// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2013 - 2021 Intel Corporation. */ #include "i40e.h" #include "i40e_type.h" #include "i40e_adminq.h" #include "i40e_prototype.h" #include /** * i40e_set_mac_type - Sets MAC type * @hw: pointer to the HW structure * * This function sets the mac type of the adapter based on the * vendor ID and device ID stored in the hw structure. **/ int i40e_set_mac_type(struct i40e_hw *hw) { int status = 0; if (hw->vendor_id == PCI_VENDOR_ID_INTEL) { switch (hw->device_id) { case I40E_DEV_ID_SFP_XL710: case I40E_DEV_ID_QEMU: case I40E_DEV_ID_KX_B: case I40E_DEV_ID_KX_C: case I40E_DEV_ID_QSFP_A: case I40E_DEV_ID_QSFP_B: case I40E_DEV_ID_QSFP_C: case I40E_DEV_ID_1G_BASE_T_BC: case I40E_DEV_ID_5G_BASE_T_BC: case I40E_DEV_ID_10G_BASE_T: case I40E_DEV_ID_10G_BASE_T4: case I40E_DEV_ID_10G_BASE_T_BC: case I40E_DEV_ID_10G_B: case I40E_DEV_ID_10G_SFP: case I40E_DEV_ID_20G_KR2: case I40E_DEV_ID_20G_KR2_A: case I40E_DEV_ID_25G_B: case I40E_DEV_ID_25G_SFP28: case I40E_DEV_ID_X710_N3000: case I40E_DEV_ID_XXV710_N3000: hw->mac.type = I40E_MAC_XL710; break; case I40E_DEV_ID_KX_X722: case I40E_DEV_ID_QSFP_X722: case I40E_DEV_ID_SFP_X722: case I40E_DEV_ID_1G_BASE_T_X722: case I40E_DEV_ID_10G_BASE_T_X722: case I40E_DEV_ID_SFP_I_X722: case I40E_DEV_ID_SFP_X722_A: hw->mac.type = I40E_MAC_X722; break; default: hw->mac.type = I40E_MAC_GENERIC; break; } } else { status = I40E_ERR_DEVICE_NOT_SUPPORTED; } hw_dbg(hw, "i40e_set_mac_type found mac: %d, returns: %d\n", hw->mac.type, status); return status; } /** * i40e_aq_str - convert AQ err code to a string * @hw: pointer to the HW structure * @aq_err: the AQ error code to convert **/ const char *i40e_aq_str(struct i40e_hw *hw, enum i40e_admin_queue_err aq_err) { switch (aq_err) { case I40E_AQ_RC_OK: return "OK"; case I40E_AQ_RC_EPERM: return "I40E_AQ_RC_EPERM"; case I40E_AQ_RC_ENOENT: return "I40E_AQ_RC_ENOENT"; case I40E_AQ_RC_ESRCH: return "I40E_AQ_RC_ESRCH"; case I40E_AQ_RC_EINTR: return "I40E_AQ_RC_EINTR"; case I40E_AQ_RC_EIO: return "I40E_AQ_RC_EIO"; case I40E_AQ_RC_ENXIO: return "I40E_AQ_RC_ENXIO"; case I40E_AQ_RC_E2BIG: return "I40E_AQ_RC_E2BIG"; case I40E_AQ_RC_EAGAIN: return "I40E_AQ_RC_EAGAIN"; case I40E_AQ_RC_ENOMEM: return "I40E_AQ_RC_ENOMEM"; case I40E_AQ_RC_EACCES: return "I40E_AQ_RC_EACCES"; case I40E_AQ_RC_EFAULT: return "I40E_AQ_RC_EFAULT"; case I40E_AQ_RC_EBUSY: return "I40E_AQ_RC_EBUSY"; case I40E_AQ_RC_EEXIST: return "I40E_AQ_RC_EEXIST"; case I40E_AQ_RC_EINVAL: return "I40E_AQ_RC_EINVAL"; case I40E_AQ_RC_ENOTTY: return "I40E_AQ_RC_ENOTTY"; case I40E_AQ_RC_ENOSPC: return "I40E_AQ_RC_ENOSPC"; case I40E_AQ_RC_ENOSYS: return "I40E_AQ_RC_ENOSYS"; case I40E_AQ_RC_ERANGE: return "I40E_AQ_RC_ERANGE"; case I40E_AQ_RC_EFLUSHED: return "I40E_AQ_RC_EFLUSHED"; case I40E_AQ_RC_BAD_ADDR: return "I40E_AQ_RC_BAD_ADDR"; case I40E_AQ_RC_EMODE: return "I40E_AQ_RC_EMODE"; case I40E_AQ_RC_EFBIG: return "I40E_AQ_RC_EFBIG"; } snprintf(hw->err_str, sizeof(hw->err_str), "%d", aq_err); return hw->err_str; } /** * i40e_debug_aq * @hw: debug mask related to admin queue * @mask: debug mask * @desc: pointer to admin queue descriptor * @buffer: pointer to command buffer * @buf_len: max length of buffer * * Dumps debug log about adminq command with descriptor contents. **/ void i40e_debug_aq(struct i40e_hw *hw, enum i40e_debug_mask mask, void *desc, void *buffer, u16 buf_len) { struct i40e_aq_desc *aq_desc = (struct i40e_aq_desc *)desc; u32 effective_mask = hw->debug_mask & mask; char prefix[27]; u16 len; u8 *buf = (u8 *)buffer; if (!effective_mask || !desc) return; len = le16_to_cpu(aq_desc->datalen); i40e_debug(hw, mask & I40E_DEBUG_AQ_DESCRIPTOR, "AQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n", le16_to_cpu(aq_desc->opcode), le16_to_cpu(aq_desc->flags), le16_to_cpu(aq_desc->datalen), le16_to_cpu(aq_desc->retval)); i40e_debug(hw, mask & I40E_DEBUG_AQ_DESCRIPTOR, "\tcookie (h,l) 0x%08X 0x%08X\n", le32_to_cpu(aq_desc->cookie_high), le32_to_cpu(aq_desc->cookie_low)); i40e_debug(hw, mask & I40E_DEBUG_AQ_DESCRIPTOR, "\tparam (0,1) 0x%08X 0x%08X\n", le32_to_cpu(aq_desc->params.internal.param0), le32_to_cpu(aq_desc->params.internal.param1)); i40e_debug(hw, mask & I40E_DEBUG_AQ_DESCRIPTOR, "\taddr (h,l) 0x%08X 0x%08X\n", le32_to_cpu(aq_desc->params.external.addr_high), le32_to_cpu(aq_desc->params.external.addr_low)); if (buffer && buf_len != 0 && len != 0 && (effective_mask & I40E_DEBUG_AQ_DESC_BUFFER)) { i40e_debug(hw, mask, "AQ CMD Buffer:\n"); if (buf_len < len) len = buf_len; snprintf(prefix, sizeof(prefix), "i40e %02x:%02x.%x: \t0x", hw->bus.bus_id, hw->bus.device, hw->bus.func); print_hex_dump(KERN_INFO, prefix, DUMP_PREFIX_OFFSET, 16, 1, buf, len, false); } } /** * i40e_check_asq_alive * @hw: pointer to the hw struct * * Returns true if Queue is enabled else false. **/ bool i40e_check_asq_alive(struct i40e_hw *hw) { if (hw->aq.asq.len) return !!(rd32(hw, hw->aq.asq.len) & I40E_PF_ATQLEN_ATQENABLE_MASK); else return false; } /** * i40e_aq_queue_shutdown * @hw: pointer to the hw struct * @unloading: is the driver unloading itself * * Tell the Firmware that we're shutting down the AdminQ and whether * or not the driver is unloading as well. **/ int i40e_aq_queue_shutdown(struct i40e_hw *hw, bool unloading) { struct i40e_aq_desc desc; struct i40e_aqc_queue_shutdown *cmd = (struct i40e_aqc_queue_shutdown *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_queue_shutdown); if (unloading) cmd->driver_unloading = cpu_to_le32(I40E_AQ_DRIVER_UNLOADING); status = i40e_asq_send_command(hw, &desc, NULL, 0, NULL); return status; } /** * i40e_aq_get_set_rss_lut * @hw: pointer to the hardware structure * @vsi_id: vsi fw index * @pf_lut: for PF table set true, for VSI table set false * @lut: pointer to the lut buffer provided by the caller * @lut_size: size of the lut buffer * @set: set true to set the table, false to get the table * * Internal function to get or set RSS look up table **/ static int i40e_aq_get_set_rss_lut(struct i40e_hw *hw, u16 vsi_id, bool pf_lut, u8 *lut, u16 lut_size, bool set) { struct i40e_aq_desc desc; struct i40e_aqc_get_set_rss_lut *cmd_resp = (struct i40e_aqc_get_set_rss_lut *)&desc.params.raw; int status; if (set) i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_rss_lut); else i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_rss_lut); /* Indirect command */ desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF); desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD); cmd_resp->vsi_id = cpu_to_le16((u16)((vsi_id << I40E_AQC_SET_RSS_LUT_VSI_ID_SHIFT) & I40E_AQC_SET_RSS_LUT_VSI_ID_MASK)); cmd_resp->vsi_id |= cpu_to_le16((u16)I40E_AQC_SET_RSS_LUT_VSI_VALID); if (pf_lut) cmd_resp->flags |= cpu_to_le16((u16) ((I40E_AQC_SET_RSS_LUT_TABLE_TYPE_PF << I40E_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) & I40E_AQC_SET_RSS_LUT_TABLE_TYPE_MASK)); else cmd_resp->flags |= cpu_to_le16((u16) ((I40E_AQC_SET_RSS_LUT_TABLE_TYPE_VSI << I40E_AQC_SET_RSS_LUT_TABLE_TYPE_SHIFT) & I40E_AQC_SET_RSS_LUT_TABLE_TYPE_MASK)); status = i40e_asq_send_command(hw, &desc, lut, lut_size, NULL); return status; } /** * i40e_aq_get_rss_lut * @hw: pointer to the hardware structure * @vsi_id: vsi fw index * @pf_lut: for PF table set true, for VSI table set false * @lut: pointer to the lut buffer provided by the caller * @lut_size: size of the lut buffer * * get the RSS lookup table, PF or VSI type **/ int i40e_aq_get_rss_lut(struct i40e_hw *hw, u16 vsi_id, bool pf_lut, u8 *lut, u16 lut_size) { return i40e_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size, false); } /** * i40e_aq_set_rss_lut * @hw: pointer to the hardware structure * @vsi_id: vsi fw index * @pf_lut: for PF table set true, for VSI table set false * @lut: pointer to the lut buffer provided by the caller * @lut_size: size of the lut buffer * * set the RSS lookup table, PF or VSI type **/ int i40e_aq_set_rss_lut(struct i40e_hw *hw, u16 vsi_id, bool pf_lut, u8 *lut, u16 lut_size) { return i40e_aq_get_set_rss_lut(hw, vsi_id, pf_lut, lut, lut_size, true); } /** * i40e_aq_get_set_rss_key * @hw: pointer to the hw struct * @vsi_id: vsi fw index * @key: pointer to key info struct * @set: set true to set the key, false to get the key * * get the RSS key per VSI **/ static int i40e_aq_get_set_rss_key(struct i40e_hw *hw, u16 vsi_id, struct i40e_aqc_get_set_rss_key_data *key, bool set) { struct i40e_aq_desc desc; struct i40e_aqc_get_set_rss_key *cmd_resp = (struct i40e_aqc_get_set_rss_key *)&desc.params.raw; u16 key_size = sizeof(struct i40e_aqc_get_set_rss_key_data); int status; if (set) i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_rss_key); else i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_rss_key); /* Indirect command */ desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF); desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD); cmd_resp->vsi_id = cpu_to_le16((u16)((vsi_id << I40E_AQC_SET_RSS_KEY_VSI_ID_SHIFT) & I40E_AQC_SET_RSS_KEY_VSI_ID_MASK)); cmd_resp->vsi_id |= cpu_to_le16((u16)I40E_AQC_SET_RSS_KEY_VSI_VALID); status = i40e_asq_send_command(hw, &desc, key, key_size, NULL); return status; } /** * i40e_aq_get_rss_key * @hw: pointer to the hw struct * @vsi_id: vsi fw index * @key: pointer to key info struct * **/ int i40e_aq_get_rss_key(struct i40e_hw *hw, u16 vsi_id, struct i40e_aqc_get_set_rss_key_data *key) { return i40e_aq_get_set_rss_key(hw, vsi_id, key, false); } /** * i40e_aq_set_rss_key * @hw: pointer to the hw struct * @vsi_id: vsi fw index * @key: pointer to key info struct * * set the RSS key per VSI **/ int i40e_aq_set_rss_key(struct i40e_hw *hw, u16 vsi_id, struct i40e_aqc_get_set_rss_key_data *key) { return i40e_aq_get_set_rss_key(hw, vsi_id, key, true); } /* The i40e_ptype_lookup table is used to convert from the 8-bit ptype in the * hardware to a bit-field that can be used by SW to more easily determine the * packet type. * * Macros are used to shorten the table lines and make this table human * readable. * * We store the PTYPE in the top byte of the bit field - this is just so that * we can check that the table doesn't have a row missing, as the index into * the table should be the PTYPE. * * Typical work flow: * * IF NOT i40e_ptype_lookup[ptype].known * THEN * Packet is unknown * ELSE IF i40e_ptype_lookup[ptype].outer_ip == I40E_RX_PTYPE_OUTER_IP * Use the rest of the fields to look at the tunnels, inner protocols, etc * ELSE * Use the enum i40e_rx_l2_ptype to decode the packet type * ENDIF */ /* macro to make the table lines short, use explicit indexing with [PTYPE] */ #define I40E_PTT(PTYPE, OUTER_IP, OUTER_IP_VER, OUTER_FRAG, T, TE, TEF, I, PL)\ [PTYPE] = { \ 1, \ I40E_RX_PTYPE_OUTER_##OUTER_IP, \ I40E_RX_PTYPE_OUTER_##OUTER_IP_VER, \ I40E_RX_PTYPE_##OUTER_FRAG, \ I40E_RX_PTYPE_TUNNEL_##T, \ I40E_RX_PTYPE_TUNNEL_END_##TE, \ I40E_RX_PTYPE_##TEF, \ I40E_RX_PTYPE_INNER_PROT_##I, \ I40E_RX_PTYPE_PAYLOAD_LAYER_##PL } #define I40E_PTT_UNUSED_ENTRY(PTYPE) [PTYPE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 } /* shorter macros makes the table fit but are terse */ #define I40E_RX_PTYPE_NOF I40E_RX_PTYPE_NOT_FRAG #define I40E_RX_PTYPE_FRG I40E_RX_PTYPE_FRAG #define I40E_RX_PTYPE_INNER_PROT_TS I40E_RX_PTYPE_INNER_PROT_TIMESYNC /* Lookup table mapping in the 8-bit HW PTYPE to the bit field for decoding */ struct i40e_rx_ptype_decoded i40e_ptype_lookup[BIT(8)] = { /* L2 Packet types */ I40E_PTT_UNUSED_ENTRY(0), I40E_PTT(1, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), I40E_PTT(2, L2, NONE, NOF, NONE, NONE, NOF, TS, PAY2), I40E_PTT(3, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), I40E_PTT_UNUSED_ENTRY(4), I40E_PTT_UNUSED_ENTRY(5), I40E_PTT(6, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), I40E_PTT(7, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), I40E_PTT_UNUSED_ENTRY(8), I40E_PTT_UNUSED_ENTRY(9), I40E_PTT(10, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY2), I40E_PTT(11, L2, NONE, NOF, NONE, NONE, NOF, NONE, NONE), I40E_PTT(12, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), I40E_PTT(13, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), I40E_PTT(14, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), I40E_PTT(15, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), I40E_PTT(16, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), I40E_PTT(17, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), I40E_PTT(18, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), I40E_PTT(19, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), I40E_PTT(20, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), I40E_PTT(21, L2, NONE, NOF, NONE, NONE, NOF, NONE, PAY3), /* Non Tunneled IPv4 */ I40E_PTT(22, IP, IPV4, FRG, NONE, NONE, NOF, NONE, PAY3), I40E_PTT(23, IP, IPV4, NOF, NONE, NONE, NOF, NONE, PAY3), I40E_PTT(24, IP, IPV4, NOF, NONE, NONE, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(25), I40E_PTT(26, IP, IPV4, NOF, NONE, NONE, NOF, TCP, PAY4), I40E_PTT(27, IP, IPV4, NOF, NONE, NONE, NOF, SCTP, PAY4), I40E_PTT(28, IP, IPV4, NOF, NONE, NONE, NOF, ICMP, PAY4), /* IPv4 --> IPv4 */ I40E_PTT(29, IP, IPV4, NOF, IP_IP, IPV4, FRG, NONE, PAY3), I40E_PTT(30, IP, IPV4, NOF, IP_IP, IPV4, NOF, NONE, PAY3), I40E_PTT(31, IP, IPV4, NOF, IP_IP, IPV4, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(32), I40E_PTT(33, IP, IPV4, NOF, IP_IP, IPV4, NOF, TCP, PAY4), I40E_PTT(34, IP, IPV4, NOF, IP_IP, IPV4, NOF, SCTP, PAY4), I40E_PTT(35, IP, IPV4, NOF, IP_IP, IPV4, NOF, ICMP, PAY4), /* IPv4 --> IPv6 */ I40E_PTT(36, IP, IPV4, NOF, IP_IP, IPV6, FRG, NONE, PAY3), I40E_PTT(37, IP, IPV4, NOF, IP_IP, IPV6, NOF, NONE, PAY3), I40E_PTT(38, IP, IPV4, NOF, IP_IP, IPV6, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(39), I40E_PTT(40, IP, IPV4, NOF, IP_IP, IPV6, NOF, TCP, PAY4), I40E_PTT(41, IP, IPV4, NOF, IP_IP, IPV6, NOF, SCTP, PAY4), I40E_PTT(42, IP, IPV4, NOF, IP_IP, IPV6, NOF, ICMP, PAY4), /* IPv4 --> GRE/NAT */ I40E_PTT(43, IP, IPV4, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3), /* IPv4 --> GRE/NAT --> IPv4 */ I40E_PTT(44, IP, IPV4, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3), I40E_PTT(45, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3), I40E_PTT(46, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(47), I40E_PTT(48, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, TCP, PAY4), I40E_PTT(49, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4), I40E_PTT(50, IP, IPV4, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4), /* IPv4 --> GRE/NAT --> IPv6 */ I40E_PTT(51, IP, IPV4, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3), I40E_PTT(52, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3), I40E_PTT(53, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(54), I40E_PTT(55, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, TCP, PAY4), I40E_PTT(56, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4), I40E_PTT(57, IP, IPV4, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4), /* IPv4 --> GRE/NAT --> MAC */ I40E_PTT(58, IP, IPV4, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3), /* IPv4 --> GRE/NAT --> MAC --> IPv4 */ I40E_PTT(59, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3), I40E_PTT(60, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3), I40E_PTT(61, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(62), I40E_PTT(63, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP, PAY4), I40E_PTT(64, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4), I40E_PTT(65, IP, IPV4, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4), /* IPv4 --> GRE/NAT -> MAC --> IPv6 */ I40E_PTT(66, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3), I40E_PTT(67, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3), I40E_PTT(68, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(69), I40E_PTT(70, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP, PAY4), I40E_PTT(71, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4), I40E_PTT(72, IP, IPV4, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4), /* IPv4 --> GRE/NAT --> MAC/VLAN */ I40E_PTT(73, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3), /* IPv4 ---> GRE/NAT -> MAC/VLAN --> IPv4 */ I40E_PTT(74, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3), I40E_PTT(75, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3), I40E_PTT(76, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(77), I40E_PTT(78, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP, PAY4), I40E_PTT(79, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4), I40E_PTT(80, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4), /* IPv4 -> GRE/NAT -> MAC/VLAN --> IPv6 */ I40E_PTT(81, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3), I40E_PTT(82, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3), I40E_PTT(83, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(84), I40E_PTT(85, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP, PAY4), I40E_PTT(86, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4), I40E_PTT(87, IP, IPV4, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4), /* Non Tunneled IPv6 */ I40E_PTT(88, IP, IPV6, FRG, NONE, NONE, NOF, NONE, PAY3), I40E_PTT(89, IP, IPV6, NOF, NONE, NONE, NOF, NONE, PAY3), I40E_PTT(90, IP, IPV6, NOF, NONE, NONE, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(91), I40E_PTT(92, IP, IPV6, NOF, NONE, NONE, NOF, TCP, PAY4), I40E_PTT(93, IP, IPV6, NOF, NONE, NONE, NOF, SCTP, PAY4), I40E_PTT(94, IP, IPV6, NOF, NONE, NONE, NOF, ICMP, PAY4), /* IPv6 --> IPv4 */ I40E_PTT(95, IP, IPV6, NOF, IP_IP, IPV4, FRG, NONE, PAY3), I40E_PTT(96, IP, IPV6, NOF, IP_IP, IPV4, NOF, NONE, PAY3), I40E_PTT(97, IP, IPV6, NOF, IP_IP, IPV4, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(98), I40E_PTT(99, IP, IPV6, NOF, IP_IP, IPV4, NOF, TCP, PAY4), I40E_PTT(100, IP, IPV6, NOF, IP_IP, IPV4, NOF, SCTP, PAY4), I40E_PTT(101, IP, IPV6, NOF, IP_IP, IPV4, NOF, ICMP, PAY4), /* IPv6 --> IPv6 */ I40E_PTT(102, IP, IPV6, NOF, IP_IP, IPV6, FRG, NONE, PAY3), I40E_PTT(103, IP, IPV6, NOF, IP_IP, IPV6, NOF, NONE, PAY3), I40E_PTT(104, IP, IPV6, NOF, IP_IP, IPV6, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(105), I40E_PTT(106, IP, IPV6, NOF, IP_IP, IPV6, NOF, TCP, PAY4), I40E_PTT(107, IP, IPV6, NOF, IP_IP, IPV6, NOF, SCTP, PAY4), I40E_PTT(108, IP, IPV6, NOF, IP_IP, IPV6, NOF, ICMP, PAY4), /* IPv6 --> GRE/NAT */ I40E_PTT(109, IP, IPV6, NOF, IP_GRENAT, NONE, NOF, NONE, PAY3), /* IPv6 --> GRE/NAT -> IPv4 */ I40E_PTT(110, IP, IPV6, NOF, IP_GRENAT, IPV4, FRG, NONE, PAY3), I40E_PTT(111, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, NONE, PAY3), I40E_PTT(112, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(113), I40E_PTT(114, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, TCP, PAY4), I40E_PTT(115, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, SCTP, PAY4), I40E_PTT(116, IP, IPV6, NOF, IP_GRENAT, IPV4, NOF, ICMP, PAY4), /* IPv6 --> GRE/NAT -> IPv6 */ I40E_PTT(117, IP, IPV6, NOF, IP_GRENAT, IPV6, FRG, NONE, PAY3), I40E_PTT(118, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, NONE, PAY3), I40E_PTT(119, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(120), I40E_PTT(121, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, TCP, PAY4), I40E_PTT(122, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, SCTP, PAY4), I40E_PTT(123, IP, IPV6, NOF, IP_GRENAT, IPV6, NOF, ICMP, PAY4), /* IPv6 --> GRE/NAT -> MAC */ I40E_PTT(124, IP, IPV6, NOF, IP_GRENAT_MAC, NONE, NOF, NONE, PAY3), /* IPv6 --> GRE/NAT -> MAC -> IPv4 */ I40E_PTT(125, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, FRG, NONE, PAY3), I40E_PTT(126, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, NONE, PAY3), I40E_PTT(127, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(128), I40E_PTT(129, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, TCP, PAY4), I40E_PTT(130, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, SCTP, PAY4), I40E_PTT(131, IP, IPV6, NOF, IP_GRENAT_MAC, IPV4, NOF, ICMP, PAY4), /* IPv6 --> GRE/NAT -> MAC -> IPv6 */ I40E_PTT(132, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, FRG, NONE, PAY3), I40E_PTT(133, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, NONE, PAY3), I40E_PTT(134, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(135), I40E_PTT(136, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, TCP, PAY4), I40E_PTT(137, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, SCTP, PAY4), I40E_PTT(138, IP, IPV6, NOF, IP_GRENAT_MAC, IPV6, NOF, ICMP, PAY4), /* IPv6 --> GRE/NAT -> MAC/VLAN */ I40E_PTT(139, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, NONE, NOF, NONE, PAY3), /* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv4 */ I40E_PTT(140, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, FRG, NONE, PAY3), I40E_PTT(141, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, NONE, PAY3), I40E_PTT(142, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(143), I40E_PTT(144, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, TCP, PAY4), I40E_PTT(145, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, SCTP, PAY4), I40E_PTT(146, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV4, NOF, ICMP, PAY4), /* IPv6 --> GRE/NAT -> MAC/VLAN --> IPv6 */ I40E_PTT(147, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, FRG, NONE, PAY3), I40E_PTT(148, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, NONE, PAY3), I40E_PTT(149, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, UDP, PAY4), I40E_PTT_UNUSED_ENTRY(150), I40E_PTT(151, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, TCP, PAY4), I40E_PTT(152, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, SCTP, PAY4), I40E_PTT(153, IP, IPV6, NOF, IP_GRENAT_MAC_VLAN, IPV6, NOF, ICMP, PAY4), /* unused entries */ [154 ... 255] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 } }; /** * i40e_init_shared_code - Initialize the shared code * @hw: pointer to hardware structure * * This assigns the MAC type and PHY code and inits the NVM. * Does not touch the hardware. This function must be called prior to any * other function in the shared code. The i40e_hw structure should be * memset to 0 prior to calling this function. The following fields in * hw structure should be filled in prior to calling this function: * hw_addr, back, device_id, vendor_id, subsystem_device_id, * subsystem_vendor_id, and revision_id **/ int i40e_init_shared_code(struct i40e_hw *hw) { u32 port, ari, func_rid; int status = 0; i40e_set_mac_type(hw); switch (hw->mac.type) { case I40E_MAC_XL710: case I40E_MAC_X722: break; default: return I40E_ERR_DEVICE_NOT_SUPPORTED; } hw->phy.get_link_info = true; /* Determine port number and PF number*/ port = (rd32(hw, I40E_PFGEN_PORTNUM) & I40E_PFGEN_PORTNUM_PORT_NUM_MASK) >> I40E_PFGEN_PORTNUM_PORT_NUM_SHIFT; hw->port = (u8)port; ari = (rd32(hw, I40E_GLPCI_CAPSUP) & I40E_GLPCI_CAPSUP_ARI_EN_MASK) >> I40E_GLPCI_CAPSUP_ARI_EN_SHIFT; func_rid = rd32(hw, I40E_PF_FUNC_RID); if (ari) hw->pf_id = (u8)(func_rid & 0xff); else hw->pf_id = (u8)(func_rid & 0x7); status = i40e_init_nvm(hw); return status; } /** * i40e_aq_mac_address_read - Retrieve the MAC addresses * @hw: pointer to the hw struct * @flags: a return indicator of what addresses were added to the addr store * @addrs: the requestor's mac addr store * @cmd_details: pointer to command details structure or NULL **/ static int i40e_aq_mac_address_read(struct i40e_hw *hw, u16 *flags, struct i40e_aqc_mac_address_read_data *addrs, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_mac_address_read *cmd_data = (struct i40e_aqc_mac_address_read *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_mac_address_read); desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF); status = i40e_asq_send_command(hw, &desc, addrs, sizeof(*addrs), cmd_details); *flags = le16_to_cpu(cmd_data->command_flags); return status; } /** * i40e_aq_mac_address_write - Change the MAC addresses * @hw: pointer to the hw struct * @flags: indicates which MAC to be written * @mac_addr: address to write * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_mac_address_write(struct i40e_hw *hw, u16 flags, u8 *mac_addr, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_mac_address_write *cmd_data = (struct i40e_aqc_mac_address_write *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_mac_address_write); cmd_data->command_flags = cpu_to_le16(flags); cmd_data->mac_sah = cpu_to_le16((u16)mac_addr[0] << 8 | mac_addr[1]); cmd_data->mac_sal = cpu_to_le32(((u32)mac_addr[2] << 24) | ((u32)mac_addr[3] << 16) | ((u32)mac_addr[4] << 8) | mac_addr[5]); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_get_mac_addr - get MAC address * @hw: pointer to the HW structure * @mac_addr: pointer to MAC address * * Reads the adapter's MAC address from register **/ int i40e_get_mac_addr(struct i40e_hw *hw, u8 *mac_addr) { struct i40e_aqc_mac_address_read_data addrs; u16 flags = 0; int status; status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL); if (flags & I40E_AQC_LAN_ADDR_VALID) ether_addr_copy(mac_addr, addrs.pf_lan_mac); return status; } /** * i40e_get_port_mac_addr - get Port MAC address * @hw: pointer to the HW structure * @mac_addr: pointer to Port MAC address * * Reads the adapter's Port MAC address **/ int i40e_get_port_mac_addr(struct i40e_hw *hw, u8 *mac_addr) { struct i40e_aqc_mac_address_read_data addrs; u16 flags = 0; int status; status = i40e_aq_mac_address_read(hw, &flags, &addrs, NULL); if (status) return status; if (flags & I40E_AQC_PORT_ADDR_VALID) ether_addr_copy(mac_addr, addrs.port_mac); else status = I40E_ERR_INVALID_MAC_ADDR; return status; } /** * i40e_pre_tx_queue_cfg - pre tx queue configure * @hw: pointer to the HW structure * @queue: target PF queue index * @enable: state change request * * Handles hw requirement to indicate intention to enable * or disable target queue. **/ void i40e_pre_tx_queue_cfg(struct i40e_hw *hw, u32 queue, bool enable) { u32 abs_queue_idx = hw->func_caps.base_queue + queue; u32 reg_block = 0; u32 reg_val; if (abs_queue_idx >= 128) { reg_block = abs_queue_idx / 128; abs_queue_idx %= 128; } reg_val = rd32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block)); reg_val &= ~I40E_GLLAN_TXPRE_QDIS_QINDX_MASK; reg_val |= (abs_queue_idx << I40E_GLLAN_TXPRE_QDIS_QINDX_SHIFT); if (enable) reg_val |= I40E_GLLAN_TXPRE_QDIS_CLEAR_QDIS_MASK; else reg_val |= I40E_GLLAN_TXPRE_QDIS_SET_QDIS_MASK; wr32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block), reg_val); } /** * i40e_read_pba_string - Reads part number string from EEPROM * @hw: pointer to hardware structure * @pba_num: stores the part number string from the EEPROM * @pba_num_size: part number string buffer length * * Reads the part number string from the EEPROM. **/ int i40e_read_pba_string(struct i40e_hw *hw, u8 *pba_num, u32 pba_num_size) { u16 pba_word = 0; u16 pba_size = 0; u16 pba_ptr = 0; int status = 0; u16 i = 0; status = i40e_read_nvm_word(hw, I40E_SR_PBA_FLAGS, &pba_word); if (status || (pba_word != 0xFAFA)) { hw_dbg(hw, "Failed to read PBA flags or flag is invalid.\n"); return status; } status = i40e_read_nvm_word(hw, I40E_SR_PBA_BLOCK_PTR, &pba_ptr); if (status) { hw_dbg(hw, "Failed to read PBA Block pointer.\n"); return status; } status = i40e_read_nvm_word(hw, pba_ptr, &pba_size); if (status) { hw_dbg(hw, "Failed to read PBA Block size.\n"); return status; } /* Subtract one to get PBA word count (PBA Size word is included in * total size) */ pba_size--; if (pba_num_size < (((u32)pba_size * 2) + 1)) { hw_dbg(hw, "Buffer too small for PBA data.\n"); return I40E_ERR_PARAM; } for (i = 0; i < pba_size; i++) { status = i40e_read_nvm_word(hw, (pba_ptr + 1) + i, &pba_word); if (status) { hw_dbg(hw, "Failed to read PBA Block word %d.\n", i); return status; } pba_num[(i * 2)] = (pba_word >> 8) & 0xFF; pba_num[(i * 2) + 1] = pba_word & 0xFF; } pba_num[(pba_size * 2)] = '\0'; return status; } /** * i40e_get_media_type - Gets media type * @hw: pointer to the hardware structure **/ static enum i40e_media_type i40e_get_media_type(struct i40e_hw *hw) { enum i40e_media_type media; switch (hw->phy.link_info.phy_type) { case I40E_PHY_TYPE_10GBASE_SR: case I40E_PHY_TYPE_10GBASE_LR: case I40E_PHY_TYPE_1000BASE_SX: case I40E_PHY_TYPE_1000BASE_LX: case I40E_PHY_TYPE_40GBASE_SR4: case I40E_PHY_TYPE_40GBASE_LR4: case I40E_PHY_TYPE_25GBASE_LR: case I40E_PHY_TYPE_25GBASE_SR: media = I40E_MEDIA_TYPE_FIBER; break; case I40E_PHY_TYPE_100BASE_TX: case I40E_PHY_TYPE_1000BASE_T: case I40E_PHY_TYPE_2_5GBASE_T_LINK_STATUS: case I40E_PHY_TYPE_5GBASE_T_LINK_STATUS: case I40E_PHY_TYPE_10GBASE_T: media = I40E_MEDIA_TYPE_BASET; break; case I40E_PHY_TYPE_10GBASE_CR1_CU: case I40E_PHY_TYPE_40GBASE_CR4_CU: case I40E_PHY_TYPE_10GBASE_CR1: case I40E_PHY_TYPE_40GBASE_CR4: case I40E_PHY_TYPE_10GBASE_SFPP_CU: case I40E_PHY_TYPE_40GBASE_AOC: case I40E_PHY_TYPE_10GBASE_AOC: case I40E_PHY_TYPE_25GBASE_CR: case I40E_PHY_TYPE_25GBASE_AOC: case I40E_PHY_TYPE_25GBASE_ACC: media = I40E_MEDIA_TYPE_DA; break; case I40E_PHY_TYPE_1000BASE_KX: case I40E_PHY_TYPE_10GBASE_KX4: case I40E_PHY_TYPE_10GBASE_KR: case I40E_PHY_TYPE_40GBASE_KR4: case I40E_PHY_TYPE_20GBASE_KR2: case I40E_PHY_TYPE_25GBASE_KR: media = I40E_MEDIA_TYPE_BACKPLANE; break; case I40E_PHY_TYPE_SGMII: case I40E_PHY_TYPE_XAUI: case I40E_PHY_TYPE_XFI: case I40E_PHY_TYPE_XLAUI: case I40E_PHY_TYPE_XLPPI: default: media = I40E_MEDIA_TYPE_UNKNOWN; break; } return media; } /** * i40e_poll_globr - Poll for Global Reset completion * @hw: pointer to the hardware structure * @retry_limit: how many times to retry before failure **/ static int i40e_poll_globr(struct i40e_hw *hw, u32 retry_limit) { u32 cnt, reg = 0; for (cnt = 0; cnt < retry_limit; cnt++) { reg = rd32(hw, I40E_GLGEN_RSTAT); if (!(reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK)) return 0; msleep(100); } hw_dbg(hw, "Global reset failed.\n"); hw_dbg(hw, "I40E_GLGEN_RSTAT = 0x%x\n", reg); return I40E_ERR_RESET_FAILED; } #define I40E_PF_RESET_WAIT_COUNT_A0 200 #define I40E_PF_RESET_WAIT_COUNT 200 /** * i40e_pf_reset - Reset the PF * @hw: pointer to the hardware structure * * Assuming someone else has triggered a global reset, * assure the global reset is complete and then reset the PF **/ int i40e_pf_reset(struct i40e_hw *hw) { u32 cnt = 0; u32 cnt1 = 0; u32 reg = 0; u32 grst_del; /* Poll for Global Reset steady state in case of recent GRST. * The grst delay value is in 100ms units, and we'll wait a * couple counts longer to be sure we don't just miss the end. */ grst_del = (rd32(hw, I40E_GLGEN_RSTCTL) & I40E_GLGEN_RSTCTL_GRSTDEL_MASK) >> I40E_GLGEN_RSTCTL_GRSTDEL_SHIFT; /* It can take upto 15 secs for GRST steady state. * Bump it to 16 secs max to be safe. */ grst_del = grst_del * 20; for (cnt = 0; cnt < grst_del; cnt++) { reg = rd32(hw, I40E_GLGEN_RSTAT); if (!(reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK)) break; msleep(100); } if (reg & I40E_GLGEN_RSTAT_DEVSTATE_MASK) { hw_dbg(hw, "Global reset polling failed to complete.\n"); return I40E_ERR_RESET_FAILED; } /* Now Wait for the FW to be ready */ for (cnt1 = 0; cnt1 < I40E_PF_RESET_WAIT_COUNT; cnt1++) { reg = rd32(hw, I40E_GLNVM_ULD); reg &= (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK | I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK); if (reg == (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK | I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK)) { hw_dbg(hw, "Core and Global modules ready %d\n", cnt1); break; } usleep_range(10000, 20000); } if (!(reg & (I40E_GLNVM_ULD_CONF_CORE_DONE_MASK | I40E_GLNVM_ULD_CONF_GLOBAL_DONE_MASK))) { hw_dbg(hw, "wait for FW Reset complete timedout\n"); hw_dbg(hw, "I40E_GLNVM_ULD = 0x%x\n", reg); return I40E_ERR_RESET_FAILED; } /* If there was a Global Reset in progress when we got here, * we don't need to do the PF Reset */ if (!cnt) { u32 reg2 = 0; if (hw->revision_id == 0) cnt = I40E_PF_RESET_WAIT_COUNT_A0; else cnt = I40E_PF_RESET_WAIT_COUNT; reg = rd32(hw, I40E_PFGEN_CTRL); wr32(hw, I40E_PFGEN_CTRL, (reg | I40E_PFGEN_CTRL_PFSWR_MASK)); for (; cnt; cnt--) { reg = rd32(hw, I40E_PFGEN_CTRL); if (!(reg & I40E_PFGEN_CTRL_PFSWR_MASK)) break; reg2 = rd32(hw, I40E_GLGEN_RSTAT); if (reg2 & I40E_GLGEN_RSTAT_DEVSTATE_MASK) break; usleep_range(1000, 2000); } if (reg2 & I40E_GLGEN_RSTAT_DEVSTATE_MASK) { if (i40e_poll_globr(hw, grst_del)) return I40E_ERR_RESET_FAILED; } else if (reg & I40E_PFGEN_CTRL_PFSWR_MASK) { hw_dbg(hw, "PF reset polling failed to complete.\n"); return I40E_ERR_RESET_FAILED; } } i40e_clear_pxe_mode(hw); return 0; } /** * i40e_clear_hw - clear out any left over hw state * @hw: pointer to the hw struct * * Clear queues and interrupts, typically called at init time, * but after the capabilities have been found so we know how many * queues and msix vectors have been allocated. **/ void i40e_clear_hw(struct i40e_hw *hw) { u32 num_queues, base_queue; u32 num_pf_int; u32 num_vf_int; u32 num_vfs; u32 i, j; u32 val; u32 eol = 0x7ff; /* get number of interrupts, queues, and VFs */ val = rd32(hw, I40E_GLPCI_CNF2); num_pf_int = (val & I40E_GLPCI_CNF2_MSI_X_PF_N_MASK) >> I40E_GLPCI_CNF2_MSI_X_PF_N_SHIFT; num_vf_int = (val & I40E_GLPCI_CNF2_MSI_X_VF_N_MASK) >> I40E_GLPCI_CNF2_MSI_X_VF_N_SHIFT; val = rd32(hw, I40E_PFLAN_QALLOC); base_queue = (val & I40E_PFLAN_QALLOC_FIRSTQ_MASK) >> I40E_PFLAN_QALLOC_FIRSTQ_SHIFT; j = (val & I40E_PFLAN_QALLOC_LASTQ_MASK) >> I40E_PFLAN_QALLOC_LASTQ_SHIFT; if (val & I40E_PFLAN_QALLOC_VALID_MASK) num_queues = (j - base_queue) + 1; else num_queues = 0; val = rd32(hw, I40E_PF_VT_PFALLOC); i = (val & I40E_PF_VT_PFALLOC_FIRSTVF_MASK) >> I40E_PF_VT_PFALLOC_FIRSTVF_SHIFT; j = (val & I40E_PF_VT_PFALLOC_LASTVF_MASK) >> I40E_PF_VT_PFALLOC_LASTVF_SHIFT; if (val & I40E_PF_VT_PFALLOC_VALID_MASK) num_vfs = (j - i) + 1; else num_vfs = 0; /* stop all the interrupts */ wr32(hw, I40E_PFINT_ICR0_ENA, 0); val = 0x3 << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT; for (i = 0; i < num_pf_int - 2; i++) wr32(hw, I40E_PFINT_DYN_CTLN(i), val); /* Set the FIRSTQ_INDX field to 0x7FF in PFINT_LNKLSTx */ val = eol << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; wr32(hw, I40E_PFINT_LNKLST0, val); for (i = 0; i < num_pf_int - 2; i++) wr32(hw, I40E_PFINT_LNKLSTN(i), val); val = eol << I40E_VPINT_LNKLST0_FIRSTQ_INDX_SHIFT; for (i = 0; i < num_vfs; i++) wr32(hw, I40E_VPINT_LNKLST0(i), val); for (i = 0; i < num_vf_int - 2; i++) wr32(hw, I40E_VPINT_LNKLSTN(i), val); /* warn the HW of the coming Tx disables */ for (i = 0; i < num_queues; i++) { u32 abs_queue_idx = base_queue + i; u32 reg_block = 0; if (abs_queue_idx >= 128) { reg_block = abs_queue_idx / 128; abs_queue_idx %= 128; } val = rd32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block)); val &= ~I40E_GLLAN_TXPRE_QDIS_QINDX_MASK; val |= (abs_queue_idx << I40E_GLLAN_TXPRE_QDIS_QINDX_SHIFT); val |= I40E_GLLAN_TXPRE_QDIS_SET_QDIS_MASK; wr32(hw, I40E_GLLAN_TXPRE_QDIS(reg_block), val); } udelay(400); /* stop all the queues */ for (i = 0; i < num_queues; i++) { wr32(hw, I40E_QINT_TQCTL(i), 0); wr32(hw, I40E_QTX_ENA(i), 0); wr32(hw, I40E_QINT_RQCTL(i), 0); wr32(hw, I40E_QRX_ENA(i), 0); } /* short wait for all queue disables to settle */ udelay(50); } /** * i40e_clear_pxe_mode - clear pxe operations mode * @hw: pointer to the hw struct * * Make sure all PXE mode settings are cleared, including things * like descriptor fetch/write-back mode. **/ void i40e_clear_pxe_mode(struct i40e_hw *hw) { u32 reg; if (i40e_check_asq_alive(hw)) i40e_aq_clear_pxe_mode(hw, NULL); /* Clear single descriptor fetch/write-back mode */ reg = rd32(hw, I40E_GLLAN_RCTL_0); if (hw->revision_id == 0) { /* As a work around clear PXE_MODE instead of setting it */ wr32(hw, I40E_GLLAN_RCTL_0, (reg & (~I40E_GLLAN_RCTL_0_PXE_MODE_MASK))); } else { wr32(hw, I40E_GLLAN_RCTL_0, (reg | I40E_GLLAN_RCTL_0_PXE_MODE_MASK)); } } /** * i40e_led_is_mine - helper to find matching led * @hw: pointer to the hw struct * @idx: index into GPIO registers * * returns: 0 if no match, otherwise the value of the GPIO_CTL register */ static u32 i40e_led_is_mine(struct i40e_hw *hw, int idx) { u32 gpio_val = 0; u32 port; if (!I40E_IS_X710TL_DEVICE(hw->device_id) && !hw->func_caps.led[idx]) return 0; gpio_val = rd32(hw, I40E_GLGEN_GPIO_CTL(idx)); port = (gpio_val & I40E_GLGEN_GPIO_CTL_PRT_NUM_MASK) >> I40E_GLGEN_GPIO_CTL_PRT_NUM_SHIFT; /* if PRT_NUM_NA is 1 then this LED is not port specific, OR * if it is not our port then ignore */ if ((gpio_val & I40E_GLGEN_GPIO_CTL_PRT_NUM_NA_MASK) || (port != hw->port)) return 0; return gpio_val; } #define I40E_FW_LED BIT(4) #define I40E_LED_MODE_VALID (I40E_GLGEN_GPIO_CTL_LED_MODE_MASK >> \ I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT) #define I40E_LED0 22 #define I40E_PIN_FUNC_SDP 0x0 #define I40E_PIN_FUNC_LED 0x1 /** * i40e_led_get - return current on/off mode * @hw: pointer to the hw struct * * The value returned is the 'mode' field as defined in the * GPIO register definitions: 0x0 = off, 0xf = on, and other * values are variations of possible behaviors relating to * blink, link, and wire. **/ u32 i40e_led_get(struct i40e_hw *hw) { u32 mode = 0; int i; /* as per the documentation GPIO 22-29 are the LED * GPIO pins named LED0..LED7 */ for (i = I40E_LED0; i <= I40E_GLGEN_GPIO_CTL_MAX_INDEX; i++) { u32 gpio_val = i40e_led_is_mine(hw, i); if (!gpio_val) continue; mode = (gpio_val & I40E_GLGEN_GPIO_CTL_LED_MODE_MASK) >> I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT; break; } return mode; } /** * i40e_led_set - set new on/off mode * @hw: pointer to the hw struct * @mode: 0=off, 0xf=on (else see manual for mode details) * @blink: true if the LED should blink when on, false if steady * * if this function is used to turn on the blink it should * be used to disable the blink when restoring the original state. **/ void i40e_led_set(struct i40e_hw *hw, u32 mode, bool blink) { int i; if (mode & ~I40E_LED_MODE_VALID) { hw_dbg(hw, "invalid mode passed in %X\n", mode); return; } /* as per the documentation GPIO 22-29 are the LED * GPIO pins named LED0..LED7 */ for (i = I40E_LED0; i <= I40E_GLGEN_GPIO_CTL_MAX_INDEX; i++) { u32 gpio_val = i40e_led_is_mine(hw, i); if (!gpio_val) continue; if (I40E_IS_X710TL_DEVICE(hw->device_id)) { u32 pin_func = 0; if (mode & I40E_FW_LED) pin_func = I40E_PIN_FUNC_SDP; else pin_func = I40E_PIN_FUNC_LED; gpio_val &= ~I40E_GLGEN_GPIO_CTL_PIN_FUNC_MASK; gpio_val |= ((pin_func << I40E_GLGEN_GPIO_CTL_PIN_FUNC_SHIFT) & I40E_GLGEN_GPIO_CTL_PIN_FUNC_MASK); } gpio_val &= ~I40E_GLGEN_GPIO_CTL_LED_MODE_MASK; /* this & is a bit of paranoia, but serves as a range check */ gpio_val |= ((mode << I40E_GLGEN_GPIO_CTL_LED_MODE_SHIFT) & I40E_GLGEN_GPIO_CTL_LED_MODE_MASK); if (blink) gpio_val |= BIT(I40E_GLGEN_GPIO_CTL_LED_BLINK_SHIFT); else gpio_val &= ~BIT(I40E_GLGEN_GPIO_CTL_LED_BLINK_SHIFT); wr32(hw, I40E_GLGEN_GPIO_CTL(i), gpio_val); break; } } /* Admin command wrappers */ /** * i40e_aq_get_phy_capabilities * @hw: pointer to the hw struct * @abilities: structure for PHY capabilities to be filled * @qualified_modules: report Qualified Modules * @report_init: report init capabilities (active are default) * @cmd_details: pointer to command details structure or NULL * * Returns the various PHY abilities supported on the Port. **/ int i40e_aq_get_phy_capabilities(struct i40e_hw *hw, bool qualified_modules, bool report_init, struct i40e_aq_get_phy_abilities_resp *abilities, struct i40e_asq_cmd_details *cmd_details) { u16 abilities_size = sizeof(struct i40e_aq_get_phy_abilities_resp); u16 max_delay = I40E_MAX_PHY_TIMEOUT, total_delay = 0; struct i40e_aq_desc desc; int status; if (!abilities) return I40E_ERR_PARAM; do { i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_phy_abilities); desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF); if (abilities_size > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); if (qualified_modules) desc.params.external.param0 |= cpu_to_le32(I40E_AQ_PHY_REPORT_QUALIFIED_MODULES); if (report_init) desc.params.external.param0 |= cpu_to_le32(I40E_AQ_PHY_REPORT_INITIAL_VALUES); status = i40e_asq_send_command(hw, &desc, abilities, abilities_size, cmd_details); switch (hw->aq.asq_last_status) { case I40E_AQ_RC_EIO: status = I40E_ERR_UNKNOWN_PHY; break; case I40E_AQ_RC_EAGAIN: usleep_range(1000, 2000); total_delay++; status = I40E_ERR_TIMEOUT; break; /* also covers I40E_AQ_RC_OK */ default: break; } } while ((hw->aq.asq_last_status == I40E_AQ_RC_EAGAIN) && (total_delay < max_delay)); if (status) return status; if (report_init) { if (hw->mac.type == I40E_MAC_XL710 && hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && hw->aq.api_min_ver >= I40E_MINOR_VER_GET_LINK_INFO_XL710) { status = i40e_aq_get_link_info(hw, true, NULL, NULL); } else { hw->phy.phy_types = le32_to_cpu(abilities->phy_type); hw->phy.phy_types |= ((u64)abilities->phy_type_ext << 32); } } return status; } /** * i40e_aq_set_phy_config * @hw: pointer to the hw struct * @config: structure with PHY configuration to be set * @cmd_details: pointer to command details structure or NULL * * Set the various PHY configuration parameters * supported on the Port.One or more of the Set PHY config parameters may be * ignored in an MFP mode as the PF may not have the privilege to set some * of the PHY Config parameters. This status will be indicated by the * command response. **/ int i40e_aq_set_phy_config(struct i40e_hw *hw, struct i40e_aq_set_phy_config *config, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aq_set_phy_config *cmd = (struct i40e_aq_set_phy_config *)&desc.params.raw; int status; if (!config) return I40E_ERR_PARAM; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_phy_config); *cmd = *config; status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } static noinline_for_stack int i40e_set_fc_status(struct i40e_hw *hw, struct i40e_aq_get_phy_abilities_resp *abilities, bool atomic_restart) { struct i40e_aq_set_phy_config config; enum i40e_fc_mode fc_mode = hw->fc.requested_mode; u8 pause_mask = 0x0; switch (fc_mode) { case I40E_FC_FULL: pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_TX; pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_RX; break; case I40E_FC_RX_PAUSE: pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_RX; break; case I40E_FC_TX_PAUSE: pause_mask |= I40E_AQ_PHY_FLAG_PAUSE_TX; break; default: break; } memset(&config, 0, sizeof(struct i40e_aq_set_phy_config)); /* clear the old pause settings */ config.abilities = abilities->abilities & ~(I40E_AQ_PHY_FLAG_PAUSE_TX) & ~(I40E_AQ_PHY_FLAG_PAUSE_RX); /* set the new abilities */ config.abilities |= pause_mask; /* If the abilities have changed, then set the new config */ if (config.abilities == abilities->abilities) return 0; /* Auto restart link so settings take effect */ if (atomic_restart) config.abilities |= I40E_AQ_PHY_ENABLE_ATOMIC_LINK; /* Copy over all the old settings */ config.phy_type = abilities->phy_type; config.phy_type_ext = abilities->phy_type_ext; config.link_speed = abilities->link_speed; config.eee_capability = abilities->eee_capability; config.eeer = abilities->eeer_val; config.low_power_ctrl = abilities->d3_lpan; config.fec_config = abilities->fec_cfg_curr_mod_ext_info & I40E_AQ_PHY_FEC_CONFIG_MASK; return i40e_aq_set_phy_config(hw, &config, NULL); } /** * i40e_set_fc * @hw: pointer to the hw struct * @aq_failures: buffer to return AdminQ failure information * @atomic_restart: whether to enable atomic link restart * * Set the requested flow control mode using set_phy_config. **/ int i40e_set_fc(struct i40e_hw *hw, u8 *aq_failures, bool atomic_restart) { struct i40e_aq_get_phy_abilities_resp abilities; int status; *aq_failures = 0x0; /* Get the current phy config */ status = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); if (status) { *aq_failures |= I40E_SET_FC_AQ_FAIL_GET; return status; } status = i40e_set_fc_status(hw, &abilities, atomic_restart); if (status) *aq_failures |= I40E_SET_FC_AQ_FAIL_SET; /* Update the link info */ status = i40e_update_link_info(hw); if (status) { /* Wait a little bit (on 40G cards it sometimes takes a really * long time for link to come back from the atomic reset) * and try once more */ msleep(1000); status = i40e_update_link_info(hw); } if (status) *aq_failures |= I40E_SET_FC_AQ_FAIL_UPDATE; return status; } /** * i40e_aq_clear_pxe_mode * @hw: pointer to the hw struct * @cmd_details: pointer to command details structure or NULL * * Tell the firmware that the driver is taking over from PXE **/ int i40e_aq_clear_pxe_mode(struct i40e_hw *hw, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_clear_pxe *cmd = (struct i40e_aqc_clear_pxe *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_clear_pxe_mode); cmd->rx_cnt = 0x2; status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); wr32(hw, I40E_GLLAN_RCTL_0, 0x1); return status; } /** * i40e_aq_set_link_restart_an * @hw: pointer to the hw struct * @enable_link: if true: enable link, if false: disable link * @cmd_details: pointer to command details structure or NULL * * Sets up the link and restarts the Auto-Negotiation over the link. **/ int i40e_aq_set_link_restart_an(struct i40e_hw *hw, bool enable_link, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_set_link_restart_an *cmd = (struct i40e_aqc_set_link_restart_an *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_link_restart_an); cmd->command = I40E_AQ_PHY_RESTART_AN; if (enable_link) cmd->command |= I40E_AQ_PHY_LINK_ENABLE; else cmd->command &= ~I40E_AQ_PHY_LINK_ENABLE; status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_get_link_info * @hw: pointer to the hw struct * @enable_lse: enable/disable LinkStatusEvent reporting * @link: pointer to link status structure - optional * @cmd_details: pointer to command details structure or NULL * * Returns the link status of the adapter. **/ int i40e_aq_get_link_info(struct i40e_hw *hw, bool enable_lse, struct i40e_link_status *link, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_get_link_status *resp = (struct i40e_aqc_get_link_status *)&desc.params.raw; struct i40e_link_status *hw_link_info = &hw->phy.link_info; bool tx_pause, rx_pause; u16 command_flags; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_link_status); if (enable_lse) command_flags = I40E_AQ_LSE_ENABLE; else command_flags = I40E_AQ_LSE_DISABLE; resp->command_flags = cpu_to_le16(command_flags); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); if (status) goto aq_get_link_info_exit; /* save off old link status information */ hw->phy.link_info_old = *hw_link_info; /* update link status */ hw_link_info->phy_type = (enum i40e_aq_phy_type)resp->phy_type; hw->phy.media_type = i40e_get_media_type(hw); hw_link_info->link_speed = (enum i40e_aq_link_speed)resp->link_speed; hw_link_info->link_info = resp->link_info; hw_link_info->an_info = resp->an_info; hw_link_info->fec_info = resp->config & (I40E_AQ_CONFIG_FEC_KR_ENA | I40E_AQ_CONFIG_FEC_RS_ENA); hw_link_info->ext_info = resp->ext_info; hw_link_info->loopback = resp->loopback & I40E_AQ_LOOPBACK_MASK; hw_link_info->max_frame_size = le16_to_cpu(resp->max_frame_size); hw_link_info->pacing = resp->config & I40E_AQ_CONFIG_PACING_MASK; /* update fc info */ tx_pause = !!(resp->an_info & I40E_AQ_LINK_PAUSE_TX); rx_pause = !!(resp->an_info & I40E_AQ_LINK_PAUSE_RX); if (tx_pause & rx_pause) hw->fc.current_mode = I40E_FC_FULL; else if (tx_pause) hw->fc.current_mode = I40E_FC_TX_PAUSE; else if (rx_pause) hw->fc.current_mode = I40E_FC_RX_PAUSE; else hw->fc.current_mode = I40E_FC_NONE; if (resp->config & I40E_AQ_CONFIG_CRC_ENA) hw_link_info->crc_enable = true; else hw_link_info->crc_enable = false; if (resp->command_flags & cpu_to_le16(I40E_AQ_LSE_IS_ENABLED)) hw_link_info->lse_enable = true; else hw_link_info->lse_enable = false; if ((hw->mac.type == I40E_MAC_XL710) && (hw->aq.fw_maj_ver < 4 || (hw->aq.fw_maj_ver == 4 && hw->aq.fw_min_ver < 40)) && hw_link_info->phy_type == 0xE) hw_link_info->phy_type = I40E_PHY_TYPE_10GBASE_SFPP_CU; if (hw->flags & I40E_HW_FLAG_AQ_PHY_ACCESS_CAPABLE && hw->mac.type != I40E_MAC_X722) { __le32 tmp; memcpy(&tmp, resp->link_type, sizeof(tmp)); hw->phy.phy_types = le32_to_cpu(tmp); hw->phy.phy_types |= ((u64)resp->link_type_ext << 32); } /* save link status information */ if (link) *link = *hw_link_info; /* flag cleared so helper functions don't call AQ again */ hw->phy.get_link_info = false; aq_get_link_info_exit: return status; } /** * i40e_aq_set_phy_int_mask * @hw: pointer to the hw struct * @mask: interrupt mask to be set * @cmd_details: pointer to command details structure or NULL * * Set link interrupt mask. **/ int i40e_aq_set_phy_int_mask(struct i40e_hw *hw, u16 mask, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_set_phy_int_mask *cmd = (struct i40e_aqc_set_phy_int_mask *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_phy_int_mask); cmd->event_mask = cpu_to_le16(mask); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_set_phy_debug * @hw: pointer to the hw struct * @cmd_flags: debug command flags * @cmd_details: pointer to command details structure or NULL * * Reset the external PHY. **/ int i40e_aq_set_phy_debug(struct i40e_hw *hw, u8 cmd_flags, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_set_phy_debug *cmd = (struct i40e_aqc_set_phy_debug *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_phy_debug); cmd->command_flags = cmd_flags; status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_is_aq_api_ver_ge * @aq: pointer to AdminQ info containing HW API version to compare * @maj: API major value * @min: API minor value * * Assert whether current HW API version is greater/equal than provided. **/ static bool i40e_is_aq_api_ver_ge(struct i40e_adminq_info *aq, u16 maj, u16 min) { return (aq->api_maj_ver > maj || (aq->api_maj_ver == maj && aq->api_min_ver >= min)); } /** * i40e_aq_add_vsi * @hw: pointer to the hw struct * @vsi_ctx: pointer to a vsi context struct * @cmd_details: pointer to command details structure or NULL * * Add a VSI context to the hardware. **/ int i40e_aq_add_vsi(struct i40e_hw *hw, struct i40e_vsi_context *vsi_ctx, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_add_get_update_vsi *cmd = (struct i40e_aqc_add_get_update_vsi *)&desc.params.raw; struct i40e_aqc_add_get_update_vsi_completion *resp = (struct i40e_aqc_add_get_update_vsi_completion *) &desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_vsi); cmd->uplink_seid = cpu_to_le16(vsi_ctx->uplink_seid); cmd->connection_type = vsi_ctx->connection_type; cmd->vf_id = vsi_ctx->vf_num; cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags); desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD)); status = i40e_asq_send_command_atomic(hw, &desc, &vsi_ctx->info, sizeof(vsi_ctx->info), cmd_details, true); if (status) goto aq_add_vsi_exit; vsi_ctx->seid = le16_to_cpu(resp->seid); vsi_ctx->vsi_number = le16_to_cpu(resp->vsi_number); vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used); vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); aq_add_vsi_exit: return status; } /** * i40e_aq_set_default_vsi * @hw: pointer to the hw struct * @seid: vsi number * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_set_default_vsi(struct i40e_hw *hw, u16 seid, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_set_vsi_promiscuous_modes *cmd = (struct i40e_aqc_set_vsi_promiscuous_modes *) &desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_vsi_promiscuous_modes); cmd->promiscuous_flags = cpu_to_le16(I40E_AQC_SET_VSI_DEFAULT); cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_DEFAULT); cmd->seid = cpu_to_le16(seid); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_clear_default_vsi * @hw: pointer to the hw struct * @seid: vsi number * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_clear_default_vsi(struct i40e_hw *hw, u16 seid, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_set_vsi_promiscuous_modes *cmd = (struct i40e_aqc_set_vsi_promiscuous_modes *) &desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_vsi_promiscuous_modes); cmd->promiscuous_flags = cpu_to_le16(0); cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_DEFAULT); cmd->seid = cpu_to_le16(seid); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_set_vsi_unicast_promiscuous * @hw: pointer to the hw struct * @seid: vsi number * @set: set unicast promiscuous enable/disable * @cmd_details: pointer to command details structure or NULL * @rx_only_promisc: flag to decide if egress traffic gets mirrored in promisc **/ int i40e_aq_set_vsi_unicast_promiscuous(struct i40e_hw *hw, u16 seid, bool set, struct i40e_asq_cmd_details *cmd_details, bool rx_only_promisc) { struct i40e_aq_desc desc; struct i40e_aqc_set_vsi_promiscuous_modes *cmd = (struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw; u16 flags = 0; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_vsi_promiscuous_modes); if (set) { flags |= I40E_AQC_SET_VSI_PROMISC_UNICAST; if (rx_only_promisc && i40e_is_aq_api_ver_ge(&hw->aq, 1, 5)) flags |= I40E_AQC_SET_VSI_PROMISC_RX_ONLY; } cmd->promiscuous_flags = cpu_to_le16(flags); cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_UNICAST); if (i40e_is_aq_api_ver_ge(&hw->aq, 1, 5)) cmd->valid_flags |= cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_RX_ONLY); cmd->seid = cpu_to_le16(seid); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_set_vsi_multicast_promiscuous * @hw: pointer to the hw struct * @seid: vsi number * @set: set multicast promiscuous enable/disable * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_set_vsi_multicast_promiscuous(struct i40e_hw *hw, u16 seid, bool set, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_set_vsi_promiscuous_modes *cmd = (struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw; u16 flags = 0; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_vsi_promiscuous_modes); if (set) flags |= I40E_AQC_SET_VSI_PROMISC_MULTICAST; cmd->promiscuous_flags = cpu_to_le16(flags); cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_MULTICAST); cmd->seid = cpu_to_le16(seid); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_set_vsi_mc_promisc_on_vlan * @hw: pointer to the hw struct * @seid: vsi number * @enable: set MAC L2 layer unicast promiscuous enable/disable for a given VLAN * @vid: The VLAN tag filter - capture any multicast packet with this VLAN tag * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_set_vsi_mc_promisc_on_vlan(struct i40e_hw *hw, u16 seid, bool enable, u16 vid, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_set_vsi_promiscuous_modes *cmd = (struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw; u16 flags = 0; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_vsi_promiscuous_modes); if (enable) flags |= I40E_AQC_SET_VSI_PROMISC_MULTICAST; cmd->promiscuous_flags = cpu_to_le16(flags); cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_MULTICAST); cmd->seid = cpu_to_le16(seid); cmd->vlan_tag = cpu_to_le16(vid | I40E_AQC_SET_VSI_VLAN_VALID); status = i40e_asq_send_command_atomic(hw, &desc, NULL, 0, cmd_details, true); return status; } /** * i40e_aq_set_vsi_uc_promisc_on_vlan * @hw: pointer to the hw struct * @seid: vsi number * @enable: set MAC L2 layer unicast promiscuous enable/disable for a given VLAN * @vid: The VLAN tag filter - capture any unicast packet with this VLAN tag * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_set_vsi_uc_promisc_on_vlan(struct i40e_hw *hw, u16 seid, bool enable, u16 vid, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_set_vsi_promiscuous_modes *cmd = (struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw; u16 flags = 0; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_vsi_promiscuous_modes); if (enable) { flags |= I40E_AQC_SET_VSI_PROMISC_UNICAST; if (i40e_is_aq_api_ver_ge(&hw->aq, 1, 5)) flags |= I40E_AQC_SET_VSI_PROMISC_RX_ONLY; } cmd->promiscuous_flags = cpu_to_le16(flags); cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_UNICAST); if (i40e_is_aq_api_ver_ge(&hw->aq, 1, 5)) cmd->valid_flags |= cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_RX_ONLY); cmd->seid = cpu_to_le16(seid); cmd->vlan_tag = cpu_to_le16(vid | I40E_AQC_SET_VSI_VLAN_VALID); status = i40e_asq_send_command_atomic(hw, &desc, NULL, 0, cmd_details, true); return status; } /** * i40e_aq_set_vsi_bc_promisc_on_vlan * @hw: pointer to the hw struct * @seid: vsi number * @enable: set broadcast promiscuous enable/disable for a given VLAN * @vid: The VLAN tag filter - capture any broadcast packet with this VLAN tag * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_set_vsi_bc_promisc_on_vlan(struct i40e_hw *hw, u16 seid, bool enable, u16 vid, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_set_vsi_promiscuous_modes *cmd = (struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw; u16 flags = 0; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_vsi_promiscuous_modes); if (enable) flags |= I40E_AQC_SET_VSI_PROMISC_BROADCAST; cmd->promiscuous_flags = cpu_to_le16(flags); cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST); cmd->seid = cpu_to_le16(seid); cmd->vlan_tag = cpu_to_le16(vid | I40E_AQC_SET_VSI_VLAN_VALID); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_set_vsi_broadcast * @hw: pointer to the hw struct * @seid: vsi number * @set_filter: true to set filter, false to clear filter * @cmd_details: pointer to command details structure or NULL * * Set or clear the broadcast promiscuous flag (filter) for a given VSI. **/ int i40e_aq_set_vsi_broadcast(struct i40e_hw *hw, u16 seid, bool set_filter, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_set_vsi_promiscuous_modes *cmd = (struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_vsi_promiscuous_modes); if (set_filter) cmd->promiscuous_flags |= cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST); else cmd->promiscuous_flags &= cpu_to_le16(~I40E_AQC_SET_VSI_PROMISC_BROADCAST); cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_BROADCAST); cmd->seid = cpu_to_le16(seid); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_set_vsi_vlan_promisc - control the VLAN promiscuous setting * @hw: pointer to the hw struct * @seid: vsi number * @enable: set MAC L2 layer unicast promiscuous enable/disable for a given VLAN * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_set_vsi_vlan_promisc(struct i40e_hw *hw, u16 seid, bool enable, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_set_vsi_promiscuous_modes *cmd = (struct i40e_aqc_set_vsi_promiscuous_modes *)&desc.params.raw; u16 flags = 0; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_vsi_promiscuous_modes); if (enable) flags |= I40E_AQC_SET_VSI_PROMISC_VLAN; cmd->promiscuous_flags = cpu_to_le16(flags); cmd->valid_flags = cpu_to_le16(I40E_AQC_SET_VSI_PROMISC_VLAN); cmd->seid = cpu_to_le16(seid); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_get_vsi_params - get VSI configuration info * @hw: pointer to the hw struct * @vsi_ctx: pointer to a vsi context struct * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_get_vsi_params(struct i40e_hw *hw, struct i40e_vsi_context *vsi_ctx, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_add_get_update_vsi *cmd = (struct i40e_aqc_add_get_update_vsi *)&desc.params.raw; struct i40e_aqc_add_get_update_vsi_completion *resp = (struct i40e_aqc_add_get_update_vsi_completion *) &desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_vsi_parameters); cmd->uplink_seid = cpu_to_le16(vsi_ctx->seid); desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF); status = i40e_asq_send_command(hw, &desc, &vsi_ctx->info, sizeof(vsi_ctx->info), NULL); if (status) goto aq_get_vsi_params_exit; vsi_ctx->seid = le16_to_cpu(resp->seid); vsi_ctx->vsi_number = le16_to_cpu(resp->vsi_number); vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used); vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); aq_get_vsi_params_exit: return status; } /** * i40e_aq_update_vsi_params * @hw: pointer to the hw struct * @vsi_ctx: pointer to a vsi context struct * @cmd_details: pointer to command details structure or NULL * * Update a VSI context. **/ int i40e_aq_update_vsi_params(struct i40e_hw *hw, struct i40e_vsi_context *vsi_ctx, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_add_get_update_vsi *cmd = (struct i40e_aqc_add_get_update_vsi *)&desc.params.raw; struct i40e_aqc_add_get_update_vsi_completion *resp = (struct i40e_aqc_add_get_update_vsi_completion *) &desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_update_vsi_parameters); cmd->uplink_seid = cpu_to_le16(vsi_ctx->seid); desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD)); status = i40e_asq_send_command_atomic(hw, &desc, &vsi_ctx->info, sizeof(vsi_ctx->info), cmd_details, true); vsi_ctx->vsis_allocated = le16_to_cpu(resp->vsi_used); vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); return status; } /** * i40e_aq_get_switch_config * @hw: pointer to the hardware structure * @buf: pointer to the result buffer * @buf_size: length of input buffer * @start_seid: seid to start for the report, 0 == beginning * @cmd_details: pointer to command details structure or NULL * * Fill the buf with switch configuration returned from AdminQ command **/ int i40e_aq_get_switch_config(struct i40e_hw *hw, struct i40e_aqc_get_switch_config_resp *buf, u16 buf_size, u16 *start_seid, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_switch_seid *scfg = (struct i40e_aqc_switch_seid *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_switch_config); desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF); if (buf_size > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); scfg->seid = cpu_to_le16(*start_seid); status = i40e_asq_send_command(hw, &desc, buf, buf_size, cmd_details); *start_seid = le16_to_cpu(scfg->seid); return status; } /** * i40e_aq_set_switch_config * @hw: pointer to the hardware structure * @flags: bit flag values to set * @mode: cloud filter mode * @valid_flags: which bit flags to set * @mode: cloud filter mode * @cmd_details: pointer to command details structure or NULL * * Set switch configuration bits **/ int i40e_aq_set_switch_config(struct i40e_hw *hw, u16 flags, u16 valid_flags, u8 mode, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_set_switch_config *scfg = (struct i40e_aqc_set_switch_config *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_switch_config); scfg->flags = cpu_to_le16(flags); scfg->valid_flags = cpu_to_le16(valid_flags); scfg->mode = mode; if (hw->flags & I40E_HW_FLAG_802_1AD_CAPABLE) { scfg->switch_tag = cpu_to_le16(hw->switch_tag); scfg->first_tag = cpu_to_le16(hw->first_tag); scfg->second_tag = cpu_to_le16(hw->second_tag); } status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_get_firmware_version * @hw: pointer to the hw struct * @fw_major_version: firmware major version * @fw_minor_version: firmware minor version * @fw_build: firmware build number * @api_major_version: major queue version * @api_minor_version: minor queue version * @cmd_details: pointer to command details structure or NULL * * Get the firmware version from the admin queue commands **/ int i40e_aq_get_firmware_version(struct i40e_hw *hw, u16 *fw_major_version, u16 *fw_minor_version, u32 *fw_build, u16 *api_major_version, u16 *api_minor_version, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_get_version *resp = (struct i40e_aqc_get_version *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_version); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); if (!status) { if (fw_major_version) *fw_major_version = le16_to_cpu(resp->fw_major); if (fw_minor_version) *fw_minor_version = le16_to_cpu(resp->fw_minor); if (fw_build) *fw_build = le32_to_cpu(resp->fw_build); if (api_major_version) *api_major_version = le16_to_cpu(resp->api_major); if (api_minor_version) *api_minor_version = le16_to_cpu(resp->api_minor); } return status; } /** * i40e_aq_send_driver_version * @hw: pointer to the hw struct * @dv: driver's major, minor version * @cmd_details: pointer to command details structure or NULL * * Send the driver version to the firmware **/ int i40e_aq_send_driver_version(struct i40e_hw *hw, struct i40e_driver_version *dv, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_driver_version *cmd = (struct i40e_aqc_driver_version *)&desc.params.raw; int status; u16 len; if (dv == NULL) return I40E_ERR_PARAM; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_driver_version); desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD); cmd->driver_major_ver = dv->major_version; cmd->driver_minor_ver = dv->minor_version; cmd->driver_build_ver = dv->build_version; cmd->driver_subbuild_ver = dv->subbuild_version; len = 0; while (len < sizeof(dv->driver_string) && (dv->driver_string[len] < 0x80) && dv->driver_string[len]) len++; status = i40e_asq_send_command(hw, &desc, dv->driver_string, len, cmd_details); return status; } /** * i40e_get_link_status - get status of the HW network link * @hw: pointer to the hw struct * @link_up: pointer to bool (true/false = linkup/linkdown) * * Variable link_up true if link is up, false if link is down. * The variable link_up is invalid if returned value of status != 0 * * Side effect: LinkStatusEvent reporting becomes enabled **/ int i40e_get_link_status(struct i40e_hw *hw, bool *link_up) { int status = 0; if (hw->phy.get_link_info) { status = i40e_update_link_info(hw); if (status) i40e_debug(hw, I40E_DEBUG_LINK, "get link failed: status %d\n", status); } *link_up = hw->phy.link_info.link_info & I40E_AQ_LINK_UP; return status; } /** * i40e_update_link_info - update status of the HW network link * @hw: pointer to the hw struct **/ noinline_for_stack int i40e_update_link_info(struct i40e_hw *hw) { struct i40e_aq_get_phy_abilities_resp abilities; int status = 0; status = i40e_aq_get_link_info(hw, true, NULL, NULL); if (status) return status; /* extra checking needed to ensure link info to user is timely */ if ((hw->phy.link_info.link_info & I40E_AQ_MEDIA_AVAILABLE) && ((hw->phy.link_info.link_info & I40E_AQ_LINK_UP) || !(hw->phy.link_info_old.link_info & I40E_AQ_LINK_UP))) { status = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL); if (status) return status; if (abilities.fec_cfg_curr_mod_ext_info & I40E_AQ_ENABLE_FEC_AUTO) hw->phy.link_info.req_fec_info = (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS); else hw->phy.link_info.req_fec_info = abilities.fec_cfg_curr_mod_ext_info & (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS); memcpy(hw->phy.link_info.module_type, &abilities.module_type, sizeof(hw->phy.link_info.module_type)); } return status; } /** * i40e_aq_add_veb - Insert a VEB between the VSI and the MAC * @hw: pointer to the hw struct * @uplink_seid: the MAC or other gizmo SEID * @downlink_seid: the VSI SEID * @enabled_tc: bitmap of TCs to be enabled * @default_port: true for default port VSI, false for control port * @veb_seid: pointer to where to put the resulting VEB SEID * @enable_stats: true to turn on VEB stats * @cmd_details: pointer to command details structure or NULL * * This asks the FW to add a VEB between the uplink and downlink * elements. If the uplink SEID is 0, this will be a floating VEB. **/ int i40e_aq_add_veb(struct i40e_hw *hw, u16 uplink_seid, u16 downlink_seid, u8 enabled_tc, bool default_port, u16 *veb_seid, bool enable_stats, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_add_veb *cmd = (struct i40e_aqc_add_veb *)&desc.params.raw; struct i40e_aqc_add_veb_completion *resp = (struct i40e_aqc_add_veb_completion *)&desc.params.raw; u16 veb_flags = 0; int status; /* SEIDs need to either both be set or both be 0 for floating VEB */ if (!!uplink_seid != !!downlink_seid) return I40E_ERR_PARAM; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_veb); cmd->uplink_seid = cpu_to_le16(uplink_seid); cmd->downlink_seid = cpu_to_le16(downlink_seid); cmd->enable_tcs = enabled_tc; if (!uplink_seid) veb_flags |= I40E_AQC_ADD_VEB_FLOATING; if (default_port) veb_flags |= I40E_AQC_ADD_VEB_PORT_TYPE_DEFAULT; else veb_flags |= I40E_AQC_ADD_VEB_PORT_TYPE_DATA; /* reverse logic here: set the bitflag to disable the stats */ if (!enable_stats) veb_flags |= I40E_AQC_ADD_VEB_ENABLE_DISABLE_STATS; cmd->veb_flags = cpu_to_le16(veb_flags); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); if (!status && veb_seid) *veb_seid = le16_to_cpu(resp->veb_seid); return status; } /** * i40e_aq_get_veb_parameters - Retrieve VEB parameters * @hw: pointer to the hw struct * @veb_seid: the SEID of the VEB to query * @switch_id: the uplink switch id * @floating: set to true if the VEB is floating * @statistic_index: index of the stats counter block for this VEB * @vebs_used: number of VEB's used by function * @vebs_free: total VEB's not reserved by any function * @cmd_details: pointer to command details structure or NULL * * This retrieves the parameters for a particular VEB, specified by * uplink_seid, and returns them to the caller. **/ int i40e_aq_get_veb_parameters(struct i40e_hw *hw, u16 veb_seid, u16 *switch_id, bool *floating, u16 *statistic_index, u16 *vebs_used, u16 *vebs_free, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_get_veb_parameters_completion *cmd_resp = (struct i40e_aqc_get_veb_parameters_completion *) &desc.params.raw; int status; if (veb_seid == 0) return I40E_ERR_PARAM; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_veb_parameters); cmd_resp->seid = cpu_to_le16(veb_seid); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); if (status) goto get_veb_exit; if (switch_id) *switch_id = le16_to_cpu(cmd_resp->switch_id); if (statistic_index) *statistic_index = le16_to_cpu(cmd_resp->statistic_index); if (vebs_used) *vebs_used = le16_to_cpu(cmd_resp->vebs_used); if (vebs_free) *vebs_free = le16_to_cpu(cmd_resp->vebs_free); if (floating) { u16 flags = le16_to_cpu(cmd_resp->veb_flags); if (flags & I40E_AQC_ADD_VEB_FLOATING) *floating = true; else *floating = false; } get_veb_exit: return status; } /** * i40e_prepare_add_macvlan * @mv_list: list of macvlans to be added * @desc: pointer to AQ descriptor structure * @count: length of the list * @seid: VSI for the mac address * * Internal helper function that prepares the add macvlan request * and returns the buffer size. **/ static u16 i40e_prepare_add_macvlan(struct i40e_aqc_add_macvlan_element_data *mv_list, struct i40e_aq_desc *desc, u16 count, u16 seid) { struct i40e_aqc_macvlan *cmd = (struct i40e_aqc_macvlan *)&desc->params.raw; u16 buf_size; int i; buf_size = count * sizeof(*mv_list); /* prep the rest of the request */ i40e_fill_default_direct_cmd_desc(desc, i40e_aqc_opc_add_macvlan); cmd->num_addresses = cpu_to_le16(count); cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid); cmd->seid[1] = 0; cmd->seid[2] = 0; for (i = 0; i < count; i++) if (is_multicast_ether_addr(mv_list[i].mac_addr)) mv_list[i].flags |= cpu_to_le16(I40E_AQC_MACVLAN_ADD_USE_SHARED_MAC); desc->flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD)); if (buf_size > I40E_AQ_LARGE_BUF) desc->flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); return buf_size; } /** * i40e_aq_add_macvlan * @hw: pointer to the hw struct * @seid: VSI for the mac address * @mv_list: list of macvlans to be added * @count: length of the list * @cmd_details: pointer to command details structure or NULL * * Add MAC/VLAN addresses to the HW filtering **/ int i40e_aq_add_macvlan(struct i40e_hw *hw, u16 seid, struct i40e_aqc_add_macvlan_element_data *mv_list, u16 count, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; u16 buf_size; if (count == 0 || !mv_list || !hw) return I40E_ERR_PARAM; buf_size = i40e_prepare_add_macvlan(mv_list, &desc, count, seid); return i40e_asq_send_command_atomic(hw, &desc, mv_list, buf_size, cmd_details, true); } /** * i40e_aq_add_macvlan_v2 * @hw: pointer to the hw struct * @seid: VSI for the mac address * @mv_list: list of macvlans to be added * @count: length of the list * @cmd_details: pointer to command details structure or NULL * @aq_status: pointer to Admin Queue status return value * * Add MAC/VLAN addresses to the HW filtering. * The _v2 version returns the last Admin Queue status in aq_status * to avoid race conditions in access to hw->aq.asq_last_status. * It also calls _v2 versions of asq_send_command functions to * get the aq_status on the stack. **/ int i40e_aq_add_macvlan_v2(struct i40e_hw *hw, u16 seid, struct i40e_aqc_add_macvlan_element_data *mv_list, u16 count, struct i40e_asq_cmd_details *cmd_details, enum i40e_admin_queue_err *aq_status) { struct i40e_aq_desc desc; u16 buf_size; if (count == 0 || !mv_list || !hw) return I40E_ERR_PARAM; buf_size = i40e_prepare_add_macvlan(mv_list, &desc, count, seid); return i40e_asq_send_command_atomic_v2(hw, &desc, mv_list, buf_size, cmd_details, true, aq_status); } /** * i40e_aq_remove_macvlan * @hw: pointer to the hw struct * @seid: VSI for the mac address * @mv_list: list of macvlans to be removed * @count: length of the list * @cmd_details: pointer to command details structure or NULL * * Remove MAC/VLAN addresses from the HW filtering **/ int i40e_aq_remove_macvlan(struct i40e_hw *hw, u16 seid, struct i40e_aqc_remove_macvlan_element_data *mv_list, u16 count, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_macvlan *cmd = (struct i40e_aqc_macvlan *)&desc.params.raw; u16 buf_size; int status; if (count == 0 || !mv_list || !hw) return I40E_ERR_PARAM; buf_size = count * sizeof(*mv_list); /* prep the rest of the request */ i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_remove_macvlan); cmd->num_addresses = cpu_to_le16(count); cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid); cmd->seid[1] = 0; cmd->seid[2] = 0; desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD)); if (buf_size > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); status = i40e_asq_send_command_atomic(hw, &desc, mv_list, buf_size, cmd_details, true); return status; } /** * i40e_aq_remove_macvlan_v2 * @hw: pointer to the hw struct * @seid: VSI for the mac address * @mv_list: list of macvlans to be removed * @count: length of the list * @cmd_details: pointer to command details structure or NULL * @aq_status: pointer to Admin Queue status return value * * Remove MAC/VLAN addresses from the HW filtering. * The _v2 version returns the last Admin Queue status in aq_status * to avoid race conditions in access to hw->aq.asq_last_status. * It also calls _v2 versions of asq_send_command functions to * get the aq_status on the stack. **/ int i40e_aq_remove_macvlan_v2(struct i40e_hw *hw, u16 seid, struct i40e_aqc_remove_macvlan_element_data *mv_list, u16 count, struct i40e_asq_cmd_details *cmd_details, enum i40e_admin_queue_err *aq_status) { struct i40e_aqc_macvlan *cmd; struct i40e_aq_desc desc; u16 buf_size; if (count == 0 || !mv_list || !hw) return I40E_ERR_PARAM; buf_size = count * sizeof(*mv_list); /* prep the rest of the request */ i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_remove_macvlan); cmd = (struct i40e_aqc_macvlan *)&desc.params.raw; cmd->num_addresses = cpu_to_le16(count); cmd->seid[0] = cpu_to_le16(I40E_AQC_MACVLAN_CMD_SEID_VALID | seid); cmd->seid[1] = 0; cmd->seid[2] = 0; desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD)); if (buf_size > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); return i40e_asq_send_command_atomic_v2(hw, &desc, mv_list, buf_size, cmd_details, true, aq_status); } /** * i40e_mirrorrule_op - Internal helper function to add/delete mirror rule * @hw: pointer to the hw struct * @opcode: AQ opcode for add or delete mirror rule * @sw_seid: Switch SEID (to which rule refers) * @rule_type: Rule Type (ingress/egress/VLAN) * @id: Destination VSI SEID or Rule ID * @count: length of the list * @mr_list: list of mirrored VSI SEIDs or VLAN IDs * @cmd_details: pointer to command details structure or NULL * @rule_id: Rule ID returned from FW * @rules_used: Number of rules used in internal switch * @rules_free: Number of rules free in internal switch * * Add/Delete a mirror rule to a specific switch. Mirror rules are supported for * VEBs/VEPA elements only **/ static int i40e_mirrorrule_op(struct i40e_hw *hw, u16 opcode, u16 sw_seid, u16 rule_type, u16 id, u16 count, __le16 *mr_list, struct i40e_asq_cmd_details *cmd_details, u16 *rule_id, u16 *rules_used, u16 *rules_free) { struct i40e_aq_desc desc; struct i40e_aqc_add_delete_mirror_rule *cmd = (struct i40e_aqc_add_delete_mirror_rule *)&desc.params.raw; struct i40e_aqc_add_delete_mirror_rule_completion *resp = (struct i40e_aqc_add_delete_mirror_rule_completion *)&desc.params.raw; u16 buf_size; int status; buf_size = count * sizeof(*mr_list); /* prep the rest of the request */ i40e_fill_default_direct_cmd_desc(&desc, opcode); cmd->seid = cpu_to_le16(sw_seid); cmd->rule_type = cpu_to_le16(rule_type & I40E_AQC_MIRROR_RULE_TYPE_MASK); cmd->num_entries = cpu_to_le16(count); /* Dest VSI for add, rule_id for delete */ cmd->destination = cpu_to_le16(id); if (mr_list) { desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD)); if (buf_size > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); } status = i40e_asq_send_command(hw, &desc, mr_list, buf_size, cmd_details); if (!status || hw->aq.asq_last_status == I40E_AQ_RC_ENOSPC) { if (rule_id) *rule_id = le16_to_cpu(resp->rule_id); if (rules_used) *rules_used = le16_to_cpu(resp->mirror_rules_used); if (rules_free) *rules_free = le16_to_cpu(resp->mirror_rules_free); } return status; } /** * i40e_aq_add_mirrorrule - add a mirror rule * @hw: pointer to the hw struct * @sw_seid: Switch SEID (to which rule refers) * @rule_type: Rule Type (ingress/egress/VLAN) * @dest_vsi: SEID of VSI to which packets will be mirrored * @count: length of the list * @mr_list: list of mirrored VSI SEIDs or VLAN IDs * @cmd_details: pointer to command details structure or NULL * @rule_id: Rule ID returned from FW * @rules_used: Number of rules used in internal switch * @rules_free: Number of rules free in internal switch * * Add mirror rule. Mirror rules are supported for VEBs or VEPA elements only **/ int i40e_aq_add_mirrorrule(struct i40e_hw *hw, u16 sw_seid, u16 rule_type, u16 dest_vsi, u16 count, __le16 *mr_list, struct i40e_asq_cmd_details *cmd_details, u16 *rule_id, u16 *rules_used, u16 *rules_free) { if (!(rule_type == I40E_AQC_MIRROR_RULE_TYPE_ALL_INGRESS || rule_type == I40E_AQC_MIRROR_RULE_TYPE_ALL_EGRESS)) { if (count == 0 || !mr_list) return I40E_ERR_PARAM; } return i40e_mirrorrule_op(hw, i40e_aqc_opc_add_mirror_rule, sw_seid, rule_type, dest_vsi, count, mr_list, cmd_details, rule_id, rules_used, rules_free); } /** * i40e_aq_delete_mirrorrule - delete a mirror rule * @hw: pointer to the hw struct * @sw_seid: Switch SEID (to which rule refers) * @rule_type: Rule Type (ingress/egress/VLAN) * @count: length of the list * @rule_id: Rule ID that is returned in the receive desc as part of * add_mirrorrule. * @mr_list: list of mirrored VLAN IDs to be removed * @cmd_details: pointer to command details structure or NULL * @rules_used: Number of rules used in internal switch * @rules_free: Number of rules free in internal switch * * Delete a mirror rule. Mirror rules are supported for VEBs/VEPA elements only **/ int i40e_aq_delete_mirrorrule(struct i40e_hw *hw, u16 sw_seid, u16 rule_type, u16 rule_id, u16 count, __le16 *mr_list, struct i40e_asq_cmd_details *cmd_details, u16 *rules_used, u16 *rules_free) { /* Rule ID has to be valid except rule_type: INGRESS VLAN mirroring */ if (rule_type == I40E_AQC_MIRROR_RULE_TYPE_VLAN) { /* count and mr_list shall be valid for rule_type INGRESS VLAN * mirroring. For other rule_type, count and rule_type should * not matter. */ if (count == 0 || !mr_list) return I40E_ERR_PARAM; } return i40e_mirrorrule_op(hw, i40e_aqc_opc_delete_mirror_rule, sw_seid, rule_type, rule_id, count, mr_list, cmd_details, NULL, rules_used, rules_free); } /** * i40e_aq_send_msg_to_vf * @hw: pointer to the hardware structure * @vfid: VF id to send msg * @v_opcode: opcodes for VF-PF communication * @v_retval: return error code * @msg: pointer to the msg buffer * @msglen: msg length * @cmd_details: pointer to command details * * send msg to vf **/ int i40e_aq_send_msg_to_vf(struct i40e_hw *hw, u16 vfid, u32 v_opcode, u32 v_retval, u8 *msg, u16 msglen, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_pf_vf_message *cmd = (struct i40e_aqc_pf_vf_message *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_send_msg_to_vf); cmd->id = cpu_to_le32(vfid); desc.cookie_high = cpu_to_le32(v_opcode); desc.cookie_low = cpu_to_le32(v_retval); desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_SI); if (msglen) { desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD)); if (msglen > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); desc.datalen = cpu_to_le16(msglen); } status = i40e_asq_send_command(hw, &desc, msg, msglen, cmd_details); return status; } /** * i40e_aq_debug_read_register * @hw: pointer to the hw struct * @reg_addr: register address * @reg_val: register value * @cmd_details: pointer to command details structure or NULL * * Read the register using the admin queue commands **/ int i40e_aq_debug_read_register(struct i40e_hw *hw, u32 reg_addr, u64 *reg_val, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_debug_reg_read_write *cmd_resp = (struct i40e_aqc_debug_reg_read_write *)&desc.params.raw; int status; if (reg_val == NULL) return I40E_ERR_PARAM; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_debug_read_reg); cmd_resp->address = cpu_to_le32(reg_addr); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); if (!status) { *reg_val = ((u64)le32_to_cpu(cmd_resp->value_high) << 32) | (u64)le32_to_cpu(cmd_resp->value_low); } return status; } /** * i40e_aq_debug_write_register * @hw: pointer to the hw struct * @reg_addr: register address * @reg_val: register value * @cmd_details: pointer to command details structure or NULL * * Write to a register using the admin queue commands **/ int i40e_aq_debug_write_register(struct i40e_hw *hw, u32 reg_addr, u64 reg_val, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_debug_reg_read_write *cmd = (struct i40e_aqc_debug_reg_read_write *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_debug_write_reg); cmd->address = cpu_to_le32(reg_addr); cmd->value_high = cpu_to_le32((u32)(reg_val >> 32)); cmd->value_low = cpu_to_le32((u32)(reg_val & 0xFFFFFFFF)); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_request_resource * @hw: pointer to the hw struct * @resource: resource id * @access: access type * @sdp_number: resource number * @timeout: the maximum time in ms that the driver may hold the resource * @cmd_details: pointer to command details structure or NULL * * requests common resource using the admin queue commands **/ int i40e_aq_request_resource(struct i40e_hw *hw, enum i40e_aq_resources_ids resource, enum i40e_aq_resource_access_type access, u8 sdp_number, u64 *timeout, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_request_resource *cmd_resp = (struct i40e_aqc_request_resource *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_request_resource); cmd_resp->resource_id = cpu_to_le16(resource); cmd_resp->access_type = cpu_to_le16(access); cmd_resp->resource_number = cpu_to_le32(sdp_number); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); /* The completion specifies the maximum time in ms that the driver * may hold the resource in the Timeout field. * If the resource is held by someone else, the command completes with * busy return value and the timeout field indicates the maximum time * the current owner of the resource has to free it. */ if (!status || hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) *timeout = le32_to_cpu(cmd_resp->timeout); return status; } /** * i40e_aq_release_resource * @hw: pointer to the hw struct * @resource: resource id * @sdp_number: resource number * @cmd_details: pointer to command details structure or NULL * * release common resource using the admin queue commands **/ int i40e_aq_release_resource(struct i40e_hw *hw, enum i40e_aq_resources_ids resource, u8 sdp_number, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_request_resource *cmd = (struct i40e_aqc_request_resource *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_release_resource); cmd->resource_id = cpu_to_le16(resource); cmd->resource_number = cpu_to_le32(sdp_number); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_read_nvm * @hw: pointer to the hw struct * @module_pointer: module pointer location in words from the NVM beginning * @offset: byte offset from the module beginning * @length: length of the section to be read (in bytes from the offset) * @data: command buffer (size [bytes] = length) * @last_command: tells if this is the last command in a series * @cmd_details: pointer to command details structure or NULL * * Read the NVM using the admin queue commands **/ int i40e_aq_read_nvm(struct i40e_hw *hw, u8 module_pointer, u32 offset, u16 length, void *data, bool last_command, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_nvm_update *cmd = (struct i40e_aqc_nvm_update *)&desc.params.raw; int status; /* In offset the highest byte must be zeroed. */ if (offset & 0xFF000000) { status = I40E_ERR_PARAM; goto i40e_aq_read_nvm_exit; } i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_read); /* If this is the last command in a series, set the proper flag. */ if (last_command) cmd->command_flags |= I40E_AQ_NVM_LAST_CMD; cmd->module_pointer = module_pointer; cmd->offset = cpu_to_le32(offset); cmd->length = cpu_to_le16(length); desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF); if (length > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); status = i40e_asq_send_command(hw, &desc, data, length, cmd_details); i40e_aq_read_nvm_exit: return status; } /** * i40e_aq_erase_nvm * @hw: pointer to the hw struct * @module_pointer: module pointer location in words from the NVM beginning * @offset: offset in the module (expressed in 4 KB from module's beginning) * @length: length of the section to be erased (expressed in 4 KB) * @last_command: tells if this is the last command in a series * @cmd_details: pointer to command details structure or NULL * * Erase the NVM sector using the admin queue commands **/ int i40e_aq_erase_nvm(struct i40e_hw *hw, u8 module_pointer, u32 offset, u16 length, bool last_command, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_nvm_update *cmd = (struct i40e_aqc_nvm_update *)&desc.params.raw; int status; /* In offset the highest byte must be zeroed. */ if (offset & 0xFF000000) { status = I40E_ERR_PARAM; goto i40e_aq_erase_nvm_exit; } i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_erase); /* If this is the last command in a series, set the proper flag. */ if (last_command) cmd->command_flags |= I40E_AQ_NVM_LAST_CMD; cmd->module_pointer = module_pointer; cmd->offset = cpu_to_le32(offset); cmd->length = cpu_to_le16(length); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); i40e_aq_erase_nvm_exit: return status; } /** * i40e_parse_discover_capabilities * @hw: pointer to the hw struct * @buff: pointer to a buffer containing device/function capability records * @cap_count: number of capability records in the list * @list_type_opc: type of capabilities list to parse * * Parse the device/function capabilities list. **/ static void i40e_parse_discover_capabilities(struct i40e_hw *hw, void *buff, u32 cap_count, enum i40e_admin_queue_opc list_type_opc) { struct i40e_aqc_list_capabilities_element_resp *cap; u32 valid_functions, num_functions; u32 number, logical_id, phys_id; struct i40e_hw_capabilities *p; u16 id, ocp_cfg_word0; u8 major_rev; int status; u32 i = 0; cap = (struct i40e_aqc_list_capabilities_element_resp *) buff; if (list_type_opc == i40e_aqc_opc_list_dev_capabilities) p = &hw->dev_caps; else if (list_type_opc == i40e_aqc_opc_list_func_capabilities) p = &hw->func_caps; else return; for (i = 0; i < cap_count; i++, cap++) { id = le16_to_cpu(cap->id); number = le32_to_cpu(cap->number); logical_id = le32_to_cpu(cap->logical_id); phys_id = le32_to_cpu(cap->phys_id); major_rev = cap->major_rev; switch (id) { case I40E_AQ_CAP_ID_SWITCH_MODE: p->switch_mode = number; break; case I40E_AQ_CAP_ID_MNG_MODE: p->management_mode = number; if (major_rev > 1) { p->mng_protocols_over_mctp = logical_id; i40e_debug(hw, I40E_DEBUG_INIT, "HW Capability: Protocols over MCTP = %d\n", p->mng_protocols_over_mctp); } else { p->mng_protocols_over_mctp = 0; } break; case I40E_AQ_CAP_ID_NPAR_ACTIVE: p->npar_enable = number; break; case I40E_AQ_CAP_ID_OS2BMC_CAP: p->os2bmc = number; break; case I40E_AQ_CAP_ID_FUNCTIONS_VALID: p->valid_functions = number; break; case I40E_AQ_CAP_ID_SRIOV: if (number == 1) p->sr_iov_1_1 = true; break; case I40E_AQ_CAP_ID_VF: p->num_vfs = number; p->vf_base_id = logical_id; break; case I40E_AQ_CAP_ID_VMDQ: if (number == 1) p->vmdq = true; break; case I40E_AQ_CAP_ID_8021QBG: if (number == 1) p->evb_802_1_qbg = true; break; case I40E_AQ_CAP_ID_8021QBR: if (number == 1) p->evb_802_1_qbh = true; break; case I40E_AQ_CAP_ID_VSI: p->num_vsis = number; break; case I40E_AQ_CAP_ID_DCB: if (number == 1) { p->dcb = true; p->enabled_tcmap = logical_id; p->maxtc = phys_id; } break; case I40E_AQ_CAP_ID_FCOE: if (number == 1) p->fcoe = true; break; case I40E_AQ_CAP_ID_ISCSI: if (number == 1) p->iscsi = true; break; case I40E_AQ_CAP_ID_RSS: p->rss = true; p->rss_table_size = number; p->rss_table_entry_width = logical_id; break; case I40E_AQ_CAP_ID_RXQ: p->num_rx_qp = number; p->base_queue = phys_id; break; case I40E_AQ_CAP_ID_TXQ: p->num_tx_qp = number; p->base_queue = phys_id; break; case I40E_AQ_CAP_ID_MSIX: p->num_msix_vectors = number; i40e_debug(hw, I40E_DEBUG_INIT, "HW Capability: MSIX vector count = %d\n", p->num_msix_vectors); break; case I40E_AQ_CAP_ID_VF_MSIX: p->num_msix_vectors_vf = number; break; case I40E_AQ_CAP_ID_FLEX10: if (major_rev == 1) { if (number == 1) { p->flex10_enable = true; p->flex10_capable = true; } } else { /* Capability revision >= 2 */ if (number & 1) p->flex10_enable = true; if (number & 2) p->flex10_capable = true; } p->flex10_mode = logical_id; p->flex10_status = phys_id; break; case I40E_AQ_CAP_ID_CEM: if (number == 1) p->mgmt_cem = true; break; case I40E_AQ_CAP_ID_IWARP: if (number == 1) p->iwarp = true; break; case I40E_AQ_CAP_ID_LED: if (phys_id < I40E_HW_CAP_MAX_GPIO) p->led[phys_id] = true; break; case I40E_AQ_CAP_ID_SDP: if (phys_id < I40E_HW_CAP_MAX_GPIO) p->sdp[phys_id] = true; break; case I40E_AQ_CAP_ID_MDIO: if (number == 1) { p->mdio_port_num = phys_id; p->mdio_port_mode = logical_id; } break; case I40E_AQ_CAP_ID_1588: if (number == 1) p->ieee_1588 = true; break; case I40E_AQ_CAP_ID_FLOW_DIRECTOR: p->fd = true; p->fd_filters_guaranteed = number; p->fd_filters_best_effort = logical_id; break; case I40E_AQ_CAP_ID_WSR_PROT: p->wr_csr_prot = (u64)number; p->wr_csr_prot |= (u64)logical_id << 32; break; case I40E_AQ_CAP_ID_NVM_MGMT: if (number & I40E_NVM_MGMT_SEC_REV_DISABLED) p->sec_rev_disabled = true; if (number & I40E_NVM_MGMT_UPDATE_DISABLED) p->update_disabled = true; break; default: break; } } if (p->fcoe) i40e_debug(hw, I40E_DEBUG_ALL, "device is FCoE capable\n"); /* Software override ensuring FCoE is disabled if npar or mfp * mode because it is not supported in these modes. */ if (p->npar_enable || p->flex10_enable) p->fcoe = false; /* count the enabled ports (aka the "not disabled" ports) */ hw->num_ports = 0; for (i = 0; i < 4; i++) { u32 port_cfg_reg = I40E_PRTGEN_CNF + (4 * i); u64 port_cfg = 0; /* use AQ read to get the physical register offset instead * of the port relative offset */ i40e_aq_debug_read_register(hw, port_cfg_reg, &port_cfg, NULL); if (!(port_cfg & I40E_PRTGEN_CNF_PORT_DIS_MASK)) hw->num_ports++; } /* OCP cards case: if a mezz is removed the Ethernet port is at * disabled state in PRTGEN_CNF register. Additional NVM read is * needed in order to check if we are dealing with OCP card. * Those cards have 4 PFs at minimum, so using PRTGEN_CNF for counting * physical ports results in wrong partition id calculation and thus * not supporting WoL. */ if (hw->mac.type == I40E_MAC_X722) { if (!i40e_acquire_nvm(hw, I40E_RESOURCE_READ)) { status = i40e_aq_read_nvm(hw, I40E_SR_EMP_MODULE_PTR, 2 * I40E_SR_OCP_CFG_WORD0, sizeof(ocp_cfg_word0), &ocp_cfg_word0, true, NULL); if (!status && (ocp_cfg_word0 & I40E_SR_OCP_ENABLED)) hw->num_ports = 4; i40e_release_nvm(hw); } } valid_functions = p->valid_functions; num_functions = 0; while (valid_functions) { if (valid_functions & 1) num_functions++; valid_functions >>= 1; } /* partition id is 1-based, and functions are evenly spread * across the ports as partitions */ if (hw->num_ports != 0) { hw->partition_id = (hw->pf_id / hw->num_ports) + 1; hw->num_partitions = num_functions / hw->num_ports; } /* additional HW specific goodies that might * someday be HW version specific */ p->rx_buf_chain_len = I40E_MAX_CHAINED_RX_BUFFERS; } /** * i40e_aq_discover_capabilities * @hw: pointer to the hw struct * @buff: a virtual buffer to hold the capabilities * @buff_size: Size of the virtual buffer * @data_size: Size of the returned data, or buff size needed if AQ err==ENOMEM * @list_type_opc: capabilities type to discover - pass in the command opcode * @cmd_details: pointer to command details structure or NULL * * Get the device capabilities descriptions from the firmware **/ int i40e_aq_discover_capabilities(struct i40e_hw *hw, void *buff, u16 buff_size, u16 *data_size, enum i40e_admin_queue_opc list_type_opc, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aqc_list_capabilites *cmd; struct i40e_aq_desc desc; int status = 0; cmd = (struct i40e_aqc_list_capabilites *)&desc.params.raw; if (list_type_opc != i40e_aqc_opc_list_func_capabilities && list_type_opc != i40e_aqc_opc_list_dev_capabilities) { status = I40E_ERR_PARAM; goto exit; } i40e_fill_default_direct_cmd_desc(&desc, list_type_opc); desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF); if (buff_size > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details); *data_size = le16_to_cpu(desc.datalen); if (status) goto exit; i40e_parse_discover_capabilities(hw, buff, le32_to_cpu(cmd->count), list_type_opc); exit: return status; } /** * i40e_aq_update_nvm * @hw: pointer to the hw struct * @module_pointer: module pointer location in words from the NVM beginning * @offset: byte offset from the module beginning * @length: length of the section to be written (in bytes from the offset) * @data: command buffer (size [bytes] = length) * @last_command: tells if this is the last command in a series * @preservation_flags: Preservation mode flags * @cmd_details: pointer to command details structure or NULL * * Update the NVM using the admin queue commands **/ int i40e_aq_update_nvm(struct i40e_hw *hw, u8 module_pointer, u32 offset, u16 length, void *data, bool last_command, u8 preservation_flags, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_nvm_update *cmd = (struct i40e_aqc_nvm_update *)&desc.params.raw; int status; /* In offset the highest byte must be zeroed. */ if (offset & 0xFF000000) { status = I40E_ERR_PARAM; goto i40e_aq_update_nvm_exit; } i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_update); /* If this is the last command in a series, set the proper flag. */ if (last_command) cmd->command_flags |= I40E_AQ_NVM_LAST_CMD; if (hw->mac.type == I40E_MAC_X722) { if (preservation_flags == I40E_NVM_PRESERVATION_FLAGS_SELECTED) cmd->command_flags |= (I40E_AQ_NVM_PRESERVATION_FLAGS_SELECTED << I40E_AQ_NVM_PRESERVATION_FLAGS_SHIFT); else if (preservation_flags == I40E_NVM_PRESERVATION_FLAGS_ALL) cmd->command_flags |= (I40E_AQ_NVM_PRESERVATION_FLAGS_ALL << I40E_AQ_NVM_PRESERVATION_FLAGS_SHIFT); } cmd->module_pointer = module_pointer; cmd->offset = cpu_to_le32(offset); cmd->length = cpu_to_le16(length); desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD)); if (length > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); status = i40e_asq_send_command(hw, &desc, data, length, cmd_details); i40e_aq_update_nvm_exit: return status; } /** * i40e_aq_rearrange_nvm * @hw: pointer to the hw struct * @rearrange_nvm: defines direction of rearrangement * @cmd_details: pointer to command details structure or NULL * * Rearrange NVM structure, available only for transition FW **/ int i40e_aq_rearrange_nvm(struct i40e_hw *hw, u8 rearrange_nvm, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aqc_nvm_update *cmd; struct i40e_aq_desc desc; int status; cmd = (struct i40e_aqc_nvm_update *)&desc.params.raw; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_nvm_update); rearrange_nvm &= (I40E_AQ_NVM_REARRANGE_TO_FLAT | I40E_AQ_NVM_REARRANGE_TO_STRUCT); if (!rearrange_nvm) { status = I40E_ERR_PARAM; goto i40e_aq_rearrange_nvm_exit; } cmd->command_flags |= rearrange_nvm; status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); i40e_aq_rearrange_nvm_exit: return status; } /** * i40e_aq_get_lldp_mib * @hw: pointer to the hw struct * @bridge_type: type of bridge requested * @mib_type: Local, Remote or both Local and Remote MIBs * @buff: pointer to a user supplied buffer to store the MIB block * @buff_size: size of the buffer (in bytes) * @local_len : length of the returned Local LLDP MIB * @remote_len: length of the returned Remote LLDP MIB * @cmd_details: pointer to command details structure or NULL * * Requests the complete LLDP MIB (entire packet). **/ int i40e_aq_get_lldp_mib(struct i40e_hw *hw, u8 bridge_type, u8 mib_type, void *buff, u16 buff_size, u16 *local_len, u16 *remote_len, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_lldp_get_mib *cmd = (struct i40e_aqc_lldp_get_mib *)&desc.params.raw; struct i40e_aqc_lldp_get_mib *resp = (struct i40e_aqc_lldp_get_mib *)&desc.params.raw; int status; if (buff_size == 0 || !buff) return I40E_ERR_PARAM; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_get_mib); /* Indirect Command */ desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF); cmd->type = mib_type & I40E_AQ_LLDP_MIB_TYPE_MASK; cmd->type |= ((bridge_type << I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); desc.datalen = cpu_to_le16(buff_size); desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF); if (buff_size > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details); if (!status) { if (local_len != NULL) *local_len = le16_to_cpu(resp->local_len); if (remote_len != NULL) *remote_len = le16_to_cpu(resp->remote_len); } return status; } /** * i40e_aq_set_lldp_mib - Set the LLDP MIB * @hw: pointer to the hw struct * @mib_type: Local, Remote or both Local and Remote MIBs * @buff: pointer to a user supplied buffer to store the MIB block * @buff_size: size of the buffer (in bytes) * @cmd_details: pointer to command details structure or NULL * * Set the LLDP MIB. **/ int i40e_aq_set_lldp_mib(struct i40e_hw *hw, u8 mib_type, void *buff, u16 buff_size, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aqc_lldp_set_local_mib *cmd; struct i40e_aq_desc desc; int status; cmd = (struct i40e_aqc_lldp_set_local_mib *)&desc.params.raw; if (buff_size == 0 || !buff) return I40E_ERR_PARAM; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_set_local_mib); /* Indirect Command */ desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD)); if (buff_size > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); desc.datalen = cpu_to_le16(buff_size); cmd->type = mib_type; cmd->length = cpu_to_le16(buff_size); cmd->address_high = cpu_to_le32(upper_32_bits((uintptr_t)buff)); cmd->address_low = cpu_to_le32(lower_32_bits((uintptr_t)buff)); status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details); return status; } /** * i40e_aq_cfg_lldp_mib_change_event * @hw: pointer to the hw struct * @enable_update: Enable or Disable event posting * @cmd_details: pointer to command details structure or NULL * * Enable or Disable posting of an event on ARQ when LLDP MIB * associated with the interface changes **/ int i40e_aq_cfg_lldp_mib_change_event(struct i40e_hw *hw, bool enable_update, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_lldp_update_mib *cmd = (struct i40e_aqc_lldp_update_mib *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_update_mib); if (!enable_update) cmd->command |= I40E_AQ_LLDP_MIB_UPDATE_DISABLE; status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_restore_lldp * @hw: pointer to the hw struct * @setting: pointer to factory setting variable or NULL * @restore: True if factory settings should be restored * @cmd_details: pointer to command details structure or NULL * * Restore LLDP Agent factory settings if @restore set to True. In other case * only returns factory setting in AQ response. **/ int i40e_aq_restore_lldp(struct i40e_hw *hw, u8 *setting, bool restore, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_lldp_restore *cmd = (struct i40e_aqc_lldp_restore *)&desc.params.raw; int status; if (!(hw->flags & I40E_HW_FLAG_FW_LLDP_PERSISTENT)) { i40e_debug(hw, I40E_DEBUG_ALL, "Restore LLDP not supported by current FW version.\n"); return I40E_ERR_DEVICE_NOT_SUPPORTED; } i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_restore); if (restore) cmd->command |= I40E_AQ_LLDP_AGENT_RESTORE; status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); if (setting) *setting = cmd->command & 1; return status; } /** * i40e_aq_stop_lldp * @hw: pointer to the hw struct * @shutdown_agent: True if LLDP Agent needs to be Shutdown * @persist: True if stop of LLDP should be persistent across power cycles * @cmd_details: pointer to command details structure or NULL * * Stop or Shutdown the embedded LLDP Agent **/ int i40e_aq_stop_lldp(struct i40e_hw *hw, bool shutdown_agent, bool persist, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_lldp_stop *cmd = (struct i40e_aqc_lldp_stop *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_stop); if (shutdown_agent) cmd->command |= I40E_AQ_LLDP_AGENT_SHUTDOWN; if (persist) { if (hw->flags & I40E_HW_FLAG_FW_LLDP_PERSISTENT) cmd->command |= I40E_AQ_LLDP_AGENT_STOP_PERSIST; else i40e_debug(hw, I40E_DEBUG_ALL, "Persistent Stop LLDP not supported by current FW version.