp) { struct inode *inode = file_inode(file); struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_ioctl_defrag_range_args range = {0}; int ret; ret = mnt_want_write_file(file); if (ret) return ret; if (btrfs_root_readonly(root)) { ret = -EROFS; goto out; } switch (inode->i_mode & S_IFMT) { case S_IFDIR: if (!capable(CAP_SYS_ADMIN)) { ret = -EPERM; goto out; } ret = btrfs_defrag_root(root); break; case S_IFREG: /* * Note that this does not check the file descriptor for write * access. This prevents defragmenting executables that are * running and allows defrag on files open in read-only mode. */ if (!capable(CAP_SYS_ADMIN) && inode_permission(&init_user_ns, inode, MAY_WRITE)) { ret = -EPERM; goto out; } if (argp) { if (copy_from_user(&range, argp, sizeof(range))) { ret = -EFAULT; goto out; } /* compression requires us to start the IO */ if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { range.flags |= BTRFS_DEFRAG_RANGE_START_IO; range.extent_thresh = (u32)-1; } } else { /* the rest are all set to zero by kzalloc */ range.len = (u64)-1; } ret = btrfs_defrag_file(file_inode(file), &file->f_ra, &range, BTRFS_OLDEST_GENERATION, 0); if (ret > 0) ret = 0; break; default: ret = -EINVAL; } out: mnt_drop_write_file(file); return ret; } static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) { struct btrfs_ioctl_vol_args *vol_args; bool restore_op = false; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); return -EINVAL; } if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; /* * We can do the device add because we have a paused balanced, * change the exclusive op type and remember we should bring * back the paused balance */ fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; btrfs_exclop_start_unlock(fs_info); restore_op = true; } vol_args = memdup_user(arg, sizeof(*vol_args)); if (IS_ERR(vol_args)) { ret = PTR_ERR(vol_args); goto out; } vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; ret = btrfs_init_new_device(fs_info, vol_args->name); if (!ret) btrfs_info(fs_info, "disk added %s", vol_args->name); kfree(vol_args); out: if (restore_op) btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); else btrfs_exclop_finish(fs_info); return ret; } static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) { BTRFS_DEV_LOOKUP_ARGS(args); struct inode *inode = file_inode(file); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_ioctl_vol_args_v2 *vol_args; struct block_device *bdev = NULL; fmode_t mode; int ret; bool cancel = false; if (!capable(CAP_SYS_ADMIN)) return -EPERM; vol_args = memdup_user(arg, sizeof(*vol_args)); if (IS_ERR(vol_args)) return PTR_ERR(vol_args); if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { ret = -EOPNOTSUPP; goto out; } vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { args.devid = vol_args->devid; } else if (!strcmp("cancel", vol_args->name)) { cancel = true; } else { ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); if (ret) goto out; } ret = mnt_want_write_file(file); if (ret) goto out; ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, cancel); if (ret) goto err_drop; /* Exclusive operation is now claimed */ ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); btrfs_exclop_finish(fs_info); if (!ret) { if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) btrfs_info(fs_info, "device deleted: id %llu", vol_args->devid); else btrfs_info(fs_info, "device deleted: %s", vol_args->name); } err_drop: mnt_drop_write_file(file); if (bdev) blkdev_put(bdev, mode); out: btrfs_put_dev_args_from_path(&args); kfree(vol_args); return ret; } static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) { BTRFS_DEV_LOOKUP_ARGS(args); struct inode *inode = file_inode(file); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_ioctl_vol_args *vol_args; struct block_device *bdev = NULL; fmode_t mode; int ret; bool cancel = false; if (!capable(CAP_SYS_ADMIN)) return -EPERM; vol_args = memdup_user(arg, sizeof(*vol_args)); if (IS_ERR(vol_args)) return PTR_ERR(vol_args); vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; if (!strcmp("cancel", vol_args->name)) { cancel = true; } else { ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); if (ret) goto out; } ret = mnt_want_write_file(file); if (ret) goto out; ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, cancel); if (ret == 0) { ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); if (!ret) btrfs_info(fs_info, "disk deleted %s", vol_args->name); btrfs_exclop_finish(fs_info); } mnt_drop_write_file(file); if (bdev) blkdev_put(bdev, mode); out: btrfs_put_dev_args_from_path(&args); kfree(vol_args); return ret; } static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, void __user *arg) { struct btrfs_ioctl_fs_info_args *fi_args; struct btrfs_device *device; struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; u64 flags_in; int ret = 0; fi_args = memdup_user(arg, sizeof(*fi_args)); if (IS_ERR(fi_args)) return PTR_ERR(fi_args); flags_in = fi_args->flags; memset(fi_args, 0, sizeof(*fi_args)); rcu_read_lock(); fi_args->num_devices = fs_devices->num_devices; list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { if (device->devid > fi_args->max_id) fi_args->max_id = device->devid; } rcu_read_unlock(); memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); fi_args->nodesize = fs_info->nodesize; fi_args->sectorsize = fs_info->sectorsize; fi_args->clone_alignment = fs_info->sectorsize; if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; } if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { fi_args->generation = fs_info->generation; fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; } if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, sizeof(fi_args->metadata_uuid)); fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; } if (copy_to_user(arg, fi_args, sizeof(*fi_args))) ret = -EFAULT; kfree(fi_args); return