// SPDX-License-Identifier: GPL-2.0-only /* * isp.c * * TI OMAP3 ISP - Core * * Copyright (C) 2006-2010 Nokia Corporation * Copyright (C) 2007-2009 Texas Instruments, Inc. * * Contacts: Laurent Pinchart * Sakari Ailus * * Contributors: * Laurent Pinchart * Sakari Ailus * David Cohen * Stanimir Varbanov * Vimarsh Zutshi * Tuukka Toivonen * Sergio Aguirre * Antti Koskipaa * Ivan T. Ivanov * RaniSuneela * Atanas Filipov * Gjorgji Rosikopulos * Hiroshi DOYU * Nayden Kanchev * Phil Carmody * Artem Bityutskiy * Dominic Curran * Ilkka Myllyperkio * Pallavi Kulkarni * Vaibhav Hiremath * Mohit Jalori * Sameer Venkatraman * Senthilvadivu Guruswamy * Thara Gopinath * Toni Leinonen * Troy Laramy */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_ARM_DMA_USE_IOMMU #include #endif #include #include #include #include #include "isp.h" #include "ispreg.h" #include "ispccdc.h" #include "isppreview.h" #include "ispresizer.h" #include "ispcsi2.h" #include "ispccp2.h" #include "isph3a.h" #include "isphist.h" static unsigned int autoidle; module_param(autoidle, int, 0444); MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support"); static void isp_save_ctx(struct isp_device *isp); static void isp_restore_ctx(struct isp_device *isp); static const struct isp_res_mapping isp_res_maps[] = { { .isp_rev = ISP_REVISION_2_0, .offset = { /* first MMIO area */ 0x0000, /* base, len 0x0070 */ 0x0400, /* ccp2, len 0x01f0 */ 0x0600, /* ccdc, len 0x00a8 */ 0x0a00, /* hist, len 0x0048 */ 0x0c00, /* h3a, len 0x0060 */ 0x0e00, /* preview, len 0x00a0 */ 0x1000, /* resizer, len 0x00ac */ 0x1200, /* sbl, len 0x00fc */ /* second MMIO area */ 0x0000, /* csi2a, len 0x0170 */ 0x0170, /* csiphy2, len 0x000c */ }, .phy_type = ISP_PHY_TYPE_3430, }, { .isp_rev = ISP_REVISION_15_0, .offset = { /* first MMIO area */ 0x0000, /* base, len 0x0070 */ 0x0400, /* ccp2, len 0x01f0 */ 0x0600, /* ccdc, len 0x00a8 */ 0x0a00, /* hist, len 0x0048 */ 0x0c00, /* h3a, len 0x0060 */ 0x0e00, /* preview, len 0x00a0 */ 0x1000, /* resizer, len 0x00ac */ 0x1200, /* sbl, len 0x00fc */ /* second MMIO area */ 0x0000, /* csi2a, len 0x0170 (1st area) */ 0x0170, /* csiphy2, len 0x000c */ 0x01c0, /* csi2a, len 0x0040 (2nd area) */ 0x0400, /* csi2c, len 0x0170 (1st area) */ 0x0570, /* csiphy1, len 0x000c */ 0x05c0, /* csi2c, len 0x0040 (2nd area) */ }, .phy_type = ISP_PHY_TYPE_3630, }, }; /* Structure for saving/restoring ISP module registers */ static struct isp_reg isp_reg_list[] = { {OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0}, {OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0}, {OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0}, {0, ISP_TOK_TERM, 0} }; /* * omap3isp_flush - Post pending L3 bus writes by doing a register readback * @isp: OMAP3 ISP device * * In order to force posting of pending writes, we need to write and * readback the same register, in this case the revision register. * * See this link for reference: * https://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html */ void omap3isp_flush(struct isp_device *isp) { isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION); isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION); } /* ----------------------------------------------------------------------------- * XCLK */ #define to_isp_xclk(_hw) container_of(_hw, struct isp_xclk, hw) static void isp_xclk_update(struct isp_xclk *xclk, u32 divider) { switch (xclk->id) { case ISP_XCLK_A: isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, ISPTCTRL_CTRL_DIVA_MASK, divider << ISPTCTRL_CTRL_DIVA_SHIFT); break; case ISP_XCLK_B: isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, ISPTCTRL_CTRL_DIVB_MASK, divider << ISPTCTRL_CTRL_DIVB_SHIFT); break; } } static int isp_xclk_prepare(struct clk_hw *hw) { struct isp_xclk *xclk = to_isp_xclk(hw); omap3isp_get(xclk->isp); return 0; } static void isp_xclk_unprepare(struct clk_hw *hw) { struct isp_xclk *xclk = to_isp_xclk(hw); omap3isp_put(xclk->isp); } static int isp_xclk_enable(struct clk_hw *hw) { struct isp_xclk *xclk = to_isp_xclk(hw); unsigned long flags; spin_lock_irqsave(&xclk->lock, flags); isp_xclk_update(xclk, xclk->divider); xclk->enabled = true; spin_unlock_irqrestore(&xclk->lock, flags); return 0; } static void isp_xclk_disable(struct clk_hw *hw) { struct isp_xclk *xclk = to_isp_xclk(hw); unsigned long flags; spin_lock_irqsave(&xclk->lock, flags); isp_xclk_update(xclk, 0); xclk->enabled = false; spin_unlock_irqrestore(&xclk->lock, flags); } static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct isp_xclk *xclk = to_isp_xclk(hw); return parent_rate / xclk->divider; } static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate) { u32 divider; if (*rate >= parent_rate) { *rate = parent_rate; return ISPTCTRL_CTRL_DIV_BYPASS; } if (*rate == 0) *rate = 1; divider = DIV_ROUND_CLOSEST(parent_rate, *rate); if (divider >= ISPTCTRL_CTRL_DIV_BYPASS) divider = ISPTCTRL_CTRL_DIV_BYPASS - 1; *rate = parent_rate / divider; return divider; } static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { isp_xclk_calc_divider(&rate, *parent_rate); return rate; } static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct isp_xclk *xclk = to_isp_xclk(hw); unsigned long flags; u32 divider; divider = isp_xclk_calc_divider(&rate, parent_rate); spin_lock_irqsave(&xclk->lock, flags); xclk->divider = divider; if (xclk->enabled) isp_xclk_update(xclk, divider); spin_unlock_irqrestore(&xclk->lock, flags); dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n", __func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider); return 0; } static const struct clk_ops isp_xclk_ops = { .prepare = isp_xclk_prepare, .unprepare = isp_xclk_unprepare, .enable = isp_xclk_enable, .disable = isp_xclk_disable, .recalc_rate = isp_xclk_recalc_rate, .round_rate = isp_xclk_round_rate, .set_rate = isp_xclk_set_rate, }; static const char *isp_xclk_parent_name = "cam_mclk"; static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data) { unsigned int idx = clkspec->args[0]; struct isp_device *isp = data; if (idx >= ARRAY_SIZE(isp->xclks)) return ERR_PTR(-ENOENT); return isp->xclks[idx].clk; } static int isp_xclk_init(struct isp_device *isp) { struct device_node *np = isp->dev->of_node; struct clk_init_data init = {}; unsigned int i; for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) isp->xclks[i].clk = ERR_PTR(-EINVAL); for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) { struct isp_xclk *xclk = &isp->xclks[i]; xclk->isp = isp; xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B; xclk->divider = 1; spin_lock_init(&xclk->lock); init.name = i == 0 ? "cam_xclka" : "cam_xclkb"; init.ops = &isp_xclk_ops; init.parent_names = &isp_xclk_parent_name; init.num_parents = 1; xclk->hw.init = &init; /* * The first argument is NULL in order to avoid circular * reference, as this driver takes reference on the * sensor subdevice modules and the sensors would take * reference on this module through clk_get(). */ xclk->clk = clk_register(NULL, &xclk->hw); if (IS_ERR(xclk->clk)) return PTR_ERR(xclk->clk); } if (np) of_clk_add_provider(np, isp_xclk_src_get, isp); return 0; } static void isp_xclk_cleanup(struct isp_device *isp) { struct device_node *np = isp->dev->of_node; unsigned int i; if (np) of_clk_del_provider(np); for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) { struct isp_xclk *xclk = &isp->xclks[i]; if (!IS_ERR(xclk->clk)) clk_unregister(xclk->clk); } } /* ----------------------------------------------------------------------------- * Interrupts */ /* * isp_enable_interrupts - Enable ISP interrupts. * @isp: OMAP3 ISP device */ static void isp_enable_interrupts(struct