\n"); } status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_start_lldp * @hw: pointer to the hw struct * @persist: True if start of LLDP should be persistent across power cycles * @cmd_details: pointer to command details structure or NULL * * Start the embedded LLDP Agent on all ports. **/ int i40e_aq_start_lldp(struct i40e_hw *hw, bool persist, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_lldp_start *cmd = (struct i40e_aqc_lldp_start *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_lldp_start); cmd->command = I40E_AQ_LLDP_AGENT_START; if (persist) { if (hw->flags & I40E_HW_FLAG_FW_LLDP_PERSISTENT) cmd->command |= I40E_AQ_LLDP_AGENT_START_PERSIST; else i40e_debug(hw, I40E_DEBUG_ALL, "Persistent Start LLDP not supported by current FW version.\n"); } status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_set_dcb_parameters * @hw: pointer to the hw struct * @cmd_details: pointer to command details structure or NULL * @dcb_enable: True if DCB configuration needs to be applied * **/ int i40e_aq_set_dcb_parameters(struct i40e_hw *hw, bool dcb_enable, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_set_dcb_parameters *cmd = (struct i40e_aqc_set_dcb_parameters *)&desc.params.raw; int status; if (!(hw->flags & I40E_HW_FLAG_FW_LLDP_STOPPABLE)) return I40E_ERR_DEVICE_NOT_SUPPORTED; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_dcb_parameters); if (dcb_enable) { cmd->valid_flags = I40E_DCB_VALID; cmd->command = I40E_AQ_DCB_SET_AGENT; } status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_get_cee_dcb_config * @hw: pointer to the hw struct * @buff: response buffer that stores CEE operational configuration * @buff_size: size of the buffer passed * @cmd_details: pointer to command details structure or NULL * * Get CEE DCBX mode operational configuration from firmware **/ int i40e_aq_get_cee_dcb_config(struct i40e_hw *hw, void *buff, u16 buff_size, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; int status; if (buff_size == 0 || !buff) return I40E_ERR_PARAM; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_cee_dcb_cfg); desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF); status = i40e_asq_send_command(hw, &desc, (void *)buff, buff_size, cmd_details); return status; } /** * i40e_aq_add_udp_tunnel * @hw: pointer to the hw struct * @udp_port: the UDP port to add in Host byte order * @protocol_index: protocol index type * @filter_index: pointer to filter index * @cmd_details: pointer to command details structure or NULL * * Note: Firmware expects the udp_port value to be in Little Endian format, * and this function will call cpu_to_le16 to convert from Host byte order to * Little Endian order. **/ int i40e_aq_add_udp_tunnel(struct i40e_hw *hw, u16 udp_port, u8 protocol_index, u8 *filter_index, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_add_udp_tunnel *cmd = (struct i40e_aqc_add_udp_tunnel *)&desc.params.raw; struct i40e_aqc_del_udp_tunnel_completion *resp = (struct i40e_aqc_del_udp_tunnel_completion *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_udp_tunnel); cmd->udp_port = cpu_to_le16(udp_port); cmd->protocol_type = protocol_index; status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); if (!status && filter_index) *filter_index = resp->index; return status; } /** * i40e_aq_del_udp_tunnel * @hw: pointer to the hw struct * @index: filter index * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_del_udp_tunnel(struct i40e_hw *hw, u8 index, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_remove_udp_tunnel *cmd = (struct i40e_aqc_remove_udp_tunnel *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_del_udp_tunnel); cmd->index = index; status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_delete_element - Delete switch element * @hw: pointer to the hw struct * @seid: the SEID to delete from the switch * @cmd_details: pointer to command details structure or NULL * * This deletes a switch element from the switch. **/ int i40e_aq_delete_element(struct i40e_hw *hw, u16 seid, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_switch_seid *cmd = (struct i40e_aqc_switch_seid *)&desc.params.raw; int status; if (seid == 0) return I40E_ERR_PARAM; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_delete_element); cmd->seid = cpu_to_le16(seid); status = i40e_asq_send_command_atomic(hw, &desc, NULL, 0, cmd_details, true); return status; } /** * i40e_aq_dcb_updated - DCB Updated Command * @hw: pointer to the hw struct * @cmd_details: pointer to command details structure or NULL * * EMP will return when the shared RPB settings have been * recomputed and modified. The retval field in the descriptor * will be set to 0 when RPB is modified. **/ int i40e_aq_dcb_updated(struct i40e_hw *hw, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_dcb_updated); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_tx_sched_cmd - generic Tx scheduler AQ command handler * @hw: pointer to the hw struct * @seid: seid for the physical port/switching component/vsi * @buff: Indirect buffer to hold data parameters and response * @buff_size: Indirect buffer size * @opcode: Tx scheduler AQ command opcode * @cmd_details: pointer to command details structure or NULL * * Generic command handler for Tx scheduler AQ commands **/ static int i40e_aq_tx_sched_cmd(struct i40e_hw *hw, u16 seid, void *buff, u16 buff_size, enum i40e_admin_queue_opc opcode, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_tx_sched_ind *cmd = (struct i40e_aqc_tx_sched_ind *)&desc.params.raw; int status; bool cmd_param_flag = false; switch (opcode) { case i40e_aqc_opc_configure_vsi_ets_sla_bw_limit: case i40e_aqc_opc_configure_vsi_tc_bw: case i40e_aqc_opc_enable_switching_comp_ets: case i40e_aqc_opc_modify_switching_comp_ets: case i40e_aqc_opc_disable_switching_comp_ets: case i40e_aqc_opc_configure_switching_comp_ets_bw_limit: case i40e_aqc_opc_configure_switching_comp_bw_config: cmd_param_flag = true; break; case i40e_aqc_opc_query_vsi_bw_config: case i40e_aqc_opc_query_vsi_ets_sla_config: case i40e_aqc_opc_query_switching_comp_ets_config: case i40e_aqc_opc_query_port_ets_config: case i40e_aqc_opc_query_switching_comp_bw_config: cmd_param_flag = false; break; default: return I40E_ERR_PARAM; } i40e_fill_default_direct_cmd_desc(&desc, opcode); /* Indirect command */ desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF); if (cmd_param_flag) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD); if (buff_size > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); desc.datalen = cpu_to_le16(buff_size); cmd->vsi_seid = cpu_to_le16(seid); status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details); return status; } /** * i40e_aq_config_vsi_bw_limit - Configure VSI BW Limit * @hw: pointer to the hw struct * @seid: VSI seid * @credit: BW limit credits (0 = disabled) * @max_credit: Max BW limit credits * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_config_vsi_bw_limit(struct i40e_hw *hw, u16 seid, u16 credit, u8 max_credit, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_configure_vsi_bw_limit *cmd = (struct i40e_aqc_configure_vsi_bw_limit *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_configure_vsi_bw_limit); cmd->vsi_seid = cpu_to_le16(seid); cmd->credit = cpu_to_le16(credit); cmd->max_credit = max_credit; status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_config_vsi_tc_bw - Config VSI BW Allocation per TC * @hw: pointer to the hw struct * @seid: VSI seid * @bw_data: Buffer holding enabled TCs, relative TC BW limit/credits * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_config_vsi_tc_bw(struct i40e_hw *hw, u16 seid, struct i40e_aqc_configure_vsi_tc_bw_data *bw_data, struct i40e_asq_cmd_details *cmd_details) { return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data), i40e_aqc_opc_configure_vsi_tc_bw, cmd_details); } /** * i40e_aq_config_switch_comp_ets - Enable/Disable/Modify ETS on the port * @hw: pointer to the hw struct * @seid: seid of the switching component connected to Physical Port * @ets_data: Buffer holding ETS parameters * @opcode: Tx scheduler AQ command opcode * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_config_switch_comp_ets(struct i40e_hw *hw, u16 seid, struct i40e_aqc_configure_switching_comp_ets_data *ets_data, enum i40e_admin_queue_opc opcode, struct i40e_asq_cmd_details *cmd_details) { return i40e_aq_tx_sched_cmd(hw, seid, (void *)ets_data, sizeof(*ets_data), opcode, cmd_details); } /** * i40e_aq_config_switch_comp_bw_config - Config Switch comp BW Alloc per TC * @hw: pointer to the hw struct * @seid: seid of the switching component * @bw_data: Buffer holding enabled TCs, relative/absolute TC BW limit/credits * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_config_switch_comp_bw_config(struct i40e_hw *hw, u16 seid, struct i40e_aqc_configure_switching_comp_bw_config_data *bw_data, struct i40e_asq_cmd_details *cmd_details) { return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data), i40e_aqc_opc_configure_switching_comp_bw_config, cmd_details); } /** * i40e_aq_query_vsi_bw_config - Query VSI BW configuration * @hw: pointer to the hw struct * @seid: seid of the VSI * @bw_data: Buffer to hold VSI BW configuration * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_query_vsi_bw_config(struct i40e_hw *hw, u16 seid, struct i40e_aqc_query_vsi_bw_config_resp *bw_data, struct i40e_asq_cmd_details *cmd_details) { return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data), i40e_aqc_opc_query_vsi_bw_config, cmd_details); } /** * i40e_aq_query_vsi_ets_sla_config - Query VSI BW configuration per TC * @hw: pointer to the hw struct * @seid: seid of the VSI * @bw_data: Buffer to hold VSI BW configuration per TC * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_query_vsi_ets_sla_config(struct i40e_hw *hw, u16 seid, struct i40e_aqc_query_vsi_ets_sla_config_resp *bw_data, struct i40e_asq_cmd_details *cmd_details) { return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data), i40e_aqc_opc_query_vsi_ets_sla_config, cmd_details); } /** * i40e_aq_query_switch_comp_ets_config - Query Switch comp BW config per TC * @hw: pointer to the hw struct * @seid: seid of the switching component * @bw_data: Buffer to hold switching component's per TC BW config * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_query_switch_comp_ets_config(struct i40e_hw *hw, u16 seid, struct i40e_aqc_query_switching_comp_ets_config_resp *bw_data, struct i40e_asq_cmd_details *cmd_details) { return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data), i40e_aqc_opc_query_switching_comp_ets_config, cmd_details); } /** * i40e_aq_query_port_ets_config - Query Physical Port ETS configuration * @hw: pointer to the hw struct * @seid: seid of the VSI or switching component connected to Physical Port * @bw_data: Buffer to hold current ETS configuration for the Physical Port * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_query_port_ets_config(struct i40e_hw *hw, u16 seid, struct i40e_aqc_query_port_ets_config_resp *bw_data, struct i40e_asq_cmd_details *cmd_details) { return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data), i40e_aqc_opc_query_port_ets_config, cmd_details); } /** * i40e_aq_query_switch_comp_bw_config - Query Switch comp BW configuration * @hw: pointer to the hw struct * @seid: seid of the switching component * @bw_data: Buffer to hold switching component's BW configuration * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_query_switch_comp_bw_config(struct i40e_hw *hw, u16 seid, struct i40e_aqc_query_switching_comp_bw_config_resp *bw_data, struct i40e_asq_cmd_details *cmd_details) { return i40e_aq_tx_sched_cmd(hw, seid, (void *)bw_data, sizeof(*bw_data), i40e_aqc_opc_query_switching_comp_bw_config, cmd_details); } /** * i40e_validate_filter_settings * @hw: pointer to the hardware structure * @settings: Filter control settings * * Check and validate the filter control settings passed. * The function checks for the valid filter/context sizes being * passed for FCoE and PE. * * Returns 0 if the values passed are valid and within * range else returns an error. **/ static int i40e_validate_filter_settings(struct i40e_hw *hw, struct i40e_filter_control_settings *settings) { u32 fcoe_cntx_size, fcoe_filt_size; u32 fcoe_fmax; u32 val; /* Validate FCoE settings passed */ switch (settings->fcoe_filt_num) { case I40E_HASH_FILTER_SIZE_1K: case I40E_HASH_FILTER_SIZE_2K: case I40E_HASH_FILTER_SIZE_4K: case I40E_HASH_FILTER_SIZE_8K: case I40E_HASH_FILTER_SIZE_16K: case I40E_HASH_FILTER_SIZE_32K: fcoe_filt_size = I40E_HASH_FILTER_BASE_SIZE; fcoe_filt_size <<= (u32)settings->fcoe_filt_num; break; default: return I40E_ERR_PARAM; } switch (settings->fcoe_cntx_num) { case I40E_DMA_CNTX_SIZE_512: case I40E_DMA_CNTX_SIZE_1K: case I40E_DMA_CNTX_SIZE_2K: case I40E_DMA_CNTX_SIZE_4K: fcoe_cntx_size = I40E_DMA_CNTX_BASE_SIZE; fcoe_cntx_size <<= (u32)settings->fcoe_cntx_num; break; default: return I40E_ERR_PARAM; } /* Validate PE settings passed */ switch (settings->pe_filt_num) { case I40E_HASH_FILTER_SIZE_1K: case I40E_HASH_FILTER_SIZE_2K: case I40E_HASH_FILTER_SIZE_4K: case I40E_HASH_FILTER_SIZE_8K: case I40E_HASH_FILTER_SIZE_16K: case I40E_HASH_FILTER_SIZE_32K: case I40E_HASH_FILTER_SIZE_64K: case I40E_HASH_FILTER_SIZE_128K: case I40E_HASH_FILTER_SIZE_256K: case I40E_HASH_FILTER_SIZE_512K: case I40E_HASH_FILTER_SIZE_1M: break; default: return I40E_ERR_PARAM; } switch (settings->pe_cntx_num) { case I40E_DMA_CNTX_SIZE_512: case I40E_DMA_CNTX_SIZE_1K: case I40E_DMA_CNTX_SIZE_2K: case I40E_DMA_CNTX_SIZE_4K: case I40E_DMA_CNTX_SIZE_8K: case I40E_DMA_CNTX_SIZE_16K: case I40E_DMA_CNTX_SIZE_32K: case I40E_DMA_CNTX_SIZE_64K: case I40E_DMA_CNTX_SIZE_128K: case I40E_DMA_CNTX_SIZE_256K: break; default: return I40E_ERR_PARAM; } /* FCHSIZE + FCDSIZE should not be greater than PMFCOEFMAX */ val = rd32(hw, I40E_GLHMC_FCOEFMAX); fcoe_fmax = (val & I40E_GLHMC_FCOEFMAX_PMFCOEFMAX_MASK) >> I40E_GLHMC_FCOEFMAX_PMFCOEFMAX_SHIFT; if (fcoe_filt_size + fcoe_cntx_size > fcoe_fmax) return I40E_ERR_INVALID_SIZE; return 0; } /** * i40e_set_filter_control * @hw: pointer to the hardware structure * @settings: Filter control settings * * Set the Queue Filters for PE/FCoE and enable filters required * for a single PF. It is expected that these settings are programmed * at the driver initialization time. **/ int i40e_set_filter_control(struct i40e_hw *hw, struct i40e_filter_control_settings *settings) { u32 hash_lut_size = 0; int ret = 0; u32 val; if (!settings) return I40E_ERR_PARAM; /* Validate the input settings */ ret = i40e_validate_filter_settings(hw, settings); if (ret) return ret; /* Read the PF Queue Filter control register */ val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0); /* Program required PE hash buckets for the PF */ val &= ~I40E_PFQF_CTL_0_PEHSIZE_MASK; val |= ((u32)settings->pe_filt_num << I40E_PFQF_CTL_0_PEHSIZE_SHIFT) & I40E_PFQF_CTL_0_PEHSIZE_MASK; /* Program required PE contexts for the PF */ val &= ~I40E_PFQF_CTL_0_PEDSIZE_MASK; val |= ((u32)settings->pe_cntx_num << I40E_PFQF_CTL_0_PEDSIZE_SHIFT) & I40E_PFQF_CTL_0_PEDSIZE_MASK; /* Program required FCoE hash buckets for the PF */ val &= ~I40E_PFQF_CTL_0_PFFCHSIZE_MASK; val |= ((u32)settings->fcoe_filt_num << I40E_PFQF_CTL_0_PFFCHSIZE_SHIFT) & I40E_PFQF_CTL_0_PFFCHSIZE_MASK; /* Program required FCoE DDP contexts for the PF */ val &= ~I40E_PFQF_CTL_0_PFFCDSIZE_MASK; val |= ((u32)settings->fcoe_cntx_num << I40E_PFQF_CTL_0_PFFCDSIZE_SHIFT) & I40E_PFQF_CTL_0_PFFCDSIZE_MASK; /* Program Hash LUT size for the PF */ val &= ~I40E_PFQF_CTL_0_HASHLUTSIZE_MASK; if (settings->hash_lut_size == I40E_HASH_LUT_SIZE_512) hash_lut_size = 1; val |= (hash_lut_size << I40E_PFQF_CTL_0_HASHLUTSIZE_SHIFT) & I40E_PFQF_CTL_0_HASHLUTSIZE_MASK; /* Enable FDIR, Ethertype and MACVLAN filters for PF and VFs */ if (settings->enable_fdir) val |= I40E_PFQF_CTL_0_FD_ENA_MASK; if (settings->enable_ethtype) val |= I40E_PFQF_CTL_0_ETYPE_ENA_MASK; if (settings->enable_macvlan) val |= I40E_PFQF_CTL_0_MACVLAN_ENA_MASK; i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, val); return 0; } /** * i40e_aq_add_rem_control_packet_filter - Add or Remove Control Packet Filter * @hw: pointer to the hw struct * @mac_addr: MAC address to use in the filter * @ethtype: Ethertype to use in the filter * @flags: Flags that needs to be applied to the filter * @vsi_seid: seid of the control VSI * @queue: VSI queue number to send the packet to * @is_add: Add control packet filter if True else remove * @stats: Structure to hold information on control filter counts * @cmd_details: pointer to command details structure or NULL * * This command will Add or Remove control packet filter for a control VSI. * In return it will update the total number of perfect filter count in * the stats member. **/ int i40e_aq_add_rem_control_packet_filter(struct i40e_hw *hw, u8 *mac_addr, u16 ethtype, u16 flags, u16 vsi_seid, u16 queue, bool is_add, struct i40e_control_filter_stats *stats, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_add_remove_control_packet_filter *cmd = (struct i40e_aqc_add_remove_control_packet_filter *) &desc.params.raw; struct i40e_aqc_add_remove_control_packet_filter_completion *resp = (struct i40e_aqc_add_remove_control_packet_filter_completion *) &desc.params.raw; int status; if (vsi_seid == 0) return I40E_ERR_PARAM; if (is_add) { i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_control_packet_filter); cmd->queue = cpu_to_le16(queue); } else { i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_remove_control_packet_filter); } if (mac_addr) ether_addr_copy(cmd->mac, mac_addr); cmd->etype = cpu_to_le16(ethtype); cmd->flags = cpu_to_le16(flags); cmd->seid = cpu_to_le16(vsi_seid); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); if (!status && stats) { stats->mac_etype_used = le16_to_cpu(resp->mac_etype_used); stats->etype_used = le16_to_cpu(resp->etype_used); stats->mac_etype_free = le16_to_cpu(resp->mac_etype_free); stats->etype_free = le16_to_cpu(resp->etype_free); } return status; } /** * i40e_add_filter_to_drop_tx_flow_control_frames- filter to drop flow control * @hw: pointer to the hw struct * @seid: VSI seid to add ethertype filter from **/ void i40e_add_filter_to_drop_tx_flow_control_frames(struct i40e_hw *hw, u16 seid) { #define I40E_FLOW_CONTROL_ETHTYPE 0x8808 u16 flag = I40E_AQC_ADD_CONTROL_PACKET_FLAGS_IGNORE_MAC | I40E_AQC_ADD_CONTROL_PACKET_FLAGS_DROP | I40E_AQC_ADD_CONTROL_PACKET_FLAGS_TX; u16 ethtype = I40E_FLOW_CONTROL_ETHTYPE; int status; status = i40e_aq_add_rem_control_packet_filter(hw, NULL, ethtype, flag, seid, 0, true, NULL, NULL); if (status) hw_dbg(hw, "Ethtype Filter Add failed: Error pruning Tx flow control frames\n"); } /** * i40e_aq_alternate_read * @hw: pointer to the hardware structure * @reg_addr0: address of first dword to be read * @reg_val0: pointer for data read from 'reg_addr0' * @reg_addr1: address of second dword to be read * @reg_val1: pointer for data read from 'reg_addr1' * * Read one or two dwords from alternate structure. Fields are indicated * by 'reg_addr0' and 'reg_addr1' register numbers. If 'reg_val1' pointer * is not passed then only register at 'reg_addr0' is read. * **/ static int i40e_aq_alternate_read(struct i40e_hw *hw, u32 reg_addr0, u32 *reg_val0, u32 reg_addr1, u32 *reg_val1) { struct i40e_aq_desc desc; struct i40e_aqc_alternate_write *cmd_resp = (struct i40e_aqc_alternate_write *)&desc.params.raw; int status; if (!reg_val0) return I40E_ERR_PARAM; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_alternate_read); cmd_resp->address0 = cpu_to_le32(reg_addr0); cmd_resp->address1 = cpu_to_le32(reg_addr1); status = i40e_asq_send_command(hw, &desc, NULL, 0, NULL); if (!status) { *reg_val0 = le32_to_cpu(cmd_resp->data0); if (reg_val1) *reg_val1 = le32_to_cpu(cmd_resp->data1); } return status; } /** * i40e_aq_suspend_port_tx * @hw: pointer to the hardware structure * @seid: port seid * @cmd_details: pointer to command details structure or NULL * * Suspend port's Tx traffic **/ int i40e_aq_suspend_port_tx(struct i40e_hw *hw, u16 seid, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aqc_tx_sched_ind *cmd; struct i40e_aq_desc desc; int status; cmd = (struct i40e_aqc_tx_sched_ind *)&desc.params.raw; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_suspend_port_tx); cmd->vsi_seid = cpu_to_le16(seid); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_resume_port_tx * @hw: pointer to the hardware structure * @cmd_details: pointer to command details structure or NULL * * Resume port's Tx traffic **/ int i40e_aq_resume_port_tx(struct i40e_hw *hw, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_resume_port_tx); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_set_pci_config_data - store PCI bus info * @hw: pointer to hardware structure * @link_status: the link status word from PCI config space * * Stores the PCI bus info (speed, width, type) within the i40e_hw structure **/ void i40e_set_pci_config_data(struct i40e_hw *hw, u16 link_status) { hw->bus.type = i40e_bus_type_pci_express; switch (link_status & PCI_EXP_LNKSTA_NLW) { case PCI_EXP_LNKSTA_NLW_X1: hw->bus.width = i40e_bus_width_pcie_x1; break; case PCI_EXP_LNKSTA_NLW_X2: hw->bus.width = i40e_bus_width_pcie_x2; break; case PCI_EXP_LNKSTA_NLW_X4: hw->bus.width = i40e_bus_width_pcie_x4; break; case PCI_EXP_LNKSTA_NLW_X8: hw->bus.width = i40e_bus_width_pcie_x8; break; default: hw->bus.width = i40e_bus_width_unknown; break; } switch (link_status & PCI_EXP_LNKSTA_CLS) { case PCI_EXP_LNKSTA_CLS_2_5GB: hw->bus.speed = i40e_bus_speed_2500; break; case PCI_EXP_LNKSTA_CLS_5_0GB: hw->bus.speed = i40e_bus_speed_5000; break; case PCI_EXP_LNKSTA_CLS_8_0GB: hw->bus.speed = i40e_bus_speed_8000; break; default: hw->bus.speed = i40e_bus_speed_unknown; break; } } /** * i40e_aq_debug_dump * @hw: pointer to the hardware structure * @cluster_id: specific cluster to dump * @table_id: table id within cluster * @start_index: index of line in the block to read * @buff_size: dump buffer size * @buff: dump buffer * @ret_buff_size: actual buffer size returned * @ret_next_table: next block to read * @ret_next_index: next index to read * @cmd_details: pointer to command details structure or NULL * * Dump internal FW/HW data for debug purposes. * **/ int i40e_aq_debug_dump(struct i40e_hw *hw, u8 cluster_id, u8 table_id, u32 start_index, u16 buff_size, void *buff, u16 *ret_buff_size, u8 *ret_next_table, u32 *ret_next_index, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_debug_dump_internals *cmd = (struct i40e_aqc_debug_dump_internals *)&desc.params.raw; struct i40e_aqc_debug_dump_internals *resp = (struct i40e_aqc_debug_dump_internals *)&desc.params.raw; int status; if (buff_size == 0 || !buff) return I40E_ERR_PARAM; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_debug_dump_internals); /* Indirect Command */ desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF); if (buff_size > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); cmd->cluster_id = cluster_id; cmd->table_id = table_id; cmd->idx = cpu_to_le32(start_index); desc.datalen = cpu_to_le16(buff_size); status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details); if (!status) { if (ret_buff_size) *ret_buff_size = le16_to_cpu(desc.datalen); if (ret_next_table) *ret_next_table = resp->table_id; if (ret_next_index) *ret_next_index = le32_to_cpu(resp->idx); } return status; } /** * i40e_read_bw_from_alt_ram * @hw: pointer to the hardware structure * @max_bw: pointer for max_bw read * @min_bw: pointer for min_bw read * @min_valid: pointer for bool that is true if min_bw is a valid value * @max_valid: pointer for bool that is true if max_bw is a valid value * * Read bw from the alternate ram for the given pf **/ int i40e_read_bw_from_alt_ram(struct i40e_hw *hw, u32 *max_bw, u32 *min_bw, bool *min_valid, bool *max_valid) { u32 max_bw_addr, min_bw_addr; int status; /* Calculate the address of the min/max bw registers */ max_bw_addr = I40E_ALT_STRUCT_FIRST_PF_OFFSET + I40E_ALT_STRUCT_MAX_BW_OFFSET + (I40E_ALT_STRUCT_DWORDS_PER_PF * hw->pf_id); min_bw_addr = I40E_ALT_STRUCT_FIRST_PF_OFFSET + I40E_ALT_STRUCT_MIN_BW_OFFSET + (I40E_ALT_STRUCT_DWORDS_PER_PF * hw->pf_id); /* Read the bandwidths from alt ram */ status = i40e_aq_alternate_read(hw, max_bw_addr, max_bw, min_bw_addr, min_bw); if (*min_bw & I40E_ALT_BW_VALID_MASK) *min_valid = true; else *min_valid = false; if (*max_bw & I40E_ALT_BW_VALID_MASK) *max_valid = true; else *max_valid = false; return status; } /** * i40e_aq_configure_partition_bw * @hw: pointer to the hardware structure * @bw_data: Buffer holding valid pfs and bw limits * @cmd_details: pointer to command details * * Configure partitions guaranteed/max bw **/ int i40e_aq_configure_partition_bw(struct i40e_hw *hw, struct i40e_aqc_configure_partition_bw_data *bw_data, struct i40e_asq_cmd_details *cmd_details) { u16 bwd_size = sizeof(*bw_data); struct i40e_aq_desc desc; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_configure_partition_bw); /* Indirect command */ desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF); desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_RD); if (bwd_size > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); desc.datalen = cpu_to_le16(bwd_size); status = i40e_asq_send_command(hw, &desc, bw_data, bwd_size, cmd_details); return status; } /** * i40e_read_phy_register_clause22 * @hw: pointer to the HW structure * @reg: register address in the page * @phy_addr: PHY address on MDIO interface * @value: PHY register value * * Reads specified PHY register value **/ int i40e_read_phy_register_clause22(struct i40e_hw *hw, u16 reg, u8 phy_addr, u16 *value) { u8 port_num = (u8)hw->func_caps.mdio_port_num; int status = I40E_ERR_TIMEOUT; u32 command = 0; u16 retry = 1000; command = (reg << I40E_GLGEN_MSCA_DEVADD_SHIFT) | (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) | (I40E_MDIO_CLAUSE22_OPCODE_READ_MASK) | (I40E_MDIO_CLAUSE22_STCODE_MASK) | (I40E_GLGEN_MSCA_MDICMD_MASK); wr32(hw, I40E_GLGEN_MSCA(port_num), command); do { command = rd32(hw, I40E_GLGEN_MSCA(port_num)); if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) { status = 0; break; } udelay(10); retry--; } while (retry); if (status) { i40e_debug(hw, I40E_DEBUG_PHY, "PHY: Can't write command to external PHY.\n"); } else { command = rd32(hw, I40E_GLGEN_MSRWD(port_num)); *value = (command & I40E_GLGEN_MSRWD_MDIRDDATA_MASK) >> I40E_GLGEN_MSRWD_MDIRDDATA_SHIFT; } return status; } /** * i40e_write_phy_register_clause22 * @hw: pointer to the HW structure * @reg: register address in the page * @phy_addr: PHY address on MDIO interface * @value: PHY register value * * Writes specified PHY register value **/ int i40e_write_phy_register_clause22(struct i40e_hw *hw, u16 reg, u8 phy_addr, u16 value) { u8 port_num = (u8)hw->func_caps.mdio_port_num; int status = I40E_ERR_TIMEOUT; u32 command = 0; u16 retry = 1000; command = value << I40E_GLGEN_MSRWD_MDIWRDATA_SHIFT; wr32(hw, I40E_GLGEN_MSRWD(port_num), command); command = (reg << I40E_GLGEN_MSCA_DEVADD_SHIFT) | (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) | (I40E_MDIO_CLAUSE22_OPCODE_WRITE_MASK) | (I40E_MDIO_CLAUSE22_STCODE_MASK) | (I40E_GLGEN_MSCA_MDICMD_MASK); wr32(hw, I40E_GLGEN_MSCA(port_num), command); do { command = rd32(hw, I40E_GLGEN_MSCA(port_num)); if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) { status = 0; break; } udelay(10); retry--; } while (retry); return status; } /** * i40e_read_phy_register_clause45 * @hw: pointer to the HW structure * @page: registers page number * @reg: register address in the page * @phy_addr: PHY address on MDIO interface * @value: PHY register value * * Reads specified PHY register value **/ int i40e_read_phy_register_clause45(struct i40e_hw *hw, u8 page, u16 reg, u8 phy_addr, u16 *value) { u8 port_num = hw->func_caps.mdio_port_num; int status = I40E_ERR_TIMEOUT; u32 command = 0; u16 retry = 1000; command = (reg << I40E_GLGEN_MSCA_MDIADD_SHIFT) | (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) | (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) | (I40E_MDIO_CLAUSE45_OPCODE_ADDRESS_MASK) | (I40E_MDIO_CLAUSE45_STCODE_MASK) | (I40E_GLGEN_MSCA_MDICMD_MASK) | (I40E_GLGEN_MSCA_MDIINPROGEN_MASK); wr32(hw, I40E_GLGEN_MSCA(port_num), command); do { command = rd32(hw, I40E_GLGEN_MSCA(port_num)); if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) { status = 0; break; } usleep_range(10, 20); retry--; } while (retry); if (status) { i40e_debug(hw, I40E_DEBUG_PHY, "PHY: Can't write command to external PHY.\n"); goto phy_read_end; } command = (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) | (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) | (I40E_MDIO_CLAUSE45_OPCODE_READ_MASK) | (I40E_MDIO_CLAUSE45_STCODE_MASK) | (I40E_GLGEN_MSCA_MDICMD_MASK) | (I40E_GLGEN_MSCA_MDIINPROGEN_MASK); status = I40E_ERR_TIMEOUT; retry = 1000; wr32(hw, I40E_GLGEN_MSCA(port_num), command); do { command = rd32(hw, I40E_GLGEN_MSCA(port_num)); if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) { status = 0; break; } usleep_range(10, 20); retry--; } while (retry); if (!status) { command = rd32(hw, I40E_GLGEN_MSRWD(port_num)); *value = (command & I40E_GLGEN_MSRWD_MDIRDDATA_MASK) >> I40E_GLGEN_MSRWD_MDIRDDATA_SHIFT; } else { i40e_debug(hw, I40E_DEBUG_PHY, "PHY: Can't read register value from external PHY.\n"); } phy_read_end: return status; } /** * i40e_write_phy_register_clause45 * @hw: pointer to the HW structure * @page: registers page number * @reg: register address in the page * @phy_addr: PHY address on MDIO interface * @value: PHY register value * * Writes value to specified PHY register **/ int i40e_write_phy_register_clause45(struct i40e_hw *hw, u8 page, u16 reg, u8 phy_addr, u16 value) { u8 port_num = hw->func_caps.mdio_port_num; int status = I40E_ERR_TIMEOUT; u16 retry = 1000; u32 command = 0; command = (reg << I40E_GLGEN_MSCA_MDIADD_SHIFT) | (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) | (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) | (I40E_MDIO_CLAUSE45_OPCODE_ADDRESS_MASK) | (I40E_MDIO_CLAUSE45_STCODE_MASK) | (I40E_GLGEN_MSCA_MDICMD_MASK) | (I40E_GLGEN_MSCA_MDIINPROGEN_MASK); wr32(hw, I40E_GLGEN_MSCA(port_num), command); do { command = rd32(hw, I40E_GLGEN_MSCA(port_num)); if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) { status = 0; break; } usleep_range(10, 20); retry--; } while (retry); if (status) { i40e_debug(hw, I40E_DEBUG_PHY, "PHY: Can't write command to external PHY.\n"); goto phy_write_end; } command = value << I40E_GLGEN_MSRWD_MDIWRDATA_SHIFT; wr32(hw, I40E_GLGEN_MSRWD(port_num), command); command = (page << I40E_GLGEN_MSCA_DEVADD_SHIFT) | (phy_addr << I40E_GLGEN_MSCA_PHYADD_SHIFT) | (I40E_MDIO_CLAUSE45_OPCODE_WRITE_MASK) | (I40E_MDIO_CLAUSE45_STCODE_MASK) | (I40E_GLGEN_MSCA_MDICMD_MASK) | (I40E_GLGEN_MSCA_MDIINPROGEN_MASK); status = I40E_ERR_TIMEOUT; retry = 1000; wr32(hw, I40E_GLGEN_MSCA(port_num), command); do { command = rd32(hw, I40E_GLGEN_MSCA(port_num)); if (!(command & I40E_GLGEN_MSCA_MDICMD_MASK)) { status = 0; break; } usleep_range(10, 20); retry--; } while (retry); phy_write_end: return status; } /** * i40e_write_phy_register * @hw: pointer to the HW structure * @page: registers page number * @reg: register address in the page * @phy_addr: PHY address on MDIO interface * @value: PHY register value * * Writes value to specified PHY register **/ int i40e_write_phy_register(struct i40e_hw *hw, u8 page, u16 reg, u8 phy_addr, u16 value) { int status; switch (hw->device_id) { case I40E_DEV_ID_1G_BASE_T_X722: status = i40e_write_phy_register_clause22(hw, reg, phy_addr, value); break; case I40E_DEV_ID_1G_BASE_T_BC: case I40E_DEV_ID_5G_BASE_T_BC: case I40E_DEV_ID_10G_BASE_T: case I40E_DEV_ID_10G_BASE_T4: case I40E_DEV_ID_10G_BASE_T_BC: case I40E_DEV_ID_10G_BASE_T_X722: case I40E_DEV_ID_25G_B: case I40E_DEV_ID_25G_SFP28: status = i40e_write_phy_register_clause45(hw, page, reg, phy_addr, value); break; default: status = I40E_ERR_UNKNOWN_PHY; break; } return status; } /** * i40e_read_phy_register * @hw: pointer to the HW structure * @page: registers page number * @reg: register address in the page * @phy_addr: PHY address on MDIO interface * @value: PHY register value * * Reads specified PHY register value **/ int i40e_read_phy_register(struct i40e_hw *hw, u8 page, u16 reg, u8 phy_addr, u16 *value) { int status; switch (hw->device_id) { case I40E_DEV_ID_1G_BASE_T_X722: status = i40e_read_phy_register_clause22(hw, reg, phy_addr, value); break; case I40E_DEV_ID_1G_BASE_T_BC: case I40E_DEV_ID_5G_BASE_T_BC: case I40E_DEV_ID_10G_BASE_T: case I40E_DEV_ID_10G_BASE_T4: case I40E_DEV_ID_10G_BASE_T_BC: case I40E_DEV_ID_10G_BASE_T_X722: case I40E_DEV_ID_25G_B: case I40E_DEV_ID_25G_SFP28: status = i40e_read_phy_register_clause45(hw, page, reg, phy_addr, value); break; default: status = I40E_ERR_UNKNOWN_PHY; break; } return status; } /** * i40e_get_phy_address * @hw: pointer to the HW structure * @dev_num: PHY port num that address we want * * Gets PHY address for current port **/ u8 i40e_get_phy_address(struct i40e_hw *hw, u8 dev_num) { u8 port_num = hw->func_caps.mdio_port_num; u32 reg_val = rd32(hw, I40E_GLGEN_MDIO_I2C_SEL(port_num)); return (u8)(reg_val >> ((dev_num + 1) * 5)) & 0x1f; } /** * i40e_blink_phy_link_led * @hw: pointer to the HW structure * @time: time how long led will blinks in secs * @interval: gap between LED on and off in msecs * * Blinks PHY link LED **/ int i40e_blink_phy_link_led(struct i40e_hw *hw, u32 time, u32 interval) { u16 led_addr = I40E_PHY_LED_PROV_REG_1; u16 gpio_led_port; u8 phy_addr = 0; int status = 0; u16 led_ctl; u8 port_num; u16 led_reg; u32 i; i = rd32(hw, I40E_PFGEN_PORTNUM); port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK); phy_addr = i40e_get_phy_address(hw, port_num); for (gpio_led_port = 0; gpio_led_port < 3; gpio_led_port++, led_addr++) { status = i40e_read_phy_register_clause45(hw, I40E_PHY_COM_REG_PAGE, led_addr, phy_addr, &led_reg); if (status) goto phy_blinking_end; led_ctl = led_reg; if (led_reg & I40E_PHY_LED_LINK_MODE_MASK) { led_reg = 0; status = i40e_write_phy_register_clause45(hw, I40E_PHY_COM_REG_PAGE, led_addr, phy_addr, led_reg); if (status) goto phy_blinking_end; break; } } if (time > 0 && interval > 0) { for (i = 0; i < time * 1000; i += interval) { status = i40e_read_phy_register_clause45(hw, I40E_PHY_COM_REG_PAGE, led_addr, phy_addr, &led_reg); if (status) goto restore_config; if (led_reg & I40E_PHY_LED_MANUAL_ON) led_reg = 0; else led_reg = I40E_PHY_LED_MANUAL_ON; status = i40e_write_phy_register_clause45(hw, I40E_PHY_COM_REG_PAGE, led_addr, phy_addr, led_reg); if (status) goto restore_config; msleep(interval); } } restore_config: status = i40e_write_phy_register_clause45(hw, I40E_PHY_COM_REG_PAGE, led_addr, phy_addr, led_ctl); phy_blinking_end: return status; } /** * i40e_led_get_reg - read LED register * @hw: pointer to the HW structure * @led_addr: LED register address * @reg_val: read register value **/ static int i40e_led_get_reg(struct i40e_hw *hw, u16 led_addr, u32 *reg_val) { u8 phy_addr = 0; u8 port_num; int status; u32 i; *reg_val = 0; if (hw->flags & I40E_HW_FLAG_AQ_PHY_ACCESS_CAPABLE) { status = i40e_aq_get_phy_register(hw, I40E_AQ_PHY_REG_ACCESS_EXTERNAL, I40E_PHY_COM_REG_PAGE, true, I40E_PHY_LED_PROV_REG_1, reg_val, NULL); } else { i = rd32(hw, I40E_PFGEN_PORTNUM); port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK); phy_addr = i40e_get_phy_address(hw, port_num); status = i40e_read_phy_register_clause45(hw, I40E_PHY_COM_REG_PAGE, led_addr, phy_addr, (u16 *)reg_val); } return status; } /** * i40e_led_set_reg - write LED register * @hw: pointer to the HW structure * @led_addr: LED register address * @reg_val: register value to write **/ static int i40e_led_set_reg(struct i40e_hw *hw, u16 led_addr, u32 reg_val) { u8 phy_addr = 0; u8 port_num; int status; u32 i; if (hw->flags & I40E_HW_FLAG_AQ_PHY_ACCESS_CAPABLE) { status = i40e_aq_set_phy_register(hw, I40E_AQ_PHY_REG_ACCESS_EXTERNAL, I40E_PHY_COM_REG_PAGE, true, I40E_PHY_LED_PROV_REG_1, reg_val, NULL); } else { i = rd32(hw, I40E_PFGEN_PORTNUM); port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK); phy_addr = i40e_get_phy_address(hw, port_num); status = i40e_write_phy_register_clause45(hw, I40E_PHY_COM_REG_PAGE, led_addr, phy_addr, (u16)reg_val); } return status; } /** * i40e_led_get_phy - return current on/off mode * @hw: pointer to the hw struct * @led_addr: address of led register to use * @val: original value of register to use * **/ int i40e_led_get_phy(struct i40e_hw *hw, u16 *led_addr, u16 *val) { u16 gpio_led_port; u8 phy_addr = 0; u32 reg_val_aq; int status = 0; u16 temp_addr; u16 reg_val; u8 port_num; u32 i; if (hw->flags & I40E_HW_FLAG_AQ_PHY_ACCESS_CAPABLE) { status = i40e_aq_get_phy_register(hw, I40E_AQ_PHY_REG_ACCESS_EXTERNAL, I40E_PHY_COM_REG_PAGE, true, I40E_PHY_LED_PROV_REG_1, ®_val_aq, NULL); if (status == I40E_SUCCESS) *val = (u16)reg_val_aq; return status; } temp_addr = I40E_PHY_LED_PROV_REG_1; i = rd32(hw, I40E_PFGEN_PORTNUM); port_num = (u8)(i & I40E_PFGEN_PORTNUM_PORT_NUM_MASK); phy_addr = i40e_get_phy_address(hw, port_num); for (gpio_led_port = 0; gpio_led_port < 3; gpio_led_port++, temp_addr++) { status = i40e_read_phy_register_clause45(hw, I40E_PHY_COM_REG_PAGE, temp_addr, phy_addr, ®_val); if (status) return status; *val = reg_val; if (reg_val & I40E_PHY_LED_LINK_MODE_MASK) { *led_addr = temp_addr; break; } } return status; } /** * i40e_led_set_phy * @hw: pointer to the HW structure * @on: true or false * @led_addr: address of led register to use * @mode: original val plus bit for set or ignore * * Set led's on or off when controlled by the PHY * **/ int i40e_led_set_phy(struct i40e_hw *hw, bool on, u16 led_addr, u32 mode) { u32 led_ctl = 0; u32 led_reg = 0; int status = 0; status = i40e_led_get_reg(hw, led_addr, &led_reg); if (status) return status; led_ctl = led_reg; if (led_reg & I40E_PHY_LED_LINK_MODE_MASK) { led_reg = 0; status = i40e_led_set_reg(hw, led_addr, led_reg); if (status) return status; } status = i40e_led_get_reg(hw, led_addr, &led_reg); if (status) goto restore_config; if (on) led_reg = I40E_PHY_LED_MANUAL_ON; else led_reg = 0; status = i40e_led_set_reg(hw, led_addr, led_reg); if (status) goto restore_config; if (mode & I40E_PHY_LED_MODE_ORIG) { led_ctl = (mode & I40E_PHY_LED_MODE_MASK); status = i40e_led_set_reg(hw, led_addr, led_ctl); } return status; restore_config: status = i40e_led_set_reg(hw, led_addr, led_ctl); return status; } /** * i40e_aq_rx_ctl_read_register - use FW to read from an Rx control register * @hw: pointer to the hw struct * @reg_addr: register address * @reg_val: ptr to register value * @cmd_details: pointer to command details structure or NULL * * Use the firmware to read the Rx control register, * especially useful if the Rx unit is under heavy pressure **/ int i40e_aq_rx_ctl_read_register(struct i40e_hw *hw, u32 reg_addr, u32 *reg_val, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_rx_ctl_reg_read_write *cmd_resp = (struct i40e_aqc_rx_ctl_reg_read_write *)&desc.params.raw; int status; if (!reg_val) return I40E_ERR_PARAM; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_rx_ctl_reg_read); cmd_resp->address = cpu_to_le32(reg_addr); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); if (status == 0) *reg_val = le32_to_cpu(cmd_resp->value); return status; } /** * i40e_read_rx_ctl - read from an Rx control register * @hw: pointer to the hw struct * @reg_addr: register address **/ u32 i40e_read_rx_ctl(struct i40e_hw *hw, u32 reg_addr) { bool use_register; int status = 0; int retry = 5; u32 val = 0; use_register = (((hw->aq.api_maj_ver == 1) && (hw->aq.api_min_ver < 5)) || (hw->mac.type == I40E_MAC_X722)); if (!use_register) { do_retry: status = i40e_aq_rx_ctl_read_register(hw, reg_addr, &val, NULL); if (hw->aq.asq_last_status == I40E_AQ_RC_EAGAIN && retry) { usleep_range(1000, 2000); retry--; goto do_retry; } } /* if the AQ access failed, try the old-fashioned way */ if (status || use_register) val = rd32(hw, reg_addr); return val; } /** * i40e_aq_rx_ctl_write_register * @hw: pointer to the hw struct * @reg_addr: register address * @reg_val: register value * @cmd_details: pointer to command details structure or NULL * * Use the firmware to write to an Rx control register, * especially useful if the Rx unit is under heavy pressure **/ int i40e_aq_rx_ctl_write_register(struct i40e_hw *hw, u32 reg_addr, u32 reg_val, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_rx_ctl_reg_read_write *cmd = (struct i40e_aqc_rx_ctl_reg_read_write *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_rx_ctl_reg_write); cmd->address = cpu_to_le32(reg_addr); cmd->value = cpu_to_le32(reg_val); status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_write_rx_ctl - write to an Rx control register * @hw: pointer to the hw struct * @reg_addr: register address * @reg_val: register value **/ void i40e_write_rx_ctl(struct i40e_hw *hw, u32 reg_addr, u32 reg_val) { bool use_register; int status = 0; int retry = 5; use_register = (((hw->aq.api_maj_ver == 1) && (hw->aq.api_min_ver < 5)) || (hw->mac.type == I40E_MAC_X722)); if (!use_register) { do_retry: status = i40e_aq_rx_ctl_write_register(hw, reg_addr, reg_val, NULL); if (hw->aq.asq_last_status == I40E_AQ_RC_EAGAIN && retry) { usleep_range(1000, 2000); retry--; goto do_retry; } } /* if the AQ access failed, try the old-fashioned way */ if (status || use_register) wr32(hw, reg_addr, reg_val); } /** * i40e_mdio_if_number_selection - MDIO I/F number selection * @hw: pointer to the hw struct * @set_mdio: use MDIO I/F number specified by mdio_num * @mdio_num: MDIO I/F number * @cmd: pointer to PHY Register command structure **/ static void i40e_mdio_if_number_selection(struct i40e_hw *hw, bool set_mdio, u8 mdio_num, struct i40e_aqc_phy_register_access *cmd) { if (set_mdio && cmd->phy_interface == I40E_AQ_PHY_REG_ACCESS_EXTERNAL) { if (hw->flags & I40E_HW_FLAG_AQ_PHY_ACCESS_EXTENDED) cmd->cmd_flags |= I40E_AQ_PHY_REG_ACCESS_SET_MDIO_IF_NUMBER | ((mdio_num << I40E_AQ_PHY_REG_ACCESS_MDIO_IF_NUMBER_SHIFT) & I40E_AQ_PHY_REG_ACCESS_MDIO_IF_NUMBER_MASK); else i40e_debug(hw, I40E_DEBUG_PHY, "MDIO I/F number selection not supported by current FW version.\n"); } } /** * i40e_aq_set_phy_register_ext * @hw: pointer to the hw struct * @phy_select: select which phy should be accessed * @dev_addr: PHY device address * @page_change: flag to indicate if phy page should be updated * @set_mdio: use MDIO I/F number specified by mdio_num * @mdio_num: MDIO I/F number * @reg_addr: PHY register address * @reg_val: new register value * @cmd_details: pointer to command details structure or NULL * * Write the external PHY register. * NOTE: In common cases MDIO I/F number should not be changed, thats why you * may use simple wrapper i40e_aq_set_phy_register. **/ int i40e_aq_set_phy_register_ext(struct i40e_hw *hw, u8 phy_select, u8 dev_addr, bool page_change, bool set_mdio, u8 mdio_num, u32 reg_addr, u32 reg_val, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_phy_register_access *cmd = (struct i40e_aqc_phy_register_access *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_set_phy_register); cmd->phy_interface = phy_select; cmd->dev_address = dev_addr; cmd->reg_address = cpu_to_le32(reg_addr); cmd->reg_value = cpu_to_le32(reg_val); i40e_mdio_if_number_selection(hw, set_mdio, mdio_num, cmd); if (!page_change) cmd->cmd_flags = I40E_AQ_PHY_REG_ACCESS_DONT_CHANGE_QSFP_PAGE; status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); return status; } /** * i40e_aq_get_phy_register_ext * @hw: pointer to the hw struct * @phy_select: select which phy should be accessed * @dev_addr: PHY device address * @page_change: flag to indicate if phy page should be updated * @set_mdio: use MDIO I/F number specified by mdio_num * @mdio_num: MDIO I/F number * @reg_addr: PHY register address * @reg_val: read register value * @cmd_details: pointer to command details structure or NULL * * Read the external PHY register. * NOTE: In common cases MDIO I/F number should not be changed, thats why you * may use simple wrapper i40e_aq_get_phy_register. **/ int i40e_aq_get_phy_register_ext(struct i40e_hw *hw, u8 phy_select, u8 dev_addr, bool page_change, bool set_mdio, u8 mdio_num, u32 reg_addr, u32 *reg_val, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_phy_register_access *cmd = (struct i40e_aqc_phy_register_access *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_phy_register); cmd->phy_interface = phy_select; cmd->dev_address = dev_addr; cmd->reg_address = cpu_to_le32(reg_addr); i40e_mdio_if_number_selection(hw, set_mdio, mdio_num, cmd); if (!page_change) cmd->cmd_flags = I40E_AQ_PHY_REG_ACCESS_DONT_CHANGE_QSFP_PAGE; status = i40e_asq_send_command(hw, &desc, NULL, 0, cmd_details); if (!status) *reg_val = le32_to_cpu(cmd->reg_value); return status; } /** * i40e_aq_write_ddp - Write dynamic device personalization (ddp) * @hw: pointer to the hw struct * @buff: command buffer (size in bytes = buff_size) * @buff_size: buffer size in bytes * @track_id: package tracking id * @error_offset: returns error offset * @error_info: returns error information * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_write_ddp(struct i40e_hw *hw, void *buff, u16 buff_size, u32 track_id, u32 *error_offset, u32 *error_info, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_write_personalization_profile *cmd = (struct i40e_aqc_write_personalization_profile *) &desc.params.raw; struct i40e_aqc_write_ddp_resp *resp; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_write_personalization_profile); desc.flags |= cpu_to_le16(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD); if (buff_size > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); desc.datalen = cpu_to_le16(buff_size); cmd->profile_track_id = cpu_to_le32(track_id); status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details); if (!status) { resp = (struct i40e_aqc_write_ddp_resp *)&desc.params.raw; if (error_offset) *error_offset = le32_to_cpu(resp->error_offset); if (error_info) *error_info = le32_to_cpu(resp->error_info); } return status; } /** * i40e_aq_get_ddp_list - Read dynamic device personalization (ddp) * @hw: pointer to the hw struct * @buff: command buffer (size in bytes = buff_size) * @buff_size: buffer size in bytes * @flags: AdminQ command flags * @cmd_details: pointer to command details structure or NULL **/ int i40e_aq_get_ddp_list(struct i40e_hw *hw, void *buff, u16 buff_size, u8 flags, struct i40e_asq_cmd_details *cmd_details) { struct i40e_aq_desc desc; struct i40e_aqc_get_applied_profiles *cmd = (struct i40e_aqc_get_applied_profiles *)&desc.params.raw; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_get_personalization_profile_list); desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_BUF); if (buff_size > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); desc.datalen = cpu_to_le16(buff_size); cmd->flags = flags; status = i40e_asq_send_command(hw, &desc, buff, buff_size, cmd_details); return status; } /** * i40e_find_segment_in_package * @segment_type: the segment type to search for (i.e., SEGMENT_TYPE_I40E) * @pkg_hdr: pointer to the package header to be searched * * This function searches a package file for a particular segment type. On * success it returns a pointer to the segment header, otherwise it will * return NULL. **/ struct i40e_generic_seg_header * i40e_find_segment_in_package(u32 segment_type, struct i40e_package_header *pkg_hdr) { struct i40e_generic_seg_header *segment; u32 i; /* Search all package segments for the requested segment type */ for (i = 0; i < pkg_hdr->segment_count; i++) { segment = (struct i40e_generic_seg_header *)((u8 *)pkg_hdr + pkg_hdr->segment_offset[i]); if (segment->type == segment_type) return segment; } return NULL; } /* Get section table in profile */ #define I40E_SECTION_TABLE(profile, sec_tbl) \ do { \ struct i40e_profile_segment *p = (profile); \ u32 count; \ u32 *nvm; \ count = p->device_table_count; \ nvm = (u32 *)&p->device_table[count]; \ sec_tbl = (struct i40e_section_table *)&nvm[nvm[0] + 1]; \ } while (0) /* Get section header in profile */ #define I40E_SECTION_HEADER(profile, offset) \ (struct i40e_profile_section_header *)((u8 *)(profile) + (offset)) /** * i40e_find_section_in_profile * @section_type: the section type to search for (i.e., SECTION_TYPE_NOTE) * @profile: pointer to the i40e segment header to be searched * * This function searches i40e segment for a particular section type. On * success it returns a pointer to the section header, otherwise it will * return NULL. **/ struct i40e_profile_section_header * i40e_find_section_in_profile(u32 section_type, struct i40e_profile_segment *profile) { struct i40e_profile_section_header *sec; struct i40e_section_table *sec_tbl; u32 sec_off; u32 i; if (profile->header.type != SEGMENT_TYPE_I40E) return NULL; I40E_SECTION_TABLE(profile, sec_tbl); for (i = 0; i < sec_tbl->section_count; i++) { sec_off = sec_tbl->section_offset[i]; sec = I40E_SECTION_HEADER(profile, sec_off); if (sec->section.type == section_type) return sec; } return NULL; } /** * i40e_ddp_exec_aq_section - Execute generic AQ for DDP * @hw: pointer to the hw struct * @aq: command buffer containing all data to execute AQ **/ static int i40e_ddp_exec_aq_section(struct i40e_hw *hw, struct i40e_profile_aq_section *aq) { struct i40e_aq_desc desc; u8 *msg = NULL; u16 msglen; int status; i40e_fill_default_direct_cmd_desc(&desc, aq->opcode); desc.flags |= cpu_to_le16(aq->flags); memcpy(desc.params.raw, aq->param, sizeof(desc.params.raw)); msglen = aq->datalen; if (msglen) { desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD)); if (msglen > I40E_AQ_LARGE_BUF) desc.flags |= cpu_to_le16((u16)I40E_AQ_FLAG_LB); desc.datalen = cpu_to_le16(msglen); msg = &aq->data[0]; } status = i40e_asq_send_command(hw, &desc, msg, msglen, NULL); if (status) { i40e_debug(hw, I40E_DEBUG_PACKAGE, "unable to exec DDP AQ opcode %u, error %d\n", aq->opcode, status); return status; } /* copy returned desc to aq_buf */ memcpy(aq->param, desc.params.raw, sizeof(desc.params.raw)); return 0; } /** * i40e_validate_profile * @hw: pointer to the hardware structure * @profile: pointer to the profile segment of the package to be validated * @track_id: package tracking id * @rollback: flag if the profile is for rollback. * * Validates supported devices and profile's sections. */ static int i40e_validate_profile(struct i40e_hw *hw, struct i40e_profile_segment *profile, u32 track_id, bool rollback) { struct i40e_profile_section_header *sec = NULL; struct i40e_section_table *sec_tbl; u32 vendor_dev_id; int status = 0; u32 dev_cnt; u32 sec_off; u32 i; if (track_id == I40E_DDP_TRACKID_INVALID) { i40e_debug(hw, I40E_DEBUG_PACKAGE, "Invalid track_id\n"); return I40E_NOT_SUPPORTED; } dev_cnt = profile->device_table_count; for (i = 0; i < dev_cnt; i++) { vendor_dev_id = profile->device_table[i].vendor_dev_id; if ((vendor_dev_id >> 16) == PCI_VENDOR_ID_INTEL && hw->device_id == (vendor_dev_id & 0xFFFF)) break; } if (dev_cnt && i == dev_cnt) { i40e_debug(hw, I40E_DEBUG_PACKAGE, "Device doesn't support DDP\n"); return I40E_ERR_DEVICE_NOT_SUPPORTED; } I40E_SECTION_TABLE(profile, sec_tbl); /* Validate sections types */ for (i = 0; i < sec_tbl->section_count; i++) { sec_off = sec_tbl->section_offset[i]; sec = I40E_SECTION_HEADER(profile, sec_off); if (rollback) { if (sec->section.type == SECTION_TYPE_MMIO || sec->section.type == SECTION_TYPE_AQ || sec->section.type == SECTION_TYPE_RB_AQ) { i40e_debug(hw, I40E_DEBUG_PACKAGE, "Not a roll-back package\n"); return I40E_NOT_SUPPORTED; } } else { if (sec->section.type == SECTION_TYPE_RB_AQ || sec->section.type == SECTION_TYPE_RB_MMIO) { i40e_debug(hw, I40E_DEBUG_PACKAGE, "Not an original package\n"); return I40E_NOT_SUPPORTED; } } } return status; } /** * i40e_write_profile * @hw: pointer to the hardware structure * @profile: pointer to the profile segment of the package to be downloaded * @track_id: package tracking id * * Handles the download of a complete package. */ int i40e_write_profile(struct i40e_hw *hw, struct i40e_profile_segment *profile, u32 track_id) { struct i40e_profile_section_header *sec = NULL; struct i40e_profile_aq_section *ddp_aq; struct i40e_section_table *sec_tbl; u32 offset = 0, info = 0; u32 section_size = 0; int status = 0; u32 sec_off; u32 i; status = i40e_validate_profile(hw, profile, track_id, false); if (status) return status; I40E_SECTION_TABLE(profile, sec_tbl); for (i = 0; i < sec_tbl->section_count; i++) { sec_off = sec_tbl->section_offset[i]; sec = I40E_SECTION_HEADER(profile, sec_off); /* Process generic admin command */ if (sec->section.type == SECTION_TYPE_AQ) { ddp_aq = (struct i40e_profile_aq_section *)&sec[1]; status = i40e_ddp_exec_aq_section(hw, ddp_aq); if (status) { i40e_debug(hw, I40E_DEBUG_PACKAGE, "Failed to execute aq: section %d, opcode %u\n", i, ddp_aq->opcode); break; } sec->section.type = SECTION_TYPE_RB_AQ; } /* Skip any non-mmio sections */ if (sec->section.type != SECTION_TYPE_MMIO) continue; section_size = sec->section.size + sizeof(struct i40e_profile_section_header); /* Write MMIO section */ status = i40e_aq_write_ddp(hw, (void *)sec, (u16)section_size, track_id, &offset, &info, NULL); if (status) { i40e_debug(hw, I40E_DEBUG_PACKAGE, "Failed to write profile: section %d, offset %d, info %d\n", i, offset, info); break; } } return status; } /** * i40e_rollback_profile * @hw: pointer to the hardware structure * @profile: pointer to the profile segment of the package to be removed * @track_id: package tracking id * * Rolls back previously loaded package. */ int i40e_rollback_profile(struct i40e_hw *hw, struct i40e_profile_segment *profile, u32 track_id) { struct i40e_profile_section_header *sec = NULL; struct i40e_section_table *sec_tbl; u32 offset = 0, info = 0; u32 section_size = 0; int status = 0; u32 sec_off; int i; status = i40e_validate_profile(hw, profile, track_id, true); if (status) return status; I40E_SECTION_TABLE(profile, sec_tbl); /* For rollback write sections in reverse */ for (i = sec_tbl->section_count - 1; i >= 0; i--) { sec_off = sec_tbl->section_offset[i]; sec = I40E_SECTION_HEADER(profile, sec_off); /* Skip any non-rollback sections */ if (sec->section.type != SECTION_TYPE_RB_MMIO) continue; section_size = sec->section.size + sizeof(struct i40e_profile_section_header); /* Write roll-back MMIO section */ status = i40e_aq_write_ddp(hw, (void *)sec, (u16)section_size, track_id, &offset, &info, NULL); if (status) { i40e_debug(hw, I40E_DEBUG_PACKAGE, "Failed to write profile: section %d, offset %d, info %d\n", i, offset, info); break; } } return status; } /** * i40e_add_pinfo_to_list * @hw: pointer to the hardware structure * @profile: pointer to the profile segment of the package * @profile_info_sec: buffer for information section * @track_id: package tracking id * * Register a profile to the list of loaded profiles. */ int i40e_add_pinfo_to_list(struct i40e_hw *hw, struct i40e_profile_segment *profile, u8 *profile_info_sec, u32 track_id) { struct i40e_profile_section_header *sec = NULL; struct i40e_profile_info *pinfo; u32 offset = 0, info = 0; int status = 0; sec = (struct i40e_profile_section_header *)profile_info_sec; sec->tbl_size = 1; sec->data_end = sizeof(struct i40e_profile_section_header) + sizeof(struct i40e_profile_info); sec->section.type = SECTION_TYPE_INFO; sec->section.offset = sizeof(struct i40e_profile_section_header); sec->section.size = sizeof(struct i40e_profile_info); pinfo = (struct i40e_profile_info *)(profile_info_sec + sec->section.offset); pinfo->track_id = track_id; pinfo->version = profile->version; pinfo->op = I40E_DDP_ADD_TRACKID; memcpy(pinfo->name, profile->name, I40E_DDP_NAME_SIZE); status = i40e_aq_write_ddp(hw, (void *)sec, sec->data_end, track_id, &offset, &info, NULL); return status; } /** * i40e_aq_add_cloud_filters * @hw: pointer to the hardware structure * @seid: VSI seid to add cloud filters from * @filters: Buffer which contains the filters to be added * @filter_count: number of filters contained in the buffer * * Set the cloud filters for a given VSI. The contents of the * i40e_aqc_cloud_filters_element_data are filled in by the caller * of the function. * **/ int i40e_aq_add_cloud_filters(struct i40e_hw *hw, u16 seid, struct i40e_aqc_cloud_filters_element_data *filters, u8 filter_count) { struct i40e_aq_desc desc; struct i40e_aqc_add_remove_cloud_filters *cmd = (struct i40e_aqc_add_remove_cloud_filters *)&desc.params.raw; u16 buff_len; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_cloud_filters); buff_len = filter_count * sizeof(*filters); desc.datalen = cpu_to_le16(buff_len); desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD)); cmd->num_filters = filter_count; cmd->seid = cpu_to_le16(seid); status = i40e_asq_send_command(hw, &desc, filters, buff_len, NULL); return status; } /** * i40e_aq_add_cloud_filters_bb * @hw: pointer to the hardware structure * @seid: VSI seid to add cloud filters from * @filters: Buffer which contains the filters in big buffer to be added * @filter_count: number of filters contained in the buffer * * Set the big buffer cloud filters for a given VSI. The contents of the * i40e_aqc_cloud_filters_element_bb are filled in by the caller of the * function. * **/ int i40e_aq_add_cloud_filters_bb(struct i40e_hw *hw, u16 seid, struct i40e_aqc_cloud_filters_element_bb *filters, u8 filter_count) { struct i40e_aq_desc desc; struct i40e_aqc_add_remove_cloud_filters *cmd = (struct i40e_aqc_add_remove_cloud_filters *)&desc.params.raw; u16 buff_len; int status; int i; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_add_cloud_filters); buff_len = filter_count * sizeof(*filters); desc.datalen = cpu_to_le16(buff_len); desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD)); cmd->num_filters = filter_count; cmd->seid = cpu_to_le16(seid); cmd->big_buffer_flag = I40E_AQC_ADD_CLOUD_CMD_BB; for (i = 0; i < filter_count; i++) { u16 tnl_type; u32 ti; tnl_type = (le16_to_cpu(filters[i].element.flags) & I40E_AQC_ADD_CLOUD_TNL_TYPE_MASK) >> I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT; /* Due to hardware eccentricities, the VNI for Geneve is shifted * one more byte further than normally used for Tenant ID in * other tunnel types. */ if (tnl_type == I40E_AQC_ADD_CLOUD_TNL_TYPE_GENEVE) { ti = le32_to_cpu(filters[i].element.tenant_id); filters[i].element.tenant_id = cpu_to_le32(ti << 8); } } status = i40e_asq_send_command(hw, &desc, filters, buff_len, NULL); return status; } /** * i40e_aq_rem_cloud_filters * @hw: pointer to the hardware structure * @seid: VSI seid to remove cloud filters from * @filters: Buffer which contains the filters to be removed * @filter_count: number of filters contained in the buffer * * Remove the cloud filters for a given VSI. The contents of the * i40e_aqc_cloud_filters_element_data are filled in by the caller * of the function. * **/ int i40e_aq_rem_cloud_filters(struct i40e_hw *hw, u16 seid, struct i40e_aqc_cloud_filters_element_data *filters, u8 filter_count) { struct i40e_aq_desc desc; struct i40e_aqc_add_remove_cloud_filters *cmd = (struct i40e_aqc_add_remove_cloud_filters *)&desc.params.raw; u16 buff_len; int status; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_remove_cloud_filters); buff_len = filter_count * sizeof(*filters); desc.datalen = cpu_to_le16(buff_len); desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD)); cmd->num_filters = filter_count; cmd->seid = cpu_to_le16(seid); status = i40e_asq_send_command(hw, &desc, filters, buff_len, NULL); return status; } /** * i40e_aq_rem_cloud_filters_bb * @hw: pointer to the hardware structure * @seid: VSI seid to remove cloud filters from * @filters: Buffer which contains the filters in big buffer to be removed * @filter_count: number of filters contained in the buffer * * Remove the big buffer cloud filters for a given VSI. The contents of the * i40e_aqc_cloud_filters_element_bb are filled in by the caller of the * function. * **/ int i40e_aq_rem_cloud_filters_bb(struct i40e_hw *hw, u16 seid, struct i40e_aqc_cloud_filters_element_bb *filters, u8 filter_count) { struct i40e_aq_desc desc; struct i40e_aqc_add_remove_cloud_filters *cmd = (struct i40e_aqc_add_remove_cloud_filters *)&desc.params.raw; u16 buff_len; int status; int i; i40e_fill_default_direct_cmd_desc(&desc, i40e_aqc_opc_remove_cloud_filters); buff_len = filter_count * sizeof(*filters); desc.datalen = cpu_to_le16(buff_len); desc.flags |= cpu_to_le16((u16)(I40E_AQ_FLAG_BUF | I40E_AQ_FLAG_RD)); cmd->num_filters = filter_count; cmd->seid = cpu_to_le16(seid); cmd->big_buffer_flag = I40E_AQC_ADD_CLOUD_CMD_BB; for (i = 0; i < filter_count; i++) { u16 tnl_type; u32 ti; tnl_type = (le16_to_cpu(filters[i].element.flags) & I40E_AQC_ADD_CLOUD_TNL_TYPE_MASK) >> I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT; /* Due to hardware eccentricities, the VNI for Geneve is shifted * one more byte further than normally used for Tenant ID in * other tunnel types. */ if (tnl_type == I40E_AQC_ADD_CLOUD_TNL_TYPE_GENEVE) { ti = le32_to_cpu(filters[i].element.tenant_id); filters[i].element.tenant_id = cpu_to_le32(ti << 8); } } status = i40e_asq_send_command(hw, &desc, filters, buff_len, NULL); return status; }