ret; } static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, void __user *arg) { BTRFS_DEV_LOOKUP_ARGS(args); struct btrfs_ioctl_dev_info_args *di_args; struct btrfs_device *dev; int ret = 0; di_args = memdup_user(arg, sizeof(*di_args)); if (IS_ERR(di_args)) return PTR_ERR(di_args); args.devid = di_args->devid; if (!btrfs_is_empty_uuid(di_args->uuid)) args.uuid = di_args->uuid; rcu_read_lock(); dev = btrfs_find_device(fs_info->fs_devices, &args); if (!dev) { ret = -ENODEV; goto out; } di_args->devid = dev->devid; di_args->bytes_used = btrfs_device_get_bytes_used(dev); di_args->total_bytes = btrfs_device_get_total_bytes(dev); memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); if (dev->name) strscpy(di_args->path, rcu_str_deref(dev->name), sizeof(di_args->path)); else di_args->path[0] = '\0'; out: rcu_read_unlock(); if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) ret = -EFAULT; kfree(di_args); return ret; } static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) { struct inode *inode = file_inode(file); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_root *new_root; struct btrfs_dir_item *di; struct btrfs_trans_handle *trans; struct btrfs_path *path = NULL; struct btrfs_disk_key disk_key; u64 objectid = 0; u64 dir_id; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; ret = mnt_want_write_file(file); if (ret) return ret; if (copy_from_user(&objectid, argp, sizeof(objectid))) { ret = -EFAULT; goto out; } if (!objectid) objectid = BTRFS_FS_TREE_OBJECTID; new_root = btrfs_get_fs_root(fs_info, objectid, true); if (IS_ERR(new_root)) { ret = PTR_ERR(new_root); goto out; } if (!is_fstree(new_root->root_key.objectid)) { ret = -ENOENT; goto out_free; } path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out_free; } trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out_free; } dir_id = btrfs_super_root_dir(fs_info->super_copy); di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, dir_id, "default", 7, 1); if (IS_ERR_OR_NULL(di)) { btrfs_release_path(path); btrfs_end_transaction(trans); btrfs_err(fs_info, "Umm, you don't have the default diritem, this isn't going to work"); ret = -ENOENT; goto out_free; } btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); btrfs_mark_buffer_dirty(path->nodes[0]); btrfs_release_path(path); btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); btrfs_end_transaction(trans); out_free: btrfs_put_root(new_root); btrfs_free_path(path); out: mnt_drop_write_file(file); return ret; } static void get_block_group_info(struct list_head *groups_list, struct btrfs_ioctl_space_info *space) { struct btrfs_block_group *block_group; space->total_bytes = 0; space->used_bytes = 0; space->flags = 0; list_for_each_entry(block_group, groups_list, list) { space->flags = block_group->flags; space->total_bytes += block_group->length; space->used_bytes += block_group->used; } } static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, void __user *arg) { struct btrfs_ioctl_space_args space_args; struct btrfs_ioctl_space_info space; struct btrfs_ioctl_space_info *dest; struct btrfs_ioctl_space_info *dest_orig; struct btrfs_ioctl_space_info __user *user_dest; struct btrfs_space_info *info; static const u64 types[] = { BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_SYSTEM, BTRFS_BLOCK_GROUP_METADATA, BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA }; int num_types = 4; int alloc_size; int ret = 0; u64 slot_count = 0; int i, c; if (copy_from_user(&space_args, (struct btrfs_ioctl_space_args __user *)arg, sizeof(space_args))) return -EFAULT; for (i = 0; i < num_types; i++) { struct btrfs_space_info *tmp; info = NULL; list_for_each_entry(tmp, &fs_info->space_info, list) { if (tmp->flags == types[i]) { info = tmp; break; } } if (!info) continue; down_read(&info->groups_sem); for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { if (!list_empty(&info->block_groups[c])) slot_count++; } up_read(&info->groups_sem); } /* * Global block reserve, exported as a space_info */ slot_count++; /* space_slots == 0 means they are asking for a count */ if (space_args.space_slots == 0) { space_args.total_spaces = slot_count; goto out; } slot_count = min_t(u64, space_args.space_slots, slot_count); alloc_size = sizeof(*dest) * slot_count; /* we generally have at most 6 or so space infos, one for each raid * level. So, a whole page should be more than enough for everyone */ if (alloc_size > PAGE_SIZE) return -ENOMEM; space_args.total_spaces = 0; dest = kmalloc(alloc_size, GFP_KERNEL); if (!dest) return -ENOMEM; dest_orig = dest; /* now we have a buffer to copy into */ for (i = 0; i < num_types; i++) { struct btrfs_space_info *tmp; if (!slot_count) break; info = NULL; list_for_each_entry(tmp, &fs_info->space_info, list) { if (tmp->flags == types[i]) { info = tmp; break; } } if (!info) continue; down_read(&info->groups_sem); for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { if (!list_empty(&info->block_groups[c])) { get_block_group_info(&info->block_groups[c], &space); memcpy(dest, &space, sizeof(space)); dest++; space_args.total_spaces++; slot_count--; } if (!slot_count) break; } up_read(&info->groups_sem); } /* * Add global block reserve */ if (slot_count) { struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; spin_lock(&block_rsv->lock); space.total_bytes = block_rsv->size; space.used_bytes = block_rsv->size - block_rsv->reserved; spin_unlock(&block_rsv->lock); space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; memcpy(dest, &space, sizeof(space)); space_args.total_spaces++; } user_dest = (struct btrfs_ioctl_space_info __user *) (arg + sizeof(struct btrfs_ioctl_space_args)); if (copy_to_user(user_dest, dest_orig, alloc_size)) ret = -EFAULT; kfree(dest_orig); out: if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) ret = -EFAULT; return