isp_device *isp) { static const u32 irq = IRQ0ENABLE_CSIA_IRQ | IRQ0ENABLE_CSIB_IRQ | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ | IRQ0ENABLE_CCDC_LSC_DONE_IRQ | IRQ0ENABLE_CCDC_VD0_IRQ | IRQ0ENABLE_CCDC_VD1_IRQ | IRQ0ENABLE_HS_VS_IRQ | IRQ0ENABLE_HIST_DONE_IRQ | IRQ0ENABLE_H3A_AWB_DONE_IRQ | IRQ0ENABLE_H3A_AF_DONE_IRQ | IRQ0ENABLE_PRV_DONE_IRQ | IRQ0ENABLE_RSZ_DONE_IRQ; isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS); isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE); } /* * isp_disable_interrupts - Disable ISP interrupts. * @isp: OMAP3 ISP device */ static void isp_disable_interrupts(struct isp_device *isp) { isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE); } /* * isp_core_init - ISP core settings * @isp: OMAP3 ISP device * @idle: Consider idle state. * * Set the power settings for the ISP and SBL bus and configure the HS/VS * interrupt source. * * We need to configure the HS/VS interrupt source before interrupts get * enabled, as the sensor might be free-running and the ISP default setting * (HS edge) would put an unnecessary burden on the CPU. */ static void isp_core_init(struct isp_device *isp, int idle) { isp_reg_writel(isp, ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY : ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) << ISP_SYSCONFIG_MIDLEMODE_SHIFT) | ((isp->revision == ISP_REVISION_15_0) ? ISP_SYSCONFIG_AUTOIDLE : 0), OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG); isp_reg_writel(isp, (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) | ISPCTRL_SYNC_DETECT_VSRISE, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL); } /* * Configure the bridge and lane shifter. Valid inputs are * * CCDC_INPUT_PARALLEL: Parallel interface * CCDC_INPUT_CSI2A: CSI2a receiver * CCDC_INPUT_CCP2B: CCP2b receiver * CCDC_INPUT_CSI2C: CSI2c receiver * * The bridge and lane shifter are configured according to the selected input * and the ISP platform data. */ void omap3isp_configure_bridge(struct isp_device *isp, enum ccdc_input_entity input, const struct isp_parallel_cfg *parcfg, unsigned int shift, unsigned int bridge) { u32 ispctrl_val; ispctrl_val = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL); ispctrl_val &= ~ISPCTRL_SHIFT_MASK; ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV; ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK; ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK; ispctrl_val |= bridge; switch (input) { case CCDC_INPUT_PARALLEL: ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL; ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT; shift += parcfg->data_lane_shift; break; case CCDC_INPUT_CSI2A: ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA; break; case CCDC_INPUT_CCP2B: ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB; break; case CCDC_INPUT_CSI2C: ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC; break; default: return; } ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK; isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL); } void omap3isp_hist_dma_done(struct isp_device *isp) { if (omap3isp_ccdc_busy(&isp->isp_ccdc) || omap3isp_stat_pcr_busy(&isp->isp_hist)) { /* Histogram cannot be enabled in this frame anymore */ atomic_set(&isp->isp_hist.buf_err, 1); dev_dbg(isp->dev, "hist: Out of synchronization with CCDC. Ignoring next buffer.\n"); } } static inline void __maybe_unused isp_isr_dbg(struct isp_device *isp, u32 irqstatus) { static const char *name[] = { "CSIA_IRQ", "res1", "res2", "CSIB_LCM_IRQ", "CSIB_IRQ", "res5", "res6", "res7", "CCDC_VD0_IRQ", "CCDC_VD1_IRQ", "CCDC_VD2_IRQ", "CCDC_ERR_IRQ", "H3A_AF_DONE_IRQ", "H3A_AWB_DONE_IRQ", "res14", "res15", "HIST_DONE_IRQ", "CCDC_LSC_DONE", "CCDC_LSC_PREFETCH_COMPLETED", "CCDC_LSC_PREFETCH_ERROR", "PRV_DONE_IRQ", "CBUFF_IRQ", "res22", "res23", "RSZ_DONE_IRQ", "OVF_IRQ", "res26", "res27", "MMU_ERR_IRQ", "OCP_ERR_IRQ", "SEC_ERR_IRQ", "HS_VS_IRQ", }; int i; dev_dbg(isp->dev, "ISP IRQ: "); for (i = 0; i < ARRAY_SIZE(name); i++) { if ((1 << i) & irqstatus) printk(KERN_CONT "%s ", name[i]); } printk(KERN_CONT "\n"); } static void isp_isr_sbl(struct isp_device *isp) { struct device *dev = isp->dev; struct isp_pipeline *pipe; u32 sbl_pcr; /* * Handle shared buffer logic overflows for video buffers. * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored. */ sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR); isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR); sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF; if (sbl_pcr) dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr); if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) { pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity); if (pipe != NULL) pipe->error = true; } if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) { pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity); if (pipe != NULL) pipe->error = true; } if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) { pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity); if (pipe != NULL) pipe->error = true; } if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) { pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity); if (pipe != NULL) pipe->error = true; } if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF | ISPSBL_PCR_RSZ2_WBL_OVF | ISPSBL_PCR_RSZ3_WBL_OVF | ISPSBL_PCR_RSZ4_WBL_OVF)) { pipe = to_isp_pipeline(&isp->isp_res.subdev.entity); if (pipe != NULL) pipe->error = true; } if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF) omap3isp_stat_sbl_overflow(&isp->isp_af); if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF) omap3isp_stat_sbl_overflow(&isp->isp_aewb); } /* * isp_isr - Interrupt Service Routine for Camera ISP module. * @irq: Not used currently. * @_isp: Pointer to the OMAP3 ISP device * * Handles the corresponding callback if plugged in. */ static irqreturn_t isp_isr(int irq, void *_isp) { static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ | IRQ0STATUS_CCDC_LSC_DONE_IRQ | IRQ0STATUS_CCDC_VD0_IRQ | IRQ0STATUS_CCDC_VD1_IRQ | IRQ0STATUS_HS_VS_IRQ; struct isp_device *isp = _isp; u32 irqstatus; irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS); isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS); isp_isr_sbl(isp); if (irqstatus & IRQ0STATUS_CSIA_IRQ) omap3isp_csi2_isr(&isp->isp_csi2a); if (irqstatus & IRQ0STATUS_CSIB_IRQ) omap3isp_ccp2_isr(&isp->isp_ccp2); if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) { if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW) omap3isp_preview_isr_frame_sync(&isp->isp_prev); if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER) omap3isp_resizer_isr_frame_sync(&isp->isp_res); omap3isp_stat_isr_frame_sync(&isp->isp_aewb); omap3isp_stat_isr_frame_sync(&isp->isp_af); omap3isp_stat_isr_frame_sync(&isp->isp_hist); } if (irqstatus & ccdc_events) omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events); if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) { if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER) omap3isp_resizer_isr_frame_sync(&isp->isp_res); omap3isp_preview_isr(&isp->isp_prev); } if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ) omap3isp_resizer_isr(&isp->isp_res); if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ) omap3isp_stat_isr(&isp->isp_aewb); if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ) omap3isp_stat_isr(&isp->isp_af); if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ) omap3isp_stat_isr(&isp->isp_hist); omap3isp_flush(isp); #if defined(DEBUG) && defined(ISP_ISR_DEBUG) isp_isr_dbg(isp, irqstatus); #endif return IRQ_HANDLED; } static const struct media_device_ops isp_media_ops = { .link_notify = v4l2_pipeline_link_notify, }; /* ----------------------------------------------------------------------------- * Pipeline stream management */ /* * isp_pipeline_enable - Enable streaming on a pipeline * @pipe: ISP pipeline * @mode: Stream mode (single shot or continuous) * * Walk the entities chain starting at the pipeline output video node and start * all modules in the chain in the given mode. * * Return 0 if successful, or the return value of the failed video::s_stream * operation otherwise. */ static int isp_pipeline_enable(struct isp_pipeline *pipe, enum isp_pipeline_stream_state mode) { struct isp_device *isp = pipe->output->isp; struct media_entity *entity; struct media_pad *pad; struct v4l2_subdev *subdev; unsigned long flags; int ret; /* Refuse to start streaming if an entity included in the pipeline has * crashed. This check must be performed before the loop below to avoid * starting entities if the pipeline won't start anyway (those entities * would then likely fail to stop, making the problem worse). */ if (media_entity_enum_intersects(&pipe->ent_enum, &isp->crashed)) return -EIO; spin_lock_irqsave(&pipe->lock, flags); pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT); spin_unlock_irqrestore(&pipe->lock, flags); pipe->do_propagation = false; mutex_lock(&isp->media_dev.graph_mutex); entity = &pipe->output->video.entity; while (1) { pad = &entity->pads[0]; if (!(pad->flags & MEDIA_PAD_FL_SINK)) break; pad = media_pad_remote_pad_first(pad); if (!pad || !is_media_entity_v4l2_subdev(pad->entity)) break; entity = pad->entity; subdev = media_entity_to_v4l2_subdev(entity); ret = v4l2_subdev_call(subdev, video, s_stream, mode); if (ret < 0 && ret != -ENOIOCTLCMD) { mutex_unlock(&isp->media_dev.graph_mutex); return ret; } if (subdev == &isp->isp_ccdc.subdev) { v4l2_subdev_call(&isp->isp_aewb.subdev, video, s_stream, mode); v4l2_subdev_call(&isp->isp_af.subdev, video, s_stream, mode); v4l2_subdev_call(&isp->isp_hist.subdev, video, s_stream, mode); pipe->do_propagation = true; } /* Stop at the first external sub-device. */ if (subdev->dev != isp->dev) break; } mutex_unlock(&isp->media_dev.graph_mutex); return 0; } static int isp_pipeline_wait_resizer(struct isp_device *isp) { return omap3isp_resizer_busy(&isp->isp_res); } static int isp_pipeline_wait_preview(struct isp_device *isp) { return omap3isp_preview_busy(&isp->isp_prev); } static int isp_pipeline_wait_ccdc(struct isp_device *isp) { return omap3isp_stat_busy(&isp->isp_af) || omap3isp_stat_busy(&isp->isp_aewb) || omap3isp_stat_busy(&isp->isp_hist) || omap3isp_ccdc_busy(&isp->isp_ccdc); } #define ISP_STOP_TIMEOUT msecs_to_jiffies(1000) static int isp_pipeline_wait(struct isp_device *isp, int(*busy)(struct isp_device *isp)) { unsigned long timeout = jiffies + ISP_STOP_TIMEOUT; while (!time_after(jiffies, timeout)) { if (!busy(isp)) return 0; } return 1; } /* * isp_pipeline_disable - Disable streaming on a pipeline * @pipe: ISP pipeline * * Walk the entities chain starting at the pipeline output video node and stop * all modules in the chain. Wait synchronously for the modules to be stopped if * necessary. * * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module * can't be stopped (in which case a software reset of the ISP is probably * necessary). */ static int isp_pipeline_disable(struct isp_pipeline *pipe) { struct isp_device *isp = pipe->output->isp; struct media_entity *entity; struct media_pad *pad; struct v4l2_subdev *subdev; int failure = 0; int ret; /* * We need to stop all the modules after CCDC first or they'll * never stop since they may not get a full frame from CCDC. */ entity = &pipe->output->video.entity; while (1) { pad = &entity->pads[0]; if (!(pad->flags & MEDIA_PAD_FL_SINK)) break; pad = media_pad_remote_pad_first(pad); if (!pad || !is_media_entity_v4l2_subdev(pad->entity)) break; entity = pad->entity; subdev = media_entity_to_v4l2_subdev(entity); if (subdev == &isp->isp_ccdc.subdev) { v4l2_subdev_call(&isp->isp_aewb.subdev, video, s_stream, 0); v4l2_subdev_call(&isp->isp_af.subdev, video, s_stream, 0); v4l2_subdev_call(&isp->isp_hist.subdev, video, s_stream, 0); } ret = v4l2_subdev_call(subdev, video, s_stream, 0); /* Stop at the first external sub-device. */ if (subdev->dev != isp->dev) break; if (subdev == &isp->isp_res.subdev) ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer); else if (subdev == &isp->isp_prev.subdev) ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview); else if (subdev == &isp->isp_ccdc.subdev) ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc); /* Handle stop failures. An entity that fails to stop can * usually just be restarted. Flag the stop failure nonetheless * to trigger an ISP reset the next time the device is released, * just in case. * * The preview engine is a special case. A failure to stop can * mean a hardware crash. When that happens the preview engine * won't respond to read/write operations on the L4 bus anymore, * resulting in a bus fault and a kernel oops next time it gets * accessed. Mark it as crashed to prevent pipelines including * it from being started. */ if (ret) { dev_info(isp->dev, "Unable to stop %s\n", subdev->name); isp->stop_failure = true; if (subdev == &isp->isp_prev.subdev) media_entity_enum_set(&isp->crashed, &subdev->entity); failure = -ETIMEDOUT; } } return failure; } /* * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline * @pipe: ISP pipeline * @state: Stream state (stopped, single shot or continuous) * * Set the pipeline to the given stream state. Pipelines can be started in * single-shot or continuous mode. * * Return 0 if successful, or the return value of the failed video::s_stream * operation otherwise. The pipeline state is not updated when the operation * fails, except when stopping the pipeline. */ int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe, enum isp_pipeline_stream_state state) { int ret; if (state == ISP_PIPELINE_STREAM_STOPPED) ret = isp_pipeline_disable(pipe); else ret = isp_pipeline_enable(pipe, state); if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED) pipe->stream_state = state; return ret; } /* * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline * @pipe: ISP pipeline * * Cancelling a stream mark all buffers on all video nodes in the pipeline as * erroneous and makes sure no new buffer can be queued. This function is called * when a fatal error that prevents any further operation on the pipeline * occurs. */ void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe) { if (pipe->input) omap3isp_video_cancel_stream(pipe->input); if (pipe->output) omap3isp_video_cancel_stream(pipe->output); } /* * isp_pipeline_resume - Resume streaming on a pipeline * @pipe: ISP pipeline * * Resume video output and input and re-enable pipeline. */ static void isp_pipeline_resume(struct isp_pipeline *pipe) { int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT; omap3isp_video_resume(pipe->output, !singleshot); if (singleshot) omap3isp_video_resume(pipe->input, 0); isp_pipeline_enable(pipe, pipe->stream_state); } /* * isp_pipeline_suspend - Suspend streaming on a pipeline * @pipe: ISP pipeline * * Suspend pipeline. */ static void isp_pipeline_suspend(struct isp_pipeline *pipe) { isp_pipeline_disable(pipe); } /* * isp_pipeline_is_last - Verify if entity has an enabled link to the output * video node * @me: ISP module's media entity * * Returns 1 if the entity has an enabled link to the output video node or 0 * otherwise. It's true only while pipeline can have no more than one output * node. */ static int isp_pipeline_is_last(struct media_entity *me) { struct isp_pipeline *pipe; struct media_pad *pad; pipe = to_isp_pipeline(me); if (!pipe || pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED) return 0; pad = media_pad_remote_pad_first(&pipe->output->pad); return pad->entity == me; } /* * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module * @me: ISP module's media entity * * Suspend the whole pipeline if module's entity has an enabled link to the * output video node. It works only while pipeline can have no more than one * output node. */ static void isp_suspend_module_pipeline(struct media_entity *me) { if (isp_pipeline_is_last(me)) isp_pipeline_suspend(to_isp_pipeline(me)); } /* * isp_resume_module_pipeline - Resume pipeline to which belongs the module * @me: ISP module's media entity * * Resume the whole pipeline if module's entity has an enabled link to the * output video node. It works only while pipeline can have no more than one * output node. */ static void isp_resume_module_pipeline(struct media_entity *me) { if (isp_pipeline_is_last(me)) isp_pipeline_resume(to_isp_pipeline(me)); } /* * isp_suspend_modules - Suspend ISP submodules. * @isp: OMAP3 ISP device * * Returns 0 if suspend left in idle state all the submodules properly, * or returns 1 if a general Reset is required to suspend the submodules. */ static int __maybe_unused isp_suspend_modules(struct isp_device *isp) { unsigned long timeout; omap3isp_stat_suspend(&isp->isp_aewb); omap3isp_stat_suspend(&isp->isp_af); omap3isp_stat_suspend(&isp->isp_hist); isp_suspend_module_pipeline(&isp->isp_res.subdev.entity); isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity); isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity); isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity); isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity); timeout = jiffies + ISP_STOP_TIMEOUT; while (omap3isp_stat_busy(&isp->isp_af) || omap3isp_stat_busy(&isp->isp_aewb) || omap3isp_stat_busy(&isp->isp_hist) || omap3isp_preview_busy(&isp->isp_prev) || omap3isp_resizer_busy(&isp->isp_res) || omap3isp_ccdc_busy(&isp->isp_ccdc)) { if (time_after(jiffies, timeout)) { dev_info(isp->dev, "can't stop modules.\n"); return 1; } msleep(1); } return 0; } /* * isp_resume_modules - Resume ISP submodules. * @isp: OMAP3 ISP device */ static void __maybe_unused isp_resume_modules(struct isp_device *isp) { omap3isp_stat_resume(&isp->isp_aewb); omap3isp_stat_resume(&isp->isp_af); omap3isp_stat_resume(&isp->isp_hist); isp_resume_module_pipeline(&isp->isp_res.subdev.entity); isp_resume_module_pipeline(&isp->isp_prev.subdev.entity); isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity); isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity); isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity); } /* * isp_reset - Reset ISP with a timeout wait for idle. * @isp: OMAP3 ISP device */ static int isp_reset(struct isp_device *isp) { unsigned long timeout = 0; isp_reg_writel(isp, isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG) | ISP_SYSCONFIG_SOFTRESET, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG); while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSSTATUS) & 0x1)) { if (timeout++ > 10000) { dev_alert(isp->dev, "cannot reset ISP\n"); return -ETIMEDOUT; } udelay(1); } isp->stop_failure = false; media_entity_enum_zero(&isp->crashed); return 0; } /* * isp_save_context - Saves the values of the ISP module registers. * @isp: OMAP3 ISP device * @reg_list: Structure containing pairs of register address and value to * modify on OMAP. */ static void isp_save_context(struct isp_device *isp, struct isp_reg *reg_list) { struct isp_reg *next = reg_list; for (; next->reg != ISP_TOK_TERM; next++) next->val = isp_reg_readl(isp, next->mmio_range, next->reg); } /* * isp_restore_context - Restores the values of the ISP module registers. * @isp: OMAP3 ISP device * @reg_list: Structure containing pairs of register address and value to * modify on OMAP. */ static void isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list) { struct isp_reg *next = reg_list; for (; next->reg != ISP_TOK_TERM; next++) isp_reg_writel(isp, next->val, next->mmio_range, next->reg); } /* * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context. * @isp: OMAP3 ISP device * * Routine for saving the context of each module in the ISP. * CCDC, HIST, H3A, PREV, RESZ and MMU. */ static void isp_save_ctx(struct isp_device *isp) { isp_save_context(isp, isp_reg_list); omap_iommu_save_ctx(isp->dev); } /* * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context. * @isp: OMAP3 ISP device * * Routine for restoring the context of each module in the ISP. * CCDC, HIST, H3A, PREV, RESZ and MMU. */ static void isp_restore_ctx(struct isp_device *isp) { isp_restore_context(isp, isp_reg_list); omap_iommu_restore_ctx(isp->dev); omap3isp_ccdc_restore_context(isp); omap3isp_preview_restore_context(isp); } /* ----------------------------------------------------------------------------- * SBL resources management */ #define OMAP3_ISP_SBL_READ (OMAP3_ISP_SBL_CSI1_READ | \ OMAP3_ISP_SBL_CCDC_LSC_READ | \ OMAP3_ISP_SBL_PREVIEW_READ | \ OMAP3_ISP_SBL_RESIZER_READ) #define OMAP3_ISP_SBL_WRITE (OMAP3_ISP_SBL_CSI1_WRITE | \ OMAP3_ISP_SBL_CSI2A_WRITE | \ OMAP3_ISP_SBL_CSI2C_WRITE | \ OMAP3_ISP_SBL_CCDC_WRITE | \ OMAP3_ISP_SBL_PREVIEW_WRITE) void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res) { u32 sbl = 0; isp->sbl_resources |= res; if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ) sbl |= ISPCTRL_SBL_SHARED_RPORTA; if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ) sbl |= ISPCTRL_SBL_SHARED_RPORTB; if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE) sbl |= ISPCTRL_SBL_SHARED_WPORTC; if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE) sbl |= ISPCTRL_SBL_WR0_RAM_EN; if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE) sbl |= ISPCTRL_SBL_WR1_RAM_EN; if (isp->sbl_resources & OMAP3_ISP_SBL_READ) sbl |= ISPCTRL_SBL_RD_RAM_EN; isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl); } void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res) { u32 sbl = 0; isp->sbl_resources &= ~res; if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)) sbl |= ISPCTRL_SBL_SHARED_RPORTA; if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)) sbl |= ISPCTRL_SBL_SHARED_RPORTB; if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)) sbl |= ISPCTRL_SBL_SHARED_WPORTC; if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)) sbl |= ISPCTRL_SBL_WR0_RAM_EN; if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE)) sbl |= ISPCTRL_SBL_WR1_RAM_EN; if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ)) sbl |= ISPCTRL_SBL_RD_RAM_EN; isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl); } /* * isp_module_sync_idle - Helper to sync module with its idle state * @me: ISP submodule's media entity * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization * @stopping: flag which tells module wants to stop * * This function checks if ISP submodule needs to wait for next interrupt. If * yes, makes the caller to sleep while waiting for such event. */ int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait, atomic_t *stopping) { struct isp_pipeline *pipe = to_isp_pipeline(me); if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED || (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT && !isp_pipeline_ready(pipe))) return 0; /* * atomic_set() doesn't include memory barrier on ARM platform for SMP * scenario. We'll call it here to avoid race conditions. */ atomic_set(stopping, 1); smp_mb(); /* * If module is the last one, it's writing to memory. In this case, * it's necessary to check if the module is already paused due to * DMA queue underrun or if it has to wait for next interrupt to be * idle. * If it isn't the last one, the function won't sleep but *stopping * will still be set to warn next submodule caller's interrupt the * module wants to be idle. */ if (isp_pipeline_is_last(me)) { struct isp_video *video = pipe->output; unsigned long flags; spin_lock_irqsave(&video->irqlock, flags); if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) { spin_unlock_irqrestore(&video->irqlock, flags); atomic_set(stopping, 0); smp_mb(); return 0; } spin_unlock_irqrestore(&video->irqlock, flags); if (!wait_event_timeout(*wait, !atomic_read(stopping), msecs_to_jiffies(1000))) { atomic_set(stopping, 0); smp_mb(); return -ETIMEDOUT; } } return 0; } /* * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization * @stopping: flag which tells module wants to stop * * This function checks if ISP submodule was stopping. In case of yes, it * notices the caller by setting stopping to 0 and waking up the wait queue. * Returns 1 if it was stopping or 0 otherwise. */ int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait, atomic_t *stopping) { if (atomic_cmpxchg(stopping, 1, 0)) { wake_up(wait); return 1; } return 0; } /* -------------------------------------------------------------------------- * Clock management */ #define ISPCTRL_CLKS_MASK (ISPCTRL_H3A_CLK_EN | \ ISPCTRL_HIST_CLK_EN | \ ISPCTRL_RSZ_CLK_EN | \ (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \ (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN)) static void __isp_subclk_update(struct isp_device *isp) { u32 clk = 0; /* AEWB and AF share the same clock. */ if (isp->subclk_resources & (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF)) clk |= ISPCTRL_H3A_CLK_EN; if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST) clk |= ISPCTRL_HIST_CLK_EN; if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER) clk |= ISPCTRL_RSZ_CLK_EN; /* NOTE: For CCDC & Preview submodules, we need to affect internal * RAM as well. */ if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC) clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN; if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW) clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN; isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, ISPCTRL_CLKS_MASK, clk); } void omap3isp_subclk_enable(struct isp_device *isp, enum isp_subclk_resource res) { isp->subclk_resources |= res; __isp_subclk_update(isp); } void omap3isp_subclk_disable(struct isp_device *isp, enum isp_subclk_resource res) { isp->subclk_resources &= ~res; __isp_subclk_update(isp); } /* * isp_enable_clocks - Enable ISP clocks * @isp: OMAP3 ISP device * * Return 0 if successful, or clk_prepare_enable return value if any of them * fails. */ static int isp_enable_clocks(struct isp_device *isp) { int r; unsigned long rate; r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]); if (r) { dev_err(isp->dev, "failed to enable cam_ick clock\n"); goto out_clk_enable_ick; } r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ); if (r) { dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n"); goto out_clk_enable_mclk; } r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]); if (r) { dev_err(isp->dev, "failed to enable cam_mclk clock\n"); goto out_clk_enable_mclk; } rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]); if (rate != CM_CAM_MCLK_HZ) dev_warn(isp->dev, "unexpected cam_mclk rate:\n" " expected : %d\n" " actual : %ld\n", CM_CAM_MCLK_HZ, rate); r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]); if (r) { dev_err(isp->dev, "failed to enable csi2_fck clock\n"); goto out_clk_enable_csi2_fclk; } return 0; out_clk_enable_csi2_fclk: clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]); out_clk_enable_mclk: clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]); out_clk_enable_ick: return r; } /* * isp_disable_clocks - Disable ISP clocks * @isp: OMAP3 ISP device */ static void isp_disable_clocks(struct isp_device *isp) { clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]); clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]); clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]); } static const char *isp_clocks[] = { "cam_ick", "cam_mclk", "csi2_96m_fck", "l3_ick", }; static int isp_get_clocks(struct isp_device *isp) { struct clk *clk; unsigned int i; for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) { clk = devm_clk_get(isp->dev, isp_clocks[i]); if (IS_ERR(clk)) { dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]); return PTR_ERR(clk); } isp->clock[i] = clk; } return 0; } /* * omap3isp_get - Acquire the ISP resource. * * Initializes the clocks for the first acquire. * * Increment the reference count on the ISP. If the first reference is taken, * enable clocks and power-up all submodules. * * Return a pointer to the ISP device structure, or NULL if an error occurred. */ static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq) { struct isp_device *__isp = isp; if (isp == NULL) return NULL; mutex_lock(&isp->isp_mutex); if (isp->ref_count > 0) goto out; if (isp_enable_clocks(isp) < 0) { __isp = NULL; goto out; } /* We don't want to restore context before saving it! */ if (isp->has_context) isp_restore_ctx(isp); if (irq) isp_enable_interrupts(isp); out: if (__isp != NULL) isp->ref_count++; mutex_unlock(&isp->isp_mutex); return __isp; } struct isp_device *omap3isp_get(struct isp_device *isp) { return __omap3isp_get(isp, true); } /* * omap3isp_put - Release the ISP * * Decrement the reference count on the ISP. If the last reference is released, * power-down all submodules, disable clocks and free temporary buffers. */ static void __omap3isp_put(struct isp_device *isp, bool save_ctx) { if (isp == NULL) return; mutex_lock(&isp->isp_mutex); BUG_ON(isp->ref_count == 0); if (--isp->ref_count == 0) { isp_disable_interrupts(isp); if (save_ctx) { isp_save_ctx(isp); isp->has_context = 1; } /* Reset the ISP if an entity has failed to stop. This is the * only way to recover from such conditions. */ if (!media_entity_enum_empty(&isp->crashed) || isp->stop_failure) isp_reset(isp); isp_disable_clocks(isp); } mutex_unlock(&isp->isp_mutex); } void omap3isp_put(struct isp_device *isp) { __omap3isp_put(isp, true); } /* -------------------------------------------------------------------------- * Platform device driver */ /* * omap3isp_print_status - Prints the values of the ISP Control Module registers * @isp: OMAP3 ISP device */ #define ISP_PRINT_REGISTER(isp, name)\ dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \ isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name)) #define SBL_PRINT_REGISTER(isp, name)\ dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \ isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name)) void omap3isp_print_status(struct isp_device *isp) { dev_dbg(isp->dev, "-------------ISP Register dump--------------\n"); ISP_PRINT_REGISTER(isp, SYSCONFIG); ISP_PRINT_REGISTER(isp, SYSSTATUS); ISP_PRINT_REGISTER(isp, IRQ0ENABLE); ISP_PRINT_REGISTER(isp, IRQ0STATUS); ISP_PRINT_REGISTER(isp, TCTRL_GRESET_LENGTH); ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_REPLAY); ISP_PRINT_REGISTER(isp, CTRL); ISP_PRINT_REGISTER(isp, TCTRL_CTRL); ISP_PRINT_REGISTER(isp, TCTRL_FRAME); ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_DELAY); ISP_PRINT_REGISTER(isp, TCTRL_STRB_DELAY); ISP_PRINT_REGISTER(isp, TCTRL_SHUT_DELAY); ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_LENGTH); ISP_PRINT_REGISTER(isp, TCTRL_STRB_LENGTH); ISP_PRINT_REGISTER(isp, TCTRL_SHUT_LENGTH); SBL_PRINT_REGISTER(isp, PCR); SBL_PRINT_REGISTER(isp, SDR_REQ_EXP); dev_dbg(isp->dev, "--------------------------------------------\n"); } #ifdef