ret; } static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, void __user *argp) { struct btrfs_trans_handle *trans; u64 transid; trans = btrfs_attach_transaction_barrier(root); if (IS_ERR(trans)) { if (PTR_ERR(trans) != -ENOENT) return PTR_ERR(trans); /* No running transaction, don't bother */ transid = root->fs_info->last_trans_committed; goto out; } transid = trans->transid; btrfs_commit_transaction_async(trans); out: if (argp) if (copy_to_user(argp, &transid, sizeof(transid))) return -EFAULT; return 0; } static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, void __user *argp) { u64 transid; if (argp) { if (copy_from_user(&transid, argp, sizeof(transid))) return -EFAULT; } else { transid = 0; /* current trans */ } return btrfs_wait_for_commit(fs_info, transid); } static long btrfs_ioctl_scrub(struct file *file, void __user *arg) { struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); struct btrfs_ioctl_scrub_args *sa; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); return -EINVAL; } sa = memdup_user(arg, sizeof(*sa)); if (IS_ERR(sa)) return PTR_ERR(sa); if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) { ret = -EOPNOTSUPP; goto out; } if (!(sa->flags & BTRFS_SCRUB_READONLY)) { ret = mnt_want_write_file(file); if (ret) goto out; } ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 0); /* * Copy scrub args to user space even if btrfs_scrub_dev() returned an * error. This is important as it allows user space to know how much * progress scrub has done. For example, if scrub is canceled we get * -ECANCELED from btrfs_scrub_dev() and return that error back to user * space. Later user space can inspect the progress from the structure * btrfs_ioctl_scrub_args and resume scrub from where it left off * previously (btrfs-progs does this). * If we fail to copy the btrfs_ioctl_scrub_args structure to user space * then return -EFAULT to signal the structure was not copied or it may * be corrupt and unreliable due to a partial copy. */ if (copy_to_user(arg, sa, sizeof(*sa))) ret = -EFAULT; if (!(sa->flags & BTRFS_SCRUB_READONLY)) mnt_drop_write_file(file); out: kfree(sa); return ret; } static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) { if (!capable(CAP_SYS_ADMIN)) return -EPERM; return btrfs_scrub_cancel(fs_info); } static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, void __user *arg) { struct btrfs_ioctl_scrub_args *sa; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; sa = memdup_user(arg, sizeof(*sa)); if (IS_ERR(sa)) return PTR_ERR(sa); ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) ret = -EFAULT; kfree(sa); return ret; } static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, void __user *arg) { struct btrfs_ioctl_get_dev_stats *sa; int ret; sa = memdup_user(arg, sizeof(*sa)); if (IS_ERR(sa)) return PTR_ERR(sa); if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { kfree(sa); return -EPERM; } ret = btrfs_get_dev_stats(fs_info, sa); if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) ret = -EFAULT; kfree(sa); return ret; } static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, void __user *arg) { struct btrfs_ioctl_dev_replace_args *p; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); return -EINVAL; } p = memdup_user(arg, sizeof(*p)); if (IS_ERR(p)) return PTR_ERR(p); switch (p->cmd) { case BTRFS_IOCTL_DEV_REPLACE_CMD_START: if (sb_rdonly(fs_info->sb)) { ret = -EROFS; goto out; } if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; } else { ret = btrfs_dev_replace_by_ioctl(fs_info, p); btrfs_exclop_finish(fs_info); } break; case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: btrfs_dev_replace_status(fs_info, p); ret = 0; break; case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: p->result = btrfs_dev_replace_cancel(fs_info); ret = 0; break; default: ret = -EINVAL; break; } if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) ret = -EFAULT; out: kfree(p); return ret; } static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) { int ret = 0; int i; u64 rel_ptr; int size; struct btrfs_ioctl_ino_path_args *ipa = NULL; struct inode_fs_paths *ipath = NULL; struct btrfs_path *path; if (!capable(CAP_DAC_READ_SEARCH)) return -EPERM; path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } ipa = memdup_user(arg, sizeof(*ipa)); if (IS_ERR(ipa)) { ret = PTR_ERR(ipa); ipa = NULL; goto out; } size = min_t(u32, ipa->size, 4096); ipath = init_ipath(size, root, path); if (IS_ERR(ipath)) { ret = PTR_ERR(ipath); ipath = NULL; goto out; } ret = paths_from_inode(ipa->inum, ipath); if (ret < 0) goto out; for (i = 0; i < ipath->fspath->elem_cnt; ++i) { rel_ptr = ipath->fspath->val[i] - (u64)(unsigned long)ipath->fspath->val; ipath->fspath->val[i] = rel_ptr; } btrfs_free_path(path); path = NULL; ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, ipath->fspath, size); if (ret) { ret = -EFAULT; goto out; } out: btrfs_free_path(path); free_ipath(ipath); kfree(ipa); return ret; } static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, void __user *arg, int version) { int ret = 0; int size; struct btrfs_ioctl_logical_ino_args *loi; struct btrfs_data_container *inodes = NULL; struct btrfs_path *path = NULL; bool ignore_offset; if (!capable(CAP_SYS_ADMIN)) return -EPERM; loi = memdup_user(arg, sizeof(*loi)); if (IS_ERR(loi)) return PTR_ERR(loi); if (version == 1) { ignore_offset = false; size = min_t(u32, loi->size, SZ_64K); } else { /* All reserved bits must be 0 for now */ if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { ret = -EINVAL; goto out_loi; } /* Only accept flags we have defined so far */ if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { ret = -EINVAL; goto out_loi; } ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; size = min_t(u32, loi->size, SZ_16M); } inodes = init_data_container(size); if (IS_ERR(inodes)) { ret = PTR_ERR(inodes); goto out_loi; } path = btrfs_alloc_path(); if (!path) { ret = -ENOMEM; goto out; } ret = iterate_inodes_from_logical(loi->logical, fs_info, path, inodes, ignore_offset); btrfs_free_path(path); if (ret == -EINVAL) ret = -ENOENT; if (ret < 0) goto out; ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, size); if (ret) ret = -EFAULT; out: kvfree(inodes); out_loi: kfree(loi); return ret; } void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, struct btrfs_ioctl_balance_args *bargs) { struct btrfs_balance_control *bctl = fs_info->balance_ctl; bargs->flags = bctl->flags; if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) bargs->state |= BTRFS_BALANCE_STATE_RUNNING; if (atomic_read(&fs_info->balance_pause_req)) bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; if (atomic_read(&fs_info->balance_cancel_req)) bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); spin_lock(&fs_info->balance_lock); memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); spin_unlock(&fs_info->balance_lock); } /** * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as * required. * * @fs_info: the filesystem * @excl_acquired: ptr to boolean value which is set to false in case balance * is being resumed * * Return 0 on success in which case both fs_info::balance is acquired as well * as exclusive ops are blocked. In case of failure return an error code. */ static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) { int ret; /* * Exclusive operation is locked. Three possibilities: * (1) some other op is running * (2) balance is running * (3) balance is paused -- special case (think resume) */ while (1) { if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { *excl_acquired = true; mutex_lock(&fs_info->balance_mutex); return 0; } mutex_lock(&fs_info->balance_mutex); if (fs_info->balance_ctl) { /* This is either (2) or (3) */ if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { /* This is (2) */ ret = -EINPROGRESS; goto out_failure; } else { mutex_unlock(&fs_info->balance_mutex); /* * Lock released to allow other waiters to * continue, we'll reexamine the status again. */ mutex_lock(&fs_info->balance_mutex); if (fs_info->balance_ctl && !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { /* This is (3) */ *excl_acquired = false; return 0; } } } else { /* This is (1) */ ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; goto out_failure; } mutex_unlock(&fs_info->balance_mutex); } out_failure: mutex_unlock(&fs_info->balance_mutex); *excl_acquired = false; return ret; } static long btrfs_ioctl_balance(struct file *file, void __user *arg) { struct btrfs_root *root = BTRFS_I(file_inode(file))->root; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_ioctl_balance_args *bargs; struct btrfs_balance_control *bctl; bool need_unlock = true; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; ret = mnt_want_write_file(file); if (ret) return ret; bargs = memdup_user(arg, sizeof(*bargs)); if (IS_ERR(bargs)) { ret = PTR_ERR(bargs); bargs = NULL; goto out; } ret = btrfs_try_lock_balance(fs_info, &need_unlock); if (ret) goto out; lockdep_assert_held(&fs_info->balance_mutex); if (bargs->flags & BTRFS_BALANCE_RESUME) { if (!fs_info->balance_ctl) { ret = -ENOTCONN; goto out_unlock; } bctl = fs_info->balance_ctl; spin_lock(&fs_info->balance_lock); bctl->flags |= BTRFS_BALANCE_RESUME; spin_unlock(&fs_info->balance_lock); btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); goto do_balance; } if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { ret = -EINVAL; goto out_unlock; } if (fs_info->balance_ctl) { ret = -EINPROGRESS; goto out_unlock; } bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); if (!bctl) { ret = -ENOMEM; goto out_unlock; } memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); bctl->flags = bargs->flags; do_balance: /* * Ownership of bctl and exclusive operation goes to btrfs_balance. * bctl is freed in reset_balance_state, or, if restriper was paused * all the way until unmount, in free_fs_info. The flag should be * cleared after reset_balance_state. */ need_unlock = false; ret = btrfs_balance(fs_info, bctl, bargs); bctl = NULL; if (ret == 0 || ret == -ECANCELED) { if (copy_to_user(arg, bargs, sizeof(*bargs))) ret = -EFAULT; } kfree(bctl); out_unlock: mutex_unlock(&fs_info->balance_mutex); if (need_unlock) btrfs_exclop_finish(fs_info); out: mnt_drop_write_file(file); kfree(bargs); return ret; } static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) { if (!capable(CAP_SYS_ADMIN)) return -EPERM; switch (cmd) { case BTRFS_BALANCE_CTL_PAUSE: return btrfs_pause_balance(fs_info); case BTRFS_BALANCE_CTL_CANCEL: return btrfs_cancel_balance(fs_info); } return -EINVAL; } static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, void __user *arg) { struct btrfs_ioctl_balance_args *bargs; int ret = 0; if (!capable(CAP_SYS_ADMIN)) return -EPERM; mutex_lock(&fs_info->balance_mutex); if (!fs_info->balance_ctl) { ret = -ENOTCONN; goto out; } bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); if (!bargs) { ret = -ENOMEM; goto out; } btrfs_update_ioctl_balance_args(fs_info, bargs); if (copy_to_user(arg, bargs, sizeof(*bargs))) ret = -EFAULT; kfree(bargs); out: mutex_unlock(&fs_info->balance_mutex); return ret; } static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) { struct inode *inode = file_inode(file); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_ioctl_quota_ctl_args *sa; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; ret = mnt_want_write_file(file); if (ret) return ret; sa = memdup_user(arg, sizeof(*sa)); if (IS_ERR(sa)) { ret = PTR_ERR(sa); goto drop_write; } down_write(&fs_info->subvol_sem); switch (sa->cmd) { case BTRFS_QUOTA_CTL_ENABLE: ret = btrfs_quota_enable(fs_info); break; case BTRFS_QUOTA_CTL_DISABLE: ret = btrfs_quota_disable(fs_info); break; default: ret = -EINVAL; break; } kfree(sa); up_write(&fs_info->subvol_sem); drop_write: mnt_drop_write_file(file); return ret; } static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) { struct inode *inode = file_inode(file); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_ioctl_qgroup_assign_args *sa; struct btrfs_trans_handle *trans; int ret; int err; if (!capable(CAP_SYS_ADMIN)) return -EPERM; ret = mnt_want_write_file(file); if (ret) return ret; sa = memdup_user(arg, sizeof(*sa)); if (IS_ERR(sa)) { ret = PTR_ERR(sa); goto drop_write; } trans = btrfs_join_transaction(root); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out; } if (sa->assign) { ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); } else { ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); } /* update qgroup status and info */ mutex_lock(&fs_info->qgroup_ioctl_lock); err = btrfs_run_qgroups(trans); mutex_unlock(&fs_info->qgroup_ioctl_lock); if (err < 0) btrfs_handle_fs_error(fs_info, err, "failed to update qgroup status and info"); err = btrfs_end_transaction(trans); if (err && !ret) ret = err; out: kfree(sa); drop_write: mnt_drop_write_file(file); return ret; } static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) { struct inode *inode = file_inode(file); struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_ioctl_qgroup_create_args *sa; struct btrfs_trans_handle *trans; int ret; int err; if (!capable(CAP_SYS_ADMIN)) return -EPERM; ret = mnt_want_write_file(file); if (ret) return ret; sa = memdup_user(arg, sizeof(*sa)); if (IS_ERR(sa)) { ret = PTR_ERR(sa); goto drop_write; } if (!sa->qgroupid) { ret = -EINVAL; goto out; } trans = btrfs_join_transaction(root); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out; } if (sa->create) { ret = btrfs_create_qgroup(trans, sa->qgroupid); } else { ret = btrfs_remove_qgroup(trans, sa->qgroupid); } err = btrfs_end_transaction(trans); if (err && !ret) ret = err; out: kfree(sa); drop_write: mnt_drop_write_file(file); return ret; } static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) { struct inode *inode = file_inode(file); struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_ioctl_qgroup_limit_args *sa; struct btrfs_trans_handle *trans; int ret; int err; u64 qgroupid; if (!capable(CAP_SYS_ADMIN)) return -EPERM; ret = mnt_want_write_file(file); if (ret) return ret; sa = memdup_user(arg, sizeof(*sa)); if (IS_ERR(sa)) { ret = PTR_ERR(sa); goto drop_write; } trans = btrfs_join_transaction(root); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out; } qgroupid = sa->qgroupid; if (!qgroupid) { /* take the current subvol as qgroup */ qgroupid = root->root_key.objectid; } ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); err = btrfs_end_transaction(trans); if (err && !ret) ret = err; out: kfree(sa); drop_write: mnt_drop_write_file(file); return ret; } static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) { struct inode *inode = file_inode(file); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_ioctl_quota_rescan_args *qsa; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; ret = mnt_want_write_file(file); if (ret) return ret; qsa = memdup_user(arg, sizeof(*qsa)); if (IS_ERR(qsa)) { ret = PTR_ERR(qsa); goto drop_write; } if (qsa->flags) { ret = -EINVAL; goto out; } ret = btrfs_qgroup_rescan(fs_info); out: kfree(qsa); drop_write: mnt_drop_write_file(file); return ret; } static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, void __user *arg) { struct btrfs_ioctl_quota_rescan_args qsa = {0}; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { qsa.flags = 1; qsa.progress = fs_info->qgroup_rescan_progress.objectid; } if (copy_to_user(arg, &qsa, sizeof(qsa))) return -EFAULT; return 0; } static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, void __user *arg) { if (!capable(CAP_SYS_ADMIN)) return -EPERM; return btrfs_qgroup_wait_for_completion(fs_info, true); } static long _btrfs_ioctl_set_received_subvol(struct file *file, struct user_namespace *mnt_userns, struct btrfs_ioctl_received_subvol_args *sa) { struct inode *inode = file_inode(file); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_root_item *root_item = &root->root_item; struct btrfs_trans_handle *trans; struct timespec64 ct = current_time(inode); int ret = 0; int received_uuid_changed; if (!inode_owner_or_capable(mnt_userns, inode)) return -EPERM; ret = mnt_want_write_file(file); if (ret < 0) return ret; down_write(&fs_info->subvol_sem); if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { ret = -EINVAL; goto out; } if (btrfs_root_readonly(root)) { ret = -EROFS; goto out; } /* * 1 - root item * 2 - uuid items (received uuid + subvol uuid) */ trans = btrfs_start_transaction(root, 3); if (IS_ERR(trans)) { ret = PTR_ERR(trans); trans = NULL; goto out; } sa->rtransid = trans->transid; sa->rtime.sec = ct.tv_sec; sa->rtime.nsec = ct.tv_nsec; received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); if (received_uuid_changed && !btrfs_is_empty_uuid(root_item->received_uuid)) { ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, BTRFS_UUID_KEY_RECEIVED_SUBVOL, root->root_key.objectid); if (ret && ret != -ENOENT) { btrfs_abort_transaction(trans, ret); btrfs_end_transaction(trans); goto out; } } memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); btrfs_set_root_stransid(root_item, sa->stransid); btrfs_set_root_rtransid(root_item, sa->rtransid); btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); ret = btrfs_update_root(trans, fs_info->tree_root, &root->root_key, &root->root_item); if (ret < 0) { btrfs_end_transaction(trans); goto out; } if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { ret = btrfs_uuid_tree_add(trans, sa->uuid, BTRFS_UUID_KEY_RECEIVED_SUBVOL, root->root_key.objectid); if (ret < 0 && ret != -EEXIST) { btrfs_abort_transaction(trans, ret); btrfs_end_transaction(trans); goto out; } } ret = btrfs_commit_transaction(trans); out: up_write(&fs_info->subvol_sem); mnt_drop_write_file(file); return ret; } #ifdef CONFIG_64BIT static long btrfs_ioctl_set_received_subvol_32(struct file *file, void __user *arg) { struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; struct btrfs_ioctl_received_subvol_args *args64 = NULL; int ret = 0; args32 = memdup_user(arg, sizeof(*args32)); if (IS_ERR(args32)) return PTR_ERR(args32); args64 = kmalloc(sizeof(*args64), GFP_KERNEL); if (!args64) { ret = -ENOMEM; goto out; } memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); args64->stransid = args32->stransid; args64->rtransid = args32->rtransid; args64->stime.sec = args32->stime.sec; args64->stime.nsec = args32->stime.nsec; args64->rtime.sec = args32->rtime.sec; args64->rtime.nsec = args32->rtime.nsec; args64->flags = args32->flags; ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64); if (ret) goto out; memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); args32->stransid = args64->stransid; args32->rtransid = args64->rtransid; args32->stime.sec = args64->stime.sec; args32->stime.nsec = args64->stime.nsec; args32->rtime.sec = args64->rtime.sec; args32->rtime.nsec = args64->rtime.nsec; args32->flags = args64->flags; ret = copy_to_user(arg, args32, sizeof(*args32)); if (ret) ret = -EFAULT; out: kfree(args32); kfree(args64); return ret; } #endif static long btrfs_ioctl_set_received_subvol(struct file *file, void __user *arg) { struct btrfs_ioctl_received_subvol_args *sa = NULL; int ret = 0; sa = memdup_user(arg, sizeof(*sa)); if (IS_ERR(sa)) return PTR_ERR(sa); ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa); if (ret) goto out; ret = copy_to_user(arg, sa, sizeof(*sa)); if (ret) ret = -EFAULT; out: kfree(sa); return ret; } static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, void __user *arg) { size_t len; int ret; char label[BTRFS_LABEL_SIZE]; spin_lock(&fs_info->super_lock); memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); spin_unlock(&fs_info->super_lock); len = strnlen(label, BTRFS_LABEL_SIZE); if (len == BTRFS_LABEL_SIZE) { btrfs_warn(fs_info, "label is too long, return the first %zu bytes", --len); } ret = copy_to_user(arg, label, len); return ret ? -EFAULT : 0; } static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) { struct inode *inode = file_inode(file); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_super_block *super_block = fs_info->super_copy; struct btrfs_trans_handle *trans; char label[BTRFS_LABEL_SIZE]; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(label, arg, sizeof(label))) return -EFAULT; if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { btrfs_err(fs_info, "unable to set label with more than %d bytes", BTRFS_LABEL_SIZE - 1); return -EINVAL; } ret = mnt_want_write_file(file); if (ret) return ret; trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out_unlock; } spin_lock(&fs_info->super_lock); strcpy(super_block->label, label); spin_unlock(&fs_info->super_lock); ret = btrfs_commit_transaction(trans); out_unlock: mnt_drop_write_file(file); return ret; } #define INIT_FEATURE_FLAGS(suffix) \ { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } int btrfs_ioctl_get_supported_features(void __user *arg) { static const struct btrfs_ioctl_feature_flags features[3] = { INIT_FEATURE_FLAGS(SUPP), INIT_FEATURE_FLAGS(SAFE_SET), INIT_FEATURE_FLAGS(SAFE_CLEAR) }; if (copy_to_user(arg, &features, sizeof(features))) return -EFAULT; return 0; } static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, void __user *arg) { struct btrfs_super_block *super_block = fs_info->super_copy; struct btrfs_ioctl_feature_flags features; features.compat_flags = btrfs_super_compat_flags(super_block); features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); features.incompat_flags = btrfs_super_incompat_flags(super_block); if (copy_to_user(arg, &features, sizeof(features))) return -EFAULT; return 0; } static int check_feature_bits(struct btrfs_fs_info *fs_info, enum btrfs_feature_set set, u64 change_mask, u64 flags, u64 supported_flags, u64 safe_set, u64 safe_clear) { const char *type = btrfs_feature_set_name(set); char *names; u64 disallowed, unsupported; u64 set_mask = flags & change_mask; u64 clear_mask = ~flags & change_mask; unsupported = set_mask & ~supported_flags; if (unsupported) { names = btrfs_printable_features(set, unsupported); if (names) { btrfs_warn(fs_info, "this kernel does not support the %s feature bit%s", names, strchr(names, ',') ? "s" : ""); kfree(names); } else btrfs_warn(fs_info, "this kernel does not support %s bits 0x%llx", type, unsupported); return -EOPNOTSUPP; } disallowed = set_mask & ~safe_set; if (disallowed) { names = btrfs_printable_features(set, disallowed); if (names) { btrfs_warn(fs_info, "can't set the %s feature bit%s while mounted", names, strchr(names, ',') ? "s" : ""); kfree(names); } else btrfs_warn(fs_info, "can't set %s bits 0x%llx while mounted", type, disallowed); return -EPERM; } disallowed = clear_mask & ~safe_clear; if (disallowed) { names = btrfs_printable_features(set, disallowed); if (names) { btrfs_warn(fs_info, "can't clear the %s feature bit%s while mounted", names, strchr(names, ',') ? "s" : ""); kfree(names); } else btrfs_warn(fs_info, "can't clear %s bits 0x%llx while mounted", type, disallowed); return -EPERM; } return 0; } #define check_feature(fs_info, change_mask, flags, mask_base) \ check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ BTRFS_FEATURE_ ## mask_base ## _SUPP, \ BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) static int btrfs_ioctl_set_features(struct file *file, void __user *arg) { struct inode *inode = file_inode(file); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_root *root = BTRFS_I(inode)->root; struct btrfs_super_block *super_block = fs_info->super_copy; struct btrfs_ioctl_feature_flags flags[2]; struct btrfs_trans_handle *trans; u64 newflags; int ret; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (copy_from_user(flags, arg, sizeof(flags))) return -EFAULT; /* Nothing to do */ if (!flags[0].compat_flags && !flags[0].compat_ro_flags && !flags[0].incompat_flags) return 0; ret = check_feature(fs_info, flags[0].compat_flags, flags[1].compat_flags, COMPAT); if (ret) return ret; ret = check_feature(fs_info, flags[0].compat_ro_flags, flags[1].compat_ro_flags, COMPAT_RO); if (ret) return ret; ret = check_feature(fs_info, flags[0].incompat_flags, flags[1].incompat_flags, INCOMPAT); if (ret) return ret; ret = mnt_want_write_file(file); if (ret) return ret; trans = btrfs_start_transaction(root, 0); if (IS_ERR(trans)) { ret = PTR_ERR(trans); goto out_drop_write; } spin_lock(&fs_info->super_lock); newflags = btrfs_super_compat_flags(super_block); newflags |= flags[0].compat_flags & flags[1].compat_flags; newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); btrfs_set_super_compat_flags(super_block, newflags); newflags = btrfs_super_compat_ro_flags(super_block); newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); btrfs_set_super_compat_ro_flags(super_block, newflags); newflags = btrfs_super_incompat_flags(super_block); newflags |= flags[0].incompat_flags & flags[1].incompat_flags; newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); btrfs_set_super_incompat_flags(super_block, newflags); spin_unlock(&fs_info->super_lock); ret = btrfs_commit_transaction(trans); out_drop_write: mnt_drop_write_file(file); return ret; } static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) { struct btrfs_ioctl_send_args *arg; int ret; if (compat) { #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) struct btrfs_ioctl_send_args_32 args32; ret = copy_from_user(&args32, argp, sizeof(args32)); if (ret) return -EFAULT; arg = kzalloc(sizeof(*arg), GFP_KERNEL); if (!arg) return -ENOMEM; arg->send_fd = args32.send_fd; arg->clone_sources_count = args32.clone_sources_count; arg->clone_sources = compat_ptr(args32.clone_sources); arg->parent_root = args32.parent_root; arg->flags = args32.flags; memcpy(arg->reserved, args32.reserved, sizeof(args32.reserved)); #else return -ENOTTY; #endif } else { arg = memdup_user(argp, sizeof(*arg)); if (IS_ERR(arg)) return PTR_ERR(arg); } ret = btrfs_ioctl_send(inode, arg); kfree(arg); return ret; } static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, bool compat) { struct btrfs_ioctl_encoded_io_args args = { 0 }; size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags); size_t copy_end; struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov = iovstack; struct iov_iter iter; loff_t pos; struct kiocb kiocb; ssize_t ret; if (!capable(CAP_SYS_ADMIN)) { ret = -EPERM; goto out_acct; } if (compat) { #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) struct btrfs_ioctl_encoded_io_args_32 args32; copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags); if (copy_from_user(&args32, argp, copy_end)) { ret = -EFAULT; goto out_acct; } args.iov = compat_ptr(args32.iov); args.iovcnt = args32.iovcnt; args.offset = args32.offset; args.flags = args32.flags; #else return -ENOTTY; #endif } else { copy_end = copy_end_kernel; if (copy_from_user(&args, argp, copy_end)) { ret = -EFAULT; goto out_acct; } } if (args.flags != 0) { ret = -EINVAL; goto out_acct; } ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), &iov, &iter); if (ret < 0) goto out_acct; if (iov_iter_count(&iter) == 0) { ret = 0; goto out_iov; } pos = args.offset; ret = rw_verify_area(READ, file, &pos, args.len); if (ret < 0) goto out_iov; init_sync_kiocb(&kiocb, file); kiocb.ki_pos = pos; ret = btrfs_encoded_read(&kiocb, &iter, &args); if (ret >= 0) { fsnotify_access(file); if (copy_to_user(argp + copy_end, (char *)&args + copy_end_kernel, sizeof(args) - copy_end_kernel)) ret = -EFAULT; } out_iov: kfree(iov); out_acct: if (ret > 0) add_rchar(current, ret); inc_syscr(current); return ret; } static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) { struct btrfs_ioctl_encoded_io_args args; struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov = iovstack; struct iov_iter iter; loff_t pos; struct kiocb kiocb; ssize_t ret; if (!capable(CAP_SYS_ADMIN)) { ret = -EPERM; goto out_acct; } if (!(file->f_mode & FMODE_WRITE)) { ret = -EBADF; goto out_acct; } if (compat) { #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) struct btrfs_ioctl_encoded_io_args_32 args32; if (copy_from_user(&args32, argp, sizeof(args32))) { ret = -EFAULT; goto out_acct; } args.iov = compat_ptr(args32.iov); args.iovcnt = args32.iovcnt; args.offset = args32.offset; args.flags = args32.flags; args.len = args32.len; args.unencoded_len = args32.unencoded_len; args.unencoded_offset = args32.unencoded_offset; args.compression = args32.compression; args.encryption = args32.encryption; memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); #else return -ENOTTY; #endif } else { if (copy_from_user(&args, argp, sizeof(args))) { ret = -EFAULT; goto out_acct; } } ret = -EINVAL; if (args.flags != 0) goto out_acct; if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) goto out_acct; if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) goto out_acct; if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) goto out_acct; if (args.unencoded_offset > args.unencoded_len) goto out_acct; if (args.len > args.unencoded_len - args.unencoded_offset) goto out_acct; ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), &iov, &iter); if (ret < 0) goto out_acct; file_start_write(file); if (iov_iter_count(&iter) == 0) { ret = 0; goto out_end_write; } pos = args.offset; ret = rw_verify_area(WRITE, file, &pos, args.len); if (ret < 0) goto out_end_write; init_sync_kiocb(&kiocb, file); ret = kiocb_set_rw_flags(&kiocb, 0); if (ret) goto out_end_write; kiocb.ki_pos = pos; ret = btrfs_do_write_iter(&kiocb, &iter, &args); if (ret > 0) fsnotify_modify(file); out_end_write: file_end_write(file); kfree(iov); out_acct: if (ret > 0) add_wchar(current, ret); inc_syscw(current); return ret; } long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct inode *inode = file_inode(file); struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); struct btrfs_root *root = BTRFS_I(inode)->root; void __user *argp = (void __user *)arg; switch (cmd) { case FS_IOC_GETVERSION: return btrfs_ioctl_getversion(inode, argp); case FS_IOC_GETFSLABEL: return btrfs_ioctl_get_fslabel(fs_info, argp); case FS_IOC_SETFSLABEL: return btrfs_ioctl_set_fslabel(file, argp); case FITRIM: return btrfs_ioctl_fitrim(fs_info, argp); case BTRFS_IOC_SNAP_CREATE: return btrfs_ioctl_snap_create(file, argp, 0); case BTRFS_IOC_SNAP_CREATE_V2: return btrfs_ioctl_snap_create_v2(file, argp, 0); case BTRFS_IOC_SUBVOL_CREATE: return btrfs_ioctl_snap_create(file, argp, 1); case BTRFS_IOC_SUBVOL_CREATE_V2: return btrfs_ioctl_snap_create_v2(file, argp, 1); case BTRFS_IOC_SNAP_DESTROY: return btrfs_ioctl_snap_destroy(file, argp, false); case BTRFS_IOC_SNAP_DESTROY_V2: return btrfs_ioctl_snap_destroy(file, argp, true); case BTRFS_IOC_SUBVOL_GETFLAGS: return btrfs_ioctl_subvol_getflags(inode, argp); case BTRFS_IOC_SUBVOL_SETFLAGS: return btrfs_ioctl_subvol_setflags(file, argp); case BTRFS_IOC_DEFAULT_SUBVOL: return btrfs_ioctl_default_subvol(file, argp); case BTRFS_IOC_DEFRAG: return btrfs_ioctl_defrag(file, NULL); case BTRFS_IOC_DEFRAG_RANGE: return btrfs_ioctl_defrag(file, argp); case BTRFS_IOC_RESIZE: return btrfs_ioctl_resize(file, argp); case BTRFS_IOC_ADD_DEV: return btrfs_ioctl_add_dev(fs_info, argp); case BTRFS_IOC_RM_DEV: return btrfs_ioctl_rm_dev(file, argp); case BTRFS_IOC_RM_DEV_V2: return btrfs_ioctl_rm_dev_v2(file, argp); case BTRFS_IOC_FS_INFO: return btrfs_ioctl_fs_info(fs_info, argp); case BTRFS_IOC_DEV_INFO: return btrfs_ioctl_dev_info(fs_info, argp); case BTRFS_IOC_TREE_SEARCH: return btrfs_ioctl_tree_search(inode, argp); case BTRFS_IOC_TREE_SEARCH_V2: return btrfs_ioctl_tree_search_v2(inode, argp); case BTRFS_IOC_INO_LOOKUP: return btrfs_ioctl_ino_lookup(root, argp); case BTRFS_IOC_INO_PATHS: return btrfs_ioctl_ino_to_path(root, argp); case BTRFS_IOC_LOGICAL_INO: return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); case BTRFS_IOC_LOGICAL_INO_V2: return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); case BTRFS_IOC_SPACE_INFO: return btrfs_ioctl_space_info(fs_info, argp); case BTRFS_IOC_SYNC: { int ret; ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); if (ret) return ret; ret = btrfs_sync_fs(inode->i_sb, 1); /* * The transaction thread may want to do more work, * namely it pokes the cleaner kthread that will start * processing uncleaned subvols. */ wake_up_process(fs_info->transaction_kthread); return ret; } case BTRFS_IOC_START_SYNC: return btrfs_ioctl_start_sync(root, argp); case BTRFS_IOC_WAIT_SYNC: return btrfs_ioctl_wait_sync(fs_info, argp); case BTRFS_IOC_SCRUB: return btrfs_ioctl_scrub(file, argp); case BTRFS_IOC_SCRUB_CANCEL: return btrfs_ioctl_scrub_cancel(fs_info); case BTRFS_IOC_SCRUB_PROGRESS: return btrfs_ioctl_scrub_progress(fs_info, argp); case BTRFS_IOC_BALANCE_V2: return btrfs_ioctl_balance(file, argp); case BTRFS_IOC_BALANCE_CTL: return btrfs_ioctl_balance_ctl(fs_info, arg); case BTRFS_IOC_BALANCE_PROGRESS: return btrfs_ioctl_balance_progress(fs_info, argp); case BTRFS_IOC_SET_RECEIVED_SUBVOL: return btrfs_ioctl_set_received_subvol(file, argp); #ifdef CONFIG_64BIT case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: return btrfs_ioctl_set_received_subvol_32(file, argp); #endif case BTRFS_IOC_SEND: return _btrfs_ioctl_send(inode, argp, false); #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) case BTRFS_IOC_SEND_32: return _btrfs_ioctl_send(inode, argp, true); #endif case BTRFS_IOC_GET_DEV_STATS: return btrfs_ioctl_get_dev_stats(fs_info, argp); case BTRFS_IOC_QUOTA_CTL: return btrfs_ioctl_quota_ctl(file, argp); case BTRFS_IOC_QGROUP_ASSIGN: return btrfs_ioctl_qgroup_assign(file, argp); case BTRFS_IOC_QGROUP_CREATE: return btrfs_ioctl_qgroup_create(file, argp); case BTRFS_IOC_QGROUP_LIMIT: return btrfs_ioctl_qgroup_limit(file, argp); case BTRFS_IOC_QUOTA_RESCAN: return btrfs_ioctl_quota_rescan(file, argp); case BTRFS_IOC_QUOTA_RESCAN_STATUS: return btrfs_ioctl_quota_rescan_status(fs_info, argp); case BTRFS_IOC_QUOTA_RESCAN_WAIT: return btrfs_ioctl_quota_rescan_wait(fs_info, argp); case BTRFS_IOC_DEV_REPLACE: return btrfs_ioctl_dev_replace(fs_info, argp); case BTRFS_IOC_GET_SUPPORTED_FEATURES: return btrfs_ioctl_get_supported_features(argp); case BTRFS_IOC_GET_FEATURES: return btrfs_ioctl_get_features(fs_info, argp); case BTRFS_IOC_SET_FEATURES: return btrfs_ioctl_set_features(file, argp); case BTRFS_IOC_GET_SUBVOL_INFO: return btrfs_ioctl_get_subvol_info(inode, argp); case BTRFS_IOC_GET_SUBVOL_ROOTREF: return btrfs_ioctl_get_subvol_rootref(root, argp); case BTRFS_IOC_INO_LOOKUP_USER: return btrfs_ioctl_ino_lookup_user(file, argp); case FS_IOC_ENABLE_VERITY: return fsverity_ioctl_enable(file, (const void __user *)argp); case FS_IOC_MEASURE_VERITY: return fsverity_ioctl_measure(file, argp); case BTRFS_IOC_ENCODED_READ: return btrfs_ioctl_encoded_read(file, argp, false); case BTRFS_IOC_ENCODED_WRITE: return btrfs_ioctl_encoded_write(file, argp, false); #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) case BTRFS_IOC_ENCODED_READ_32: return btrfs_ioctl_encoded_read(file, argp, true); case BTRFS_IOC_ENCODED_WRITE_32: return btrfs_ioctl_encoded_write(file, argp, true); #endif } return -ENOTTY; } #ifdef CONFIG_COMPAT long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { /* * These all access 32-bit values anyway so no further * handling is necessary. */ switch (cmd) { case FS_IOC32_GETVERSION: cmd = FS_IOC_GETVERSION; break; } return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); } #endif