CONFIG_PM /* * Power management support. * * As the ISP can't properly handle an input video stream interruption on a non * frame boundary, the ISP pipelines need to be stopped before sensors get * suspended. However, as suspending the sensors can require a running clock, * which can be provided by the ISP, the ISP can't be completely suspended * before the sensor. * * To solve this problem power management support is split into prepare/complete * and suspend/resume operations. The pipelines are stopped in prepare() and the * ISP clocks get disabled in suspend(). Similarly, the clocks are re-enabled in * resume(), and the pipelines are restarted in complete(). * * TODO: PM dependencies between the ISP and sensors are not modelled explicitly * yet. */ static int isp_pm_prepare(struct device *dev) { struct isp_device *isp = dev_get_drvdata(dev); int reset; WARN_ON(mutex_is_locked(&isp->isp_mutex)); if (isp->ref_count == 0) return 0; reset = isp_suspend_modules(isp); isp_disable_interrupts(isp); isp_save_ctx(isp); if (reset) isp_reset(isp); return 0; } static int isp_pm_suspend(struct device *dev) { struct isp_device *isp = dev_get_drvdata(dev); WARN_ON(mutex_is_locked(&isp->isp_mutex)); if (isp->ref_count) isp_disable_clocks(isp); return 0; } static int isp_pm_resume(struct device *dev) { struct isp_device *isp = dev_get_drvdata(dev); if (isp->ref_count == 0) return 0; return isp_enable_clocks(isp); } static void isp_pm_complete(struct device *dev) { struct isp_device *isp = dev_get_drvdata(dev); if (isp->ref_count == 0) return; isp_restore_ctx(isp); isp_enable_interrupts(isp); isp_resume_modules(isp); } #else #define isp_pm_prepare NULL #define isp_pm_suspend NULL #define isp_pm_resume NULL #define isp_pm_complete NULL #endif /* CONFIG_PM */ static void isp_unregister_entities(struct isp_device *isp) { media_device_unregister(&isp->media_dev); omap3isp_csi2_unregister_entities(&isp->isp_csi2a); omap3isp_ccp2_unregister_entities(&isp->isp_ccp2); omap3isp_ccdc_unregister_entities(&isp->isp_ccdc); omap3isp_preview_unregister_entities(&isp->isp_prev); omap3isp_resizer_unregister_entities(&isp->isp_res); omap3isp_stat_unregister_entities(&isp->isp_aewb); omap3isp_stat_unregister_entities(&isp->isp_af); omap3isp_stat_unregister_entities(&isp->isp_hist); v4l2_device_unregister(&isp->v4l2_dev); media_device_cleanup(&isp->media_dev); } static int isp_link_entity( struct isp_device *isp, struct media_entity *entity, enum isp_interface_type interface) { struct media_entity *input; unsigned int flags; unsigned int pad; unsigned int i; /* Connect the sensor to the correct interface module. * Parallel sensors are connected directly to the CCDC, while * serial sensors are connected to the CSI2a, CCP2b or CSI2c * receiver through CSIPHY1 or CSIPHY2. */ switch (interface) { case ISP_INTERFACE_PARALLEL: input = &isp->isp_ccdc.subdev.entity; pad = CCDC_PAD_SINK; flags = 0; break; case ISP_INTERFACE_CSI2A_PHY2: input = &isp->isp_csi2a.subdev.entity; pad = CSI2_PAD_SINK; flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED; break; case ISP_INTERFACE_CCP2B_PHY1: case ISP_INTERFACE_CCP2B_PHY2: input = &isp->isp_ccp2.subdev.entity; pad = CCP2_PAD_SINK; flags = 0; break; case ISP_INTERFACE_CSI2C_PHY1: input = &isp->isp_csi2c.subdev.entity; pad = CSI2_PAD_SINK; flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED; break; default: dev_err(isp->dev, "%s: invalid interface type %u\n", __func__, interface); return -EINVAL; } /* * Not all interfaces are available on all revisions of the * ISP. The sub-devices of those interfaces aren't initialised * in such a case. Check this by ensuring the num_pads is * non-zero. */ if (!input->num_pads) { dev_err(isp->dev, "%s: invalid input %u\n", entity->name, interface); return -EINVAL; } for (i = 0; i < entity->num_pads; i++) { if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE) break; } if (i == entity->num_pads) { dev_err(isp->dev, "%s: no source pad in external entity %s\n", __func__, entity->name); return -EINVAL; } return media_create_pad_link(entity, i, input, pad, flags); } static int isp_register_entities(struct isp_device *isp) { int ret; isp->media_dev.dev = isp->dev; strscpy(isp->media_dev.model, "TI OMAP3 ISP", sizeof(isp->media_dev.model)); isp->media_dev.hw_revision = isp->revision; isp->media_dev.ops = &isp_media_ops; media_device_init(&isp->media_dev); isp->v4l2_dev.mdev = &isp->media_dev; ret = v4l2_device_register(isp->dev, &isp->v4l2_dev); if (ret < 0) { dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n", __func__, ret); goto done; } /* Register internal entities */ ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev); if (ret < 0) goto done; ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev); if (ret < 0) goto done; ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev); if (ret < 0) goto done; ret = omap3isp_preview_register_entities(&isp->isp_prev, &isp->v4l2_dev); if (ret < 0) goto done; ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev); if (ret < 0) goto done; ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev); if (ret < 0) goto done; ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev); if (ret < 0) goto done; ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev); if (ret < 0) goto done; done: if (ret < 0) isp_unregister_entities(isp); return ret; } /* * isp_create_links() - Create links for internal and external ISP entities * @isp : Pointer to ISP device * * This function creates all links between ISP internal and external entities. * * Return: A negative error code on failure or zero on success. Possible error * codes are those returned by media_create_pad_link(). */ static int isp_create_links(struct isp_device *isp) { int ret; /* Create links between entities and video nodes. */ ret = media_create_pad_link( &isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE, &isp->isp_csi2a.video_out.video.entity, 0, 0); if (ret < 0) return ret; ret = media_create_pad_link( &isp->isp_ccp2.video_in.video.entity, 0, &isp->isp_ccp2.subdev.entity, CCP2_PAD_SINK, 0); if (ret < 0) return ret; ret = media_create_pad_link( &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF, &isp->isp_ccdc.video_out.video.entity, 0, 0); if (ret < 0) return ret; ret = media_create_pad_link( &isp->isp_prev.video_in.video.entity, 0, &isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0); if (ret < 0) return ret; ret = media_create_pad_link( &isp->isp_prev.subdev.entity, PREV_PAD_SOURCE, &isp->isp_prev.video_out.video.entity, 0, 0); if (ret < 0) return ret; ret = media_create_pad_link( &isp->isp_res.video_in.video.entity, 0, &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0); if (ret < 0) return ret; ret = media_create_pad_link( &isp->isp_res.subdev.entity, RESZ_PAD_SOURCE, &isp->isp_res.video_out.video.entity, 0, 0); if (ret < 0) return ret; /* Create links between entities. */ ret = media_create_pad_link( &isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE, &isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0); if (ret < 0) return ret; ret = media_create_pad_link( &isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE, &isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0); if (ret < 0) return ret; ret = media_create_pad_link( &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP, &isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0); if (ret < 0) return ret; ret = media_create_pad_link( &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF, &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0); if (ret < 0) return ret; ret = media_create_pad_link( &isp->isp_prev.subdev.entity, PREV_PAD_SOURCE, &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0); if (ret < 0) return ret; ret = media_create_pad_link( &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP, &isp->isp_aewb.subdev.entity, 0, MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); if (ret < 0) return ret; ret = media_create_pad_link( &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP, &isp->isp_af.subdev.entity, 0, MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); if (ret < 0) return ret; ret = media_create_pad_link( &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP, &isp->isp_hist.subdev.entity, 0, MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); if (ret < 0) return ret; return 0; } static void isp_cleanup_modules(struct isp_device *isp) { omap3isp_h3a_aewb_cleanup(isp); omap3isp_h3a_af_cleanup(isp); omap3isp_hist_cleanup(isp); omap3isp_resizer_cleanup(isp); omap3isp_preview_cleanup(isp); omap3isp_ccdc_cleanup(isp); omap3isp_ccp2_cleanup(isp); omap3isp_csi2_cleanup(isp); omap3isp_csiphy_cleanup(isp); } static int isp_initialize_modules(struct isp_device *isp) { int ret; ret = omap3isp_csiphy_init(isp); if (ret < 0) { dev_err(isp->dev, "CSI PHY initialization failed\n"); return ret; } ret = omap3isp_csi2_init(isp); if (ret < 0) { dev_err(isp->dev, "CSI2 initialization failed\n"); goto error_csi2; } ret = omap3isp_ccp2_init(isp); if (ret < 0) { if (ret != -EPROBE_DEFER) dev_err(isp->dev, "CCP2 initialization failed\n"); goto error_ccp2; } ret = omap3isp_ccdc_init(isp); if (ret < 0) { dev_err(isp->dev, "CCDC initialization failed\n"); goto error_ccdc; } ret = omap3isp_preview_init(isp); if (ret < 0) { dev_err(isp->dev, "Preview initialization failed\n"); goto error_preview; } ret = omap3isp_resizer_init(isp); if (ret < 0) { dev_err(isp->dev, "Resizer initialization failed\n"); goto error_resizer; } ret = omap3isp_hist_init(isp); if (ret < 0) { dev_err(isp->dev, "Histogram initialization failed\n"); goto error_hist; } ret = omap3isp_h3a_aewb_init(isp); if (ret < 0) { dev_err(isp->dev, "H3A AEWB initialization failed\n"); goto error_h3a_aewb; } ret = omap3isp_h3a_af_init(isp); if (ret < 0) { dev_err(isp->dev, "H3A AF initialization failed\n"); goto error_h3a_af; } return 0; error_h3a_af: omap3isp_h3a_aewb_cleanup(isp); error_h3a_aewb: omap3isp_hist_cleanup(isp); error_hist: omap3isp_resizer_cleanup(isp); error_resizer: omap3isp_preview_cleanup(isp); error_preview: omap3isp_ccdc_cleanup(isp); error_ccdc: omap3isp_ccp2_cleanup(isp); error_ccp2: omap3isp_csi2_cleanup(isp); error_csi2: omap3isp_csiphy_cleanup(isp); return ret; } static void isp_detach_iommu(struct isp_device *isp) { #ifdef CONFIG_ARM_DMA_USE_IOMMU arm_iommu_detach_device(isp->dev); arm_iommu_release_mapping(isp->mapping); isp->mapping = NULL; #endif } static int isp_attach_iommu(struct isp_device *isp) { #ifdef CONFIG_ARM_DMA_USE_IOMMU struct dma_iommu_mapping *mapping; int ret; /* * Create the ARM mapping, used by the ARM DMA mapping core to allocate * VAs. This will allocate a corresponding IOMMU domain. */ mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G); if (IS_ERR(mapping)) { dev_err(isp->dev, "failed to create ARM IOMMU mapping\n"); return PTR_ERR(mapping); } isp->mapping = mapping; /* Attach the ARM VA mapping to the device. */ ret = arm_iommu_attach_device(isp->dev, mapping); if (ret < 0) { dev_err(isp->dev, "failed to attach device to VA mapping\n"); goto error; } return 0; error: arm_iommu_release_mapping(isp->mapping); isp->mapping = NULL; return ret; #else return -ENODEV; #endif } /* * isp_remove - Remove ISP platform device * @pdev: Pointer to ISP platform device * * Always returns 0. */ static int isp_remove(struct platform_device *pdev) { struct isp_device *isp = platform_get_drvdata(pdev); v4l2_async_nf_unregister(&isp->notifier); isp_unregister_entities(isp); isp_cleanup_modules(isp); isp_xclk_cleanup(isp); __omap3isp_get(isp, false); isp_detach_iommu(isp); __omap3isp_put(isp, false); media_entity_enum_cleanup(&isp->crashed); v4l2_async_nf_cleanup(&isp->notifier); kfree(isp); return 0; } enum isp_of_phy { ISP_OF_PHY_PARALLEL = 0, ISP_OF_PHY_CSIPHY1, ISP_OF_PHY_CSIPHY2, }; static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async) { struct isp_device *isp = container_of(async, struct isp_device, notifier); struct v4l2_device *v4l2_dev = &isp->v4l2_dev; struct v4l2_subdev *sd; int ret; mutex_lock(&isp->media_dev.graph_mutex); ret = media_entity_enum_init(&isp->crashed, &isp->media_dev); if (ret) { mutex_unlock(&isp->media_dev.graph_mutex); return ret; } list_for_each_entry(sd, &v4l2_dev->subdevs, list) { if (sd->notifier != &isp->notifier) continue; ret = isp_link_entity(isp, &sd->entity, v4l2_subdev_to_bus_cfg(sd)->interface); if (ret < 0) { mutex_unlock(&isp->media_dev.graph_mutex); return ret; } } mutex_unlock(&isp->media_dev.graph_mutex); ret = v4l2_device_register_subdev_nodes(&isp->v4l2_dev); if (ret < 0) return ret; return media_device_register(&isp->media_dev); } static void isp_parse_of_parallel_endpoint(struct device *dev, struct v4l2_fwnode_endpoint *vep, struct isp_bus_cfg *buscfg) { buscfg->interface = ISP_INTERFACE_PARALLEL; buscfg->bus.parallel.data_lane_shift = vep->bus.parallel.data_shift; buscfg->bus.parallel.clk_pol = !!(vep->bus.parallel.flags & V4L2_MBUS_PCLK_SAMPLE_FALLING); buscfg->bus.parallel.hs_pol = !!(vep->bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW); buscfg->bus.parallel.vs_pol = !!(vep->bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW); buscfg->bus.parallel.fld_pol = !!(vep->bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW); buscfg->bus.parallel.data_pol = !!(vep->bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW); buscfg->bus.parallel.bt656 = vep->bus_type == V4L2_MBUS_BT656; } static void isp_parse_of_csi2_endpoint(struct device *dev, struct v4l2_fwnode_endpoint *vep, struct isp_bus_cfg *buscfg) { unsigned int i; buscfg->bus.csi2.lanecfg.clk.pos = vep->bus.mipi_csi2.clock_lane; buscfg->bus.csi2.lanecfg.clk.pol = vep->bus.mipi_csi2.lane_polarities[0]; dev_dbg(dev, "clock lane polarity %u, pos %u\n", buscfg->bus.csi2.lanecfg.clk.pol, buscfg->bus.csi2.lanecfg.clk.pos); buscfg->bus.csi2.num_data_lanes = vep->bus.mipi_csi2.num_data_lanes; for (i = 0; i < buscfg->bus.csi2.num_data_lanes; i++) { buscfg->bus.csi2.lanecfg.data[i].pos = vep->bus.mipi_csi2.data_lanes[i]; buscfg->bus.csi2.lanecfg.data[i].pol = vep->bus.mipi_csi2.lane_polarities[i + 1]; dev_dbg(dev, "data lane %u polarity %u, pos %u\n", i, buscfg->bus.csi2.lanecfg.data[i].pol, buscfg->bus.csi2.lanecfg.data[i].pos); } /* * FIXME: now we assume the CRC is always there. Implement a way to * obtain this information from the sensor. Frame descriptors, perhaps? */ buscfg->bus.csi2.crc = 1; } static void isp_parse_of_csi1_endpoint(struct device *dev, struct v4l2_fwnode_endpoint *vep, struct isp_bus_cfg *buscfg) { buscfg->bus.ccp2.lanecfg.clk.pos = vep->bus.mipi_csi1.clock_lane; buscfg->bus.ccp2.lanecfg.clk.pol = vep->bus.mipi_csi1.lane_polarity[0]; dev_dbg(dev, "clock lane polarity %u, pos %u\n", buscfg->bus.ccp2.lanecfg.clk.pol, buscfg->bus.ccp2.lanecfg.clk.pos); buscfg->bus.ccp2.lanecfg.data[0].pos = vep->bus.mipi_csi1.data_lane; buscfg->bus.ccp2.lanecfg.data[0].pol = vep->bus.mipi_csi1.lane_polarity[1]; dev_dbg(dev, "data lane polarity %u, pos %u\n", buscfg->bus.ccp2.lanecfg.data[0].pol, buscfg->bus.ccp2.lanecfg.data[0].pos); buscfg->bus.ccp2.strobe_clk_pol = vep->bus.mipi_csi1.clock_inv; buscfg->bus.ccp2.phy_layer = vep->bus.mipi_csi1.strobe; buscfg->bus.ccp2.ccp2_mode = vep->bus_type == V4L2_MBUS_CCP2; buscfg->bus.ccp2.vp_clk_pol = 1; buscfg->bus.ccp2.crc = 1; } static struct { u32 phy; u32 csi2_if; u32 csi1_if; } isp_bus_interfaces[2] = { { ISP_OF_PHY_CSIPHY1, ISP_INTERFACE_CSI2C_PHY1, ISP_INTERFACE_CCP2B_PHY1 }, { ISP_OF_PHY_CSIPHY2, ISP_INTERFACE_CSI2A_PHY2, ISP_INTERFACE_CCP2B_PHY2 }, }; static int isp_parse_of_endpoints(struct isp_device *isp) { struct fwnode_handle *ep; struct isp_async_subdev *isd = NULL; unsigned int i; ep = fwnode_graph_get_endpoint_by_id( dev_fwnode(isp->dev), ISP_OF_PHY_PARALLEL, 0, FWNODE_GRAPH_ENDPOINT_NEXT); if (ep) { struct v4l2_fwnode_endpoint vep = { .bus_type = V4L2_MBUS_PARALLEL }; int ret; dev_dbg(isp->dev, "parsing parallel interface\n"); ret = v4l2_fwnode_endpoint_parse(ep, &vep); if (!ret) { isd = v4l2_async_nf_add_fwnode_remote(&isp->notifier, ep, struct isp_async_subdev); if (!IS_ERR(isd)) isp_parse_of_parallel_endpoint(isp->dev, &vep, &isd->bus); } fwnode_handle_put(ep); } for (i = 0; i < ARRAY_SIZE(isp_bus_interfaces); i++) { struct v4l2_fwnode_endpoint vep = { .bus_type = V4L2_MBUS_CSI2_DPHY }; int ret; ep = fwnode_graph_get_endpoint_by_id( dev_fwnode(isp->dev), isp_bus_interfaces[i].phy, 0, FWNODE_GRAPH_ENDPOINT_NEXT); if (!ep) continue; dev_dbg(isp->dev, "parsing serial interface %u, node %pOF\n", i, to_of_node(ep)); ret = v4l2_fwnode_endpoint_parse(ep, &vep); if (ret == -ENXIO) { vep = (struct v4l2_fwnode_endpoint) { .bus_type = V4L2_MBUS_CSI1 }; ret = v4l2_fwnode_endpoint_parse(ep, &vep); if (ret == -ENXIO) { vep = (struct v4l2_fwnode_endpoint) { .bus_type = V4L2_MBUS_CCP2 }; ret = v4l2_fwnode_endpoint_parse(ep, &vep); } } if (!ret) { isd = v4l2_async_nf_add_fwnode_remote(&isp->notifier, ep, struct isp_async_subdev); if (!IS_ERR(isd)) { switch (vep.bus_type) { case V4L2_MBUS_CSI2_DPHY: isd->bus.interface = isp_bus_interfaces[i].csi2_if; isp_parse_of_csi2_endpoint(isp->dev, &vep, &isd->bus); break; case V4L2_MBUS_CSI1: case V4L2_MBUS_CCP2: isd->bus.interface = isp_bus_interfaces[i].csi1_if; isp_parse_of_csi1_endpoint(isp->dev, &vep, &isd->bus); break; default: break; } } } fwnode_handle_put(ep); } return 0; } static const struct v4l2_async_notifier_operations isp_subdev_notifier_ops = { .complete = isp_subdev_notifier_complete, }; /* * isp_probe - Probe ISP platform device * @pdev: Pointer to ISP platform device * * Returns 0 if successful, * -ENOMEM if no memory available, * -ENODEV if no platform device resources found * or no space for remapping registers, * -EINVAL if couldn't install ISR, * or clk_get return error value. */ static int isp_probe(struct platform_device *pdev) { struct isp_device *isp; struct resource *mem; int ret; int i, m; isp = kzalloc(sizeof(*isp), GFP_KERNEL); if (!isp) { dev_err(&pdev->dev, "could not allocate memory\n"); return -ENOMEM; } ret = fwnode_property_read_u32(of_fwnode_handle(pdev->dev.of_node), "ti,phy-type", &isp->phy_type); if (ret) goto error_release_isp; isp->syscon = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "syscon"); if (IS_ERR(isp->syscon)) { ret = PTR_ERR(isp->syscon); goto error_release_isp; } ret = of_property_read_u32_index(pdev->dev.of_node, "syscon", 1, &isp->syscon_offset); if (ret) goto error_release_isp; isp->autoidle = autoidle; mutex_init(&isp->isp_mutex); spin_lock_init(&isp->stat_lock); v4l2_async_nf_init(&isp->notifier); isp->dev = &pdev->dev; ret = isp_parse_of_endpoints(isp); if (ret < 0) goto error; isp->ref_count = 0; ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32)); if (ret) goto error; platform_set_drvdata(pdev, isp); /* Regulators */ isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1"); if (IS_ERR(isp->isp_csiphy1.vdd)) { ret = PTR_ERR(isp->isp_csiphy1.vdd); goto error; } isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2"); if (IS_ERR(isp->isp_csiphy2.vdd)) { ret = PTR_ERR(isp->isp_csiphy2.vdd); goto error; } /* Clocks * * The ISP clock tree is revision-dependent. We thus need to enable ICLK * manually to read the revision before calling __omap3isp_get(). * * Start by mapping the ISP MMIO area, which is in two pieces. * The ISP IOMMU is in between. Map both now, and fill in the * ISP revision specific portions a little later in the * function. */ for (i = 0; i < 2; i++) { unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0; mem = platform_get_resource(pdev, IORESOURCE_MEM, i); isp->mmio_base[map_idx] = devm_ioremap_resource(isp->dev, mem); if (IS_ERR(isp->mmio_base[map_idx])) { ret = PTR_ERR(isp->mmio_base[map_idx]); goto error; } } ret = isp_get_clocks(isp); if (ret < 0) goto error; ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]); if (ret < 0) goto error; isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION); dev_info(isp->dev, "Revision %d.%d found\n", (isp->revision & 0xf0) >> 4, isp->revision & 0x0f); clk_disable(isp->clock[ISP_CLK_CAM_ICK]); if (__omap3isp_get(isp, false) == NULL) { ret = -ENODEV; goto error; } ret = isp_reset(isp); if (ret < 0) goto error_isp; ret = isp_xclk_init(isp); if (ret < 0) goto error_isp; /* Memory resources */ for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++) if (isp->revision == isp_res_maps[m].isp_rev) break; if (m == ARRAY_SIZE(isp_res_maps)) { dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n", (isp->revision & 0xf0) >> 4, isp->revision & 0xf); ret = -ENODEV; goto error_isp; } for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++) isp->mmio_base[i] = isp->mmio_base[0] + isp_res_maps[m].offset[i]; for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++) isp->mmio_base[i] = isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1] + isp_res_maps[m].offset[i]; isp->mmio_hist_base_phys = mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST]; /* IOMMU */ ret = isp_attach_iommu(isp); if (ret < 0) { dev_err(&pdev->dev, "unable to attach to IOMMU\n"); goto error_isp; } /* Interrupt */ ret = platform_get_irq(pdev, 0); if (ret <= 0) { ret = -ENODEV; goto error_iommu; } isp->irq_num = ret; if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED, "OMAP3 ISP", isp)) { dev_err(isp->dev, "Unable to request IRQ\n"); ret = -EINVAL; goto error_iommu; } /* Entities */ ret = isp_initialize_modules(isp); if (ret < 0) goto error_iommu; ret = isp_register_entities(isp); if (ret < 0) goto error_modules; ret = isp_create_links(isp); if (ret < 0) goto error_register_entities; isp->notifier.ops = &isp_subdev_notifier_ops; ret = v4l2_async_nf_register(&isp->v4l2_dev, &isp->notifier); if (ret) goto error_register_entities; isp_core_init(isp, 1); omap3isp_put(isp); return 0; error_register_entities: isp_unregister_entities(isp); error_modules: isp_cleanup_modules(isp); error_iommu: isp_detach_iommu(isp); error_isp: isp_xclk_cleanup(isp); __omap3isp_put(isp, false); error: v4l2_async_nf_cleanup(&isp->notifier); mutex_destroy(&isp->isp_mutex); error_release_isp: kfree(isp); return ret; } static const struct dev_pm_ops omap3isp_pm_ops = { .prepare = isp_pm_prepare, .suspend = isp_pm_suspend, .resume = isp_pm_resume, .complete = isp_pm_complete, }; static const struct platform_device_id omap3isp_id_table[] = { { "omap3isp", 0 }, { }, }; MODULE_DEVICE_TABLE(platform, omap3isp_id_table); static const struct of_device_id omap3isp_of_table[] = { { .compatible = "ti,omap3-isp" }, { }, }; MODULE_DEVICE_TABLE(of, omap3isp_of_table); static struct platform_driver omap3isp_driver = { .probe = isp_probe, .remove = isp_remove, .id_table = omap3isp_id_table, .driver = { .name = "omap3isp", .pm = &omap3isp_pm_ops, .of_match_table = omap3isp_of_table, }, }; module_platform_driver(omap3isp_driver); MODULE_AUTHOR("Nokia Corporation"); MODULE_DESCRIPTION("TI OMAP3 ISP driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION);