/* * Copyright (c) 2016-2017 Hisilicon Limited. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include "hnae3.h" #include "hns_roce_common.h" #include "hns_roce_device.h" #include "hns_roce_cmd.h" #include "hns_roce_hem.h" #include "hns_roce_hw_v2.h" enum { CMD_RST_PRC_OTHERS, CMD_RST_PRC_SUCCESS, CMD_RST_PRC_EBUSY, }; enum ecc_resource_type { ECC_RESOURCE_QPC, ECC_RESOURCE_CQC, ECC_RESOURCE_MPT, ECC_RESOURCE_SRQC, ECC_RESOURCE_GMV, ECC_RESOURCE_QPC_TIMER, ECC_RESOURCE_CQC_TIMER, ECC_RESOURCE_SCCC, ECC_RESOURCE_COUNT, }; static const struct { const char *name; u8 read_bt0_op; u8 write_bt0_op; } fmea_ram_res[] = { { "ECC_RESOURCE_QPC", HNS_ROCE_CMD_READ_QPC_BT0, HNS_ROCE_CMD_WRITE_QPC_BT0 }, { "ECC_RESOURCE_CQC", HNS_ROCE_CMD_READ_CQC_BT0, HNS_ROCE_CMD_WRITE_CQC_BT0 }, { "ECC_RESOURCE_MPT", HNS_ROCE_CMD_READ_MPT_BT0, HNS_ROCE_CMD_WRITE_MPT_BT0 }, { "ECC_RESOURCE_SRQC", HNS_ROCE_CMD_READ_SRQC_BT0, HNS_ROCE_CMD_WRITE_SRQC_BT0 }, /* ECC_RESOURCE_GMV is handled by cmdq, not mailbox */ { "ECC_RESOURCE_GMV", 0, 0 }, { "ECC_RESOURCE_QPC_TIMER", HNS_ROCE_CMD_READ_QPC_TIMER_BT0, HNS_ROCE_CMD_WRITE_QPC_TIMER_BT0 }, { "ECC_RESOURCE_CQC_TIMER", HNS_ROCE_CMD_READ_CQC_TIMER_BT0, HNS_ROCE_CMD_WRITE_CQC_TIMER_BT0 }, { "ECC_RESOURCE_SCCC", HNS_ROCE_CMD_READ_SCCC_BT0, HNS_ROCE_CMD_WRITE_SCCC_BT0 }, }; static inline void set_data_seg_v2(struct hns_roce_v2_wqe_data_seg *dseg, struct ib_sge *sg) { dseg->lkey = cpu_to_le32(sg->lkey); dseg->addr = cpu_to_le64(sg->addr); dseg->len = cpu_to_le32(sg->length); } /* * mapped-value = 1 + real-value * The hns wr opcode real value is start from 0, In order to distinguish between * initialized and uninitialized map values, we plus 1 to the actual value when * defining the mapping, so that the validity can be identified by checking the * mapped value is greater than 0. */ #define HR_OPC_MAP(ib_key, hr_key) \ [IB_WR_ ## ib_key] = 1 + HNS_ROCE_V2_WQE_OP_ ## hr_key static const u32 hns_roce_op_code[] = { HR_OPC_MAP(RDMA_WRITE, RDMA_WRITE), HR_OPC_MAP(RDMA_WRITE_WITH_IMM, RDMA_WRITE_WITH_IMM), HR_OPC_MAP(SEND, SEND), HR_OPC_MAP(SEND_WITH_IMM, SEND_WITH_IMM), HR_OPC_MAP(RDMA_READ, RDMA_READ), HR_OPC_MAP(ATOMIC_CMP_AND_SWP, ATOM_CMP_AND_SWAP), HR_OPC_MAP(ATOMIC_FETCH_AND_ADD, ATOM_FETCH_AND_ADD), HR_OPC_MAP(SEND_WITH_INV, SEND_WITH_INV), HR_OPC_MAP(MASKED_ATOMIC_CMP_AND_SWP, ATOM_MSK_CMP_AND_SWAP), HR_OPC_MAP(MASKED_ATOMIC_FETCH_AND_ADD, ATOM_MSK_FETCH_AND_ADD), HR_OPC_MAP(REG_MR, FAST_REG_PMR), }; static u32 to_hr_opcode(u32 ib_opcode) { if (ib_opcode >= ARRAY_SIZE(hns_roce_op_code)) return HNS_ROCE_V2_WQE_OP_MASK; return hns_roce_op_code[ib_opcode] ? hns_roce_op_code[ib_opcode] - 1 : HNS_ROCE_V2_WQE_OP_MASK; } static void set_frmr_seg(struct hns_roce_v2_rc_send_wqe *rc_sq_wqe, const struct ib_reg_wr *wr) { struct hns_roce_wqe_frmr_seg *fseg = (void *)rc_sq_wqe + sizeof(struct hns_roce_v2_rc_send_wqe); struct hns_roce_mr *mr = to_hr_mr(wr->mr); u64 pbl_ba; /* use ib_access_flags */ hr_reg_write_bool(fseg, FRMR_BIND_EN, wr->access & IB_ACCESS_MW_BIND); hr_reg_write_bool(fseg, FRMR_ATOMIC, wr->access & IB_ACCESS_REMOTE_ATOMIC); hr_reg_write_bool(fseg, FRMR_RR, wr->access & IB_ACCESS_REMOTE_READ); hr_reg_write_bool(fseg, FRMR_RW, wr->access & IB_ACCESS_REMOTE_WRITE); hr_reg_write_bool(fseg, FRMR_LW, wr->access & IB_ACCESS_LOCAL_WRITE); /* Data structure reuse may lead to confusion */ pbl_ba = mr->pbl_mtr.hem_cfg.root_ba; rc_sq_wqe->msg_len = cpu_to_le32(lower_32_bits(pbl_ba)); rc_sq_wqe->inv_key = cpu_to_le32(upper_32_bits(pbl_ba)); rc_sq_wqe->byte_16 = cpu_to_le32(wr->mr->length & 0xffffffff); rc_sq_wqe->byte_20 = cpu_to_le32(wr->mr->length >> 32); rc_sq_wqe->rkey = cpu_to_le32(wr->key); rc_sq_wqe->va = cpu_to_le64(wr->mr->iova); hr_reg_write(fseg, FRMR_PBL_SIZE, mr->npages); hr_reg_write(fseg, FRMR_PBL_BUF_PG_SZ, to_hr_hw_page_shift(mr->pbl_mtr.hem_cfg.buf_pg_shift)); hr_reg_clear(fseg, FRMR_BLK_MODE); } static void set_atomic_seg(const struct ib_send_wr *wr, struct hns_roce_v2_rc_send_wqe *rc_sq_wqe, unsigned int valid_num_sge) { struct hns_roce_v2_wqe_data_seg *dseg = (void *)rc_sq_wqe + sizeof(struct hns_roce_v2_rc_send_wqe); struct hns_roce_wqe_atomic_seg *aseg = (void *)dseg + sizeof(struct hns_roce_v2_wqe_data_seg); set_data_seg_v2(dseg, wr->sg_list); if (wr->opcode == IB_WR_ATOMIC_CMP_AND_SWP) { aseg->fetchadd_swap_data = cpu_to_le64(atomic_wr(wr)->swap); aseg->cmp_data = cpu_to_le64(atomic_wr(wr)->compare_add); } else { aseg->fetchadd_swap_data = cpu_to_le64(atomic_wr(wr)->compare_add); aseg->cmp_data = 0; } hr_reg_write(rc_sq_wqe, RC_SEND_WQE_SGE_NUM, valid_num_sge); } static int fill_ext_sge_inl_data(struct hns_roce_qp *qp, const struct ib_send_wr *wr, unsigned int *sge_idx, u32 msg_len) { struct ib_device *ibdev = &(to_hr_dev(qp->ibqp.device))->ib_dev; unsigned int left_len_in_pg; unsigned int idx = *sge_idx; unsigned int i = 0; unsigned int len; void *addr; void *dseg; if (msg_len > qp->sq.ext_sge_cnt * HNS_ROCE_SGE_SIZE) { ibdev_err(ibdev, "no enough extended sge space for inline data.\n"); return -EINVAL; } dseg = hns_roce_get_extend_sge(qp, idx & (qp->sge.sge_cnt - 1)); left_len_in_pg = hr_hw_page_align((uintptr_t)dseg) - (uintptr_t)dseg; len = wr->sg_list[0].length; addr = (void *)(unsigned long)(wr->sg_list[0].addr); /* When copying data to extended sge space, the left length in page may * not long enough for current user's sge. So the data should be * splited into several parts, one in the first page, and the others in * the subsequent pages. */ while (1) { if (len <= left_len_in_pg) { memcpy(dseg, addr, len); idx += len / HNS_ROCE_SGE_SIZE; i++; if (i >= wr->num_sge) break; left_len_in_pg -= len; len = wr->sg_list[i].length; addr = (void *)(unsigned long)(wr->sg_list[i].addr); dseg += len; } else { memcpy(dseg, addr, left_len_in_pg); len -= left_len_in_pg; addr += left_len_in_pg; idx += left_len_in_pg / HNS_ROCE_SGE_SIZE; dseg = hns_roce_get_extend_sge(qp, idx & (qp->sge.sge_cnt - 1)); left_len_in_pg = 1 << HNS_HW_PAGE_SHIFT; } } *sge_idx = idx; return 0; } static void set_extend_sge(struct hns_roce_qp *qp, struct ib_sge *sge, unsigned int *sge_ind, unsigned int cnt) { struct hns_roce_v2_wqe_data_seg *dseg; unsigned int idx = *sge_ind; while (cnt > 0) { dseg = hns_roce_get_extend_sge(qp, idx & (qp->sge.sge_cnt - 1)); if (likely(sge->length)) { set_data_seg_v2(dseg, sge); idx++; cnt--; } sge++; } *sge_ind = idx; } static bool check_inl_data_len(struct hns_roce_qp *qp, unsigned int len) { struct hns_roce_dev *hr_dev = to_hr_dev(qp->ibqp.device); int mtu = ib_mtu_enum_to_int(qp->path_mtu); if (len > qp->max_inline_data || len > mtu) { ibdev_err(&hr_dev->ib_dev, "invalid length of data, data len = %u, max inline len = %u, path mtu = %d.\n", len, qp->max_inline_data, mtu); return false; } return true; } static int set_rc_inl(struct hns_roce_qp *qp, const struct ib_send_wr *wr, struct hns_roce_v2_rc_send_wqe *rc_sq_wqe, unsigned int *sge_idx) { struct hns_roce_dev *hr_dev = to_hr_dev(qp->ibqp.device); u32 msg_len = le32_to_cpu(rc_sq_wqe->msg_len); struct ib_device *ibdev = &hr_dev->ib_dev; unsigned int curr_idx = *sge_idx; void *dseg = rc_sq_wqe; unsigned int i; int ret; if (unlikely(wr->opcode == IB_WR_RDMA_READ)) { ibdev_err(ibdev, "invalid inline parameters!\n"); return -EINVAL; } if (!check_inl_data_len(qp, msg_len)) return -EINVAL; dseg += sizeof(struct hns_roce_v2_rc_send_wqe); if (msg_len <= HNS_ROCE_V2_MAX_RC_INL_INN_SZ) { hr_reg_clear(rc_sq_wqe, RC_SEND_WQE_INL_TYPE); for (i = 0; i < wr->num_sge; i++) { memcpy(dseg, ((void *)wr->sg_list[i].addr), wr->sg_list[i].length); dseg += wr->sg_list[i].length; } } else { hr_reg_enable(rc_sq_wqe, RC_SEND_WQE_INL_TYPE); ret = fill_ext_sge_inl_data(qp, wr, &curr_idx, msg_len); if (ret) return ret; hr_reg_write(rc_sq_wqe, RC_SEND_WQE_SGE_NUM, curr_idx - *sge_idx); } *sge_idx = curr_idx; return 0; } static int set_rwqe_data_seg(struct ib_qp *ibqp, const struct ib_send_wr *wr, struct hns_roce_v2_rc_send_wqe *rc_sq_wqe, unsigned int *sge_ind, unsigned int valid_num_sge) { struct hns_roce_v2_wqe_data_seg *dseg = (void *)rc_sq_wqe + sizeof(struct hns_roce_v2_rc_send_wqe); struct hns_roce_qp *qp = to_hr_qp(ibqp); int j = 0; int i; hr_reg_write(rc_sq_wqe, RC_SEND_WQE_MSG_START_SGE_IDX, (*sge_ind) & (qp->sge.sge_cnt - 1)); hr_reg_write(rc_sq_wqe, RC_SEND_WQE_INLINE, !!(wr->send_flags & IB_SEND_INLINE)); if (wr->send_flags & IB_SEND_INLINE) return set_rc_inl(qp, wr, rc_sq_wqe, sge_ind); if (valid_num_sge <= HNS_ROCE_SGE_IN_WQE) { for (i = 0; i < wr->num_sge; i++) { if (likely(wr->sg_list[i].length)) { set_data_seg_v2(dseg, wr->sg_list + i); dseg++; } } } else { for (i = 0; i < wr->num_sge && j < HNS_ROCE_SGE_IN_WQE; i++) { if (likely(wr->sg_list[i].length)) { set_data_seg_v2(dseg, wr->sg_list + i); dseg++; j++; } } set_extend_sge(qp, wr->sg_list + i, sge_ind, valid_num_sge - HNS_ROCE_SGE_IN_WQE); } hr_reg_write(rc_sq_wqe, RC_SEND_WQE_SGE_NUM, valid_num_sge); return 0; } static int check_send_valid(struct hns_roce_dev *hr_dev, struct hns_roce_qp *hr_qp) { struct ib_device *ibdev = &hr_dev->ib_dev; struct ib_qp *ibqp = &hr_qp->ibqp; if (unlikely(ibqp->qp_type != IB_QPT_RC && ibqp->qp_type != IB_QPT_GSI && ibqp->qp_type != IB_QPT_UD)) { ibdev_err(ibdev, "not supported QP(0x%x)type!\n", ibqp->qp_type); return -EOPNOTSUPP; } else if (unlikely(hr_qp->state == IB_QPS_RESET || hr_qp->state == IB_QPS_INIT || hr_qp->state == IB_QPS_RTR)) { ibdev_err(ibdev, "failed to post WQE, QP state %u!\n", hr_qp->state); return -EINVAL; } else if (unlikely(hr_dev->state >= HNS_ROCE_DEVICE_STATE_RST_DOWN)) { ibdev_err(ibdev, "failed to post WQE, dev state %d!\n", hr_dev->state); return -EIO; } return 0; } static unsigned int calc_wr_sge_num(const struct ib_send_wr *wr, unsigned int *sge_len) { unsigned int valid_num = 0; unsigned int len = 0; int i; for (i = 0; i < wr->num_sge; i++) { if (likely(wr->sg_list[i].length)) { len += wr->sg_list[i].length; valid_num++; } } *sge_len = len; return valid_num; } static __le32 get_immtdata(const struct ib_send_wr *wr) { switch (wr->opcode) { case IB_WR_SEND_WITH_IMM: case IB_WR_RDMA_WRITE_WITH_IMM: return cpu_to_le32(be32_to_cpu(wr->ex.imm_data)); default: return 0; } } static int set_ud_opcode(struct hns_roce_v2_ud_send_wqe *ud_sq_wqe, const struct ib_send_wr *wr) { u32 ib_op = wr->opcode; if (ib_op != IB_WR_SEND && ib_op != IB_WR_SEND_WITH_IMM) return -EINVAL; ud_sq_wqe->immtdata = get_immtdata(wr); hr_reg_write(ud_sq_wqe, UD_SEND_WQE_OPCODE, to_hr_opcode(ib_op)); return 0; } static int fill_ud_av(struct hns_roce_v2_ud_send_wqe *ud_sq_wqe, struct hns_roce_ah *ah) { struct ib_device *ib_dev = ah->ibah.device; struct hns_roce_dev *hr_dev = to_hr_dev(ib_dev); hr_reg_write(ud_sq_wqe, UD_SEND_WQE_UDPSPN, ah->av.udp_sport); hr_reg_write(ud_sq_wqe, UD_SEND_WQE_HOPLIMIT, ah->av.hop_limit); hr_reg_write(ud_sq_wqe, UD_SEND_WQE_TCLASS, ah->av.tclass); hr_reg_write(ud_sq_wqe, UD_SEND_WQE_FLOW_LABEL, ah->av.flowlabel); if (WARN_ON(ah->av.sl > MAX_SERVICE_LEVEL)) return -EINVAL; hr_reg_write(ud_sq_wqe, UD_SEND_WQE_SL, ah->av.sl); ud_sq_wqe->sgid_index = ah->av.gid_index; memcpy(ud_sq_wqe->dmac, ah->av.mac, ETH_ALEN); memcpy(ud_sq_wqe->dgid, ah->av.dgid, GID_LEN_V2); if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09) return 0; hr_reg_write(ud_sq_wqe, UD_SEND_WQE_VLAN_EN, ah->av.vlan_en); hr_reg_write(ud_sq_wqe, UD_SEND_WQE_VLAN, ah->av.vlan_id); return 0; } static inline int set_ud_wqe(struct hns_roce_qp *qp, const struct ib_send_wr *wr, void *wqe, unsigned int *sge_idx, unsigned int owner_bit) { struct hns_roce_ah *ah = to_hr_ah(ud_wr(wr)->ah); struct hns_roce_v2_ud_send_wqe *ud_sq_wqe = wqe; unsigned int curr_idx = *sge_idx; unsigned int valid_num_sge; u32 msg_len = 0; int ret; valid_num_sge = calc_wr_sge_num(wr, &msg_len); ret = set_ud_opcode(ud_sq_wqe, wr); if (WARN_ON(ret)) return ret; ud_sq_wqe->msg_len = cpu_to_le32(msg_len); hr_reg_write(ud_sq_wqe, UD_SEND_WQE_CQE, !!(wr->send_flags & IB_SEND_SIGNALED)); hr_reg_write(ud_sq_wqe, UD_SEND_WQE_SE, !!(wr->send_flags & IB_SEND_SOLICITED)); hr_reg_write(ud_sq_wqe, UD_SEND_WQE_PD, to_hr_pd(qp->ibqp.pd)->pdn); hr_reg_write(ud_sq_wqe, UD_SEND_WQE_SGE_NUM, valid_num_sge); hr_reg_write(ud_sq_wqe, UD_SEND_WQE_MSG_START_SGE_IDX, curr_idx & (qp->sge.sge_cnt - 1)); ud_sq_wqe->qkey = cpu_to_le32(ud_wr(wr)->remote_qkey & 0x80000000 ? qp->qkey : ud_wr(wr)->remote_qkey); hr_reg_write(ud_sq_wqe, UD_SEND_WQE_DQPN, ud_wr(wr)->remote_qpn); ret = fill_ud_av(ud_sq_wqe, ah); if (ret) return ret; qp->sl = to_hr_ah(ud_wr(wr)->ah)->av.sl; set_extend_sge(qp, wr->sg_list, &curr_idx, valid_num_sge); /* * The pipeline can sequentially post all valid WQEs into WQ buffer, * including new WQEs waiting for the doorbell to update the PI again. * Therefore, the owner bit of WQE MUST be updated after all fields * and extSGEs have been written into DDR instead of cache. */ if (qp->en_flags & HNS_ROCE_QP_CAP_OWNER_DB) dma_wmb(); *sge_idx = curr_idx; hr_reg_write(ud_sq_wqe, UD_SEND_WQE_OWNER, owner_bit); return 0; } static int set_rc_opcode(struct hns_roce_dev *hr_dev, struct hns_roce_v2_rc_send_wqe *rc_sq_wqe, const struct ib_send_wr *wr) { u32 ib_op = wr->opcode; int ret = 0; rc_sq_wqe->immtdata = get_immtdata(wr); switch (ib_op) { case IB_WR_RDMA_READ: case IB_WR_RDMA_WRITE: case IB_WR_RDMA_WRITE_WITH_IMM: rc_sq_wqe->rkey = cpu_to_le32(rdma_wr(wr)->rkey); rc_sq_wqe->va = cpu_to_le64(rdma_wr(wr)->remote_addr); break; case IB_WR_SEND: case IB_WR_SEND_WITH_IMM: break; case IB_WR_ATOMIC_CMP_AND_SWP: case IB_WR_ATOMIC_FETCH_AND_ADD: rc_sq_wqe->rkey = cpu_to_le32(atomic_wr(wr)->rkey); rc_sq_wqe->va = cpu_to_le64(atomic_wr(wr)->remote_addr); break; case IB_WR_REG_MR: if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09) set_frmr_seg(rc_sq_wqe, reg_wr(wr)); else ret = -EOPNOTSUPP; break; case IB_WR_SEND_WITH_INV: rc_sq_wqe->inv_key = cpu_to_le32(wr->ex.invalidate_rkey); break; default: ret = -EINVAL; } if (unlikely(ret)) return ret; hr_reg_write(rc_sq_wqe, RC_SEND_WQE_OPCODE, to_hr_opcode(ib_op)); return ret; } static inline int set_rc_wqe(struct hns_roce_qp *qp, const struct ib_send_wr *wr, void *wqe, unsigned int *sge_idx, unsigned int owner_bit) { struct hns_roce_dev *hr_dev = to_hr_dev(qp->ibqp.device); struct hns_roce_v2_rc_send_wqe *rc_sq_wqe = wqe; unsigned int curr_idx = *sge_idx; unsigned int valid_num_sge; u32 msg_len = 0; int ret; valid_num_sge = calc_wr_sge_num(wr, &msg_len); rc_sq_wqe->msg_len = cpu_to_le32(msg_len); ret = set_rc_opcode(hr_dev, rc_sq_wqe, wr); if (WARN_ON(ret)) return ret; hr_reg_write(rc_sq_wqe, RC_SEND_WQE_FENCE, (wr->send_flags & IB_SEND_FENCE) ? 1 : 0); hr_reg_write(rc_sq_wqe, RC_SEND_WQE_SE, (wr->send_flags & IB_SEND_SOLICITED) ? 1 : 0); hr_reg_write(rc_sq_wqe, RC_SEND_WQE_CQE, (wr->send_flags & IB_SEND_SIGNALED) ? 1 : 0); if (wr->opcode == IB_WR_ATOMIC_CMP_AND_SWP || wr->opcode == IB_WR_ATOMIC_FETCH_AND_ADD) set_atomic_seg(wr, rc_sq_wqe, valid_num_sge); else if (wr->opcode != IB_WR_REG_MR) ret = set_rwqe_data_seg(&qp->ibqp, wr, rc_sq_wqe, &curr_idx, valid_num_sge); /* * The pipeline can sequentially post all valid WQEs into WQ buffer, * including new WQEs waiting for the doorbell to update the PI again. * Therefore, the owner bit of WQE MUST be updated after all fields * and extSGEs have been written into DDR instead of cache. */ if (qp->en_flags & HNS_ROCE_QP_CAP_OWNER_DB) dma_wmb(); *sge_idx = curr_idx; hr_reg_write(rc_sq_wqe, RC_SEND_WQE_OWNER, owner_bit); return ret; } static inline void update_sq_db(struct hns_roce_dev *hr_dev, struct hns_roce_qp *qp) { if (unlikely(qp->state == IB_QPS_ERR)) { flush_cqe(hr_dev, qp); } else { struct hns_roce_v2_db sq_db = {}; hr_reg_write(&sq_db, DB_TAG, qp->qpn); hr_reg_write(&sq_db, DB_CMD, HNS_ROCE_V2_SQ_DB); hr_reg_write(&sq_db, DB_PI, qp->sq.head); hr_reg_write(&sq_db, DB_SL, qp->sl); hns_roce_write64(hr_dev, (__le32 *)&sq_db, qp->sq.db_reg); } } static inline void update_rq_db(struct hns_roce_dev *hr_dev, struct hns_roce_qp *qp) { if (unlikely(qp->state == IB_QPS_ERR)) { flush_cqe(hr_dev, qp); } else { if (likely(qp->en_flags & HNS_ROCE_QP_CAP_RQ_RECORD_DB)) { *qp->rdb.db_record = qp->rq.head & V2_DB_PRODUCER_IDX_M; } else { struct hns_roce_v2_db rq_db = {}; hr_reg_write(&rq_db, DB_TAG, qp->qpn); hr_reg_write(&rq_db, DB_CMD, HNS_ROCE_V2_RQ_DB); hr_reg_write(&rq_db, DB_PI, qp->rq.head); hns_roce_write64(hr_dev, (__le32 *)&rq_db, qp->rq.db_reg); } } } static void hns_roce_write512(struct hns_roce_dev *hr_dev, u64 *val, u64 __iomem *dest) { #define HNS_ROCE_WRITE_TIMES 8 struct hns_roce_v2_priv *priv = (struct hns_roce_v2_priv *)hr_dev->priv; struct hnae3_handle *handle = priv->handle; const struct hnae3_ae_ops *ops = handle->ae_algo->ops; int i; if (!hr_dev->dis_db && !ops->get_hw_reset_stat(handle)) for (i = 0; i < HNS_ROCE_WRITE_TIMES; i++) writeq_relaxed(*(val + i), dest + i); } static void write_dwqe(struct hns_roce_dev *hr_dev, struct hns_roce_qp *qp, void *wqe) { #define HNS_ROCE_SL_SHIFT 2 struct hns_roce_v2_rc_send_wqe *rc_sq_wqe = wqe; /* All kinds of DirectWQE have the same header field layout */ hr_reg_enable(rc_sq_wqe, RC_SEND_WQE_FLAG); hr_reg_write(rc_sq_wqe, RC_SEND_WQE_DB_SL_L, qp->sl); hr_reg_write(rc_sq_wqe, RC_SEND_WQE_DB_SL_H, qp->sl >> HNS_ROCE_SL_SHIFT); hr_reg_write(rc_sq_wqe, RC_SEND_WQE_WQE_INDEX, qp->sq.head); hns_roce_write512(hr_dev, wqe, qp->sq.db_reg); } static int hns_roce_v2_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr, const struct ib_send_wr **bad_wr) { struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device); struct ib_device *ibdev = &hr_dev->ib_dev; struct hns_roce_qp *qp = to_hr_qp(ibqp); unsigned long flags = 0; unsigned int owner_bit; unsigned int sge_idx; unsigned int wqe_idx; void *wqe = NULL; u32 nreq; int ret; spin_lock_irqsave(&qp->sq.lock, flags); ret = check_send_valid(hr_dev, qp); if (unlikely(ret)) { *bad_wr = wr; nreq = 0; goto out; } sge_idx = qp->next_sge; for (nreq = 0; wr; ++nreq, wr = wr->next) { if (hns_roce_wq_overflow(&qp->sq, nreq, qp->ibqp.send_cq)) { ret = -ENOMEM; *bad_wr = wr; goto out; } wqe_idx = (qp->sq.head + nreq) & (qp->sq.wqe_cnt - 1); if (unlikely(wr->num_sge > qp->sq.max_gs)) { ibdev_err(ibdev, "num_sge = %d > qp->sq.max_gs = %u.\n", wr->num_sge, qp->sq.max_gs); ret = -EINVAL; *bad_wr = wr; goto out; } wqe = hns_roce_get_send_wqe(qp, wqe_idx); qp->sq.wrid[wqe_idx] = wr->wr_id; owner_bit = ~(((qp->sq.head + nreq) >> ilog2(qp->sq.wqe_cnt)) & 0x1); /* Corresponding to the QP type, wqe process separately */ if (ibqp->qp_type == IB_QPT_RC) ret = set_rc_wqe(qp, wr, wqe, &sge_idx, owner_bit); else ret = set_ud_wqe(qp, wr, wqe, &sge_idx, owner_bit); if (unlikely(ret)) { *bad_wr = wr; goto out; } } out: if (likely(nreq)) { qp->sq.head += nreq; qp->next_sge = sge_idx; if (nreq == 1 && !ret && (qp->en_flags & HNS_ROCE_QP_CAP_DIRECT_WQE)) write_dwqe(hr_dev, qp, wqe); else update_sq_db(hr_dev, qp); } spin_unlock_irqrestore(&qp->sq.lock, flags); return ret; } static int check_recv_valid(struct hns_roce_dev *hr_dev, struct hns_roce_qp *hr_qp) { struct ib_device *ibdev = &hr_dev->ib_dev; struct ib_qp *ibqp = &hr_qp->ibqp; if (unlikely(ibqp->qp_type != IB_QPT_RC && ibqp->qp_type != IB_QPT_GSI && ibqp->qp_type != IB_QPT_UD)) { ibdev_err(ibdev, "unsupported qp type, qp_type = %d.\n", ibqp->qp_type); return -EOPNOTSUPP; } if (unlikely(hr_dev->state >= HNS_ROCE_DEVICE_STATE_RST_DOWN)) return -EIO; if (hr_qp->state == IB_QPS_RESET) return -EINVAL; return 0; } static void fill_recv_sge_to_wqe(const struct ib_recv_wr *wr, void *wqe, u32 max_sge, bool rsv) { struct hns_roce_v2_wqe_data_seg *dseg = wqe; u32 i, cnt; for (i = 0, cnt = 0; i < wr->num_sge; i++) { /* Skip zero-length sge */ if (!wr->sg_list[i].length) continue; set_data_seg_v2(dseg + cnt, wr->sg_list + i); cnt++; } /* Fill a reserved sge to make hw stop reading remaining segments */ if (rsv) { dseg[cnt].lkey = cpu_to_le32(HNS_ROCE_INVALID_LKEY); dseg[cnt].addr = 0; dseg[cnt].len = cpu_to_le32(HNS_ROCE_INVALID_SGE_LENGTH); } else { /* Clear remaining segments to make ROCEE ignore sges */ if (cnt < max_sge) memset(dseg + cnt, 0, (max_sge - cnt) * HNS_ROCE_SGE_SIZE); } } static void fill_rq_wqe(struct hns_roce_qp *hr_qp, const struct ib_recv_wr *wr, u32 wqe_idx, u32 max_sge) { struct hns_roce_rinl_sge *sge_list; void *wqe = NULL; u32 i; wqe = hns_roce_get_recv_wqe(hr_qp, wqe_idx); fill_recv_sge_to_wqe(wr, wqe, max_sge, hr_qp->rq.rsv_sge); /* rq support inline data */ if (hr_qp->rq_inl_buf.wqe_cnt) { sge_list = hr_qp->rq_inl_buf.wqe_list[wqe_idx].sg_list; hr_qp->rq_inl_buf.wqe_list[wqe_idx].sge_cnt = (u32)wr->num_sge; for (i = 0; i < wr->num_sge; i++) { sge_list[i].addr = (void *)(u64)wr->sg_list[i].addr; sge_list[i].len = wr->sg_list[i].length; } } } static int hns_roce_v2_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr, const struct ib_recv_wr **bad_wr) { struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device); struct hns_roce_qp *hr_qp = to_hr_qp(ibqp); struct ib_device *ibdev = &hr_dev->ib_dev; u32 wqe_idx, nreq, max_sge; unsigned long flags; int ret; spin_lock_irqsave(&hr_qp->rq.lock, flags); ret = check_recv_valid(hr_dev, hr_qp); if (unlikely(ret)) { *bad_wr = wr; nreq = 0; goto out; } max_sge = hr_qp->rq.max_gs - hr_qp->rq.rsv_sge; for (nreq = 0; wr; ++nreq, wr = wr->next) { if (unlikely(hns_roce_wq_overflow(&hr_qp->rq, nreq, hr_qp->ibqp.recv_cq))) { ret = -ENOMEM; *bad_wr = wr; goto out; } if (unlikely(wr->num_sge > max_sge)) { ibdev_err(ibdev, "num_sge = %d >= max_sge = %u.\n", wr->num_sge, max_sge); ret = -EINVAL; *bad_wr = wr; goto out; } wqe_idx = (hr_qp->rq.head + nreq) & (hr_qp->rq.wqe_cnt - 1); fill_rq_wqe(hr_qp, wr, wqe_idx, max_sge); hr_qp->rq.wrid[wqe_idx] = wr->wr_id; } out: if (likely(nreq)) { hr_qp->rq.head += nreq; update_rq_db(hr_dev, hr_qp); } spin_unlock_irqrestore(&hr_qp->rq.lock, flags); return ret; } static void *get_srq_wqe_buf(struct hns_roce_srq *srq, u32 n) { return hns_roce_buf_offset(srq->buf_mtr.kmem, n << srq->wqe_shift); } static void *get_idx_buf(struct hns_roce_idx_que *idx_que, u32 n) { return hns_roce_buf_offset(idx_que->mtr.kmem, n << idx_que->entry_shift); } static void hns_roce_free_srq_wqe(struct hns_roce_srq *srq, u32 wqe_index) { /* always called with interrupts disabled. */ spin_lock(&srq->lock); bitmap_clear(srq->idx_que.bitmap, wqe_index, 1); srq->idx_que.tail++; spin_unlock(&srq->lock); } static int hns_roce_srqwq_overflow(struct hns_roce_srq *srq) { struct hns_roce_idx_que *idx_que = &srq->idx_que; return idx_que->head - idx_que->tail >= srq->wqe_cnt; } static int check_post_srq_valid(struct hns_roce_srq *srq, u32 max_sge, const struct ib_recv_wr *wr) { struct ib_device *ib_dev = srq->ibsrq.device; if (unlikely(wr->num_sge > max_sge)) { ibdev_err(ib_dev, "failed to check sge, wr->num_sge = %d, max_sge = %u.\n", wr->num_sge, max_sge); return -EINVAL; } if (unlikely(hns_roce_srqwq_overflow(srq))) { ibdev_err(ib_dev, "failed to check srqwq status, srqwq is full.\n"); return -ENOMEM; } return 0; } static int get_srq_wqe_idx(struct hns_roce_srq *srq, u32 *wqe_idx) { struct hns_roce_idx_que *idx_que = &srq->idx_que; u32 pos; pos = find_first_zero_bit(idx_que->bitmap, srq->wqe_cnt); if (unlikely(pos == srq->wqe_cnt)) return -ENOSPC; bitmap_set(idx_que->bitmap, pos, 1); *wqe_idx = pos; return 0; } static void fill_wqe_idx(struct hns_roce_srq *srq, unsigned int wqe_idx) { struct hns_roce_idx_que *idx_que = &srq->idx_que; unsigned int head; __le32 *buf; head = idx_que->head & (srq->wqe_cnt - 1); buf = get_idx_buf(idx_que, head); *buf = cpu_to_le32(wqe_idx); idx_que->head++; } static void update_srq_db(struct hns_roce_v2_db *db, struct hns_roce_srq *srq) { hr_reg_write(db, DB_TAG, srq->srqn); hr_reg_write(db, DB_CMD, HNS_ROCE_V2_SRQ_DB); hr_reg_write(db, DB_PI, srq->idx_que.head); } static int hns_roce_v2_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr, const struct ib_recv_wr **bad_wr) { struct hns_roce_dev *hr_dev = to_hr_dev(ibsrq->device); struct hns_roce_srq *srq = to_hr_srq(ibsrq); struct hns_roce_v2_db srq_db; unsigned long flags; int ret = 0; u32 max_sge; u32 wqe_idx; void *wqe; u32 nreq; spin_lock_irqsave(&srq->lock, flags); max_sge = srq->max_gs - srq->rsv_sge; for (nreq = 0; wr; ++nreq, wr = wr->next) { ret = check_post_srq_valid(srq, max_sge, wr); if (ret) { *bad_wr = wr; break; } ret = get_srq_wqe_idx(srq, &wqe_idx); if (unlikely(ret)) { *bad_wr = wr; break; } wqe = get_srq_wqe_buf(srq, wqe_idx); fill_recv_sge_to_wqe(wr, wqe, max_sge, srq->rsv_sge); fill_wqe_idx(srq, wqe_idx); srq->wrid[wqe_idx] = wr->wr_id; } if (likely(nreq)) { update_srq_db(&srq_db, srq); hns_roce_write64(hr_dev, (__le32 *)&srq_db, srq->db_reg); } spin_unlock_irqrestore(&srq->lock, flags); return ret; } static u32 hns_roce_v2_cmd_hw_reseted(struct hns_roce_dev *hr_dev, unsigned long instance_stage, unsigned long reset_stage) { /* When hardware reset has been completed once or more, we should stop * sending mailbox&cmq&doorbell to hardware. If now in .init_instance() * function, we should exit with error. If now at HNAE3_INIT_CLIENT * stage of soft reset process, we should exit with error, and then * HNAE3_INIT_CLIENT related process can rollback the operation like * notifing hardware to free resources, HNAE3_INIT_CLIENT related * process will exit with error to notify NIC driver to reschedule soft * reset process once again. */ hr_dev->is_reset = true; hr_dev->dis_db = true; if (reset_stage == HNS_ROCE_STATE_RST_INIT || instance_stage == HNS_ROCE_STATE_INIT) return CMD_RST_PRC_EBUSY; return CMD_RST_PRC_SUCCESS; } static u32 hns_roce_v2_cmd_hw_resetting(struct hns_roce_dev *hr_dev, unsigned long instance_stage, unsigned long reset_stage) { #define HW_RESET_TIMEOUT_US 1000000 #define HW_RESET_SLEEP_US 1000 struct hns_roce_v2_priv *priv = hr_dev->priv; struct hnae3_handle *handle = priv->handle; const struct hnae3_ae_ops *ops = handle->ae_algo->ops; unsigned long val; int ret; /* When hardware reset is detected, we should stop sending mailbox&cmq& * doorbell to hardware. If now in .init_instance() function, we should * exit with error. If now at HNAE3_INIT_CLIENT stage of soft reset * process, we should exit with error, and then HNAE3_INIT_CLIENT * related process can rollback the operation like notifing hardware to * free resources, HNAE3_INIT_CLIENT related process will exit with * error to notify NIC driver to reschedule soft reset process once * again. */ hr_dev->dis_db = true; ret = read_poll_timeout(ops->ae_dev_reset_cnt, val, val > hr_dev->reset_cnt, HW_RESET_SLEEP_US, HW_RESET_TIMEOUT_US, false, handle); if (!ret) hr_dev->is_reset = true; if (!hr_dev->is_reset || reset_stage == HNS_ROCE_STATE_RST_INIT || instance_stage == HNS_ROCE_STATE_INIT) return CMD_RST_PRC_EBUSY; return CMD_RST_PRC_SUCCESS; } static u32 hns_roce_v2_cmd_sw_resetting(struct hns_roce_dev *hr_dev) { struct hns_roce_v2_priv *priv = hr_dev->priv; struct hnae3_handle *handle = priv->handle; const struct hnae3_ae_ops *ops = handle->ae_algo->ops; /* When software reset is detected at .init_instance() function, we * should stop sending mailbox&cmq&doorbell to hardware, and exit * with error. */ hr_dev->dis_db = true; if (ops->ae_dev_reset_cnt(handle) != hr_dev->reset_cnt) hr_dev->is_reset = true; return CMD_RST_PRC_EBUSY; } static u32 check_aedev_reset_status(struct hns_roce_dev *hr_dev, struct hnae3_handle *handle) { const struct hnae3_ae_ops *ops = handle->ae_algo->ops; unsigned long instance_stage; /* the current instance stage */ unsigned long reset_stage; /* the current reset stage */ unsigned long reset_cnt; bool sw_resetting; bool hw_resetting; /* Get information about reset from NIC driver or RoCE driver itself, * the meaning of the following variables from NIC driver are described * as below: * reset_cnt -- The count value of completed hardware reset. * hw_resetting -- Whether hardware device is resetting now. * sw_resetting -- Whether NIC's software reset process is running now. */ instance_stage = handle->rinfo.instance_state; reset_stage = handle->rinfo.reset_state; reset_cnt = ops->ae_dev_reset_cnt(handle); if (reset_cnt != hr_dev->reset_cnt) return hns_roce_v2_cmd_hw_reseted(hr_dev, instance_stage, reset_stage); hw_resetting = ops->get_cmdq_stat(handle); if (hw_resetting) return hns_roce_v2_cmd_hw_resetting(hr_dev, instance_stage, reset_stage); sw_resetting = ops->ae_dev_resetting(handle); if (sw_resetting && instance_stage == HNS_ROCE_STATE_INIT) return hns_roce_v2_cmd_sw_resetting(hr_dev); return CMD_RST_PRC_OTHERS; } static bool check_device_is_in_reset(struct hns_roce_dev *hr_dev) { struct hns_roce_v2_priv *priv = hr_dev->priv; struct hnae3_handle *handle = priv->handle; const struct hnae3_ae_ops *ops = handle->ae_algo->ops; if (hr_dev->reset_cnt != ops->ae_dev_reset_cnt(handle)) return true; if (ops->get_hw_reset_stat(handle)) return true; if (ops->ae_dev_resetting(handle)) return true; return false; } static bool v2_chk_mbox_is_avail(struct hns_roce_dev *hr_dev, bool *busy) { struct hns_roce_v2_priv *priv = hr_dev->priv; u32 status; if (hr_dev->is_reset) status = CMD_RST_PRC_SUCCESS; else status = check_aedev_reset_status(hr_dev, priv->handle); *busy = (status == CMD_RST_PRC_EBUSY); return status == CMD_RST_PRC_OTHERS; } static int hns_roce_alloc_cmq_desc(struct hns_roce_dev *hr_dev, struct hns_roce_v2_cmq_ring *ring) { int size = ring->desc_num * sizeof(struct hns_roce_cmq_desc); ring->desc = dma_alloc_coherent(hr_dev->dev, size, &ring->desc_dma_addr, GFP_KERNEL); if (!ring->desc) return -ENOMEM; return 0; } static void hns_roce_free_cmq_desc(struct hns_roce_dev *hr_dev, struct hns_roce_v2_cmq_ring *ring) { dma_free_coherent(hr_dev->dev, ring->desc_num * sizeof(struct hns_roce_cmq_desc), ring->desc, ring->desc_dma_addr); ring->desc_dma_addr = 0; } static int init_csq(struct hns_roce_dev *hr_dev, struct hns_roce_v2_cmq_ring *csq) { dma_addr_t dma; int ret; csq->desc_num = CMD_CSQ_DESC_NUM; spin_lock_init(&csq->lock); csq->flag = TYPE_CSQ; csq->head = 0; ret = hns_roce_alloc_cmq_desc(hr_dev, csq); if (ret) return ret; dma = csq->desc_dma_addr; roce_write(hr_dev, ROCEE_TX_CMQ_BASEADDR_L_REG, lower_32_bits(dma)); roce_write(hr_dev, ROCEE_TX_CMQ_BASEADDR_H_REG, upper_32_bits(dma)); roce_write(hr_dev, ROCEE_TX_CMQ_DEPTH_REG, (u32)csq->desc_num >> HNS_ROCE_CMQ_DESC_NUM_S); /* Make sure to write CI first and then PI */ roce_write(hr_dev, ROCEE_TX_CMQ_CI_REG, 0); roce_write(hr_dev, ROCEE_TX_CMQ_PI_REG, 0); return 0; } static int hns_roce_v2_cmq_init(struct hns_roce_dev *hr_dev) { struct hns_roce_v2_priv *priv = hr_dev->priv; int ret; priv->cmq.tx_timeout = HNS_ROCE_CMQ_TX_TIMEOUT; ret = init_csq(hr_dev, &priv->cmq.csq); if (ret) dev_err(hr_dev->dev, "failed to init CSQ, ret = %d.\n", ret); return ret; } static void hns_roce_v2_cmq_exit(struct hns_roce_dev *hr_dev) { struct hns_roce_v2_priv *priv = hr_dev->priv; hns_roce_free_cmq_desc(hr_dev, &priv->cmq.csq); } static void hns_roce_cmq_setup_basic_desc(struct hns_roce_cmq_desc *desc, enum hns_roce_opcode_type opcode, bool is_read) { memset((void *)desc, 0, sizeof(struct hns_roce_cmq_desc)); desc->opcode = cpu_to_le16(opcode); desc->flag = cpu_to_le16(HNS_ROCE_CMD_FLAG_IN); if (is_read) desc->flag |= cpu_to_le16(HNS_ROCE_CMD_FLAG_WR); else desc->flag &= cpu_to_le16(~HNS_ROCE_CMD_FLAG_WR); } static int hns_roce_cmq_csq_done(struct hns_roce_dev *hr_dev) { u32 tail = roce_read(hr_dev, ROCEE_TX_CMQ_CI_REG); struct hns_roce_v2_priv *priv = hr_dev->priv; return tail == priv->cmq.csq.head; } static void update_cmdq_status(struct hns_roce_dev *hr_dev) { struct hns_roce_v2_priv *priv = hr_dev->priv; struct hnae3_handle *handle = priv->handle; if (handle->rinfo.reset_state == HNS_ROCE_STATE_RST_INIT || handle->rinfo.instance_state == HNS_ROCE_STATE_INIT) hr_dev->cmd.state = HNS_ROCE_CMDQ_STATE_FATAL_ERR; } static int hns_roce_cmd_err_convert_errno(u16 desc_ret) { struct hns_roce_cmd_errcode errcode_table[] = { {CMD_EXEC_SUCCESS, 0}, {CMD_NO_AUTH, -EPERM}, {CMD_NOT_EXIST, -EOPNOTSUPP}, {CMD_CRQ_FULL, -EXFULL}, {CMD_NEXT_ERR, -ENOSR}, {CMD_NOT_EXEC, -ENOTBLK}, {CMD_PARA_ERR, -EINVAL}, {CMD_RESULT_ERR, -ERANGE}, {CMD_TIMEOUT, -ETIME}, {CMD_HILINK_ERR, -ENOLINK}, {CMD_INFO_ILLEGAL, -ENXIO}, {CMD_INVALID, -EBADR}, }; u16 i; for (i = 0; i < ARRAY_SIZE(errcode_table); i++) if (desc_ret == errcode_table[i].return_status) return errcode_table[i].errno; return -EIO; } static int __hns_roce_cmq_send(struct hns_roce_dev *hr_dev, struct hns_roce_cmq_desc *desc, int num) { struct hns_roce_v2_priv *priv = hr_dev->priv; struct hns_roce_v2_cmq_ring *csq = &priv->cmq.csq; u32 timeout = 0; u16 desc_ret; u32 tail; int ret; int i; spin_lock_bh(&csq->lock); tail = csq->head; for (i = 0; i < num; i++) { csq->desc[csq->head++] = desc[i]; if (csq->head == csq->desc_num) csq->head = 0; } /* Write to hardware */ roce_write(hr_dev, ROCEE_TX_CMQ_PI_REG, csq->head); do { if (hns_roce_cmq_csq_done(hr_dev)) break; udelay(1); } while (++timeout < priv->cmq.tx_timeout); if (hns_roce_cmq_csq_done(hr_dev)) { ret = 0; for (i = 0; i < num; i++) { /* check the result of hardware write back */ desc[i] = csq->desc[tail++]; if (tail == csq->desc_num) tail = 0; desc_ret = le16_to_cpu(desc[i].retval); if (likely(desc_ret == CMD_EXEC_SUCCESS)) continue; dev_err_ratelimited(hr_dev->dev, "Cmdq IO error, opcode = 0x%x, return = 0x%x.\n", desc->opcode, desc_ret); ret = hns_roce_cmd_err_convert_errno(desc_ret); } } else { /* FW/HW reset or incorrect number of desc */ tail = roce_read(hr_dev, ROCEE_TX_CMQ_CI_REG); dev_warn(hr_dev->dev, "CMDQ move tail from %u to %u.\n", csq->head, tail); csq->head = tail; update_cmdq_status(hr_dev); ret = -EAGAIN; } spin_unlock_bh(&csq->lock); return ret; } static int hns_roce_cmq_send(struct hns_roce_dev *hr_dev, struct hns_roce_cmq_desc *desc, int num) { bool busy; int ret; if (hr_dev->cmd.state == HNS_ROCE_CMDQ_STATE_FATAL_ERR) return -EIO; if (!v2_chk_mbox_is_avail(hr_dev, &busy)) return busy ? -EBUSY : 0; ret = __hns_roce_cmq_send(hr_dev, desc, num); if (ret) { if (!v2_chk_mbox_is_avail(hr_dev, &busy)) return busy ? -EBUSY : 0; } return ret; } static int config_hem_ba_to_hw(struct hns_roce_dev *hr_dev, dma_addr_t base_addr, u8 cmd, unsigned long tag) { struct hns_roce_cmd_mailbox *mbox; int ret; mbox = hns_roce_alloc_cmd_mailbox(hr_dev); if (IS_ERR(mbox)) return PTR_ERR(mbox); ret = hns_roce_cmd_mbox(hr_dev, base_addr, mbox->dma, cmd, tag); hns_roce_free_cmd_mailbox(hr_dev, mbox); return ret; } static int hns_roce_cmq_query_hw_info(struct hns_roce_dev *hr_dev) { struct hns_roce_query_version *resp; struct hns_roce_cmq_desc desc; int ret; hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_QUERY_HW_VER, true); ret = hns_roce_cmq_send(hr_dev, &desc, 1); if (ret) return ret; resp = (struct hns_roce_query_version *)desc.data; hr_dev->hw_rev = le16_to_cpu(resp->rocee_hw_version); hr_dev->vendor_id = hr_dev->pci_dev->vendor; return 0; } static void func_clr_hw_resetting_state(struct hns_roce_dev *hr_dev, struct hnae3_handle *handle) { const struct hnae3_ae_ops *ops = handle->ae_algo->ops; unsigned long end; hr_dev->dis_db = true; dev_warn(hr_dev->dev, "func clear is pending, device in resetting state.\n"); end = HNS_ROCE_V2_HW_RST_TIMEOUT; while (end) { if (!ops->get_hw_reset_stat(handle)) { hr_dev->is_reset = true; dev_info(hr_dev->dev, "func clear success after reset.\n"); return; } msleep(HNS_ROCE_V2_HW_RST_COMPLETION_WAIT); end -= HNS_ROCE_V2_HW_RST_COMPLETION_WAIT; } dev_warn(hr_dev->dev, "func clear failed.\n"); } static void func_clr_sw_resetting_state(struct hns_roce_dev *hr_dev, struct hnae3_handle *handle) { const struct hnae3_ae_ops *ops = handle->ae_algo->ops; unsigned long end; hr_dev->dis_db = true; dev_warn(hr_dev->dev, "func clear is pending, device in resetting state.\n"); end = HNS_ROCE_V2_HW_RST_TIMEOUT; while (end) { if (ops->ae_dev_reset_cnt(handle) != hr_dev->reset_cnt) { hr_dev->is_reset = true; dev_info(hr_dev->dev, "func clear success after sw reset\n"); return; } msleep(HNS_ROCE_V2_HW_RST_COMPLETION_WAIT); end -= HNS_ROCE_V2_HW_RST_COMPLETION_WAIT; } dev_warn(hr_dev->dev, "func clear failed because of unfinished sw reset\n"); } static void hns_roce_func_clr_rst_proc(struct hns_roce_dev *hr_dev, int retval, int flag) { struct hns_roce_v2_priv *priv = hr_dev->priv; struct hnae3_handle *handle = priv->handle; const struct hnae3_ae_ops *ops = handle->ae_algo->ops; if (ops->ae_dev_reset_cnt(handle) != hr_dev->reset_cnt) { hr_dev->dis_db = true; hr_dev->is_reset = true; dev_info(hr_dev->dev, "func clear success after reset.\n"); return; } if (ops->get_hw_reset_stat(handle)) { func_clr_hw_resetting_state(hr_dev, handle); return; } if (ops->ae_dev_resetting(handle) && handle->rinfo.instance_state == HNS_ROCE_STATE_INIT) { func_clr_sw_resetting_state(hr_dev, handle); return; } if (retval && !flag) dev_warn(hr_dev->dev, "func clear read failed, ret = %d.\n", retval); dev_warn(hr_dev->dev, "func clear failed.\n"); } static void __hns_roce_function_clear(struct hns_roce_dev *hr_dev, int vf_id) { bool fclr_write_fail_flag = false; struct hns_roce_func_clear *resp; struct hns_roce_cmq_desc desc; unsigned long end; int ret = 0; if (check_device_is_in_reset(hr_dev)) goto out; hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_FUNC_CLEAR, false); resp = (struct hns_roce_func_clear *)desc.data; resp->rst_funcid_en = cpu_to_le32(vf_id); ret = hns_roce_cmq_send(hr_dev, &desc, 1); if (ret) { fclr_write_fail_flag = true; dev_err(hr_dev->dev, "func clear write failed, ret = %d.\n", ret); goto out; } msleep(HNS_ROCE_V2_READ_FUNC_CLEAR_FLAG_INTERVAL); end = HNS_ROCE_V2_FUNC_CLEAR_TIMEOUT_MSECS; while (end) { if (check_device_is_in_reset(hr_dev)) goto out; msleep(HNS_ROCE_V2_READ_FUNC_CLEAR_FLAG_FAIL_WAIT); end -= HNS_ROCE_V2_READ_FUNC_CLEAR_FLAG_FAIL_WAIT; hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_FUNC_CLEAR, true); resp->rst_funcid_en = cpu_to_le32(vf_id); ret = hns_roce_cmq_send(hr_dev, &desc, 1); if (ret) continue; if (hr_reg_read(resp, FUNC_CLEAR_RST_FUN_DONE)) { if (vf_id == 0) hr_dev->is_reset = true; return; } } out: hns_roce_func_clr_rst_proc(hr_dev, ret, fclr_write_fail_flag); } static int hns_roce_free_vf_resource(struct hns_roce_dev *hr_dev, int vf_id) { enum hns_roce_opcode_type opcode = HNS_ROCE_OPC_ALLOC_VF_RES; struct hns_roce_cmq_desc desc[2]; struct hns_roce_cmq_req *req_a; req_a = (struct hns_roce_cmq_req *)desc[0].data; hns_roce_cmq_setup_basic_desc(&desc[0], opcode, false); desc[0].flag |= cpu_to_le16(HNS_ROCE_CMD_FLAG_NEXT); hns_roce_cmq_setup_basic_desc(&desc[1], opcode, false); hr_reg_write(req_a, FUNC_RES_A_VF_ID, vf_id); return hns_roce_cmq_send(hr_dev, desc, 2); } static void hns_roce_function_clear(struct hns_roce_dev *hr_dev) { int ret; int i; if (hr_dev->cmd.state == HNS_ROCE_CMDQ_STATE_FATAL_ERR) return; for (i = hr_dev->func_num - 1; i >= 0; i--) { __hns_roce_function_clear(hr_dev, i); if (i == 0) continue; ret = hns_roce_free_vf_resource(hr_dev, i); if (ret) ibdev_err(&hr_dev->ib_dev, "failed to free vf resource, vf_id = %d, ret = %d.\n", i, ret); } } static int hns_roce_clear_extdb_list_info(struct hns_roce_dev *hr_dev) { struct hns_roce_cmq_desc desc; int ret; hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CLEAR_EXTDB_LIST_INFO, false); ret = hns_roce_cmq_send(hr_dev, &desc, 1); if (ret) ibdev_err(&hr_dev->ib_dev, "failed to clear extended doorbell info, ret = %d.\n", ret); return ret; } static int hns_roce_query_fw_ver(struct hns_roce_dev *hr_dev) { struct hns_roce_query_fw_info *resp; struct hns_roce_cmq_desc desc; int ret; hns_roce_cmq_setup_basic_desc(&desc, HNS_QUERY_FW_VER, true); ret = hns_roce_cmq_send(hr_dev, &desc, 1); if (ret) return ret; resp = (struct hns_roce_query_fw_info *)desc.data; hr_dev->caps.fw_ver = (u64)(le32_to_cpu(resp->fw_ver)); return 0; } static int hns_roce_query_func_info(struct hns_roce_dev *hr_dev) { struct hns_roce_cmq_desc desc; int ret; if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) { hr_dev->func_num = 1; return 0; } hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_QUERY_FUNC_INFO, true); ret = hns_roce_cmq_send(hr_dev, &desc, 1); if (ret) { hr_dev->func_num = 1; return ret; } hr_dev->func_num = le32_to_cpu(desc.func_info.own_func_num); hr_dev->cong_algo_tmpl_id = le32_to_cpu(desc.func_info.own_mac_id); return 0; } static int hns_roce_config_global_param(struct hns_roce_dev *hr_dev) { struct hns_roce_cmq_desc desc; struct hns_roce_cmq_req *req = (struct hns_roce_cmq_req *)desc.data; u32 clock_cycles_of_1us; hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CFG_GLOBAL_PARAM, false); if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) clock_cycles_of_1us = HNS_ROCE_1NS_CFG; else clock_cycles_of_1us = HNS_ROCE_1US_CFG; hr_reg_write(req, CFG_GLOBAL_PARAM_1US_CYCLES, clock_cycles_of_1us); hr_reg_write(req, CFG_GLOBAL_PARAM_UDP_PORT, ROCE_V2_UDP_DPORT); return hns_roce_cmq_send(hr_dev, &desc, 1); } static int load_func_res_caps(struct hns_roce_dev *hr_dev, bool is_vf) { struct hns_roce_cmq_desc desc[2]; struct hns_roce_cmq_req *r_a = (struct hns_roce_cmq_req *)desc[0].data; struct hns_roce_cmq_req *r_b = (struct hns_roce_cmq_req *)desc[1].data; struct hns_roce_caps *caps = &hr_dev->caps; enum hns_roce_opcode_type opcode; u32 func_num; int ret; if (is_vf) { opcode = HNS_ROCE_OPC_QUERY_VF_RES; func_num = 1; } else { opcode = HNS_ROCE_OPC_QUERY_PF_RES; func_num = hr_dev->func_num; } hns_roce_cmq_setup_basic_desc(&desc[0], opcode, true); desc[0].flag |= cpu_to_le16(HNS_ROCE_CMD_FLAG_NEXT); hns_roce_cmq_setup_basic_desc(&desc[1], opcode, true); ret = hns_roce_cmq_send(hr_dev, desc, 2); if (ret) return ret; caps->qpc_bt_num = hr_reg_read(r_a, FUNC_RES_A_QPC_BT_NUM) / func_num; caps->srqc_bt_num = hr_reg_read(r_a, FUNC_RES_A_SRQC_BT_NUM) / func_num; caps->cqc_bt_num = hr_reg_read(r_a, FUNC_RES_A_CQC_BT_NUM) / func_num; caps->mpt_bt_num = hr_reg_read(r_a, FUNC_RES_A_MPT_BT_NUM) / func_num; caps->eqc_bt_num = hr_reg_read(r_a, FUNC_RES_A_EQC_BT_NUM) / func_num; caps->smac_bt_num = hr_reg_read(r_b, FUNC_RES_B_SMAC_NUM) / func_num; caps->sgid_bt_num = hr_reg_read(r_b, FUNC_RES_B_SGID_NUM) / func_num; caps->sccc_bt_num = hr_reg_read(r_b, FUNC_RES_B_SCCC_BT_NUM) / func_num; if (is_vf) { caps->sl_num = hr_reg_read(r_b, FUNC_RES_V_QID_NUM) / func_num; caps->gmv_bt_num = hr_reg_read(r_b, FUNC_RES_V_GMV_BT_NUM) / func_num; } else { caps->sl_num = hr_reg_read(r_b, FUNC_RES_B_QID_NUM) / func_num; caps->gmv_bt_num = hr_reg_read(r_b, FUNC_RES_B_GMV_BT_NUM) / func_num; } return 0; } static int load_ext_cfg_caps(struct hns_roce_dev *hr_dev, bool is_vf) { struct hns_roce_cmq_desc desc; struct hns_roce_cmq_req *req = (struct hns_roce_cmq_req *)desc.data; struct hns_roce_caps *caps = &hr_dev->caps; u32 func_num, qp_num; int ret; hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_EXT_CFG, true); ret = hns_roce_cmq_send(hr_dev, &desc, 1); if (ret) return ret; func_num = is_vf ? 1 : max_t(u32, 1, hr_dev->func_num); qp_num = hr_reg_read(req, EXT_CFG_QP_PI_NUM) / func_num; caps->num_pi_qps = round_down(qp_num, HNS_ROCE_QP_BANK_NUM); qp_num = hr_reg_read(req, EXT_CFG_QP_NUM) / func_num; caps->num_qps = round_down(qp_num, HNS_ROCE_QP_BANK_NUM); return 0; } static int load_pf_timer_res_caps(struct hns_roce_dev *hr_dev) { struct hns_roce_cmq_desc desc; struct hns_roce_cmq_req *req = (struct hns_roce_cmq_req *)desc.data; struct hns_roce_caps *caps = &hr_dev->caps; int ret; hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_QUERY_PF_TIMER_RES, true); ret = hns_roce_cmq_send(hr_dev, &desc, 1); if (ret) return ret; caps->qpc_timer_bt_num = hr_reg_read(req, PF_TIMER_RES_QPC_ITEM_NUM); caps->cqc_timer_bt_num = hr_reg_read(req, PF_TIMER_RES_CQC_ITEM_NUM); return 0; } static int query_func_resource_caps(struct hns_roce_dev *hr_dev, bool is_vf) { struct device *dev = hr_dev->dev; int ret; ret = load_func_res_caps(hr_dev, is_vf); if (ret) { dev_err(dev, "failed to load res caps, ret = %d (%s).\n", ret, is_vf ? "vf" : "pf"); return ret; } if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09) { ret = load_ext_cfg_caps(hr_dev, is_vf); if (ret) dev_err(dev, "failed to load ext cfg, ret = %d (%s).\n", ret, is_vf ? "vf" : "pf"); } return ret; } static int hns_roce_query_pf_resource(struct hns_roce_dev *hr_dev) { struct device *dev = hr_dev->dev; int ret; ret = query_func_resource_caps(hr_dev, false); if (ret) return ret; ret = load_pf_timer_res_caps(hr_dev); if (ret) dev_err(dev, "failed to load pf timer resource, ret = %d.\n", ret); return ret; } static int hns_roce_query_vf_resource(struct hns_roce_dev *hr_dev) { return query_func_resource_caps(hr_dev, true); } static int __hns_roce_set_vf_switch_param(struct hns_roce_dev *hr_dev, u32 vf_id) { struct hns_roce_vf_switch *swt; struct hns_roce_cmq_desc desc; int ret; swt = (struct hns_roce_vf_switch *)desc.data; hns_roce_cmq_setup_basic_desc(&desc, HNS_SWITCH_PARAMETER_CFG, true); swt->rocee_sel |= cpu_to_le32(HNS_ICL_SWITCH_CMD_ROCEE_SEL); hr_reg_write(swt, VF_SWITCH_VF_ID, vf_id); ret = hns_roce_cmq_send(hr_dev, &desc, 1); if (ret) return ret; desc.flag = cpu_to_le16(HNS_ROCE_CMD_FLAG_IN); desc.flag &= cpu_to_le16(~HNS_ROCE_CMD_FLAG_WR); hr_reg_enable(swt, VF_SWITCH_ALW_LPBK); hr_reg_clear(swt, VF_SWITCH_ALW_LCL_LPBK); hr_reg_enable(swt, VF_SWITCH_ALW_DST_OVRD); return hns_roce_cmq_send(hr_dev, &desc, 1); } static int hns_roce_set_vf_switch_param(struct hns_roce_dev *hr_dev) { u32 vf_id; int ret; for (vf_id = 0; vf_id < hr_dev->func_num; vf_id++) { ret = __hns_roce_set_vf_switch_param(hr_dev, vf_id); if (ret) return ret; } return 0; } static int config_vf_hem_resource(struct hns_roce_dev *hr_dev, int vf_id) { struct hns_roce_cmq_desc desc[2]; struct hns_roce_cmq_req *r_a = (struct hns_roce_cmq_req *)desc[0].data; struct hns_roce_cmq_req *r_b = (struct hns_roce_cmq_req *)desc[1].data; enum hns_roce_opcode_type opcode = HNS_ROCE_OPC_ALLOC_VF_RES; struct hns_roce_caps *caps = &hr_dev->caps; hns_roce_cmq_setup_basic_desc(&desc[0], opcode, false); desc[0].flag |= cpu_to_le16(HNS_ROCE_CMD_FLAG_NEXT); hns_roce_cmq_setup_basic_desc(&desc[1], opcode, false); hr_reg_write(r_a, FUNC_RES_A_VF_ID, vf_id); hr_reg_write(r_a, FUNC_RES_A_QPC_BT_NUM, caps->qpc_bt_num); hr_reg_write(r_a, FUNC_RES_A_QPC_BT_IDX, vf_id * caps->qpc_bt_num); hr_reg_write(r_a, FUNC_RES_A_SRQC_BT_NUM, caps->srqc_bt_num); hr_reg_write(r_a, FUNC_RES_A_SRQC_BT_IDX, vf_id * caps->srqc_bt_num); hr_reg_write(r_a, FUNC_RES_A_CQC_BT_NUM, caps->cqc_bt_num); hr_reg_write(r_a, FUNC_RES_A_CQC_BT_IDX, vf_id * caps->cqc_bt_num); hr_reg_write(r_a, FUNC_RES_A_MPT_BT_NUM, caps->mpt_bt_num); hr_reg_write(r_a, FUNC_RES_A_MPT_BT_IDX, vf_id * caps->mpt_bt_num); hr_reg_write(r_a, FUNC_RES_A_EQC_BT_NUM, caps->eqc_bt_num); hr_reg_write(r_a, FUNC_RES_A_EQC_BT_IDX, vf_id * caps->eqc_bt_num); hr_reg_write(r_b, FUNC_RES_V_QID_NUM, caps->sl_num); hr_reg_write(r_b, FUNC_RES_B_QID_IDX, vf_id * caps->sl_num); hr_reg_write(r_b, FUNC_RES_B_SCCC_BT_NUM, caps->sccc_bt_num); hr_reg_write(r_b, FUNC_RES_B_SCCC_BT_IDX, vf_id * caps->sccc_bt_num); if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09) { hr_reg_write(r_b, FUNC_RES_V_GMV_BT_NUM, caps->gmv_bt_num); hr_reg_write(r_b, FUNC_RES_B_GMV_BT_IDX, vf_id * caps->gmv_bt_num); } else { hr_reg_write(r_b, FUNC_RES_B_SGID_NUM, caps->sgid_bt_num); hr_reg_write(r_b, FUNC_RES_B_SGID_IDX, vf_id * caps->sgid_bt_num); hr_reg_write(r_b, FUNC_RES_B_SMAC_NUM, caps->smac_bt_num); hr_reg_write(r_b, FUNC_RES_B_SMAC_IDX, vf_id * caps->smac_bt_num); } return hns_roce_cmq_send(hr_dev, desc, 2); } static int config_vf_ext_resource(struct hns_roce_dev *hr_dev, u32 vf_id) { struct hns_roce_cmq_desc desc; struct hns_roce_cmq_req *req = (struct hns_roce_cmq_req *)desc.data; struct hns_roce_caps *caps = &hr_dev->caps; hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_EXT_CFG, false); hr_reg_write(req, EXT_CFG_VF_ID, vf_id); hr_reg_write(req, EXT_CFG_QP_PI_NUM, caps->num_pi_qps); hr_reg_write(req, EXT_CFG_QP_PI_IDX, vf_id * caps->num_pi_qps); hr_reg_write(req, EXT_CFG_QP_NUM, caps->num_qps); hr_reg_write(req, EXT_CFG_QP_IDX, vf_id * caps->num_qps); return hns_roce_cmq_send(hr_dev, &desc, 1); } static int hns_roce_alloc_vf_resource(struct hns_roce_dev *hr_dev) { u32 func_num = max_t(u32, 1, hr_dev->func_num); u32 vf_id; int ret; for (vf_id = 0; vf_id < func_num; vf_id++) { ret = config_vf_hem_resource(hr_dev, vf_id); if (ret) { dev_err(hr_dev->dev, "failed to config vf-%u hem res, ret = %d.\n", vf_id, ret); return ret; } if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09) { ret = config_vf_ext_resource(hr_dev, vf_id); if (ret) { dev_err(hr_dev->dev, "failed to config vf-%u ext res, ret = %d.\n", vf_id, ret); return ret; } } } return 0; } static int hns_roce_v2_set_bt(struct hns_roce_dev *hr_dev) { struct hns_roce_cmq_desc desc; struct hns_roce_cmq_req *req = (struct hns_roce_cmq_req *)desc.data; struct hns_roce_caps *caps = &hr_dev->caps; hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CFG_BT_ATTR, false); hr_reg_write(req, CFG_BT_ATTR_QPC_BA_PGSZ, caps->qpc_ba_pg_sz + PG_SHIFT_OFFSET); hr_reg_write(req, CFG_BT_ATTR_QPC_BUF_PGSZ, caps->qpc_buf_pg_sz + PG_SHIFT_OFFSET); hr_reg_write(req, CFG_BT_ATTR_QPC_HOPNUM, to_hr_hem_hopnum(caps->qpc_hop_num, caps->num_qps)); hr_reg_write(req, CFG_BT_ATTR_SRQC_BA_PGSZ, caps->srqc_ba_pg_sz + PG_SHIFT_OFFSET); hr_reg_write(req, CFG_BT_ATTR_SRQC_BUF_PGSZ, caps->srqc_buf_pg_sz + PG_SHIFT_OFFSET); hr_reg_write(req, CFG_BT_ATTR_SRQC_HOPNUM, to_hr_hem_hopnum(caps->srqc_hop_num, caps->num_srqs)); hr_reg_write(req, CFG_BT_ATTR_CQC_BA_PGSZ, caps->cqc_ba_pg_sz + PG_SHIFT_OFFSET); hr_reg_write(req, CFG_BT_ATTR_CQC_BUF_PGSZ, caps->cqc_buf_pg_sz + PG_SHIFT_OFFSET); hr_reg_write(req, CFG_BT_ATTR_CQC_HOPNUM, to_hr_hem_hopnum(caps->cqc_hop_num, caps->num_cqs)); hr_reg_write(req, CFG_BT_ATTR_MPT_BA_PGSZ, caps->mpt_ba_pg_sz + PG_SHIFT_OFFSET); hr_reg_write(req, CFG_BT_ATTR_MPT_BUF_PGSZ, caps->mpt_buf_pg_sz + PG_SHIFT_OFFSET); hr_reg_write(req, CFG_BT_ATTR_MPT_HOPNUM, to_hr_hem_hopnum(caps->mpt_hop_num, caps->num_mtpts)); hr_reg_write(req, CFG_BT_ATTR_SCCC_BA_PGSZ, caps->sccc_ba_pg_sz + PG_SHIFT_OFFSET); hr_reg_write(req, CFG_BT_ATTR_SCCC_BUF_PGSZ, caps->sccc_buf_pg_sz + PG_SHIFT_OFFSET); hr_reg_write(req, CFG_BT_ATTR_SCCC_HOPNUM, to_hr_hem_hopnum(caps->sccc_hop_num, caps->num_qps)); return hns_roce_cmq_send(hr_dev, &desc, 1); } /* Use default caps when hns_roce_query_pf_caps() failed or init VF profile */ static void set_default_caps(struct hns_roce_dev *hr_dev) { struct hns_roce_caps *caps = &hr_dev->caps; caps->num_qps = HNS_ROCE_V2_MAX_QP_NUM; caps->max_wqes = HNS_ROCE_V2_MAX_WQE_NUM; caps->num_cqs = HNS_ROCE_V2_MAX_CQ_NUM; caps->num_srqs = HNS_ROCE_V2_MAX_SRQ_NUM; caps->min_cqes = HNS_ROCE_MIN_CQE_NUM; caps->max_cqes = HNS_ROCE_V2_MAX_CQE_NUM; caps->max_sq_sg = HNS_ROCE_V2_MAX_SQ_SGE_NUM; caps->max_rq_sg = HNS_ROCE_V2_MAX_RQ_SGE_NUM; caps->num_uars = HNS_ROCE_V2_UAR_NUM; caps->phy_num_uars = HNS_ROCE_V2_PHY_UAR_NUM; caps->num_aeq_vectors = HNS_ROCE_V2_AEQE_VEC_NUM; caps->num_other_vectors = HNS_ROCE_V2_ABNORMAL_VEC_NUM; caps->num_comp_vectors = 0; caps->num_mtpts = HNS_ROCE_V2_MAX_MTPT_NUM; caps->num_pds = HNS_ROCE_V2_MAX_PD_NUM; caps->qpc_timer_bt_num = HNS_ROCE_V2_MAX_QPC_TIMER_BT_NUM; caps->cqc_timer_bt_num = HNS_ROCE_V2_MAX_CQC_TIMER_BT_NUM; caps->max_qp_init_rdma = HNS_ROCE_V2_MAX_QP_INIT_RDMA; caps->max_qp_dest_rdma = HNS_ROCE_V2_MAX_QP_DEST_RDMA; caps->max_sq_desc_sz = HNS_ROCE_V2_MAX_SQ_DESC_SZ; caps->max_rq_desc_sz = HNS_ROCE_V2_MAX_RQ_DESC_SZ; caps->irrl_entry_sz = HNS_ROCE_V2_IRRL_ENTRY_SZ; caps->trrl_entry_sz = HNS_ROCE_V2_EXT_ATOMIC_TRRL_ENTRY_SZ; caps->cqc_entry_sz = HNS_ROCE_V2_CQC_ENTRY_SZ; caps->srqc_entry_sz = HNS_ROCE_V2_SRQC_ENTRY_SZ; caps->mtpt_entry_sz = HNS_ROCE_V2_MTPT_ENTRY_SZ; caps->idx_entry_sz = HNS_ROCE_V2_IDX_ENTRY_SZ; caps->page_size_cap = HNS_ROCE_V2_PAGE_SIZE_SUPPORTED; caps->reserved_lkey = 0; caps->reserved_pds = 0; caps->reserved_mrws = 1; caps->reserved_uars = 0; caps->reserved_cqs = 0; caps->reserved_srqs = 0; caps->reserved_qps = HNS_ROCE_V2_RSV_QPS; caps->qpc_hop_num = HNS_ROCE_CONTEXT_HOP_NUM; caps->srqc_hop_num = HNS_ROCE_CONTEXT_HOP_NUM; caps->cqc_hop_num = HNS_ROCE_CONTEXT_HOP_NUM; caps->mpt_hop_num = HNS_ROCE_CONTEXT_HOP_NUM; caps->sccc_hop_num = HNS_ROCE_SCCC_HOP_NUM; caps->mtt_hop_num = HNS_ROCE_MTT_HOP_NUM; caps->wqe_sq_hop_num = HNS_ROCE_SQWQE_HOP_NUM; caps->wqe_sge_hop_num = HNS_ROCE_EXT_SGE_HOP_NUM; caps->wqe_rq_hop_num = HNS_ROCE_RQWQE_HOP_NUM; caps->cqe_hop_num = HNS_ROCE_CQE_HOP_NUM; caps->srqwqe_hop_num = HNS_ROCE_SRQWQE_HOP_NUM; caps->idx_hop_num = HNS_ROCE_IDX_HOP_NUM; caps->chunk_sz = HNS_ROCE_V2_TABLE_CHUNK_SIZE; caps->flags = HNS_ROCE_CAP_FLAG_REREG_MR | HNS_ROCE_CAP_FLAG_ROCE_V1_V2 | HNS_ROCE_CAP_FLAG_CQ_RECORD_DB | HNS_ROCE_CAP_FLAG_QP_RECORD_DB; caps->pkey_table_len[0] = 1; caps->ceqe_depth = HNS_ROCE_V2_COMP_EQE_NUM; caps->aeqe_depth = HNS_ROCE_V2_ASYNC_EQE_NUM; caps->local_ca_ack_delay = 0; caps->max_mtu = IB_MTU_4096; caps->max_srq_wrs = HNS_ROCE_V2_MAX_SRQ_WR; caps->max_srq_sges = HNS_ROCE_V2_MAX_SRQ_SGE; caps->flags |= HNS_ROCE_CAP_FLAG_ATOMIC | HNS_ROCE_CAP_FLAG_MW | HNS_ROCE_CAP_FLAG_SRQ | HNS_ROCE_CAP_FLAG_FRMR | HNS_ROCE_CAP_FLAG_QP_FLOW_CTRL; caps->gid_table_len[0] = HNS_ROCE_V2_GID_INDEX_NUM; if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09) { caps->flags |= HNS_ROCE_CAP_FLAG_STASH | HNS_ROCE_CAP_FLAG_DIRECT_WQE | HNS_ROCE_CAP_FLAG_XRC; caps->max_sq_inline = HNS_ROCE_V3_MAX_SQ_INLINE; } else { caps->max_sq_inline = HNS_ROCE_V2_MAX_SQ_INLINE; /* The following configuration are only valid for HIP08 */ caps->qpc_sz = HNS_ROCE_V2_QPC_SZ; caps->sccc_sz = HNS_ROCE_V2_SCCC_SZ; caps->cqe_sz = HNS_ROCE_V2_CQE_SIZE; } } static void calc_pg_sz(u32 obj_num, u32 obj_size, u32 hop_num, u32 ctx_bt_num, u32 *buf_page_size, u32 *bt_page_size, u32 hem_type) { u64 obj_per_chunk; u64 bt_chunk_size = PAGE_SIZE; u64 buf_chunk_size = PAGE_SIZE; u64 obj_per_chunk_default = buf_chunk_size / obj_size; *buf_page_size = 0; *bt_page_size = 0; switch (hop_num) { case 3: obj_per_chunk = ctx_bt_num * (bt_chunk_size / BA_BYTE_LEN) * (bt_chunk_size / BA_BYTE_LEN) * (bt_chunk_size / BA_BYTE_LEN) * obj_per_chunk_default; break; case 2: obj_per_chunk = ctx_bt_num * (bt_chunk_size / BA_BYTE_LEN) * (bt_chunk_size / BA_BYTE_LEN) * obj_per_chunk_default; break; case 1: obj_per_chunk = ctx_bt_num * (bt_chunk_size / BA_BYTE_LEN) * obj_per_chunk_default; break; case HNS_ROCE_HOP_NUM_0: obj_per_chunk = ctx_bt_num * obj_per_chunk_default; break; default: pr_err("table %u not support hop_num = %u!\n", hem_type, hop_num); return; } if (hem_type >= HEM_TYPE_MTT) *bt_page_size = ilog2(DIV_ROUND_UP(obj_num, obj_per_chunk)); else *buf_page_size = ilog2(DIV_ROUND_UP(obj_num, obj_per_chunk)); } static void set_hem_page_size(struct hns_roce_dev *hr_dev) { struct hns_roce_caps *caps = &hr_dev->caps; /* EQ */ caps->eqe_ba_pg_sz = 0; caps->eqe_buf_pg_sz = 0; /* Link Table */ caps->llm_buf_pg_sz = 0; /* MR */ caps->mpt_ba_pg_sz = 0; caps->mpt_buf_pg_sz = 0; caps->pbl_ba_pg_sz = HNS_ROCE_BA_PG_SZ_SUPPORTED_16K; caps->pbl_buf_pg_sz = 0; calc_pg_sz(caps->num_mtpts, caps->mtpt_entry_sz, caps->mpt_hop_num, caps->mpt_bt_num, &caps->mpt_buf_pg_sz, &caps->mpt_ba_pg_sz, HEM_TYPE_MTPT); /* QP */ caps->qpc_ba_pg_sz = 0; caps->qpc_buf_pg_sz = 0; caps->qpc_timer_ba_pg_sz = 0; caps->qpc_timer_buf_pg_sz = 0; caps->sccc_ba_pg_sz = 0; caps->sccc_buf_pg_sz = 0; caps->mtt_ba_pg_sz = 0; caps->mtt_buf_pg_sz = 0; calc_pg_sz(caps->num_qps, caps->qpc_sz, caps->qpc_hop_num, caps->qpc_bt_num, &caps->qpc_buf_pg_sz, &caps->qpc_ba_pg_sz, HEM_TYPE_QPC); if (caps->flags & HNS_ROCE_CAP_FLAG_QP_FLOW_CTRL) calc_pg_sz(caps->num_qps, caps->sccc_sz, caps->sccc_hop_num, caps->sccc_bt_num, &caps->sccc_buf_pg_sz, &caps->sccc_ba_pg_sz, HEM_TYPE_SCCC); /* CQ */ caps->cqc_ba_pg_sz = 0; caps->cqc_buf_pg_sz = 0; caps->cqc_timer_ba_pg_sz = 0; caps->cqc_timer_buf_pg_sz = 0; caps->cqe_ba_pg_sz = HNS_ROCE_BA_PG_SZ_SUPPORTED_256K; caps->cqe_buf_pg_sz = 0; calc_pg_sz(caps->num_cqs, caps->cqc_entry_sz, caps->cqc_hop_num, caps->cqc_bt_num, &caps->cqc_buf_pg_sz, &caps->cqc_ba_pg_sz, HEM_TYPE_CQC); calc_pg_sz(caps->max_cqes, caps->cqe_sz, caps->cqe_hop_num, 1, &caps->cqe_buf_pg_sz, &caps->cqe_ba_pg_sz, HEM_TYPE_CQE); /* SRQ */ if (caps->flags & HNS_ROCE_CAP_FLAG_SRQ) { caps->srqc_ba_pg_sz = 0; caps->srqc_buf_pg_sz = 0; caps->srqwqe_ba_pg_sz = 0; caps->srqwqe_buf_pg_sz = 0; caps->idx_ba_pg_sz = 0; caps->idx_buf_pg_sz = 0; calc_pg_sz(caps->num_srqs, caps->srqc_entry_sz, caps->srqc_hop_num, caps->srqc_bt_num, &caps->srqc_buf_pg_sz, &caps->srqc_ba_pg_sz, HEM_TYPE_SRQC); calc_pg_sz(caps->num_srqwqe_segs, caps->mtt_entry_sz, caps->srqwqe_hop_num, 1, &caps->srqwqe_buf_pg_sz, &caps->srqwqe_ba_pg_sz, HEM_TYPE_SRQWQE); calc_pg_sz(caps->num_idx_segs, caps->idx_entry_sz, caps->idx_hop_num, 1, &caps->idx_buf_pg_sz, &caps->idx_ba_pg_sz, HEM_TYPE_IDX); } /* GMV */ caps->gmv_ba_pg_sz = 0; caps->gmv_buf_pg_sz = 0; } /* Apply all loaded caps before setting to hardware */ static void apply_func_caps(struct hns_roce_dev *hr_dev) { struct hns_roce_caps *caps = &hr_dev->caps; struct hns_roce_v2_priv *priv = hr_dev->priv; /* The following configurations don't need to be got from firmware. */ caps->qpc_timer_entry_sz = HNS_ROCE_V2_QPC_TIMER_ENTRY_SZ; caps->cqc_timer_entry_sz = HNS_ROCE_V2_CQC_TIMER_ENTRY_SZ; caps->mtt_entry_sz = HNS_ROCE_V2_MTT_ENTRY_SZ; caps->pbl_hop_num = HNS_ROCE_PBL_HOP_NUM; caps->qpc_timer_hop_num = HNS_ROCE_HOP_NUM_0; caps->cqc_timer_hop_num = HNS_ROCE_HOP_NUM_0; caps->num_xrcds = HNS_ROCE_V2_MAX_XRCD_NUM; caps->reserved_xrcds = HNS_ROCE_V2_RSV_XRCD_NUM; caps->num_srqwqe_segs = HNS_ROCE_V2_MAX_SRQWQE_SEGS; caps->num_idx_segs = HNS_ROCE_V2_MAX_IDX_SEGS; if (!caps->num_comp_vectors) caps->num_comp_vectors = min_t(u32, caps->eqc_bt_num - HNS_ROCE_V2_AEQE_VEC_NUM, (u32)priv->handle->rinfo.num_vectors - (HNS_ROCE_V2_AEQE_VEC_NUM + HNS_ROCE_V2_ABNORMAL_VEC_NUM)); if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09) { caps->eqe_hop_num = HNS_ROCE_V3_EQE_HOP_NUM; caps->ceqe_size = HNS_ROCE_V3_EQE_SIZE; caps->aeqe_size = HNS_ROCE_V3_EQE_SIZE; /* The following configurations will be overwritten */ caps->qpc_sz = HNS_ROCE_V3_QPC_SZ; caps->cqe_sz = HNS_ROCE_V3_CQE_SIZE; caps->sccc_sz = HNS_ROCE_V3_SCCC_SZ; /* The following configurations are not got from firmware */ caps->gmv_entry_sz = HNS_ROCE_V3_GMV_ENTRY_SZ; caps->gmv_hop_num = HNS_ROCE_HOP_NUM_0; caps->gid_table_len[0] = caps->gmv_bt_num * (HNS_HW_PAGE_SIZE / caps->gmv_entry_sz); caps->gmv_entry_num = caps->gmv_bt_num * (PAGE_SIZE / caps->gmv_entry_sz); } else { u32 func_num = max_t(u32, 1, hr_dev->func_num); caps->eqe_hop_num = HNS_ROCE_V2_EQE_HOP_NUM; caps->ceqe_size = HNS_ROCE_CEQE_SIZE; caps->aeqe_size = HNS_ROCE_AEQE_SIZE; caps->gid_table_len[0] /= func_num; } if (hr_dev->is_vf) { caps->default_aeq_arm_st = 0x3; caps->default_ceq_arm_st = 0x3; caps->default_ceq_max_cnt = 0x1; caps->default_ceq_period = 0x10; caps->default_aeq_max_cnt = 0x1; caps->default_aeq_period = 0x10; } set_hem_page_size(hr_dev); } static int hns_roce_query_pf_caps(struct hns_roce_dev *hr_dev) { struct hns_roce_cmq_desc desc[HNS_ROCE_QUERY_PF_CAPS_CMD_NUM]; struct hns_roce_caps *caps = &hr_dev->caps; struct hns_roce_query_pf_caps_a *resp_a; struct hns_roce_query_pf_caps_b *resp_b; struct hns_roce_query_pf_caps_c *resp_c; struct hns_roce_query_pf_caps_d *resp_d; struct hns_roce_query_pf_caps_e *resp_e; int ctx_hop_num; int pbl_hop_num; int ret; int i; for (i = 0; i < HNS_ROCE_QUERY_PF_CAPS_CMD_NUM; i++) { hns_roce_cmq_setup_basic_desc(&desc[i], HNS_ROCE_OPC_QUERY_PF_CAPS_NUM, true); if (i < (HNS_ROCE_QUERY_PF_CAPS_CMD_NUM - 1)) desc[i].flag |= cpu_to_le16(HNS_ROCE_CMD_FLAG_NEXT); else desc[i].flag &= ~cpu_to_le16(HNS_ROCE_CMD_FLAG_NEXT); } ret = hns_roce_cmq_send(hr_dev, desc, HNS_ROCE_QUERY_PF_CAPS_CMD_NUM); if (ret) return ret; resp_a = (struct hns_roce_query_pf_caps_a *)desc[0].data; resp_b = (struct hns_roce_query_pf_caps_b *)desc[1].data; resp_c = (struct hns_roce_query_pf_caps_c *)desc[2].data; resp_d = (struct hns_roce_query_pf_caps_d *)desc[3].data; resp_e = (struct hns_roce_query_pf_caps_e *)desc[4].data; caps->local_ca_ack_delay = resp_a->local_ca_ack_delay; caps->max_sq_sg = le16_to_cpu(resp_a->max_sq_sg); caps->max_sq_inline = le16_to_cpu(resp_a->max_sq_inline); caps->max_rq_sg = le16_to_cpu(resp_a->max_rq_sg); caps->max_rq_sg = roundup_pow_of_two(caps->max_rq_sg); caps->max_srq_sges = le16_to_cpu(resp_a->max_srq_sges); caps->max_srq_sges = roundup_pow_of_two(caps->max_srq_sges); caps->num_aeq_vectors = resp_a->num_aeq_vectors; caps->num_other_vectors = resp_a->num_other_vectors; caps->max_sq_desc_sz = resp_a->max_sq_desc_sz; caps->max_rq_desc_sz = resp_a->max_rq_desc_sz; caps->cqe_sz = resp_a->cqe_sz; caps->mtpt_entry_sz = resp_b->mtpt_entry_sz; caps->irrl_entry_sz = resp_b->irrl_entry_sz; caps->trrl_entry_sz = resp_b->trrl_entry_sz; caps->cqc_entry_sz = resp_b->cqc_entry_sz; caps->srqc_entry_sz = resp_b->srqc_entry_sz; caps->idx_entry_sz = resp_b->idx_entry_sz; caps->sccc_sz = resp_b->sccc_sz; caps->max_mtu = resp_b->max_mtu; caps->qpc_sz = le16_to_cpu(resp_b->qpc_sz); caps->min_cqes = resp_b->min_cqes; caps->min_wqes = resp_b->min_wqes; caps->page_size_cap = le32_to_cpu(resp_b->page_size_cap); caps->pkey_table_len[0] = resp_b->pkey_table_len; caps->phy_num_uars = resp_b->phy_num_uars; ctx_hop_num = resp_b->ctx_hop_num; pbl_hop_num = resp_b->pbl_hop_num; caps->num_pds = 1 << hr_reg_read(resp_c, PF_CAPS_C_NUM_PDS); caps->flags = hr_reg_read(resp_c, PF_CAPS_C_CAP_FLAGS); caps->flags |= le16_to_cpu(resp_d->cap_flags_ex) << HNS_ROCE_CAP_FLAGS_EX_SHIFT; caps->num_cqs = 1 << hr_reg_read(resp_c, PF_CAPS_C_NUM_CQS); caps->gid_table_len[0] = hr_reg_read(resp_c, PF_CAPS_C_MAX_GID); caps->max_cqes = 1 << hr_reg_read(resp_c, PF_CAPS_C_CQ_DEPTH); caps->num_mtpts = 1 << hr_reg_read(resp_c, PF_CAPS_C_NUM_MRWS); caps->num_qps = 1 << hr_reg_read(resp_c, PF_CAPS_C_NUM_QPS); caps->max_qp_init_rdma = hr_reg_read(resp_c, PF_CAPS_C_MAX_ORD); caps->max_qp_dest_rdma = caps->max_qp_init_rdma; caps->max_wqes = 1 << le16_to_cpu(resp_c->sq_depth); caps->num_srqs = 1 << hr_reg_read(resp_d, PF_CAPS_D_NUM_SRQS); caps->cong_type = hr_reg_read(resp_d, PF_CAPS_D_CONG_TYPE); caps->max_srq_wrs = 1 << le16_to_cpu(resp_d->srq_depth); caps->ceqe_depth = 1 << hr_reg_read(resp_d, PF_CAPS_D_CEQ_DEPTH); caps->num_comp_vectors = hr_reg_read(resp_d, PF_CAPS_D_NUM_CEQS); caps->aeqe_depth = 1 << hr_reg_read(resp_d, PF_CAPS_D_AEQ_DEPTH); caps->default_aeq_arm_st = hr_reg_read(resp_d, PF_CAPS_D_AEQ_ARM_ST); caps->default_ceq_arm_st = hr_reg_read(resp_d, PF_CAPS_D_CEQ_ARM_ST); caps->reserved_pds = hr_reg_read(resp_d, PF_CAPS_D_RSV_PDS); caps->num_uars = 1 << hr_reg_read(resp_d, PF_CAPS_D_NUM_UARS); caps->reserved_qps = hr_reg_read(resp_d, PF_CAPS_D_RSV_QPS); caps->reserved_uars = hr_reg_read(resp_d, PF_CAPS_D_RSV_UARS); caps->reserved_mrws = hr_reg_read(resp_e, PF_CAPS_E_RSV_MRWS); caps->chunk_sz = 1 << hr_reg_read(resp_e, PF_CAPS_E_CHUNK_SIZE_SHIFT); caps->reserved_cqs = hr_reg_read(resp_e, PF_CAPS_E_RSV_CQS); caps->reserved_srqs = hr_reg_read(resp_e, PF_CAPS_E_RSV_SRQS); caps->reserved_lkey = hr_reg_read(resp_e, PF_CAPS_E_RSV_LKEYS); caps->default_ceq_max_cnt = le16_to_cpu(resp_e->ceq_max_cnt); caps->default_ceq_period = le16_to_cpu(resp_e->ceq_period); caps->default_aeq_max_cnt = le16_to_cpu(resp_e->aeq_max_cnt); caps->default_aeq_period = le16_to_cpu(resp_e->aeq_period); caps->qpc_hop_num = ctx_hop_num; caps->sccc_hop_num = ctx_hop_num; caps->srqc_hop_num = ctx_hop_num; caps->cqc_hop_num = ctx_hop_num; caps->mpt_hop_num = ctx_hop_num; caps->mtt_hop_num = pbl_hop_num; caps->cqe_hop_num = pbl_hop_num; caps->srqwqe_hop_num = pbl_hop_num; caps->idx_hop_num = pbl_hop_num; caps->wqe_sq_hop_num = hr_reg_read(resp_d, PF_CAPS_D_SQWQE_HOP_NUM); caps->wqe_sge_hop_num = hr_reg_read(resp_d, PF_CAPS_D_EX_SGE_HOP_NUM); caps->wqe_rq_hop_num = hr_reg_read(resp_d, PF_CAPS_D_RQWQE_HOP_NUM); if (!(caps->page_size_cap & PAGE_SIZE)) caps->page_size_cap = HNS_ROCE_V2_PAGE_SIZE_SUPPORTED; return 0; } static int config_hem_entry_size(struct hns_roce_dev *hr_dev, u32 type, u32 val) { struct hns_roce_cmq_desc desc; struct hns_roce_cmq_req *req = (struct hns_roce_cmq_req *)desc.data; hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CFG_ENTRY_SIZE, false); hr_reg_write(req, CFG_HEM_ENTRY_SIZE_TYPE, type); hr_reg_write(req, CFG_HEM_ENTRY_SIZE_VALUE, val); return hns_roce_cmq_send(hr_dev, &desc, 1); } static int hns_roce_config_entry_size(struct hns_roce_dev *hr_dev) { struct hns_roce_caps *caps = &hr_dev->caps; int ret; if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) return 0; ret = config_hem_entry_size(hr_dev, HNS_ROCE_CFG_QPC_SIZE, caps->qpc_sz); if (ret) { dev_err(hr_dev->dev, "failed to cfg qpc sz, ret = %d.\n", ret); return ret; } ret = config_hem_entry_size(hr_dev, HNS_ROCE_CFG_SCCC_SIZE, caps->sccc_sz); if (ret) dev_err(hr_dev->dev, "failed to cfg sccc sz, ret = %d.\n", ret); return ret; } static int hns_roce_v2_vf_profile(struct hns_roce_dev *hr_dev) { struct device *dev = hr_dev->dev; int ret; hr_dev->func_num = 1; set_default_caps(hr_dev); ret = hns_roce_query_vf_resource(hr_dev); if (ret) { dev_err(dev, "failed to query VF resource, ret = %d.\n", ret); return ret; } apply_func_caps(hr_dev); ret = hns_roce_v2_set_bt(hr_dev); if (ret) dev_err(dev, "failed to config VF BA table, ret = %d.\n", ret); return ret; } static int hns_roce_v2_pf_profile(struct hns_roce_dev *hr_dev) { struct device *dev = hr_dev->dev; int ret; ret = hns_roce_query_func_info(hr_dev); if (ret) { dev_err(dev, "failed to query func info, ret = %d.\n", ret); return ret; } ret = hns_roce_config_global_param(hr_dev); if (ret) { dev_err(dev, "failed to config global param, ret = %d.\n", ret); return ret; } ret = hns_roce_set_vf_switch_param(hr_dev); if (ret) { dev_err(dev, "failed to set switch param, ret = %d.\n", ret); return ret; } ret = hns_roce_query_pf_caps(hr_dev); if (ret) set_default_caps(hr_dev); ret = hns_roce_query_pf_resource(hr_dev); if (ret) { dev_err(dev, "failed to query pf resource, ret = %d.\n", ret); return ret; } apply_func_caps(hr_dev); ret = hns_roce_alloc_vf_resource(hr_dev); if (ret) { dev_err(dev, "failed to alloc vf resource, ret = %d.\n", ret); return ret; } ret = hns_roce_v2_set_bt(hr_dev); if (ret) { dev_err(dev, "failed to config BA table, ret = %d.\n", ret); return ret; } /* Configure the size of QPC, SCCC, etc. */ return hns_roce_config_entry_size(hr_dev); } static int hns_roce_v2_profile(struct hns_roce_dev *hr_dev) { struct device *dev = hr_dev->dev; int ret; ret = hns_roce_cmq_query_hw_info(hr_dev); if (ret) { dev_err(dev, "failed to query hardware info, ret = %d.\n", ret); return ret; } ret = hns_roce_query_fw_ver(hr_dev); if (ret) { dev_err(dev, "failed to query firmware info, ret = %d.\n", ret); return ret; } hr_dev->vendor_part_id = hr_dev->pci_dev->device; hr_dev->sys_image_guid = be64_to_cpu(hr_dev->ib_dev.node_guid); if (hr_dev->is_vf) return hns_roce_v2_vf_profile(hr_dev); else return hns_roce_v2_pf_profile(hr_dev); } static void config_llm_table(struct hns_roce_buf *data_buf, void *cfg_buf) { u32 i, next_ptr, page_num; __le64 *entry = cfg_buf; dma_addr_t addr; u64 val; page_num = data_buf->npages; for (i = 0; i < page_num; i++) { addr = hns_roce_buf_page(data_buf, i); if (i == (page_num - 1)) next_ptr = 0; else next_ptr = i + 1; val = HNS_ROCE_EXT_LLM_ENTRY(addr, (u64)next_ptr); entry[i] = cpu_to_le64(val); } } static int set_llm_cfg_to_hw(struct hns_roce_dev *hr_dev, struct hns_roce_link_table *table) { struct hns_roce_cmq_desc desc[2]; struct hns_roce_cmq_req *r_a = (struct hns_roce_cmq_req *)desc[0].data; struct hns_roce_cmq_req *r_b = (struct hns_roce_cmq_req *)desc[1].data; struct hns_roce_buf *buf = table->buf; enum hns_roce_opcode_type opcode; dma_addr_t addr; opcode = HNS_ROCE_OPC_CFG_EXT_LLM; hns_roce_cmq_setup_basic_desc(&desc[0], opcode, false); desc[0].flag |= cpu_to_le16(HNS_ROCE_CMD_FLAG_NEXT); hns_roce_cmq_setup_basic_desc(&desc[1], opcode, false); hr_reg_write(r_a, CFG_LLM_A_BA_L, lower_32_bits(table->table.map)); hr_reg_write(r_a, CFG_LLM_A_BA_H, upper_32_bits(table->table.map)); hr_reg_write(r_a, CFG_LLM_A_DEPTH, buf->npages); hr_reg_write(r_a, CFG_LLM_A_PGSZ, to_hr_hw_page_shift(buf->page_shift)); hr_reg_enable(r_a, CFG_LLM_A_INIT_EN); addr = to_hr_hw_page_addr(hns_roce_buf_page(buf, 0)); hr_reg_write(r_a, CFG_LLM_A_HEAD_BA_L, lower_32_bits(addr)); hr_reg_write(r_a, CFG_LLM_A_HEAD_BA_H, upper_32_bits(addr)); hr_reg_write(r_a, CFG_LLM_A_HEAD_NXTPTR, 1); hr_reg_write(r_a, CFG_LLM_A_HEAD_PTR, 0); addr = to_hr_hw_page_addr(hns_roce_buf_page(buf, buf->npages - 1)); hr_reg_write(r_b, CFG_LLM_B_TAIL_BA_L, lower_32_bits(addr)); hr_reg_write(r_b, CFG_LLM_B_TAIL_BA_H, upper_32_bits(addr)); hr_reg_write(r_b, CFG_LLM_B_TAIL_PTR, buf->npages - 1); return hns_roce_cmq_send(hr_dev, desc, 2); } static struct hns_roce_link_table * alloc_link_table_buf(struct hns_roce_dev *hr_dev) { struct hns_roce_v2_priv *priv = hr_dev->priv; struct hns_roce_link_table *link_tbl; u32 pg_shift, size, min_size; link_tbl = &priv->ext_llm; pg_shift = hr_dev->caps.llm_buf_pg_sz + PAGE_SHIFT; size = hr_dev->caps.num_qps * HNS_ROCE_V2_EXT_LLM_ENTRY_SZ; min_size = HNS_ROCE_EXT_LLM_MIN_PAGES(hr_dev->caps.sl_num) << pg_shift; /* Alloc data table */ size = max(size, min_size); link_tbl->buf = hns_roce_buf_alloc(hr_dev, size, pg_shift, 0); if (IS_ERR(link_tbl->buf)) return ERR_PTR(-ENOMEM); /* Alloc config table */ size = link_tbl->buf->npages * sizeof(u64); link_tbl->table.buf = dma_alloc_coherent(hr_dev->dev, size, &link_tbl->table.map, GFP_KERNEL); if (!link_tbl->table.buf) { hns_roce_buf_free(hr_dev, link_tbl->buf); return ERR_PTR(-ENOMEM); } return link_tbl; } static void free_link_table_buf(struct hns_roce_dev *hr_dev, struct hns_roce_link_table *tbl) { if (tbl->buf) { u32 size = tbl->buf->npages * sizeof(u64); dma_free_coherent(hr_dev->dev, size, tbl->table.buf, tbl->table.map); } hns_roce_buf_free(hr_dev, tbl->buf); } static int hns_roce_init_link_table(struct hns_roce_dev *hr_dev) { struct hns_roce_link_table *link_tbl; int ret; link_tbl = alloc_link_table_buf(hr_dev); if (IS_ERR(link_tbl)) return -ENOMEM; if (WARN_ON(link_tbl->buf->npages > HNS_ROCE_V2_EXT_LLM_MAX_DEPTH)) { ret = -EINVAL; goto err_alloc; } config_llm_table(link_tbl->buf, link_tbl->table.buf); ret = set_llm_cfg_to_hw(hr_dev, link_tbl); if (ret) goto err_alloc; return 0; err_alloc: free_link_table_buf(hr_dev, link_tbl); return ret; } static void hns_roce_free_link_table(struct hns_roce_dev *hr_dev) { struct hns_roce_v2_priv *priv = hr_dev->priv; free_link_table_buf(hr_dev, &priv->ext_llm); } static void free_dip_list(struct hns_roce_dev *hr_dev) { struct hns_roce_dip *hr_dip; struct hns_roce_dip *tmp; unsigned long flags; spin_lock_irqsave(&hr_dev->dip_list_lock, flags); list_for_each_entry_safe(hr_dip, tmp, &hr_dev->dip_list, node) { list_del(&hr_dip->node); kfree(hr_dip); } spin_unlock_irqrestore(&hr_dev->dip_list_lock, flags); } static struct ib_pd *free_mr_init_pd(struct hns_roce_dev *hr_dev) { struct hns_roce_v2_priv *priv = hr_dev->priv; struct hns_roce_v2_free_mr *free_mr = &priv->free_mr; struct ib_device *ibdev = &hr_dev->ib_dev; struct hns_roce_pd *hr_pd; struct ib_pd *pd; hr_pd = kzalloc(sizeof(*hr_pd), GFP_KERNEL); if (ZERO_OR_NULL_PTR(hr_pd)) return NULL; pd = &hr_pd->ibpd; pd->device = ibdev; if (hns_roce_alloc_pd(pd, NULL)) { ibdev_err(ibdev, "failed to create pd for free mr.\n"); kfree(hr_pd); return NULL; } free_mr->rsv_pd = to_hr_pd(pd); free_mr->rsv_pd->ibpd.device = &hr_dev->ib_dev; free_mr->rsv_pd->ibpd.uobject = NULL; free_mr->rsv_pd->ibpd.__internal_mr = NULL; atomic_set(&free_mr->rsv_pd->ibpd.usecnt, 0); return pd; } static struct ib_cq *free_mr_init_cq(struct hns_roce_dev *hr_dev) { struct hns_roce_v2_priv *priv = hr_dev->priv; struct hns_roce_v2_free_mr *free_mr = &priv->free_mr; struct ib_device *ibdev = &hr_dev->ib_dev; struct ib_cq_init_attr cq_init_attr = {}; struct hns_roce_cq *hr_cq; struct ib_cq *cq; cq_init_attr.cqe = HNS_ROCE_FREE_MR_USED_CQE_NUM; hr_cq = kzalloc(sizeof(*hr_cq), GFP_KERNEL); if (ZERO_OR_NULL_PTR(hr_cq)) return NULL; cq = &hr_cq->ib_cq; cq->device = ibdev; if (hns_roce_create_cq(cq, &cq_init_attr, NULL)) { ibdev_err(ibdev, "failed to create cq for free mr.\n"); kfree(hr_cq); return NULL; } free_mr->rsv_cq = to_hr_cq(cq); free_mr->rsv_cq->ib_cq.device = &hr_dev->ib_dev; free_mr->rsv_cq->ib_cq.uobject = NULL; free_mr->rsv_cq->ib_cq.comp_handler = NULL; free_mr->rsv_cq->ib_cq.event_handler = NULL; free_mr->rsv_cq->ib_cq.cq_context = NULL; atomic_set(&free_mr->rsv_cq->ib_cq.usecnt, 0); return cq; } static int free_mr_init_qp(struct hns_roce_dev *hr_dev, struct ib_cq *cq, struct ib_qp_init_attr *init_attr, int i) { struct hns_roce_v2_priv *priv = hr_dev->priv; struct hns_roce_v2_free_mr *free_mr = &priv->free_mr; struct ib_device *ibdev = &hr_dev->ib_dev; struct hns_roce_qp *hr_qp; struct ib_qp *qp; int ret; hr_qp = kzalloc(sizeof(*hr_qp), GFP_KERNEL); if (ZERO_OR_NULL_PTR(hr_qp)) return -ENOMEM; qp = &hr_qp->ibqp; qp->device = ibdev; ret = hns_roce_create_qp(qp, init_attr, NULL); if (ret) { ibdev_err(ibdev, "failed to create qp for free mr.\n"); kfree(hr_qp); return ret; } free_mr->rsv_qp[i] = hr_qp; free_mr->rsv_qp[i]->ibqp.recv_cq = cq; free_mr->rsv_qp[i]->ibqp.send_cq = cq; return 0; } static void free_mr_exit(struct hns_roce_dev *hr_dev) { struct hns_roce_v2_priv *priv = hr_dev->priv; struct hns_roce_v2_free_mr *free_mr = &priv->free_mr; struct ib_qp *qp; int i; for (i = 0; i < ARRAY_SIZE(free_mr->rsv_qp); i++) { if (free_mr->rsv_qp[i]) { qp = &free_mr->rsv_qp[i]->ibqp; hns_roce_v2_destroy_qp(qp, NULL); kfree(free_mr->rsv_qp[i]); free_mr->rsv_qp[i] = NULL; } } if (free_mr->rsv_cq) { hns_roce_destroy_cq(&free_mr->rsv_cq->ib_cq, NULL); kfree(free_mr->rsv_cq); free_mr->rsv_cq = NULL; } if (free_mr->rsv_pd) { hns_roce_dealloc_pd(&free_mr->rsv_pd->ibpd, NULL); kfree(free_mr->rsv_pd); free_mr->rsv_pd = NULL; } } static int free_mr_alloc_res(struct hns_roce_dev *hr_dev) { struct hns_roce_v2_priv *priv = hr_dev->priv; struct hns_roce_v2_free_mr *free_mr = &priv->free_mr; struct ib_qp_init_attr qp_init_attr = {}; struct ib_pd *pd; struct ib_cq *cq; int ret; int i; pd = free_mr_init_pd(hr_dev); if (!pd) return -ENOMEM; cq = free_mr_init_cq(hr_dev); if (!cq) { ret = -ENOMEM; goto create_failed_cq; } qp_init_attr.qp_type = IB_QPT_RC; qp_init_attr.sq_sig_type = IB_SIGNAL_ALL_WR; qp_init_attr.send_cq = cq; qp_init_attr.recv_cq = cq; for (i = 0; i < ARRAY_SIZE(free_mr->rsv_qp); i++) { qp_init_attr.cap.max_send_wr = HNS_ROCE_FREE_MR_USED_SQWQE_NUM; qp_init_attr.cap.max_send_sge = HNS_ROCE_FREE_MR_USED_SQSGE_NUM; qp_init_attr.cap.max_recv_wr = HNS_ROCE_FREE_MR_USED_RQWQE_NUM; qp_init_attr.cap.max_recv_sge = HNS_ROCE_FREE_MR_USED_RQSGE_NUM; ret = free_mr_init_qp(hr_dev, cq, &qp_init_attr, i); if (ret) goto create_failed_qp; } return 0; create_failed_qp: hns_roce_destroy_cq(cq, NULL); kfree(cq); create_failed_cq: hns_roce_dealloc_pd(pd, NULL); kfree(pd); return ret; } static int free_mr_modify_rsv_qp(struct hns_roce_dev *hr_dev, struct ib_qp_attr *attr, int sl_num) { struct hns_roce_v2_priv *priv = hr_dev->priv; struct hns_roce_v2_free_mr *free_mr = &priv->free_mr; struct ib_device *ibdev = &hr_dev->ib_dev; struct hns_roce_qp *hr_qp; int loopback; int mask; int ret; hr_qp = to_hr_qp(&free_mr->rsv_qp[sl_num]->ibqp); hr_qp->free_mr_en = 1; hr_qp->ibqp.device = ibdev; hr_qp->ibqp.qp_type = IB_QPT_RC; mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_ACCESS_FLAGS; attr->qp_state = IB_QPS_INIT; attr->port_num = 1; attr->qp_access_flags = IB_ACCESS_REMOTE_WRITE; ret = hr_dev->hw->modify_qp(&hr_qp->ibqp, attr, mask, IB_QPS_INIT, IB_QPS_INIT); if (ret) { ibdev_err(ibdev, "failed to modify qp to init, ret = %d.\n", ret); return ret; } loopback = hr_dev->loop_idc; /* Set qpc lbi = 1 incidate loopback IO */ hr_dev->loop_idc = 1; mask = IB_QP_STATE | IB_QP_AV | IB_QP_PATH_MTU | IB_QP_DEST_QPN | IB_QP_RQ_PSN | IB_QP_MAX_DEST_RD_ATOMIC | IB_QP_MIN_RNR_TIMER; attr->qp_state = IB_QPS_RTR; attr->ah_attr.type = RDMA_AH_ATTR_TYPE_ROCE; attr->path_mtu = IB_MTU_256; attr->dest_qp_num = hr_qp->qpn; attr->rq_psn = HNS_ROCE_FREE_MR_USED_PSN; rdma_ah_set_sl(&attr->ah_attr, (u8)sl_num); ret = hr_dev->hw->modify_qp(&hr_qp->ibqp, attr, mask, IB_QPS_INIT, IB_QPS_RTR); hr_dev->loop_idc = loopback; if (ret) { ibdev_err(ibdev, "failed to modify qp to rtr, ret = %d.\n", ret); return ret; } mask = IB_QP_STATE | IB_QP_SQ_PSN | IB_QP_RETRY_CNT | IB_QP_TIMEOUT | IB_QP_RNR_RETRY | IB_QP_MAX_QP_RD_ATOMIC; attr->qp_state = IB_QPS_RTS; attr->sq_psn = HNS_ROCE_FREE_MR_USED_PSN; attr->retry_cnt = HNS_ROCE_FREE_MR_USED_QP_RETRY_CNT; attr->timeout = HNS_ROCE_FREE_MR_USED_QP_TIMEOUT; ret = hr_dev->hw->modify_qp(&hr_qp->ibqp, attr, mask, IB_QPS_RTR, IB_QPS_RTS); if (ret) ibdev_err(ibdev, "failed to modify qp to rts, ret = %d.\n", ret); return ret; } static int free_mr_modify_qp(struct hns_roce_dev *hr_dev) { struct hns_roce_v2_priv *priv = hr_dev->priv; struct hns_roce_v2_free_mr *free_mr = &priv->free_mr; struct ib_qp_attr attr = {}; int ret; int i; rdma_ah_set_grh(&attr.ah_attr, NULL, 0, 0, 1, 0); rdma_ah_set_static_rate(&attr.ah_attr, 3); rdma_ah_set_port_num(&attr.ah_attr, 1); for (i = 0; i < ARRAY_SIZE(free_mr->rsv_qp); i++) { ret = free_mr_modify_rsv_qp(hr_dev, &attr, i); if (ret) return ret; } return 0; } static int free_mr_init(struct hns_roce_dev *hr_dev) { struct hns_roce_v2_priv *priv = hr_dev->priv; struct hns_roce_v2_free_mr *free_mr = &priv->free_mr; int ret; mutex_init(&free_mr->mutex); ret = free_mr_alloc_res(hr_dev); if (ret) return ret; ret = free_mr_modify_qp(hr_dev); if (ret) goto err_modify_qp; return 0; err_modify_qp: free_mr_exit(hr_dev); return ret; } static int get_hem_table(struct hns_roce_dev *hr_dev) { unsigned int qpc_count; unsigned int cqc_count; unsigned int gmv_count; int ret; int i; /* Alloc memory for source address table buffer space chunk */ for (gmv_count = 0; gmv_count < hr_dev->caps.gmv_entry_num; gmv_count++) { ret = hns_roce_table_get(hr_dev, &hr_dev->gmv_table, gmv_count); if (ret) goto err_gmv_failed; } if (hr_dev->is_vf) return 0; /* Alloc memory for QPC Timer buffer space chunk */ for (qpc_count = 0; qpc_count < hr_dev->caps.qpc_timer_bt_num; qpc_count++) { ret = hns_roce_table_get(hr_dev, &hr_dev->qpc_timer_table, qpc_count); if (ret) { dev_err(hr_dev->dev, "QPC Timer get failed\n"); goto err_qpc_timer_failed; } } /* Alloc memory for CQC Timer buffer space chunk */ for (cqc_count = 0; cqc_count < hr_dev->caps.cqc_timer_bt_num; cqc_count++) { ret = hns_roce_table_get(hr_dev, &hr_dev->cqc_timer_table, cqc_count); if (ret) { dev_err(hr_dev->dev, "CQC Timer get failed\n"); goto err_cqc_timer_failed; } } return 0; err_cqc_timer_failed: for (i = 0; i < cqc_count; i++) hns_roce_table_put(hr_dev, &hr_dev->cqc_timer_table, i); err_qpc_timer_failed: for (i = 0; i < qpc_count; i++) hns_roce_table_put(hr_dev, &hr_dev->qpc_timer_table, i); err_gmv_failed: for (i = 0; i < gmv_count; i++) hns_roce_table_put(hr_dev, &hr_dev->gmv_table, i); return ret; } static void put_hem_table(struct hns_roce_dev *hr_dev) { int i; for (i = 0; i < hr_dev->caps.gmv_entry_num; i++) hns_roce_table_put(hr_dev, &hr_dev->gmv_table, i); if (hr_dev->is_vf) return; for (i = 0; i < hr_dev->caps.qpc_timer_bt_num; i++) hns_roce_table_put(hr_dev, &hr_dev->qpc_timer_table, i); for (i = 0; i < hr_dev->caps.cqc_timer_bt_num; i++) hns_roce_table_put(hr_dev, &hr_dev->cqc_timer_table, i); } static int hns_roce_v2_init(struct hns_roce_dev *hr_dev) { int ret; /* The hns ROCEE requires the extdb info to be cleared before using */ ret = hns_roce_clear_extdb_list_info(hr_dev); if (ret) return ret; ret = get_hem_table(hr_dev); if (ret) return ret; if (hr_dev->is_vf) return 0; ret = hns_roce_init_link_table(hr_dev); if (ret) { dev_err(hr_dev->dev, "failed to init llm, ret = %d.\n", ret); goto err_llm_init_failed; } return 0; err_llm_init_failed: put_hem_table(hr_dev); return ret; } static void hns_roce_v2_exit(struct hns_roce_dev *hr_dev) { hns_roce_function_clear(hr_dev); if (!hr_dev->is_vf) hns_roce_free_link_table(hr_dev); if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP09) free_dip_list(hr_dev); } static int hns_roce_mbox_post(struct hns_roce_dev *hr_dev, struct hns_roce_mbox_msg *mbox_msg) { struct hns_roce_cmq_desc desc; struct hns_roce_post_mbox *mb = (struct hns_roce_post_mbox *)desc.data; hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_POST_MB, false); mb->in_param_l = cpu_to_le32(mbox_msg->in_param); mb->in_param_h = cpu_to_le32(mbox_msg->in_param >> 32); mb->out_param_l = cpu_to_le32(mbox_msg->out_param); mb->out_param_h = cpu_to_le32(mbox_msg->out_param >> 32); mb->cmd_tag = cpu_to_le32(mbox_msg->tag << 8 | mbox_msg->cmd); mb->token_event_en = cpu_to_le32(mbox_msg->event_en << 16 | mbox_msg->token); return hns_roce_cmq_send(hr_dev, &desc, 1); } static int v2_wait_mbox_complete(struct hns_roce_dev *hr_dev, u32 timeout, u8 *complete_status) { struct hns_roce_mbox_status *mb_st; struct hns_roce_cmq_desc desc; unsigned long end; int ret = -EBUSY; u32 status; bool busy; mb_st = (struct hns_roce_mbox_status *)desc.data; end = msecs_to_jiffies(timeout) + jiffies; while (v2_chk_mbox_is_avail(hr_dev, &busy)) { if (hr_dev->cmd.state == HNS_ROCE_CMDQ_STATE_FATAL_ERR) return -EIO; status = 0; hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_QUERY_MB_ST, true); ret = __hns_roce_cmq_send(hr_dev, &desc, 1); if (!ret) { status = le32_to_cpu(mb_st->mb_status_hw_run); /* No pending message exists in ROCEE mbox. */ if (!(status & MB_ST_HW_RUN_M)) break; } else if (!v2_chk_mbox_is_avail(hr_dev, &busy)) { break; } if (time_after(jiffies, end)) { dev_err_ratelimited(hr_dev->dev, "failed to wait mbox status 0x%x\n", status); return -ETIMEDOUT; } cond_resched(); ret = -EBUSY; } if (!ret) { *complete_status = (u8)(status & MB_ST_COMPLETE_M); } else if (!v2_chk_mbox_is_avail(hr_dev, &busy)) { /* Ignore all errors if the mbox is unavailable. */ ret = 0; *complete_status = MB_ST_COMPLETE_M; } return ret; } static int v2_post_mbox(struct hns_roce_dev *hr_dev, struct hns_roce_mbox_msg *mbox_msg) { u8 status = 0; int ret; /* Waiting for the mbox to be idle */ ret = v2_wait_mbox_complete(hr_dev, HNS_ROCE_V2_GO_BIT_TIMEOUT_MSECS, &status); if (unlikely(ret)) { dev_err_ratelimited(hr_dev->dev, "failed to check post mbox status = 0x%x, ret = %d.\n", status, ret); return ret; } /* Post new message to mbox */ ret = hns_roce_mbox_post(hr_dev, mbox_msg); if (ret) dev_err_ratelimited(hr_dev->dev, "failed to post mailbox, ret = %d.\n", ret); return ret; } static int v2_poll_mbox_done(struct hns_roce_dev *hr_dev) { u8 status = 0; int ret; ret = v2_wait_mbox_complete(hr_dev, HNS_ROCE_CMD_TIMEOUT_MSECS, &status); if (!ret) { if (status != MB_ST_COMPLETE_SUCC) return -EBUSY; } else { dev_err_ratelimited(hr_dev->dev, "failed to check mbox status = 0x%x, ret = %d.\n", status, ret); } return ret; } static void copy_gid(void *dest, const union ib_gid *gid) { #define GID_SIZE 4 const union ib_gid *src = gid; __le32 (*p)[GID_SIZE] = dest; int i; if (!gid) src = &zgid; for (i = 0; i < GID_SIZE; i++) (*p)[i] = cpu_to_le32(*(u32 *)&src->raw[i * sizeof(u32)]); } static int config_sgid_table(struct hns_roce_dev *hr_dev, int gid_index, const union ib_gid *gid, enum hns_roce_sgid_type sgid_type) { struct hns_roce_cmq_desc desc; struct hns_roce_cfg_sgid_tb *sgid_tb = (struct hns_roce_cfg_sgid_tb *)desc.data; hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CFG_SGID_TB, false); hr_reg_write(sgid_tb, CFG_SGID_TB_TABLE_IDX, gid_index); hr_reg_write(sgid_tb, CFG_SGID_TB_VF_SGID_TYPE, sgid_type); copy_gid(&sgid_tb->vf_sgid_l, gid); return hns_roce_cmq_send(hr_dev, &desc, 1); } static int config_gmv_table(struct hns_roce_dev *hr_dev, int gid_index, const union ib_gid *gid, enum hns_roce_sgid_type sgid_type, const struct ib_gid_attr *attr) { struct hns_roce_cmq_desc desc[2]; struct hns_roce_cfg_gmv_tb_a *tb_a = (struct hns_roce_cfg_gmv_tb_a *)desc[0].data; struct hns_roce_cfg_gmv_tb_b *tb_b = (struct hns_roce_cfg_gmv_tb_b *)desc[1].data; u16 vlan_id = VLAN_CFI_MASK; u8 mac[ETH_ALEN] = {}; int ret; if (gid) { ret = rdma_read_gid_l2_fields(attr, &vlan_id, mac); if (ret) return ret; } hns_roce_cmq_setup_basic_desc(&desc[0], HNS_ROCE_OPC_CFG_GMV_TBL, false); desc[0].flag |= cpu_to_le16(HNS_ROCE_CMD_FLAG_NEXT); hns_roce_cmq_setup_basic_desc(&desc[1], HNS_ROCE_OPC_CFG_GMV_TBL, false); copy_gid(&tb_a->vf_sgid_l, gid); hr_reg_write(tb_a, GMV_TB_A_VF_SGID_TYPE, sgid_type); hr_reg_write(tb_a, GMV_TB_A_VF_VLAN_EN, vlan_id < VLAN_CFI_MASK); hr_reg_write(tb_a, GMV_TB_A_VF_VLAN_ID, vlan_id); tb_b->vf_smac_l = cpu_to_le32(*(u32 *)mac); hr_reg_write(tb_b, GMV_TB_B_SMAC_H, *(u16 *)&mac[4]); hr_reg_write(tb_b, GMV_TB_B_SGID_IDX, gid_index); return hns_roce_cmq_send(hr_dev, desc, 2); } static int hns_roce_v2_set_gid(struct hns_roce_dev *hr_dev, int gid_index, const union ib_gid *gid, const struct ib_gid_attr *attr) { enum hns_roce_sgid_type sgid_type = GID_TYPE_FLAG_ROCE_V1; int ret; if (gid) { if (attr->gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { if (ipv6_addr_v4mapped((void *)gid)) sgid_type = GID_TYPE_FLAG_ROCE_V2_IPV4; else sgid_type = GID_TYPE_FLAG_ROCE_V2_IPV6; } else if (attr->gid_type == IB_GID_TYPE_ROCE) { sgid_type = GID_TYPE_FLAG_ROCE_V1; } } if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09) ret = config_gmv_table(hr_dev, gid_index, gid, sgid_type, attr); else ret = config_sgid_table(hr_dev, gid_index, gid, sgid_type); if (ret) ibdev_err(&hr_dev->ib_dev, "failed to set gid, ret = %d!\n", ret); return ret; } static int hns_roce_v2_set_mac(struct hns_roce_dev *hr_dev, u8 phy_port, const u8 *addr) { struct hns_roce_cmq_desc desc; struct hns_roce_cfg_smac_tb *smac_tb = (struct hns_roce_cfg_smac_tb *)desc.data; u16 reg_smac_h; u32 reg_smac_l; hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CFG_SMAC_TB, false); reg_smac_l = *(u32 *)(&addr[0]); reg_smac_h = *(u16 *)(&addr[4]); hr_reg_write(smac_tb, CFG_SMAC_TB_IDX, phy_port); hr_reg_write(smac_tb, CFG_SMAC_TB_VF_SMAC_H, reg_smac_h); smac_tb->vf_smac_l = cpu_to_le32(reg_smac_l); return hns_roce_cmq_send(hr_dev, &desc, 1); } static int set_mtpt_pbl(struct hns_roce_dev *hr_dev, struct hns_roce_v2_mpt_entry *mpt_entry, struct hns_roce_mr *mr) { u64 pages[HNS_ROCE_V2_MAX_INNER_MTPT_NUM] = { 0 }; struct ib_device *ibdev = &hr_dev->ib_dev; dma_addr_t pbl_ba; int i, count; count = hns_roce_mtr_find(hr_dev, &mr->pbl_mtr, 0, pages, min_t(int, ARRAY_SIZE(pages), mr->npages), &pbl_ba); if (count < 1) { ibdev_err(ibdev, "failed to find PBL mtr, count = %d.\n", count); return -ENOBUFS; } /* Aligned to the hardware address access unit */ for (i = 0; i < count; i++) pages[i] >>= 6; mpt_entry->pbl_size = cpu_to_le32(mr->npages); mpt_entry->pbl_ba_l = cpu_to_le32(pbl_ba >> 3); hr_reg_write(mpt_entry, MPT_PBL_BA_H, upper_32_bits(pbl_ba >> 3)); mpt_entry->pa0_l = cpu_to_le32(lower_32_bits(pages[0])); hr_reg_write(mpt_entry, MPT_PA0_H, upper_32_bits(pages[0])); mpt_entry->pa1_l = cpu_to_le32(lower_32_bits(pages[1])); hr_reg_write(mpt_entry, MPT_PA1_H, upper_32_bits(pages[1])); hr_reg_write(mpt_entry, MPT_PBL_BUF_PG_SZ, to_hr_hw_page_shift(mr->pbl_mtr.hem_cfg.buf_pg_shift)); return 0; } static int hns_roce_v2_write_mtpt(struct hns_roce_dev *hr_dev, void *mb_buf, struct hns_roce_mr *mr) { struct hns_roce_v2_mpt_entry *mpt_entry; mpt_entry = mb_buf; memset(mpt_entry, 0, sizeof(*mpt_entry)); hr_reg_write(mpt_entry, MPT_ST, V2_MPT_ST_VALID); hr_reg_write(mpt_entry, MPT_PD, mr->pd); hr_reg_write_bool(mpt_entry, MPT_BIND_EN, mr->access & IB_ACCESS_MW_BIND); hr_reg_write_bool(mpt_entry, MPT_ATOMIC_EN, mr->access & IB_ACCESS_REMOTE_ATOMIC); hr_reg_write_bool(mpt_entry, MPT_RR_EN, mr->access & IB_ACCESS_REMOTE_READ); hr_reg_write_bool(mpt_entry, MPT_RW_EN, mr->access & IB_ACCESS_REMOTE_WRITE); hr_reg_write_bool(mpt_entry, MPT_LW_EN, mr->access & IB_ACCESS_LOCAL_WRITE); mpt_entry->len_l = cpu_to_le32(lower_32_bits(mr->size)); mpt_entry->len_h = cpu_to_le32(upper_32_bits(mr->size)); mpt_entry->lkey = cpu_to_le32(mr->key); mpt_entry->va_l = cpu_to_le32(lower_32_bits(mr->iova)); mpt_entry->va_h = cpu_to_le32(upper_32_bits(mr->iova)); if (mr->type != MR_TYPE_MR) hr_reg_enable(mpt_entry, MPT_PA); if (mr->type == MR_TYPE_DMA) return 0; if (mr->pbl_hop_num != HNS_ROCE_HOP_NUM_0) hr_reg_write(mpt_entry, MPT_PBL_HOP_NUM, mr->pbl_hop_num); hr_reg_write(mpt_entry, MPT_PBL_BA_PG_SZ, to_hr_hw_page_shift(mr->pbl_mtr.hem_cfg.ba_pg_shift)); hr_reg_enable(mpt_entry, MPT_INNER_PA_VLD); return set_mtpt_pbl(hr_dev, mpt_entry, mr); } static int hns_roce_v2_rereg_write_mtpt(struct hns_roce_dev *hr_dev, struct hns_roce_mr *mr, int flags, void *mb_buf) { struct hns_roce_v2_mpt_entry *mpt_entry = mb_buf; u32 mr_access_flags = mr->access; int ret = 0; hr_reg_write(mpt_entry, MPT_ST, V2_MPT_ST_VALID); hr_reg_write(mpt_entry, MPT_PD, mr->pd); if (flags & IB_MR_REREG_ACCESS) { hr_reg_write(mpt_entry, MPT_BIND_EN, (mr_access_flags & IB_ACCESS_MW_BIND ? 1 : 0)); hr_reg_write(mpt_entry, MPT_ATOMIC_EN, mr_access_flags & IB_ACCESS_REMOTE_ATOMIC ? 1 : 0); hr_reg_write(mpt_entry, MPT_RR_EN, mr_access_flags & IB_ACCESS_REMOTE_READ ? 1 : 0); hr_reg_write(mpt_entry, MPT_RW_EN, mr_access_flags & IB_ACCESS_REMOTE_WRITE ? 1 : 0); hr_reg_write(mpt_entry, MPT_LW_EN, mr_access_flags & IB_ACCESS_LOCAL_WRITE ? 1 : 0); } if (flags & IB_MR_REREG_TRANS) { mpt_entry->va_l = cpu_to_le32(lower_32_bits(mr->iova)); mpt_entry->va_h = cpu_to_le32(upper_32_bits(mr->iova)); mpt_entry->len_l = cpu_to_le32(lower_32_bits(mr->size)); mpt_entry->len_h = cpu_to_le32(upper_32_bits(mr->size)); ret = set_mtpt_pbl(hr_dev, mpt_entry, mr); } return ret; } static int hns_roce_v2_frmr_write_mtpt(struct hns_roce_dev *hr_dev, void *mb_buf, struct hns_roce_mr *mr) { struct ib_device *ibdev = &hr_dev->ib_dev; struct hns_roce_v2_mpt_entry *mpt_entry; dma_addr_t pbl_ba = 0; mpt_entry = mb_buf; memset(mpt_entry, 0, sizeof(*mpt_entry)); if (hns_roce_mtr_find(hr_dev, &mr->pbl_mtr, 0, NULL, 0, &pbl_ba) < 0) { ibdev_err(ibdev, "failed to find frmr mtr.\n"); return -ENOBUFS; } hr_reg_write(mpt_entry, MPT_ST, V2_MPT_ST_FREE); hr_reg_write(mpt_entry, MPT_PD, mr->pd); hr_reg_enable(mpt_entry, MPT_RA_EN); hr_reg_enable(mpt_entry, MPT_R_INV_EN); hr_reg_enable(mpt_entry, MPT_FRE); hr_reg_clear(mpt_entry, MPT_MR_MW); hr_reg_enable(mpt_entry, MPT_BPD); hr_reg_clear(mpt_entry, MPT_PA); hr_reg_write(mpt_entry, MPT_PBL_HOP_NUM, 1); hr_reg_write(mpt_entry, MPT_PBL_BA_PG_SZ, to_hr_hw_page_shift(mr->pbl_mtr.hem_cfg.ba_pg_shift)); hr_reg_write(mpt_entry, MPT_PBL_BUF_PG_SZ, to_hr_hw_page_shift(mr->pbl_mtr.hem_cfg.buf_pg_shift)); mpt_entry->pbl_size = cpu_to_le32(mr->npages); mpt_entry->pbl_ba_l = cpu_to_le32(lower_32_bits(pbl_ba >> 3)); hr_reg_write(mpt_entry, MPT_PBL_BA_H, upper_32_bits(pbl_ba >> 3)); return 0; } static int hns_roce_v2_mw_write_mtpt(void *mb_buf, struct hns_roce_mw *mw) { struct hns_roce_v2_mpt_entry *mpt_entry; mpt_entry = mb_buf; memset(mpt_entry, 0, sizeof(*mpt_entry)); hr_reg_write(mpt_entry, MPT_ST, V2_MPT_ST_FREE); hr_reg_write(mpt_entry, MPT_PD, mw->pdn); hr_reg_enable(mpt_entry, MPT_R_INV_EN); hr_reg_enable(mpt_entry, MPT_LW_EN); hr_reg_enable(mpt_entry, MPT_MR_MW); hr_reg_enable(mpt_entry, MPT_BPD); hr_reg_clear(mpt_entry, MPT_PA); hr_reg_write(mpt_entry, MPT_BQP, mw->ibmw.type == IB_MW_TYPE_1 ? 0 : 1); mpt_entry->lkey = cpu_to_le32(mw->rkey); hr_reg_write(mpt_entry, MPT_PBL_HOP_NUM, mw->pbl_hop_num == HNS_ROCE_HOP_NUM_0 ? 0 : mw->pbl_hop_num); hr_reg_write(mpt_entry, MPT_PBL_BA_PG_SZ, mw->pbl_ba_pg_sz + PG_SHIFT_OFFSET); hr_reg_write(mpt_entry, MPT_PBL_BUF_PG_SZ, mw->pbl_buf_pg_sz + PG_SHIFT_OFFSET); return 0; } static int free_mr_post_send_lp_wqe(struct hns_roce_qp *hr_qp) { struct hns_roce_dev *hr_dev = to_hr_dev(hr_qp->ibqp.device); struct ib_device *ibdev = &hr_dev->ib_dev; const struct ib_send_wr *bad_wr; struct ib_rdma_wr rdma_wr = {}; struct ib_send_wr *send_wr; int ret; send_wr = &rdma_wr.wr; send_wr->opcode = IB_WR_RDMA_WRITE; ret = hns_roce_v2_post_send(&hr_qp->ibqp, send_wr, &bad_wr); if (ret) { ibdev_err(ibdev, "failed to post wqe for free mr, ret = %d.\n", ret); return ret; } return 0; } static int hns_roce_v2_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc); static void free_mr_send_cmd_to_hw(struct hns_roce_dev *hr_dev) { struct hns_roce_v2_priv *priv = hr_dev->priv; struct hns_roce_v2_free_mr *free_mr = &priv->free_mr; struct ib_wc wc[ARRAY_SIZE(free_mr->rsv_qp)]; struct ib_device *ibdev = &hr_dev->ib_dev; struct hns_roce_qp *hr_qp; unsigned long end; int cqe_cnt = 0; int npolled; int ret; int i; /* * If the device initialization is not complete or in the uninstall * process, then there is no need to execute free mr. */ if (priv->handle->rinfo.reset_state == HNS_ROCE_STATE_RST_INIT || priv->handle->rinfo.instance_state == HNS_ROCE_STATE_INIT || hr_dev->state == HNS_ROCE_DEVICE_STATE_UNINIT) return; mutex_lock(&free_mr->mutex); for (i = 0; i < ARRAY_SIZE(free_mr->rsv_qp); i++) { hr_qp = free_mr->rsv_qp[i]; ret = free_mr_post_send_lp_wqe(hr_qp); if (ret) { ibdev_err(ibdev, "failed to send wqe (qp:0x%lx) for free mr, ret = %d.\n", hr_qp->qpn, ret); break; } cqe_cnt++; } end = msecs_to_jiffies(HNS_ROCE_V2_FREE_MR_TIMEOUT) + jiffies; while (cqe_cnt) { npolled = hns_roce_v2_poll_cq(&free_mr->rsv_cq->ib_cq, cqe_cnt, wc); if (npolled < 0) { ibdev_err(ibdev, "failed to poll cqe for free mr, remain %d cqe.\n", cqe_cnt); goto out; } if (time_after(jiffies, end)) { ibdev_err(ibdev, "failed to poll cqe for free mr and timeout, remain %d cqe.\n", cqe_cnt); goto out; } cqe_cnt -= npolled; } out: mutex_unlock(&free_mr->mutex); } static void hns_roce_v2_dereg_mr(struct hns_roce_dev *hr_dev) { if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) free_mr_send_cmd_to_hw(hr_dev); } static void *get_cqe_v2(struct hns_roce_cq *hr_cq, int n) { return hns_roce_buf_offset(hr_cq->mtr.kmem, n * hr_cq->cqe_size); } static void *get_sw_cqe_v2(struct hns_roce_cq *hr_cq, unsigned int n) { struct hns_roce_v2_cqe *cqe = get_cqe_v2(hr_cq, n & hr_cq->ib_cq.cqe); /* Get cqe when Owner bit is Conversely with the MSB of cons_idx */ return (hr_reg_read(cqe, CQE_OWNER) ^ !!(n & hr_cq->cq_depth)) ? cqe : NULL; } static inline void update_cq_db(struct hns_roce_dev *hr_dev, struct hns_roce_cq *hr_cq) { if (likely(hr_cq->flags & HNS_ROCE_CQ_FLAG_RECORD_DB)) { *hr_cq->set_ci_db = hr_cq->cons_index & V2_CQ_DB_CONS_IDX_M; } else { struct hns_roce_v2_db cq_db = {}; hr_reg_write(&cq_db, DB_TAG, hr_cq->cqn); hr_reg_write(&cq_db, DB_CMD, HNS_ROCE_V2_CQ_DB); hr_reg_write(&cq_db, DB_CQ_CI, hr_cq->cons_index); hr_reg_write(&cq_db, DB_CQ_CMD_SN, 1); hns_roce_write64(hr_dev, (__le32 *)&cq_db, hr_cq->db_reg); } } static void __hns_roce_v2_cq_clean(struct hns_roce_cq *hr_cq, u32 qpn, struct hns_roce_srq *srq) { struct hns_roce_dev *hr_dev = to_hr_dev(hr_cq->ib_cq.device); struct hns_roce_v2_cqe *cqe, *dest; u32 prod_index; int nfreed = 0; int wqe_index; u8 owner_bit; for (prod_index = hr_cq->cons_index; get_sw_cqe_v2(hr_cq, prod_index); ++prod_index) { if (prod_index > hr_cq->cons_index + hr_cq->ib_cq.cqe) break; } /* * Now backwards through the CQ, removing CQ entries * that match our QP by overwriting them with next entries. */ while ((int) --prod_index - (int) hr_cq->cons_index >= 0) { cqe = get_cqe_v2(hr_cq, prod_index & hr_cq->ib_cq.cqe); if (hr_reg_read(cqe, CQE_LCL_QPN) == qpn) { if (srq && hr_reg_read(cqe, CQE_S_R)) { wqe_index = hr_reg_read(cqe, CQE_WQE_IDX); hns_roce_free_srq_wqe(srq, wqe_index); } ++nfreed; } else if (nfreed) { dest = get_cqe_v2(hr_cq, (prod_index + nfreed) & hr_cq->ib_cq.cqe); owner_bit = hr_reg_read(dest, CQE_OWNER); memcpy(dest, cqe, hr_cq->cqe_size); hr_reg_write(dest, CQE_OWNER, owner_bit); } } if (nfreed) { hr_cq->cons_index += nfreed; update_cq_db(hr_dev, hr_cq); } } static void hns_roce_v2_cq_clean(struct hns_roce_cq *hr_cq, u32 qpn, struct hns_roce_srq *srq) { spin_lock_irq(&hr_cq->lock); __hns_roce_v2_cq_clean(hr_cq, qpn, srq); spin_unlock_irq(&hr_cq->lock); } static void hns_roce_v2_write_cqc(struct hns_roce_dev *hr_dev, struct hns_roce_cq *hr_cq, void *mb_buf, u64 *mtts, dma_addr_t dma_handle) { struct hns_roce_v2_cq_context *cq_context; cq_context = mb_buf; memset(cq_context, 0, sizeof(*cq_context)); hr_reg_write(cq_context, CQC_CQ_ST, V2_CQ_STATE_VALID); hr_reg_write(cq_context, CQC_ARM_ST, NO_ARMED); hr_reg_write(cq_context, CQC_SHIFT, ilog2(hr_cq->cq_depth)); hr_reg_write(cq_context, CQC_CEQN, hr_cq->vector); hr_reg_write(cq_context, CQC_CQN, hr_cq->cqn); if (hr_cq->cqe_size == HNS_ROCE_V3_CQE_SIZE) hr_reg_write(cq_context, CQC_CQE_SIZE, CQE_SIZE_64B); if (hr_dev->caps.flags & HNS_ROCE_CAP_FLAG_STASH) hr_reg_enable(cq_context, CQC_STASH); hr_reg_write(cq_context, CQC_CQE_CUR_BLK_ADDR_L, to_hr_hw_page_addr(mtts[0])); hr_reg_write(cq_context, CQC_CQE_CUR_BLK_ADDR_H, upper_32_bits(to_hr_hw_page_addr(mtts[0]))); hr_reg_write(cq_context, CQC_CQE_HOP_NUM, hr_dev->caps.cqe_hop_num == HNS_ROCE_HOP_NUM_0 ? 0 : hr_dev->caps.cqe_hop_num); hr_reg_write(cq_context, CQC_CQE_NEX_BLK_ADDR_L, to_hr_hw_page_addr(mtts[1])); hr_reg_write(cq_context, CQC_CQE_NEX_BLK_ADDR_H, upper_32_bits(to_hr_hw_page_addr(mtts[1]))); hr_reg_write(cq_context, CQC_CQE_BAR_PG_SZ, to_hr_hw_page_shift(hr_cq->mtr.hem_cfg.ba_pg_shift)); hr_reg_write(cq_context, CQC_CQE_BUF_PG_SZ, to_hr_hw_page_shift(hr_cq->mtr.hem_cfg.buf_pg_shift)); hr_reg_write(cq_context, CQC_CQE_BA_L, dma_handle >> 3); hr_reg_write(cq_context, CQC_CQE_BA_H, (dma_handle >> (32 + 3))); hr_reg_write_bool(cq_context, CQC_DB_RECORD_EN, hr_cq->flags & HNS_ROCE_CQ_FLAG_RECORD_DB); hr_reg_write(cq_context, CQC_CQE_DB_RECORD_ADDR_L, ((u32)hr_cq->db.dma) >> 1); hr_reg_write(cq_context, CQC_CQE_DB_RECORD_ADDR_H, hr_cq->db.dma >> 32); hr_reg_write(cq_context, CQC_CQ_MAX_CNT, HNS_ROCE_V2_CQ_DEFAULT_BURST_NUM); hr_reg_write(cq_context, CQC_CQ_PERIOD, HNS_ROCE_V2_CQ_DEFAULT_INTERVAL); } static int hns_roce_v2_req_notify_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags) { struct hns_roce_dev *hr_dev = to_hr_dev(ibcq->device); struct hns_roce_cq *hr_cq = to_hr_cq(ibcq); struct hns_roce_v2_db cq_db = {}; u32 notify_flag; /* * flags = 0, then notify_flag : next * flags = 1, then notify flag : solocited */ notify_flag = (flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED ? V2_CQ_DB_REQ_NOT : V2_CQ_DB_REQ_NOT_SOL; hr_reg_write(&cq_db, DB_TAG, hr_cq->cqn); hr_reg_write(&cq_db, DB_CMD, HNS_ROCE_V2_CQ_DB_NOTIFY); hr_reg_write(&cq_db, DB_CQ_CI, hr_cq->cons_index); hr_reg_write(&cq_db, DB_CQ_CMD_SN, hr_cq->arm_sn); hr_reg_write(&cq_db, DB_CQ_NOTIFY, notify_flag); hns_roce_write64(hr_dev, (__le32 *)&cq_db, hr_cq->db_reg); return 0; } static int hns_roce_handle_recv_inl_wqe(struct hns_roce_v2_cqe *cqe, struct hns_roce_qp *qp, struct ib_wc *wc) { struct hns_roce_rinl_sge *sge_list; u32 wr_num, wr_cnt, sge_num; u32 sge_cnt, data_len, size; void *wqe_buf; wr_num = hr_reg_read(cqe, CQE_WQE_IDX); wr_cnt = wr_num & (qp->rq.wqe_cnt - 1); sge_list = qp->rq_inl_buf.wqe_list[wr_cnt].sg_list; sge_num = qp->rq_inl_buf.wqe_list[wr_cnt].sge_cnt; wqe_buf = hns_roce_get_recv_wqe(qp, wr_cnt); data_len = wc->byte_len; for (sge_cnt = 0; (sge_cnt < sge_num) && (data_len); sge_cnt++) { size = min(sge_list[sge_cnt].len, data_len); memcpy((void *)sge_list[sge_cnt].addr, wqe_buf, size); data_len -= size; wqe_buf += size; } if (unlikely(data_len)) { wc->status = IB_WC_LOC_LEN_ERR; return -EAGAIN; } return 0; } static int sw_comp(struct hns_roce_qp *hr_qp, struct hns_roce_wq *wq, int num_entries, struct ib_wc *wc) { unsigned int left; int npolled = 0; left = wq->head - wq->tail; if (left == 0) return 0; left = min_t(unsigned int, (unsigned int)num_entries, left); while (npolled < left) { wc->wr_id = wq->wrid[wq->tail & (wq->wqe_cnt - 1)]; wc->status = IB_WC_WR_FLUSH_ERR; wc->vendor_err = 0; wc->qp = &hr_qp->ibqp; wq->tail++; wc++; npolled++; } return npolled; } static int hns_roce_v2_sw_poll_cq(struct hns_roce_cq *hr_cq, int num_entries, struct ib_wc *wc) { struct hns_roce_qp *hr_qp; int npolled = 0; list_for_each_entry(hr_qp, &hr_cq->sq_list, sq_node) { npolled += sw_comp(hr_qp, &hr_qp->sq, num_entries - npolled, wc + npolled); if (npolled >= num_entries) goto out; } list_for_each_entry(hr_qp, &hr_cq->rq_list, rq_node) { npolled += sw_comp(hr_qp, &hr_qp->rq, num_entries - npolled, wc + npolled); if (npolled >= num_entries) goto out; } out: return npolled; } static void get_cqe_status(struct hns_roce_dev *hr_dev, struct hns_roce_qp *qp, struct hns_roce_cq *cq, struct hns_roce_v2_cqe *cqe, struct ib_wc *wc) { static const struct { u32 cqe_status; enum ib_wc_status wc_status; } map[] = { { HNS_ROCE_CQE_V2_SUCCESS, IB_WC_SUCCESS }, { HNS_ROCE_CQE_V2_LOCAL_LENGTH_ERR, IB_WC_LOC_LEN_ERR }, { HNS_ROCE_CQE_V2_LOCAL_QP_OP_ERR, IB_WC_LOC_QP_OP_ERR }, { HNS_ROCE_CQE_V2_LOCAL_PROT_ERR, IB_WC_LOC_PROT_ERR }, { HNS_ROCE_CQE_V2_WR_FLUSH_ERR, IB_WC_WR_FLUSH_ERR }, { HNS_ROCE_CQE_V2_MW_BIND_ERR, IB_WC_MW_BIND_ERR }, { HNS_ROCE_CQE_V2_BAD_RESP_ERR, IB_WC_BAD_RESP_ERR }, { HNS_ROCE_CQE_V2_LOCAL_ACCESS_ERR, IB_WC_LOC_ACCESS_ERR }, { HNS_ROCE_CQE_V2_REMOTE_INVAL_REQ_ERR, IB_WC_REM_INV_REQ_ERR }, { HNS_ROCE_CQE_V2_REMOTE_ACCESS_ERR, IB_WC_REM_ACCESS_ERR }, { HNS_ROCE_CQE_V2_REMOTE_OP_ERR, IB_WC_REM_OP_ERR }, { HNS_ROCE_CQE_V2_TRANSPORT_RETRY_EXC_ERR, IB_WC_RETRY_EXC_ERR }, { HNS_ROCE_CQE_V2_RNR_RETRY_EXC_ERR, IB_WC_RNR_RETRY_EXC_ERR }, { HNS_ROCE_CQE_V2_REMOTE_ABORT_ERR, IB_WC_REM_ABORT_ERR }, { HNS_ROCE_CQE_V2_GENERAL_ERR, IB_WC_GENERAL_ERR} }; u32 cqe_status = hr_reg_read(cqe, CQE_STATUS); int i; wc->status = IB_WC_GENERAL_ERR; for (i = 0; i < ARRAY_SIZE(map); i++) if (cqe_status == map[i].cqe_status) { wc->status = map[i].wc_status; break; } if (likely(wc->status == IB_WC_SUCCESS || wc->status == IB_WC_WR_FLUSH_ERR)) return; ibdev_err(&hr_dev->ib_dev, "error cqe status 0x%x:\n", cqe_status); print_hex_dump(KERN_ERR, "", DUMP_PREFIX_NONE, 16, 4, cqe, cq->cqe_size, false); wc->vendor_err = hr_reg_read(cqe, CQE_SUB_STATUS); /* * For hns ROCEE, GENERAL_ERR is an error type that is not defined in * the standard protocol, the driver must ignore it and needn't to set * the QP to an error state. */ if (cqe_status == HNS_ROCE_CQE_V2_GENERAL_ERR) return; flush_cqe(hr_dev, qp); } static int get_cur_qp(struct hns_roce_cq *hr_cq, struct hns_roce_v2_cqe *cqe, struct hns_roce_qp **cur_qp) { struct hns_roce_dev *hr_dev = to_hr_dev(hr_cq->ib_cq.device); struct hns_roce_qp *hr_qp = *cur_qp; u32 qpn; qpn = hr_reg_read(cqe, CQE_LCL_QPN); if (!hr_qp || qpn != hr_qp->qpn) { hr_qp = __hns_roce_qp_lookup(hr_dev, qpn); if (unlikely(!hr_qp)) { ibdev_err(&hr_dev->ib_dev, "CQ %06lx with entry for unknown QPN %06x\n", hr_cq->cqn, qpn); return -EINVAL; } *cur_qp = hr_qp; } return 0; } /* * mapped-value = 1 + real-value * The ib wc opcode's real value is start from 0, In order to distinguish * between initialized and uninitialized map values, we plus 1 to the actual * value when defining the mapping, so that the validity can be identified by * checking whether the mapped value is greater than 0. */ #define HR_WC_OP_MAP(hr_key, ib_key) \ [HNS_ROCE_V2_WQE_OP_ ## hr_key] = 1 + IB_WC_ ## ib_key static const u32 wc_send_op_map[] = { HR_WC_OP_MAP(SEND, SEND), HR_WC_OP_MAP(SEND_WITH_INV, SEND), HR_WC_OP_MAP(SEND_WITH_IMM, SEND), HR_WC_OP_MAP(RDMA_READ, RDMA_READ), HR_WC_OP_MAP(RDMA_WRITE, RDMA_WRITE), HR_WC_OP_MAP(RDMA_WRITE_WITH_IMM, RDMA_WRITE), HR_WC_OP_MAP(ATOM_CMP_AND_SWAP, COMP_SWAP), HR_WC_OP_MAP(ATOM_FETCH_AND_ADD, FETCH_ADD), HR_WC_OP_MAP(ATOM_MSK_CMP_AND_SWAP, MASKED_COMP_SWAP), HR_WC_OP_MAP(ATOM_MSK_FETCH_AND_ADD, MASKED_FETCH_ADD), HR_WC_OP_MAP(FAST_REG_PMR, REG_MR), HR_WC_OP_MAP(BIND_MW, REG_MR), }; static int to_ib_wc_send_op(u32 hr_opcode) { if (hr_opcode >= ARRAY_SIZE(wc_send_op_map)) return -EINVAL; return wc_send_op_map[hr_opcode] ? wc_send_op_map[hr_opcode] - 1 : -EINVAL; } static const u32 wc_recv_op_map[] = { HR_WC_OP_MAP(RDMA_WRITE_WITH_IMM, WITH_IMM), HR_WC_OP_MAP(SEND, RECV), HR_WC_OP_MAP(SEND_WITH_IMM, WITH_IMM), HR_WC_OP_MAP(SEND_WITH_INV, RECV), }; static int to_ib_wc_recv_op(u32 hr_opcode) { if (hr_opcode >= ARRAY_SIZE(wc_recv_op_map)) return -EINVAL; return wc_recv_op_map[hr_opcode] ? wc_recv_op_map[hr_opcode] - 1 : -EINVAL; } static void fill_send_wc(struct ib_wc *wc, struct hns_roce_v2_cqe *cqe) { u32 hr_opcode; int ib_opcode; wc->wc_flags = 0; hr_opcode = hr_reg_read(cqe, CQE_OPCODE); switch (hr_opcode) { case HNS_ROCE_V2_WQE_OP_RDMA_READ: wc->byte_len = le32_to_cpu(cqe->byte_cnt); break; case HNS_ROCE_V2_WQE_OP_SEND_WITH_IMM: case HNS_ROCE_V2_WQE_OP_RDMA_WRITE_WITH_IMM: wc->wc_flags |= IB_WC_WITH_IMM; break; case HNS_ROCE_V2_WQE_OP_ATOM_CMP_AND_SWAP: case HNS_ROCE_V2_WQE_OP_ATOM_FETCH_AND_ADD: case HNS_ROCE_V2_WQE_OP_ATOM_MSK_CMP_AND_SWAP: case HNS_ROCE_V2_WQE_OP_ATOM_MSK_FETCH_AND_ADD: wc->byte_len = 8; break; default: break; } ib_opcode = to_ib_wc_send_op(hr_opcode); if (ib_opcode < 0) wc->status = IB_WC_GENERAL_ERR; else wc->opcode = ib_opcode; } static inline bool is_rq_inl_enabled(struct ib_wc *wc, u32 hr_opcode, struct hns_roce_v2_cqe *cqe) { return wc->qp->qp_type != IB_QPT_UD && wc->qp->qp_type != IB_QPT_GSI && (hr_opcode == HNS_ROCE_V2_OPCODE_SEND || hr_opcode == HNS_ROCE_V2_OPCODE_SEND_WITH_IMM || hr_opcode == HNS_ROCE_V2_OPCODE_SEND_WITH_INV) && hr_reg_read(cqe, CQE_RQ_INLINE); } static int fill_recv_wc(struct ib_wc *wc, struct hns_roce_v2_cqe *cqe) { struct hns_roce_qp *qp = to_hr_qp(wc->qp); u32 hr_opcode; int ib_opcode; int ret; wc->byte_len = le32_to_cpu(cqe->byte_cnt); hr_opcode = hr_reg_read(cqe, CQE_OPCODE); switch (hr_opcode) { case HNS_ROCE_V2_OPCODE_RDMA_WRITE_IMM: case HNS_ROCE_V2_OPCODE_SEND_WITH_IMM: wc->wc_flags = IB_WC_WITH_IMM; wc->ex.imm_data = cpu_to_be32(le32_to_cpu(cqe->immtdata)); break; case HNS_ROCE_V2_OPCODE_SEND_WITH_INV: wc->wc_flags = IB_WC_WITH_INVALIDATE; wc->ex.invalidate_rkey = le32_to_cpu(cqe->rkey); break; default: wc->wc_flags = 0; } ib_opcode = to_ib_wc_recv_op(hr_opcode); if (ib_opcode < 0) wc->status = IB_WC_GENERAL_ERR; else wc->opcode = ib_opcode; if (is_rq_inl_enabled(wc, hr_opcode, cqe)) { ret = hns_roce_handle_recv_inl_wqe(cqe, qp, wc); if (unlikely(ret)) return ret; } wc->sl = hr_reg_read(cqe, CQE_SL); wc->src_qp = hr_reg_read(cqe, CQE_RMT_QPN); wc->slid = 0; wc->wc_flags |= hr_reg_read(cqe, CQE_GRH) ? IB_WC_GRH : 0; wc->port_num = hr_reg_read(cqe, CQE_PORTN); wc->pkey_index = 0; if (hr_reg_read(cqe, CQE_VID_VLD)) { wc->vlan_id = hr_reg_read(cqe, CQE_VID); wc->wc_flags |= IB_WC_WITH_VLAN; } else { wc->vlan_id = 0xffff; } wc->network_hdr_type = hr_reg_read(cqe, CQE_PORT_TYPE); return 0; } static int hns_roce_v2_poll_one(struct hns_roce_cq *hr_cq, struct hns_roce_qp **cur_qp, struct ib_wc *wc) { struct hns_roce_dev *hr_dev = to_hr_dev(hr_cq->ib_cq.device); struct hns_roce_qp *qp = *cur_qp; struct hns_roce_srq *srq = NULL; struct hns_roce_v2_cqe *cqe; struct hns_roce_wq *wq; int is_send; u16 wqe_idx; int ret; cqe = get_sw_cqe_v2(hr_cq, hr_cq->cons_index); if (!cqe) return -EAGAIN; ++hr_cq->cons_index; /* Memory barrier */ rmb(); ret = get_cur_qp(hr_cq, cqe, &qp); if (ret) return ret; wc->qp = &qp->ibqp; wc->vendor_err = 0; wqe_idx = hr_reg_read(cqe, CQE_WQE_IDX); is_send = !hr_reg_read(cqe, CQE_S_R); if (is_send) { wq = &qp->sq; /* If sg_signal_bit is set, tail pointer will be updated to * the WQE corresponding to the current CQE. */ if (qp->sq_signal_bits) wq->tail += (wqe_idx - (u16)wq->tail) & (wq->wqe_cnt - 1); wc->wr_id = wq->wrid[wq->tail & (wq->wqe_cnt - 1)]; ++wq->tail; fill_send_wc(wc, cqe); } else { if (qp->ibqp.srq) { srq = to_hr_srq(qp->ibqp.srq); wc->wr_id = srq->wrid[wqe_idx]; hns_roce_free_srq_wqe(srq, wqe_idx); } else { wq = &qp->rq; wc->wr_id = wq->wrid[wq->tail & (wq->wqe_cnt - 1)]; ++wq->tail; } ret = fill_recv_wc(wc, cqe); } get_cqe_status(hr_dev, qp, hr_cq, cqe, wc); if (unlikely(wc->status != IB_WC_SUCCESS)) return 0; return ret; } static int hns_roce_v2_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc) { struct hns_roce_dev *hr_dev = to_hr_dev(ibcq->device); struct hns_roce_cq *hr_cq = to_hr_cq(ibcq); struct hns_roce_qp *cur_qp = NULL; unsigned long flags; int npolled; spin_lock_irqsave(&hr_cq->lock, flags); /* * When the device starts to reset, the state is RST_DOWN. At this time, * there may still be some valid CQEs in the hardware that are not * polled. Therefore, it is not allowed to switch to the software mode * immediately. When the state changes to UNINIT, CQE no longer exists * in the hardware, and then switch to software mode. */ if (hr_dev->state == HNS_ROCE_DEVICE_STATE_UNINIT) { npolled = hns_roce_v2_sw_poll_cq(hr_cq, num_entries, wc); goto out; } for (npolled = 0; npolled < num_entries; ++npolled) { if (hns_roce_v2_poll_one(hr_cq, &cur_qp, wc + npolled)) break; } if (npolled) update_cq_db(hr_dev, hr_cq); out: spin_unlock_irqrestore(&hr_cq->lock, flags); return npolled; } static int get_op_for_set_hem(struct hns_roce_dev *hr_dev, u32 type, u32 step_idx, u8 *mbox_cmd) { u8 cmd; switch (type) { case HEM_TYPE_QPC: cmd = HNS_ROCE_CMD_WRITE_QPC_BT0; break; case HEM_TYPE_MTPT: cmd = HNS_ROCE_CMD_WRITE_MPT_BT0; break; case HEM_TYPE_CQC: cmd = HNS_ROCE_CMD_WRITE_CQC_BT0; break; case HEM_TYPE_SRQC: cmd = HNS_ROCE_CMD_WRITE_SRQC_BT0; break; case HEM_TYPE_SCCC: cmd = HNS_ROCE_CMD_WRITE_SCCC_BT0; break; case HEM_TYPE_QPC_TIMER: cmd = HNS_ROCE_CMD_WRITE_QPC_TIMER_BT0; break; case HEM_TYPE_CQC_TIMER: cmd = HNS_ROCE_CMD_WRITE_CQC_TIMER_BT0; break; default: dev_warn(hr_dev->dev, "failed to check hem type %u.\n", type); return -EINVAL; } *mbox_cmd = cmd + step_idx; return 0; } static int config_gmv_ba_to_hw(struct hns_roce_dev *hr_dev, unsigned long obj, dma_addr_t base_addr) { struct hns_roce_cmq_desc desc; struct hns_roce_cmq_req *req = (struct hns_roce_cmq_req *)desc.data; u32 idx = obj / (HNS_HW_PAGE_SIZE / hr_dev->caps.gmv_entry_sz); u64 addr = to_hr_hw_page_addr(base_addr); hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CFG_GMV_BT, false); hr_reg_write(req, CFG_GMV_BT_BA_L, lower_32_bits(addr)); hr_reg_write(req, CFG_GMV_BT_BA_H, upper_32_bits(addr)); hr_reg_write(req, CFG_GMV_BT_IDX, idx); return hns_roce_cmq_send(hr_dev, &desc, 1); } static int set_hem_to_hw(struct hns_roce_dev *hr_dev, int obj, dma_addr_t base_addr, u32 hem_type, u32 step_idx) { int ret; u8 cmd; if (unlikely(hem_type == HEM_TYPE_GMV)) return config_gmv_ba_to_hw(hr_dev, obj, base_addr); if (unlikely(hem_type == HEM_TYPE_SCCC && step_idx)) return 0; ret = get_op_for_set_hem(hr_dev, hem_type, step_idx, &cmd); if (ret < 0) return ret; return config_hem_ba_to_hw(hr_dev, base_addr, cmd, obj); } static int hns_roce_v2_set_hem(struct hns_roce_dev *hr_dev, struct hns_roce_hem_table *table, int obj, u32 step_idx) { struct hns_roce_hem_iter iter; struct hns_roce_hem_mhop mhop; struct hns_roce_hem *hem; unsigned long mhop_obj = obj; int i, j, k; int ret = 0; u64 hem_idx = 0; u64 l1_idx = 0; u64 bt_ba = 0; u32 chunk_ba_num; u32 hop_num; if (!hns_roce_check_whether_mhop(hr_dev, table->type)) return 0; hns_roce_calc_hem_mhop(hr_dev, table, &mhop_obj, &mhop); i = mhop.l0_idx; j = mhop.l1_idx; k = mhop.l2_idx; hop_num = mhop.hop_num; chunk_ba_num = mhop.bt_chunk_size / 8; if (hop_num == 2) { hem_idx = i * chunk_ba_num * chunk_ba_num + j * chunk_ba_num + k; l1_idx = i * chunk_ba_num + j; } else if (hop_num == 1) { hem_idx = i * chunk_ba_num + j; } else if (hop_num == HNS_ROCE_HOP_NUM_0) { hem_idx = i; } if (table->type == HEM_TYPE_SCCC) obj = mhop.l0_idx; if (check_whether_last_step(hop_num, step_idx)) { hem = table->hem[hem_idx]; for (hns_roce_hem_first(hem, &iter); !hns_roce_hem_last(&iter); hns_roce_hem_next(&iter)) { bt_ba = hns_roce_hem_addr(&iter); ret = set_hem_to_hw(hr_dev, obj, bt_ba, table->type, step_idx); } } else { if (step_idx == 0) bt_ba = table->bt_l0_dma_addr[i]; else if (step_idx == 1 && hop_num == 2) bt_ba = table->bt_l1_dma_addr[l1_idx]; ret = set_hem_to_hw(hr_dev, obj, bt_ba, table->type, step_idx); } return ret; } static int hns_roce_v2_clear_hem(struct hns_roce_dev *hr_dev, struct hns_roce_hem_table *table, int tag, u32 step_idx) { struct hns_roce_cmd_mailbox *mailbox; struct device *dev = hr_dev->dev; u8 cmd = 0xff; int ret; if (!hns_roce_check_whether_mhop(hr_dev, table->type)) return 0; switch (table->type) { case HEM_TYPE_QPC: cmd = HNS_ROCE_CMD_DESTROY_QPC_BT0; break; case HEM_TYPE_MTPT: cmd = HNS_ROCE_CMD_DESTROY_MPT_BT0; break; case HEM_TYPE_CQC: cmd = HNS_ROCE_CMD_DESTROY_CQC_BT0; break; case HEM_TYPE_SRQC: cmd = HNS_ROCE_CMD_DESTROY_SRQC_BT0; break; case HEM_TYPE_SCCC: case HEM_TYPE_QPC_TIMER: case HEM_TYPE_CQC_TIMER: case HEM_TYPE_GMV: return 0; default: dev_warn(dev, "table %u not to be destroyed by mailbox!\n", table->type); return 0; } cmd += step_idx; mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); if (IS_ERR(mailbox)) return PTR_ERR(mailbox); ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, cmd, tag); hns_roce_free_cmd_mailbox(hr_dev, mailbox); return ret; } static int hns_roce_v2_qp_modify(struct hns_roce_dev *hr_dev, struct hns_roce_v2_qp_context *context, struct hns_roce_v2_qp_context *qpc_mask, struct hns_roce_qp *hr_qp) { struct hns_roce_cmd_mailbox *mailbox; int qpc_size; int ret; mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); if (IS_ERR(mailbox)) return PTR_ERR(mailbox); /* The qpc size of HIP08 is only 256B, which is half of HIP09 */ qpc_size = hr_dev->caps.qpc_sz; memcpy(mailbox->buf, context, qpc_size); memcpy(mailbox->buf + qpc_size, qpc_mask, qpc_size); ret = hns_roce_cmd_mbox(hr_dev, mailbox->dma, 0, HNS_ROCE_CMD_MODIFY_QPC, hr_qp->qpn); hns_roce_free_cmd_mailbox(hr_dev, mailbox); return ret; } static void set_access_flags(struct hns_roce_qp *hr_qp, struct hns_roce_v2_qp_context *context, struct hns_roce_v2_qp_context *qpc_mask, const struct ib_qp_attr *attr, int attr_mask) { u8 dest_rd_atomic; u32 access_flags; dest_rd_atomic = (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) ? attr->max_dest_rd_atomic : hr_qp->resp_depth; access_flags = (attr_mask & IB_QP_ACCESS_FLAGS) ? attr->qp_access_flags : hr_qp->atomic_rd_en; if (!dest_rd_atomic) access_flags &= IB_ACCESS_REMOTE_WRITE; hr_reg_write_bool(context, QPC_RRE, access_flags & IB_ACCESS_REMOTE_READ); hr_reg_clear(qpc_mask, QPC_RRE); hr_reg_write_bool(context, QPC_RWE, access_flags & IB_ACCESS_REMOTE_WRITE); hr_reg_clear(qpc_mask, QPC_RWE); hr_reg_write_bool(context, QPC_ATE, access_flags & IB_ACCESS_REMOTE_ATOMIC); hr_reg_clear(qpc_mask, QPC_ATE); hr_reg_write_bool(context, QPC_EXT_ATE, access_flags & IB_ACCESS_REMOTE_ATOMIC); hr_reg_clear(qpc_mask, QPC_EXT_ATE); } static void set_qpc_wqe_cnt(struct hns_roce_qp *hr_qp, struct hns_roce_v2_qp_context *context, struct hns_roce_v2_qp_context *qpc_mask) { hr_reg_write(context, QPC_SGE_SHIFT, to_hr_hem_entries_shift(hr_qp->sge.sge_cnt, hr_qp->sge.sge_shift)); hr_reg_write(context, QPC_SQ_SHIFT, ilog2(hr_qp->sq.wqe_cnt)); hr_reg_write(context, QPC_RQ_SHIFT, ilog2(hr_qp->rq.wqe_cnt)); } static inline int get_cqn(struct ib_cq *ib_cq) { return ib_cq ? to_hr_cq(ib_cq)->cqn : 0; } static inline int get_pdn(struct ib_pd *ib_pd) { return ib_pd ? to_hr_pd(ib_pd)->pdn : 0; } static void modify_qp_reset_to_init(struct ib_qp *ibqp, const struct ib_qp_attr *attr, struct hns_roce_v2_qp_context *context, struct hns_roce_v2_qp_context *qpc_mask) { struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device); struct hns_roce_qp *hr_qp = to_hr_qp(ibqp); /* * In v2 engine, software pass context and context mask to hardware * when modifying qp. If software need modify some fields in context, * we should set all bits of the relevant fields in context mask to * 0 at the same time, else set them to 0x1. */ hr_reg_write(context, QPC_TST, to_hr_qp_type(ibqp->qp_type)); hr_reg_write(context, QPC_PD, get_pdn(ibqp->pd)); hr_reg_write(context, QPC_RQWS, ilog2(hr_qp->rq.max_gs)); set_qpc_wqe_cnt(hr_qp, context, qpc_mask); /* No VLAN need to set 0xFFF */ hr_reg_write(context, QPC_VLAN_ID, 0xfff); if (ibqp->qp_type == IB_QPT_XRC_TGT) { context->qkey_xrcd = cpu_to_le32(hr_qp->xrcdn); hr_reg_enable(context, QPC_XRC_QP_TYPE); } if (hr_qp->en_flags & HNS_ROCE_QP_CAP_RQ_RECORD_DB) hr_reg_enable(context, QPC_RQ_RECORD_EN); if (hr_qp->en_flags & HNS_ROCE_QP_CAP_OWNER_DB) hr_reg_enable(context, QPC_OWNER_MODE); hr_reg_write(context, QPC_RQ_DB_RECORD_ADDR_L, lower_32_bits(hr_qp->rdb.dma) >> 1); hr_reg_write(context, QPC_RQ_DB_RECORD_ADDR_H, upper_32_bits(hr_qp->rdb.dma)); if (ibqp->qp_type != IB_QPT_UD && ibqp->qp_type != IB_QPT_GSI) hr_reg_write_bool(context, QPC_RQIE, hr_dev->caps.flags & HNS_ROCE_CAP_FLAG_RQ_INLINE); hr_reg_write(context, QPC_RX_CQN, get_cqn(ibqp->recv_cq)); if (ibqp->srq) { hr_reg_enable(context, QPC_SRQ_EN); hr_reg_write(context, QPC_SRQN, to_hr_srq(ibqp->srq)->srqn); } hr_reg_enable(context, QPC_FRE); hr_reg_write(context, QPC_TX_CQN, get_cqn(ibqp->send_cq)); if (hr_dev->caps.qpc_sz < HNS_ROCE_V3_QPC_SZ) return; if (hr_dev->caps.flags & HNS_ROCE_CAP_FLAG_STASH) hr_reg_enable(&context->ext, QPCEX_STASH); } static void modify_qp_init_to_init(struct ib_qp *ibqp, const struct ib_qp_attr *attr, struct hns_roce_v2_qp_context *context, struct hns_roce_v2_qp_context *qpc_mask) { /* * In v2 engine, software pass context and context mask to hardware * when modifying qp. If software need modify some fields in context, * we should set all bits of the relevant fields in context mask to * 0 at the same time, else set them to 0x1. */ hr_reg_write(context, QPC_TST, to_hr_qp_type(ibqp->qp_type)); hr_reg_clear(qpc_mask, QPC_TST); hr_reg_write(context, QPC_PD, get_pdn(ibqp->pd)); hr_reg_clear(qpc_mask, QPC_PD); hr_reg_write(context, QPC_RX_CQN, get_cqn(ibqp->recv_cq)); hr_reg_clear(qpc_mask, QPC_RX_CQN); hr_reg_write(context, QPC_TX_CQN, get_cqn(ibqp->send_cq)); hr_reg_clear(qpc_mask, QPC_TX_CQN); if (ibqp->srq) { hr_reg_enable(context, QPC_SRQ_EN); hr_reg_clear(qpc_mask, QPC_SRQ_EN); hr_reg_write(context, QPC_SRQN, to_hr_srq(ibqp->srq)->srqn); hr_reg_clear(qpc_mask, QPC_SRQN); } } static int config_qp_rq_buf(struct hns_roce_dev *hr_dev, struct hns_roce_qp *hr_qp, struct hns_roce_v2_qp_context *context, struct hns_roce_v2_qp_context *qpc_mask) { u64 mtts[MTT_MIN_COUNT] = { 0 }; u64 wqe_sge_ba; int count; /* Search qp buf's mtts */ count = hns_roce_mtr_find(hr_dev, &hr_qp->mtr, hr_qp->rq.offset, mtts, MTT_MIN_COUNT, &wqe_sge_ba); if (hr_qp->rq.wqe_cnt && count < 1) { ibdev_err(&hr_dev->ib_dev, "failed to find RQ WQE, QPN = 0x%lx.\n", hr_qp->qpn); return -EINVAL; } context->wqe_sge_ba = cpu_to_le32(wqe_sge_ba >> 3); qpc_mask->wqe_sge_ba = 0; /* * In v2 engine, software pass context and context mask to hardware * when modifying qp. If software need modify some fields in context, * we should set all bits of the relevant fields in context mask to * 0 at the same time, else set them to 0x1. */ hr_reg_write(context, QPC_WQE_SGE_BA_H, wqe_sge_ba >> (32 + 3)); hr_reg_clear(qpc_mask, QPC_WQE_SGE_BA_H); hr_reg_write(context, QPC_SQ_HOP_NUM, to_hr_hem_hopnum(hr_dev->caps.wqe_sq_hop_num, hr_qp->sq.wqe_cnt)); hr_reg_clear(qpc_mask, QPC_SQ_HOP_NUM); hr_reg_write(context, QPC_SGE_HOP_NUM, to_hr_hem_hopnum(hr_dev->caps.wqe_sge_hop_num, hr_qp->sge.sge_cnt)); hr_reg_clear(qpc_mask, QPC_SGE_HOP_NUM); hr_reg_write(context, QPC_RQ_HOP_NUM, to_hr_hem_hopnum(hr_dev->caps.wqe_rq_hop_num, hr_qp->rq.wqe_cnt)); hr_reg_clear(qpc_mask, QPC_RQ_HOP_NUM); hr_reg_write(context, QPC_WQE_SGE_BA_PG_SZ, to_hr_hw_page_shift(hr_qp->mtr.hem_cfg.ba_pg_shift)); hr_reg_clear(qpc_mask, QPC_WQE_SGE_BA_PG_SZ); hr_reg_write(context, QPC_WQE_SGE_BUF_PG_SZ, to_hr_hw_page_shift(hr_qp->mtr.hem_cfg.buf_pg_shift)); hr_reg_clear(qpc_mask, QPC_WQE_SGE_BUF_PG_SZ); context->rq_cur_blk_addr = cpu_to_le32(to_hr_hw_page_addr(mtts[0])); qpc_mask->rq_cur_blk_addr = 0; hr_reg_write(context, QPC_RQ_CUR_BLK_ADDR_H, upper_32_bits(to_hr_hw_page_addr(mtts[0]))); hr_reg_clear(qpc_mask, QPC_RQ_CUR_BLK_ADDR_H); context->rq_nxt_blk_addr = cpu_to_le32(to_hr_hw_page_addr(mtts[1])); qpc_mask->rq_nxt_blk_addr = 0; hr_reg_write(context, QPC_RQ_NXT_BLK_ADDR_H, upper_32_bits(to_hr_hw_page_addr(mtts[1]))); hr_reg_clear(qpc_mask, QPC_RQ_NXT_BLK_ADDR_H); return 0; } static int config_qp_sq_buf(struct hns_roce_dev *hr_dev, struct hns_roce_qp *hr_qp, struct hns_roce_v2_qp_context *context, struct hns_roce_v2_qp_context *qpc_mask) { struct ib_device *ibdev = &hr_dev->ib_dev; u64 sge_cur_blk = 0; u64 sq_cur_blk = 0; int count; /* search qp buf's mtts */ count = hns_roce_mtr_find(hr_dev, &hr_qp->mtr, 0, &sq_cur_blk, 1, NULL); if (count < 1) { ibdev_err(ibdev, "failed to find QP(0x%lx) SQ buf.\n", hr_qp->qpn); return -EINVAL; } if (hr_qp->sge.sge_cnt > 0) { count = hns_roce_mtr_find(hr_dev, &hr_qp->mtr, hr_qp->sge.offset, &sge_cur_blk, 1, NULL); if (count < 1) { ibdev_err(ibdev, "failed to find QP(0x%lx) SGE buf.\n", hr_qp->qpn); return -EINVAL; } } /* * In v2 engine, software pass context and context mask to hardware * when modifying qp. If software need modify some fields in context, * we should set all bits of the relevant fields in context mask to * 0 at the same time, else set them to 0x1. */ hr_reg_write(context, QPC_SQ_CUR_BLK_ADDR_L, lower_32_bits(to_hr_hw_page_addr(sq_cur_blk))); hr_reg_write(context, QPC_SQ_CUR_BLK_ADDR_H, upper_32_bits(to_hr_hw_page_addr(sq_cur_blk))); hr_reg_clear(qpc_mask, QPC_SQ_CUR_BLK_ADDR_L); hr_reg_clear(qpc_mask, QPC_SQ_CUR_BLK_ADDR_H); hr_reg_write(context, QPC_SQ_CUR_SGE_BLK_ADDR_L, lower_32_bits(to_hr_hw_page_addr(sge_cur_blk))); hr_reg_write(context, QPC_SQ_CUR_SGE_BLK_ADDR_H, upper_32_bits(to_hr_hw_page_addr(sge_cur_blk))); hr_reg_clear(qpc_mask, QPC_SQ_CUR_SGE_BLK_ADDR_L); hr_reg_clear(qpc_mask, QPC_SQ_CUR_SGE_BLK_ADDR_H); hr_reg_write(context, QPC_RX_SQ_CUR_BLK_ADDR_L, lower_32_bits(to_hr_hw_page_addr(sq_cur_blk))); hr_reg_write(context, QPC_RX_SQ_CUR_BLK_ADDR_H, upper_32_bits(to_hr_hw_page_addr(sq_cur_blk))); hr_reg_clear(qpc_mask, QPC_RX_SQ_CUR_BLK_ADDR_L); hr_reg_clear(qpc_mask, QPC_RX_SQ_CUR_BLK_ADDR_H); return 0; } static inline enum ib_mtu get_mtu(struct ib_qp *ibqp, const struct ib_qp_attr *attr) { if (ibqp->qp_type == IB_QPT_GSI || ibqp->qp_type == IB_QPT_UD) return IB_MTU_4096; return attr->path_mtu; } static int modify_qp_init_to_rtr(struct ib_qp *ibqp, const struct ib_qp_attr *attr, int attr_mask, struct hns_roce_v2_qp_context *context, struct hns_roce_v2_qp_context *qpc_mask) { struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device); struct hns_roce_qp *hr_qp = to_hr_qp(ibqp); struct ib_device *ibdev = &hr_dev->ib_dev; dma_addr_t trrl_ba; dma_addr_t irrl_ba; enum ib_mtu ib_mtu; const u8 *smac; u8 lp_pktn_ini; u64 *mtts; u8 *dmac; u32 port; int mtu; int ret; ret = config_qp_rq_buf(hr_dev, hr_qp, context, qpc_mask); if (ret) { ibdev_err(ibdev, "failed to config rq buf, ret = %d.\n", ret); return ret; } /* Search IRRL's mtts */ mtts = hns_roce_table_find(hr_dev, &hr_dev->qp_table.irrl_table, hr_qp->qpn, &irrl_ba); if (!mtts) { ibdev_err(ibdev, "failed to find qp irrl_table.\n"); return -EINVAL; } /* Search TRRL's mtts */ mtts = hns_roce_table_find(hr_dev, &hr_dev->qp_table.trrl_table, hr_qp->qpn, &trrl_ba); if (!mtts) { ibdev_err(ibdev, "failed to find qp trrl_table.\n"); return -EINVAL; } if (attr_mask & IB_QP_ALT_PATH) { ibdev_err(ibdev, "INIT2RTR attr_mask (0x%x) error.\n", attr_mask); return -EINVAL; } hr_reg_write(context, QPC_TRRL_BA_L, trrl_ba >> 4); hr_reg_clear(qpc_mask, QPC_TRRL_BA_L); context->trrl_ba = cpu_to_le32(trrl_ba >> (16 + 4)); qpc_mask->trrl_ba = 0; hr_reg_write(context, QPC_TRRL_BA_H, trrl_ba >> (32 + 16 + 4)); hr_reg_clear(qpc_mask, QPC_TRRL_BA_H); context->irrl_ba = cpu_to_le32(irrl_ba >> 6); qpc_mask->irrl_ba = 0; hr_reg_write(context, QPC_IRRL_BA_H, irrl_ba >> (32 + 6)); hr_reg_clear(qpc_mask, QPC_IRRL_BA_H); hr_reg_enable(context, QPC_RMT_E2E); hr_reg_clear(qpc_mask, QPC_RMT_E2E); hr_reg_write(context, QPC_SIG_TYPE, hr_qp->sq_signal_bits); hr_reg_clear(qpc_mask, QPC_SIG_TYPE); port = (attr_mask & IB_QP_PORT) ? (attr->port_num - 1) : hr_qp->port; smac = (const u8 *)hr_dev->dev_addr[port]; dmac = (u8 *)attr->ah_attr.roce.dmac; /* when dmac equals smac or loop_idc is 1, it should loopback */ if (ether_addr_equal_unaligned(dmac, smac) || hr_dev->loop_idc == 0x1) { hr_reg_write(context, QPC_LBI, hr_dev->loop_idc); hr_reg_clear(qpc_mask, QPC_LBI); } if (attr_mask & IB_QP_DEST_QPN) { hr_reg_write(context, QPC_DQPN, attr->dest_qp_num); hr_reg_clear(qpc_mask, QPC_DQPN); } memcpy(&context->dmac, dmac, sizeof(u32)); hr_reg_write(context, QPC_DMAC_H, *((u16 *)(&dmac[4]))); qpc_mask->dmac = 0; hr_reg_clear(qpc_mask, QPC_DMAC_H); ib_mtu = get_mtu(ibqp, attr); hr_qp->path_mtu = ib_mtu; mtu = ib_mtu_enum_to_int(ib_mtu); if (WARN_ON(mtu <= 0)) return -EINVAL; #define MIN_LP_MSG_LEN 1024 /* mtu * (2 ^ lp_pktn_ini) should be in the range of 1024 to mtu */ lp_pktn_ini = ilog2(max(mtu, MIN_LP_MSG_LEN) / mtu); if (attr_mask & IB_QP_PATH_MTU) { hr_reg_write(context, QPC_MTU, ib_mtu); hr_reg_clear(qpc_mask, QPC_MTU); } hr_reg_write(context, QPC_LP_PKTN_INI, lp_pktn_ini); hr_reg_clear(qpc_mask, QPC_LP_PKTN_INI); /* ACK_REQ_FREQ should be larger than or equal to LP_PKTN_INI */ hr_reg_write(context, QPC_ACK_REQ_FREQ, lp_pktn_ini); hr_reg_clear(qpc_mask, QPC_ACK_REQ_FREQ); hr_reg_clear(qpc_mask, QPC_RX_REQ_PSN_ERR); hr_reg_clear(qpc_mask, QPC_RX_REQ_MSN); hr_reg_clear(qpc_mask, QPC_RX_REQ_LAST_OPTYPE); context->rq_rnr_timer = 0; qpc_mask->rq_rnr_timer = 0; hr_reg_clear(qpc_mask, QPC_TRRL_HEAD_MAX); hr_reg_clear(qpc_mask, QPC_TRRL_TAIL_MAX); /* rocee send 2^lp_sgen_ini segs every time */ hr_reg_write(context, QPC_LP_SGEN_INI, 3); hr_reg_clear(qpc_mask, QPC_LP_SGEN_INI); return 0; } static int modify_qp_rtr_to_rts(struct ib_qp *ibqp, const struct ib_qp_attr *attr, int attr_mask, struct hns_roce_v2_qp_context *context, struct hns_roce_v2_qp_context *qpc_mask) { struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device); struct hns_roce_qp *hr_qp = to_hr_qp(ibqp); struct ib_device *ibdev = &hr_dev->ib_dev; int ret; /* Not support alternate path and path migration */ if (attr_mask & (IB_QP_ALT_PATH | IB_QP_PATH_MIG_STATE)) { ibdev_err(ibdev, "RTR2RTS attr_mask (0x%x)error\n", attr_mask); return -EINVAL; } ret = config_qp_sq_buf(hr_dev, hr_qp, context, qpc_mask); if (ret) { ibdev_err(ibdev, "failed to config sq buf, ret = %d.\n", ret); return ret; } /* * Set some fields in context to zero, Because the default values * of all fields in context are zero, we need not set them to 0 again. * but we should set the relevant fields of context mask to 0. */ hr_reg_clear(qpc_mask, QPC_IRRL_SGE_IDX); hr_reg_clear(qpc_mask, QPC_RX_ACK_MSN); hr_reg_clear(qpc_mask, QPC_ACK_LAST_OPTYPE); hr_reg_clear(qpc_mask, QPC_IRRL_PSN_VLD); hr_reg_clear(qpc_mask, QPC_IRRL_PSN); hr_reg_clear(qpc_mask, QPC_IRRL_TAIL_REAL); hr_reg_clear(qpc_mask, QPC_RETRY_MSG_MSN); hr_reg_clear(qpc_mask, QPC_RNR_RETRY_FLAG); hr_reg_clear(qpc_mask, QPC_CHECK_FLG); hr_reg_clear(qpc_mask, QPC_V2_IRRL_HEAD); return 0; } static int get_dip_ctx_idx(struct ib_qp *ibqp, const struct ib_qp_attr *attr, u32 *dip_idx) { const struct ib_global_route *grh = rdma_ah_read_grh(&attr->ah_attr); struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device); u32 *spare_idx = hr_dev->qp_table.idx_table.spare_idx; u32 *head = &hr_dev->qp_table.idx_table.head; u32 *tail = &hr_dev->qp_table.idx_table.tail; struct hns_roce_dip *hr_dip; unsigned long flags; int ret = 0; spin_lock_irqsave(&hr_dev->dip_list_lock, flags); spare_idx[*tail] = ibqp->qp_num; *tail = (*tail == hr_dev->caps.num_qps - 1) ? 0 : (*tail + 1); list_for_each_entry(hr_dip, &hr_dev->dip_list, node) { if (!memcmp(grh->dgid.raw, hr_dip->dgid, 16)) { *dip_idx = hr_dip->dip_idx; goto out; } } /* If no dgid is found, a new dip and a mapping between dgid and * dip_idx will be created. */ hr_dip = kzalloc(sizeof(*hr_dip), GFP_ATOMIC); if (!hr_dip) { ret = -ENOMEM; goto out; } memcpy(hr_dip->dgid, grh->dgid.raw, sizeof(grh->dgid.raw)); hr_dip->dip_idx = *dip_idx = spare_idx[*head]; *head = (*head == hr_dev->caps.num_qps - 1) ? 0 : (*head + 1); list_add_tail(&hr_dip->node, &hr_dev->dip_list); out: spin_unlock_irqrestore(&hr_dev->dip_list_lock, flags); return ret; } enum { CONG_DCQCN, CONG_WINDOW, }; enum { UNSUPPORT_CONG_LEVEL, SUPPORT_CONG_LEVEL, }; enum { CONG_LDCP, CONG_HC3, }; enum { DIP_INVALID, DIP_VALID, }; enum { WND_LIMIT, WND_UNLIMIT, }; static int check_cong_type(struct ib_qp *ibqp, struct hns_roce_congestion_algorithm *cong_alg) { struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device); /* different congestion types match different configurations */ switch (hr_dev->caps.cong_type) { case CONG_TYPE_DCQCN: cong_alg->alg_sel = CONG_DCQCN; cong_alg->alg_sub_sel = UNSUPPORT_CONG_LEVEL; cong_alg->dip_vld = DIP_INVALID; cong_alg->wnd_mode_sel = WND_LIMIT; break; case CONG_TYPE_LDCP: cong_alg->alg_sel = CONG_WINDOW; cong_alg->alg_sub_sel = CONG_LDCP; cong_alg->dip_vld = DIP_INVALID; cong_alg->wnd_mode_sel = WND_UNLIMIT; break; case CONG_TYPE_HC3: cong_alg->alg_sel = CONG_WINDOW; cong_alg->alg_sub_sel = CONG_HC3; cong_alg->dip_vld = DIP_INVALID; cong_alg->wnd_mode_sel = WND_LIMIT; break; case CONG_TYPE_DIP: cong_alg->alg_sel = CONG_DCQCN; cong_alg->alg_sub_sel = UNSUPPORT_CONG_LEVEL; cong_alg->dip_vld = DIP_VALID; cong_alg->wnd_mode_sel = WND_LIMIT; break; default: ibdev_err(&hr_dev->ib_dev, "error type(%u) for congestion selection.\n", hr_dev->caps.cong_type); return -EINVAL; } return 0; } static int fill_cong_field(struct ib_qp *ibqp, const struct ib_qp_attr *attr, struct hns_roce_v2_qp_context *context, struct hns_roce_v2_qp_context *qpc_mask) { const struct ib_global_route *grh = rdma_ah_read_grh(&attr->ah_attr); struct hns_roce_congestion_algorithm cong_field; struct ib_device *ibdev = ibqp->device; struct hns_roce_dev *hr_dev = to_hr_dev(ibdev); u32 dip_idx = 0; int ret; if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08 || grh->sgid_attr->gid_type == IB_GID_TYPE_ROCE) return 0; ret = check_cong_type(ibqp, &cong_field); if (ret) return ret; hr_reg_write(context, QPC_CONG_ALGO_TMPL_ID, hr_dev->cong_algo_tmpl_id + hr_dev->caps.cong_type * HNS_ROCE_CONG_SIZE); hr_reg_clear(qpc_mask, QPC_CONG_ALGO_TMPL_ID); hr_reg_write(&context->ext, QPCEX_CONG_ALG_SEL, cong_field.alg_sel); hr_reg_clear(&qpc_mask->ext, QPCEX_CONG_ALG_SEL); hr_reg_write(&context->ext, QPCEX_CONG_ALG_SUB_SEL, cong_field.alg_sub_sel); hr_reg_clear(&qpc_mask->ext, QPCEX_CONG_ALG_SUB_SEL); hr_reg_write(&context->ext, QPCEX_DIP_CTX_IDX_VLD, cong_field.dip_vld); hr_reg_clear(&qpc_mask->ext, QPCEX_DIP_CTX_IDX_VLD); hr_reg_write(&context->ext, QPCEX_SQ_RQ_NOT_FORBID_EN, cong_field.wnd_mode_sel); hr_reg_clear(&qpc_mask->ext, QPCEX_SQ_RQ_NOT_FORBID_EN); /* if dip is disabled, there is no need to set dip idx */ if (cong_field.dip_vld == 0) return 0; ret = get_dip_ctx_idx(ibqp, attr, &dip_idx); if (ret) { ibdev_err(ibdev, "failed to fill cong field, ret = %d.\n", ret); return ret; } hr_reg_write(&context->ext, QPCEX_DIP_CTX_IDX, dip_idx); hr_reg_write(&qpc_mask->ext, QPCEX_DIP_CTX_IDX, 0); return 0; } static int hns_roce_v2_set_path(struct ib_qp *ibqp, const struct ib_qp_attr *attr, int attr_mask, struct hns_roce_v2_qp_context *context, struct hns_roce_v2_qp_context *qpc_mask) { const struct ib_global_route *grh = rdma_ah_read_grh(&attr->ah_attr); struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device); struct hns_roce_qp *hr_qp = to_hr_qp(ibqp); struct ib_device *ibdev = &hr_dev->ib_dev; const struct ib_gid_attr *gid_attr = NULL; int is_roce_protocol; u16 vlan_id = 0xffff; bool is_udp = false; u8 ib_port; u8 hr_port; int ret; /* * If free_mr_en of qp is set, it means that this qp comes from * free mr. This qp will perform the loopback operation. * In the loopback scenario, only sl needs to be set. */ if (hr_qp->free_mr_en) { hr_reg_write(context, QPC_SL, rdma_ah_get_sl(&attr->ah_attr)); hr_reg_clear(qpc_mask, QPC_SL); hr_qp->sl = rdma_ah_get_sl(&attr->ah_attr); return 0; } ib_port = (attr_mask & IB_QP_PORT) ? attr->port_num : hr_qp->port + 1; hr_port = ib_port - 1; is_roce_protocol = rdma_cap_eth_ah(&hr_dev->ib_dev, ib_port) && rdma_ah_get_ah_flags(&attr->ah_attr) & IB_AH_GRH; if (is_roce_protocol) { gid_attr = attr->ah_attr.grh.sgid_attr; ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL); if (ret) return ret; is_udp = (gid_attr->gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP); } /* Only HIP08 needs to set the vlan_en bits in QPC */ if (vlan_id < VLAN_N_VID && hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) { hr_reg_enable(context, QPC_RQ_VLAN_EN); hr_reg_clear(qpc_mask, QPC_RQ_VLAN_EN); hr_reg_enable(context, QPC_SQ_VLAN_EN); hr_reg_clear(qpc_mask, QPC_SQ_VLAN_EN); } hr_reg_write(context, QPC_VLAN_ID, vlan_id); hr_reg_clear(qpc_mask, QPC_VLAN_ID); if (grh->sgid_index >= hr_dev->caps.gid_table_len[hr_port]) { ibdev_err(ibdev, "sgid_index(%u) too large. max is %d\n", grh->sgid_index, hr_dev->caps.gid_table_len[hr_port]); return -EINVAL; } if (attr->ah_attr.type != RDMA_AH_ATTR_TYPE_ROCE) { ibdev_err(ibdev, "ah attr is not RDMA roce type\n"); return -EINVAL; } hr_reg_write(context, QPC_UDPSPN, is_udp ? rdma_get_udp_sport(grh->flow_label, ibqp->qp_num, attr->dest_qp_num) : 0); hr_reg_clear(qpc_mask, QPC_UDPSPN); hr_reg_write(context, QPC_GMV_IDX, grh->sgid_index); hr_reg_clear(qpc_mask, QPC_GMV_IDX); hr_reg_write(context, QPC_HOPLIMIT, grh->hop_limit); hr_reg_clear(qpc_mask, QPC_HOPLIMIT); ret = fill_cong_field(ibqp, attr, context, qpc_mask); if (ret) return ret; hr_reg_write(context, QPC_TC, get_tclass(&attr->ah_attr.grh)); hr_reg_clear(qpc_mask, QPC_TC); hr_reg_write(context, QPC_FL, grh->flow_label); hr_reg_clear(qpc_mask, QPC_FL); memcpy(context->dgid, grh->dgid.raw, sizeof(grh->dgid.raw)); memset(qpc_mask->dgid, 0, sizeof(grh->dgid.raw)); hr_qp->sl = rdma_ah_get_sl(&attr->ah_attr); if (unlikely(hr_qp->sl > MAX_SERVICE_LEVEL)) { ibdev_err(ibdev, "failed to fill QPC, sl (%u) shouldn't be larger than %d.\n", hr_qp->sl, MAX_SERVICE_LEVEL); return -EINVAL; } hr_reg_write(context, QPC_SL, hr_qp->sl); hr_reg_clear(qpc_mask, QPC_SL); return 0; } static bool check_qp_state(enum ib_qp_state cur_state, enum ib_qp_state new_state) { static const bool sm[][IB_QPS_ERR + 1] = { [IB_QPS_RESET] = { [IB_QPS_RESET] = true, [IB_QPS_INIT] = true }, [IB_QPS_INIT] = { [IB_QPS_RESET] = true, [IB_QPS_INIT] = true, [IB_QPS_RTR] = true, [IB_QPS_ERR] = true }, [IB_QPS_RTR] = { [IB_QPS_RESET] = true, [IB_QPS_RTS] = true, [IB_QPS_ERR] = true }, [IB_QPS_RTS] = { [IB_QPS_RESET] = true, [IB_QPS_RTS] = true, [IB_QPS_ERR] = true }, [IB_QPS_SQD] = {}, [IB_QPS_SQE] = {}, [IB_QPS_ERR] = { [IB_QPS_RESET] = true, [IB_QPS_ERR] = true } }; return sm[cur_state][new_state]; } static int hns_roce_v2_set_abs_fields(struct ib_qp *ibqp, const struct ib_qp_attr *attr, int attr_mask, enum ib_qp_state cur_state, enum ib_qp_state new_state, struct hns_roce_v2_qp_context *context, struct hns_roce_v2_qp_context *qpc_mask) { struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device); int ret = 0; if (!check_qp_state(cur_state, new_state)) { ibdev_err(&hr_dev->ib_dev, "Illegal state for QP!\n"); return -EINVAL; } if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) { memset(qpc_mask, 0, hr_dev->caps.qpc_sz); modify_qp_reset_to_init(ibqp, attr, context, qpc_mask); } else if (cur_state == IB_QPS_INIT && new_state == IB_QPS_INIT) { modify_qp_init_to_init(ibqp, attr, context, qpc_mask); } else if (cur_state == IB_QPS_INIT && new_state == IB_QPS_RTR) { ret = modify_qp_init_to_rtr(ibqp, attr, attr_mask, context, qpc_mask); } else if (cur_state == IB_QPS_RTR && new_state == IB_QPS_RTS) { ret = modify_qp_rtr_to_rts(ibqp, attr, attr_mask, context, qpc_mask); } return ret; } static bool check_qp_timeout_cfg_range(struct hns_roce_dev *hr_dev, u8 *timeout) { #define QP_ACK_TIMEOUT_MAX_HIP08 20 #define QP_ACK_TIMEOUT_MAX 31 if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) { if (*timeout > QP_ACK_TIMEOUT_MAX_HIP08) { ibdev_warn(&hr_dev->ib_dev, "local ACK timeout shall be 0 to 20.\n"); return false; } *timeout += HNS_ROCE_V2_QP_ACK_TIMEOUT_OFS_HIP08; } else if (hr_dev->pci_dev->revision > PCI_REVISION_ID_HIP08) { if (*timeout > QP_ACK_TIMEOUT_MAX) { ibdev_warn(&hr_dev->ib_dev, "local ACK timeout shall be 0 to 31.\n"); return false; } } return true; } static int hns_roce_v2_set_opt_fields(struct ib_qp *ibqp, const struct ib_qp_attr *attr, int attr_mask, struct hns_roce_v2_qp_context *context, struct hns_roce_v2_qp_context *qpc_mask) { struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device); struct hns_roce_qp *hr_qp = to_hr_qp(ibqp); int ret = 0; u8 timeout; if (attr_mask & IB_QP_AV) { ret = hns_roce_v2_set_path(ibqp, attr, attr_mask, context, qpc_mask); if (ret) return ret; } if (attr_mask & IB_QP_TIMEOUT) { timeout = attr->timeout; if (check_qp_timeout_cfg_range(hr_dev, &timeout)) { hr_reg_write(context, QPC_AT, timeout); hr_reg_clear(qpc_mask, QPC_AT); } } if (attr_mask & IB_QP_RETRY_CNT) { hr_reg_write(context, QPC_RETRY_NUM_INIT, attr->retry_cnt); hr_reg_clear(qpc_mask, QPC_RETRY_NUM_INIT); hr_reg_write(context, QPC_RETRY_CNT, attr->retry_cnt); hr_reg_clear(qpc_mask, QPC_RETRY_CNT); } if (attr_mask & IB_QP_RNR_RETRY) { hr_reg_write(context, QPC_RNR_NUM_INIT, attr->rnr_retry); hr_reg_clear(qpc_mask, QPC_RNR_NUM_INIT); hr_reg_write(context, QPC_RNR_CNT, attr->rnr_retry); hr_reg_clear(qpc_mask, QPC_RNR_CNT); } if (attr_mask & IB_QP_SQ_PSN) { hr_reg_write(context, QPC_SQ_CUR_PSN, attr->sq_psn); hr_reg_clear(qpc_mask, QPC_SQ_CUR_PSN); hr_reg_write(context, QPC_SQ_MAX_PSN, attr->sq_psn); hr_reg_clear(qpc_mask, QPC_SQ_MAX_PSN); hr_reg_write(context, QPC_RETRY_MSG_PSN_L, attr->sq_psn); hr_reg_clear(qpc_mask, QPC_RETRY_MSG_PSN_L); hr_reg_write(context, QPC_RETRY_MSG_PSN_H, attr->sq_psn >> RETRY_MSG_PSN_SHIFT); hr_reg_clear(qpc_mask, QPC_RETRY_MSG_PSN_H); hr_reg_write(context, QPC_RETRY_MSG_FPKT_PSN, attr->sq_psn); hr_reg_clear(qpc_mask, QPC_RETRY_MSG_FPKT_PSN); hr_reg_write(context, QPC_RX_ACK_EPSN, attr->sq_psn); hr_reg_clear(qpc_mask, QPC_RX_ACK_EPSN); } if ((attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) && attr->max_dest_rd_atomic) { hr_reg_write(context, QPC_RR_MAX, fls(attr->max_dest_rd_atomic - 1)); hr_reg_clear(qpc_mask, QPC_RR_MAX); } if ((attr_mask & IB_QP_MAX_QP_RD_ATOMIC) && attr->max_rd_atomic) { hr_reg_write(context, QPC_SR_MAX, fls(attr->max_rd_atomic - 1)); hr_reg_clear(qpc_mask, QPC_SR_MAX); } if (attr_mask & (IB_QP_ACCESS_FLAGS | IB_QP_MAX_DEST_RD_ATOMIC)) set_access_flags(hr_qp, context, qpc_mask, attr, attr_mask); if (attr_mask & IB_QP_MIN_RNR_TIMER) { hr_reg_write(context, QPC_MIN_RNR_TIME, hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08 ? HNS_ROCE_RNR_TIMER_10NS : attr->min_rnr_timer); hr_reg_clear(qpc_mask, QPC_MIN_RNR_TIME); } if (attr_mask & IB_QP_RQ_PSN) { hr_reg_write(context, QPC_RX_REQ_EPSN, attr->rq_psn); hr_reg_clear(qpc_mask, QPC_RX_REQ_EPSN); hr_reg_write(context, QPC_RAQ_PSN, attr->rq_psn - 1); hr_reg_clear(qpc_mask, QPC_RAQ_PSN); } if (attr_mask & IB_QP_QKEY) { context->qkey_xrcd = cpu_to_le32(attr->qkey); qpc_mask->qkey_xrcd = 0; hr_qp->qkey = attr->qkey; } return ret; } static void hns_roce_v2_record_opt_fields(struct ib_qp *ibqp, const struct ib_qp_attr *attr, int attr_mask) { struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device); struct hns_roce_qp *hr_qp = to_hr_qp(ibqp); if (attr_mask & IB_QP_ACCESS_FLAGS) hr_qp->atomic_rd_en = attr->qp_access_flags; if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) hr_qp->resp_depth = attr->max_dest_rd_atomic; if (attr_mask & IB_QP_PORT) { hr_qp->port = attr->port_num - 1; hr_qp->phy_port = hr_dev->iboe.phy_port[hr_qp->port]; } } static void clear_qp(struct hns_roce_qp *hr_qp) { struct ib_qp *ibqp = &hr_qp->ibqp; if (ibqp->send_cq) hns_roce_v2_cq_clean(to_hr_cq(ibqp->send_cq), hr_qp->qpn, NULL); if (ibqp->recv_cq && ibqp->recv_cq != ibqp->send_cq) hns_roce_v2_cq_clean(to_hr_cq(ibqp->recv_cq), hr_qp->qpn, ibqp->srq ? to_hr_srq(ibqp->srq) : NULL); if (hr_qp->en_flags & HNS_ROCE_QP_CAP_RQ_RECORD_DB) *hr_qp->rdb.db_record = 0; hr_qp->rq.head = 0; hr_qp->rq.tail = 0; hr_qp->sq.head = 0; hr_qp->sq.tail = 0; hr_qp->next_sge = 0; } static void v2_set_flushed_fields(struct ib_qp *ibqp, struct hns_roce_v2_qp_context *context, struct hns_roce_v2_qp_context *qpc_mask) { struct hns_roce_qp *hr_qp = to_hr_qp(ibqp); unsigned long sq_flag = 0; unsigned long rq_flag = 0; if (ibqp->qp_type == IB_QPT_XRC_TGT) return; spin_lock_irqsave(&hr_qp->sq.lock, sq_flag); hr_reg_write(context, QPC_SQ_PRODUCER_IDX, hr_qp->sq.head); hr_reg_clear(qpc_mask, QPC_SQ_PRODUCER_IDX); hr_qp->state = IB_QPS_ERR; spin_unlock_irqrestore(&hr_qp->sq.lock, sq_flag); if (ibqp->srq || ibqp->qp_type == IB_QPT_XRC_INI) /* no RQ */ return; spin_lock_irqsave(&hr_qp->rq.lock, rq_flag); hr_reg_write(context, QPC_RQ_PRODUCER_IDX, hr_qp->rq.head); hr_reg_clear(qpc_mask, QPC_RQ_PRODUCER_IDX); spin_unlock_irqrestore(&hr_qp->rq.lock, rq_flag); } static int hns_roce_v2_modify_qp(struct ib_qp *ibqp, const struct ib_qp_attr *attr, int attr_mask, enum ib_qp_state cur_state, enum ib_qp_state new_state) { struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device); struct hns_roce_qp *hr_qp = to_hr_qp(ibqp); struct hns_roce_v2_qp_context ctx[2]; struct hns_roce_v2_qp_context *context = ctx; struct hns_roce_v2_qp_context *qpc_mask = ctx + 1; struct ib_device *ibdev = &hr_dev->ib_dev; int ret; if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS) return -EOPNOTSUPP; /* * In v2 engine, software pass context and context mask to hardware * when modifying qp. If software need modify some fields in context, * we should set all bits of the relevant fields in context mask to * 0 at the same time, else set them to 0x1. */ memset(context, 0, hr_dev->caps.qpc_sz); memset(qpc_mask, 0xff, hr_dev->caps.qpc_sz); ret = hns_roce_v2_set_abs_fields(ibqp, attr, attr_mask, cur_state, new_state, context, qpc_mask); if (ret) goto out; /* When QP state is err, SQ and RQ WQE should be flushed */ if (new_state == IB_QPS_ERR) v2_set_flushed_fields(ibqp, context, qpc_mask); /* Configure the optional fields */ ret = hns_roce_v2_set_opt_fields(ibqp, attr, attr_mask, context, qpc_mask); if (ret) goto out; hr_reg_write_bool(context, QPC_INV_CREDIT, to_hr_qp_type(hr_qp->ibqp.qp_type) == SERV_TYPE_XRC || ibqp->srq); hr_reg_clear(qpc_mask, QPC_INV_CREDIT); /* Every status migrate must change state */ hr_reg_write(context, QPC_QP_ST, new_state); hr_reg_clear(qpc_mask, QPC_QP_ST); /* SW pass context to HW */ ret = hns_roce_v2_qp_modify(hr_dev, context, qpc_mask, hr_qp); if (ret) { ibdev_err(ibdev, "failed to modify QP, ret = %d.\n", ret); goto out; } hr_qp->state = new_state; hns_roce_v2_record_opt_fields(ibqp, attr, attr_mask); if (new_state == IB_QPS_RESET && !ibqp->uobject) clear_qp(hr_qp); out: return ret; } static int to_ib_qp_st(enum hns_roce_v2_qp_state state) { static const enum ib_qp_state map[] = { [HNS_ROCE_QP_ST_RST] = IB_QPS_RESET, [HNS_ROCE_QP_ST_INIT] = IB_QPS_INIT, [HNS_ROCE_QP_ST_RTR] = IB_QPS_RTR, [HNS_ROCE_QP_ST_RTS] = IB_QPS_RTS, [HNS_ROCE_QP_ST_SQD] = IB_QPS_SQD, [HNS_ROCE_QP_ST_SQER] = IB_QPS_SQE, [HNS_ROCE_QP_ST_ERR] = IB_QPS_ERR, [HNS_ROCE_QP_ST_SQ_DRAINING] = IB_QPS_SQD }; return (state < ARRAY_SIZE(map)) ? map[state] : -1; } static int hns_roce_v2_query_qpc(struct hns_roce_dev *hr_dev, u32 qpn, void *buffer) { struct hns_roce_cmd_mailbox *mailbox; int ret; mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); if (IS_ERR(mailbox)) return PTR_ERR(mailbox); ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_QPC, qpn); if (ret) goto out; memcpy(buffer, mailbox->buf, hr_dev->caps.qpc_sz); out: hns_roce_free_cmd_mailbox(hr_dev, mailbox); return ret; } static u8 get_qp_timeout_attr(struct hns_roce_dev *hr_dev, struct hns_roce_v2_qp_context *context) { u8 timeout; timeout = (u8)hr_reg_read(context, QPC_AT); if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) timeout -= HNS_ROCE_V2_QP_ACK_TIMEOUT_OFS_HIP08; return timeout; } static int hns_roce_v2_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *qp_attr, int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr) { struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device); struct hns_roce_qp *hr_qp = to_hr_qp(ibqp); struct hns_roce_v2_qp_context context = {}; struct ib_device *ibdev = &hr_dev->ib_dev; int tmp_qp_state; int state; int ret; memset(qp_attr, 0, sizeof(*qp_attr)); memset(qp_init_attr, 0, sizeof(*qp_init_attr)); mutex_lock(&hr_qp->mutex); if (hr_qp->state == IB_QPS_RESET) { qp_attr->qp_state = IB_QPS_RESET; ret = 0; goto done; } ret = hns_roce_v2_query_qpc(hr_dev, hr_qp->qpn, &context); if (ret) { ibdev_err(ibdev, "failed to query QPC, ret = %d.\n", ret); ret = -EINVAL; goto out; } state = hr_reg_read(&context, QPC_QP_ST); tmp_qp_state = to_ib_qp_st((enum hns_roce_v2_qp_state)state); if (tmp_qp_state == -1) { ibdev_err(ibdev, "Illegal ib_qp_state\n"); ret = -EINVAL; goto out; } hr_qp->state = (u8)tmp_qp_state; qp_attr->qp_state = (enum ib_qp_state)hr_qp->state; qp_attr->path_mtu = (enum ib_mtu)hr_reg_read(&context, QPC_MTU); qp_attr->path_mig_state = IB_MIG_ARMED; qp_attr->ah_attr.type = RDMA_AH_ATTR_TYPE_ROCE; if (hr_qp->ibqp.qp_type == IB_QPT_UD) qp_attr->qkey = le32_to_cpu(context.qkey_xrcd); qp_attr->rq_psn = hr_reg_read(&context, QPC_RX_REQ_EPSN); qp_attr->sq_psn = (u32)hr_reg_read(&context, QPC_SQ_CUR_PSN); qp_attr->dest_qp_num = hr_reg_read(&context, QPC_DQPN); qp_attr->qp_access_flags = ((hr_reg_read(&context, QPC_RRE)) << V2_QP_RRE_S) | ((hr_reg_read(&context, QPC_RWE)) << V2_QP_RWE_S) | ((hr_reg_read(&context, QPC_ATE)) << V2_QP_ATE_S); if (hr_qp->ibqp.qp_type == IB_QPT_RC || hr_qp->ibqp.qp_type == IB_QPT_XRC_INI || hr_qp->ibqp.qp_type == IB_QPT_XRC_TGT) { struct ib_global_route *grh = rdma_ah_retrieve_grh(&qp_attr->ah_attr); rdma_ah_set_sl(&qp_attr->ah_attr, hr_reg_read(&context, QPC_SL)); rdma_ah_set_port_num(&qp_attr->ah_attr, hr_qp->port + 1); rdma_ah_set_ah_flags(&qp_attr->ah_attr, IB_AH_GRH); grh->flow_label = hr_reg_read(&context, QPC_FL); grh->sgid_index = hr_reg_read(&context, QPC_GMV_IDX); grh->hop_limit = hr_reg_read(&context, QPC_HOPLIMIT); grh->traffic_class = hr_reg_read(&context, QPC_TC); memcpy(grh->dgid.raw, context.dgid, sizeof(grh->dgid.raw)); } qp_attr->port_num = hr_qp->port + 1; qp_attr->sq_draining = 0; qp_attr->max_rd_atomic = 1 << hr_reg_read(&context, QPC_SR_MAX); qp_attr->max_dest_rd_atomic = 1 << hr_reg_read(&context, QPC_RR_MAX); qp_attr->min_rnr_timer = (u8)hr_reg_read(&context, QPC_MIN_RNR_TIME); qp_attr->timeout = get_qp_timeout_attr(hr_dev, &context); qp_attr->retry_cnt = hr_reg_read(&context, QPC_RETRY_NUM_INIT); qp_attr->rnr_retry = hr_reg_read(&context, QPC_RNR_NUM_INIT); done: qp_attr->cur_qp_state = qp_attr->qp_state; qp_attr->cap.max_recv_wr = hr_qp->rq.wqe_cnt; qp_attr->cap.max_recv_sge = hr_qp->rq.max_gs - hr_qp->rq.rsv_sge; qp_attr->cap.max_inline_data = hr_qp->max_inline_data; qp_attr->cap.max_send_wr = hr_qp->sq.wqe_cnt; qp_attr->cap.max_send_sge = hr_qp->sq.max_gs; qp_init_attr->qp_context = ibqp->qp_context; qp_init_attr->qp_type = ibqp->qp_type; qp_init_attr->recv_cq = ibqp->recv_cq; qp_init_attr->send_cq = ibqp->send_cq; qp_init_attr->srq = ibqp->srq; qp_init_attr->cap = qp_attr->cap; qp_init_attr->sq_sig_type = hr_qp->sq_signal_bits; out: mutex_unlock(&hr_qp->mutex); return ret; } static inline int modify_qp_is_ok(struct hns_roce_qp *hr_qp) { return ((hr_qp->ibqp.qp_type == IB_QPT_RC || hr_qp->ibqp.qp_type == IB_QPT_UD || hr_qp->ibqp.qp_type == IB_QPT_XRC_INI || hr_qp->ibqp.qp_type == IB_QPT_XRC_TGT) && hr_qp->state != IB_QPS_RESET); } static int hns_roce_v2_destroy_qp_common(struct hns_roce_dev *hr_dev, struct hns_roce_qp *hr_qp, struct ib_udata *udata) { struct ib_device *ibdev = &hr_dev->ib_dev; struct hns_roce_cq *send_cq, *recv_cq; unsigned long flags; int ret = 0; if (modify_qp_is_ok(hr_qp)) { /* Modify qp to reset before destroying qp */ ret = hns_roce_v2_modify_qp(&hr_qp->ibqp, NULL, 0, hr_qp->state, IB_QPS_RESET); if (ret) ibdev_err(ibdev, "failed to modify QP to RST, ret = %d.\n", ret); } send_cq = hr_qp->ibqp.send_cq ? to_hr_cq(hr_qp->ibqp.send_cq) : NULL; recv_cq = hr_qp->ibqp.recv_cq ? to_hr_cq(hr_qp->ibqp.recv_cq) : NULL; spin_lock_irqsave(&hr_dev->qp_list_lock, flags); hns_roce_lock_cqs(send_cq, recv_cq); if (!udata) { if (recv_cq) __hns_roce_v2_cq_clean(recv_cq, hr_qp->qpn, (hr_qp->ibqp.srq ? to_hr_srq(hr_qp->ibqp.srq) : NULL)); if (send_cq && send_cq != recv_cq) __hns_roce_v2_cq_clean(send_cq, hr_qp->qpn, NULL); } hns_roce_qp_remove(hr_dev, hr_qp); hns_roce_unlock_cqs(send_cq, recv_cq); spin_unlock_irqrestore(&hr_dev->qp_list_lock, flags); return ret; } int hns_roce_v2_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata) { struct hns_roce_dev *hr_dev = to_hr_dev(ibqp->device); struct hns_roce_qp *hr_qp = to_hr_qp(ibqp); int ret; ret = hns_roce_v2_destroy_qp_common(hr_dev, hr_qp, udata); if (ret) ibdev_err(&hr_dev->ib_dev, "failed to destroy QP, QPN = 0x%06lx, ret = %d.\n", hr_qp->qpn, ret); hns_roce_qp_destroy(hr_dev, hr_qp, udata); return 0; } static int hns_roce_v2_qp_flow_control_init(struct hns_roce_dev *hr_dev, struct hns_roce_qp *hr_qp) { struct ib_device *ibdev = &hr_dev->ib_dev; struct hns_roce_sccc_clr_done *resp; struct hns_roce_sccc_clr *clr; struct hns_roce_cmq_desc desc; int ret, i; if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09) return 0; mutex_lock(&hr_dev->qp_table.scc_mutex); /* set scc ctx clear done flag */ hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_RESET_SCCC, false); ret = hns_roce_cmq_send(hr_dev, &desc, 1); if (ret) { ibdev_err(ibdev, "failed to reset SCC ctx, ret = %d.\n", ret); goto out; } /* clear scc context */ hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CLR_SCCC, false); clr = (struct hns_roce_sccc_clr *)desc.data; clr->qpn = cpu_to_le32(hr_qp->qpn); ret = hns_roce_cmq_send(hr_dev, &desc, 1); if (ret) { ibdev_err(ibdev, "failed to clear SCC ctx, ret = %d.\n", ret); goto out; } /* query scc context clear is done or not */ resp = (struct hns_roce_sccc_clr_done *)desc.data; for (i = 0; i <= HNS_ROCE_CMQ_SCC_CLR_DONE_CNT; i++) { hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_QUERY_SCCC, true); ret = hns_roce_cmq_send(hr_dev, &desc, 1); if (ret) { ibdev_err(ibdev, "failed to query clr cmq, ret = %d\n", ret); goto out; } if (resp->clr_done) goto out; msleep(20); } ibdev_err(ibdev, "query SCC clr done flag overtime.\n"); ret = -ETIMEDOUT; out: mutex_unlock(&hr_dev->qp_table.scc_mutex); return ret; } #define DMA_IDX_SHIFT 3 #define DMA_WQE_SHIFT 3 static int hns_roce_v2_write_srqc_index_queue(struct hns_roce_srq *srq, struct hns_roce_srq_context *ctx) { struct hns_roce_idx_que *idx_que = &srq->idx_que; struct ib_device *ibdev = srq->ibsrq.device; struct hns_roce_dev *hr_dev = to_hr_dev(ibdev); u64 mtts_idx[MTT_MIN_COUNT] = {}; dma_addr_t dma_handle_idx = 0; int ret; /* Get physical address of idx que buf */ ret = hns_roce_mtr_find(hr_dev, &idx_que->mtr, 0, mtts_idx, ARRAY_SIZE(mtts_idx), &dma_handle_idx); if (ret < 1) { ibdev_err(ibdev, "failed to find mtr for SRQ idx, ret = %d.\n", ret); return -ENOBUFS; } hr_reg_write(ctx, SRQC_IDX_HOP_NUM, to_hr_hem_hopnum(hr_dev->caps.idx_hop_num, srq->wqe_cnt)); hr_reg_write(ctx, SRQC_IDX_BT_BA_L, dma_handle_idx >> DMA_IDX_SHIFT); hr_reg_write(ctx, SRQC_IDX_BT_BA_H, upper_32_bits(dma_handle_idx >> DMA_IDX_SHIFT)); hr_reg_write(ctx, SRQC_IDX_BA_PG_SZ, to_hr_hw_page_shift(idx_que->mtr.hem_cfg.ba_pg_shift)); hr_reg_write(ctx, SRQC_IDX_BUF_PG_SZ, to_hr_hw_page_shift(idx_que->mtr.hem_cfg.buf_pg_shift)); hr_reg_write(ctx, SRQC_IDX_CUR_BLK_ADDR_L, to_hr_hw_page_addr(mtts_idx[0])); hr_reg_write(ctx, SRQC_IDX_CUR_BLK_ADDR_H, upper_32_bits(to_hr_hw_page_addr(mtts_idx[0]))); hr_reg_write(ctx, SRQC_IDX_NXT_BLK_ADDR_L, to_hr_hw_page_addr(mtts_idx[1])); hr_reg_write(ctx, SRQC_IDX_NXT_BLK_ADDR_H, upper_32_bits(to_hr_hw_page_addr(mtts_idx[1]))); return 0; } static int hns_roce_v2_write_srqc(struct hns_roce_srq *srq, void *mb_buf) { struct ib_device *ibdev = srq->ibsrq.device; struct hns_roce_dev *hr_dev = to_hr_dev(ibdev); struct hns_roce_srq_context *ctx = mb_buf; u64 mtts_wqe[MTT_MIN_COUNT] = {}; dma_addr_t dma_handle_wqe = 0; int ret; memset(ctx, 0, sizeof(*ctx)); /* Get the physical address of srq buf */ ret = hns_roce_mtr_find(hr_dev, &srq->buf_mtr, 0, mtts_wqe, ARRAY_SIZE(mtts_wqe), &dma_handle_wqe); if (ret < 1) { ibdev_err(ibdev, "failed to find mtr for SRQ WQE, ret = %d.\n", ret); return -ENOBUFS; } hr_reg_write(ctx, SRQC_SRQ_ST, 1); hr_reg_write_bool(ctx, SRQC_SRQ_TYPE, srq->ibsrq.srq_type == IB_SRQT_XRC); hr_reg_write(ctx, SRQC_PD, to_hr_pd(srq->ibsrq.pd)->pdn); hr_reg_write(ctx, SRQC_SRQN, srq->srqn); hr_reg_write(ctx, SRQC_XRCD, srq->xrcdn); hr_reg_write(ctx, SRQC_XRC_CQN, srq->cqn); hr_reg_write(ctx, SRQC_SHIFT, ilog2(srq->wqe_cnt)); hr_reg_write(ctx, SRQC_RQWS, srq->max_gs <= 0 ? 0 : fls(srq->max_gs - 1)); hr_reg_write(ctx, SRQC_WQE_HOP_NUM, to_hr_hem_hopnum(hr_dev->caps.srqwqe_hop_num, srq->wqe_cnt)); hr_reg_write(ctx, SRQC_WQE_BT_BA_L, dma_handle_wqe >> DMA_WQE_SHIFT); hr_reg_write(ctx, SRQC_WQE_BT_BA_H, upper_32_bits(dma_handle_wqe >> DMA_WQE_SHIFT)); hr_reg_write(ctx, SRQC_WQE_BA_PG_SZ, to_hr_hw_page_shift(srq->buf_mtr.hem_cfg.ba_pg_shift)); hr_reg_write(ctx, SRQC_WQE_BUF_PG_SZ, to_hr_hw_page_shift(srq->buf_mtr.hem_cfg.buf_pg_shift)); return hns_roce_v2_write_srqc_index_queue(srq, ctx); } static int hns_roce_v2_modify_srq(struct ib_srq *ibsrq, struct ib_srq_attr *srq_attr, enum ib_srq_attr_mask srq_attr_mask, struct ib_udata *udata) { struct hns_roce_dev *hr_dev = to_hr_dev(ibsrq->device); struct hns_roce_srq *srq = to_hr_srq(ibsrq); struct hns_roce_srq_context *srq_context; struct hns_roce_srq_context *srqc_mask; struct hns_roce_cmd_mailbox *mailbox; int ret; /* Resizing SRQs is not supported yet */ if (srq_attr_mask & IB_SRQ_MAX_WR) return -EINVAL; if (srq_attr_mask & IB_SRQ_LIMIT) { if (srq_attr->srq_limit > srq->wqe_cnt) return -EINVAL; mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); if (IS_ERR(mailbox)) return PTR_ERR(mailbox); srq_context = mailbox->buf; srqc_mask = (struct hns_roce_srq_context *)mailbox->buf + 1; memset(srqc_mask, 0xff, sizeof(*srqc_mask)); hr_reg_write(srq_context, SRQC_LIMIT_WL, srq_attr->srq_limit); hr_reg_clear(srqc_mask, SRQC_LIMIT_WL); ret = hns_roce_cmd_mbox(hr_dev, mailbox->dma, 0, HNS_ROCE_CMD_MODIFY_SRQC, srq->srqn); hns_roce_free_cmd_mailbox(hr_dev, mailbox); if (ret) { ibdev_err(&hr_dev->ib_dev, "failed to handle cmd of modifying SRQ, ret = %d.\n", ret); return ret; } } return 0; } static int hns_roce_v2_query_srq(struct ib_srq *ibsrq, struct ib_srq_attr *attr) { struct hns_roce_dev *hr_dev = to_hr_dev(ibsrq->device); struct hns_roce_srq *srq = to_hr_srq(ibsrq); struct hns_roce_srq_context *srq_context; struct hns_roce_cmd_mailbox *mailbox; int ret; mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); if (IS_ERR(mailbox)) return PTR_ERR(mailbox); srq_context = mailbox->buf; ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_SRQC, srq->srqn); if (ret) { ibdev_err(&hr_dev->ib_dev, "failed to process cmd of querying SRQ, ret = %d.\n", ret); goto out; } attr->srq_limit = hr_reg_read(srq_context, SRQC_LIMIT_WL); attr->max_wr = srq->wqe_cnt; attr->max_sge = srq->max_gs - srq->rsv_sge; out: hns_roce_free_cmd_mailbox(hr_dev, mailbox); return ret; } static int hns_roce_v2_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period) { struct hns_roce_dev *hr_dev = to_hr_dev(cq->device); struct hns_roce_v2_cq_context *cq_context; struct hns_roce_cq *hr_cq = to_hr_cq(cq); struct hns_roce_v2_cq_context *cqc_mask; struct hns_roce_cmd_mailbox *mailbox; int ret; mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); if (IS_ERR(mailbox)) return PTR_ERR(mailbox); cq_context = mailbox->buf; cqc_mask = (struct hns_roce_v2_cq_context *)mailbox->buf + 1; memset(cqc_mask, 0xff, sizeof(*cqc_mask)); hr_reg_write(cq_context, CQC_CQ_MAX_CNT, cq_count); hr_reg_clear(cqc_mask, CQC_CQ_MAX_CNT); if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) { if (cq_period * HNS_ROCE_CLOCK_ADJUST > USHRT_MAX) { dev_info(hr_dev->dev, "cq_period(%u) reached the upper limit, adjusted to 65.\n", cq_period); cq_period = HNS_ROCE_MAX_CQ_PERIOD; } cq_period *= HNS_ROCE_CLOCK_ADJUST; } hr_reg_write(cq_context, CQC_CQ_PERIOD, cq_period); hr_reg_clear(cqc_mask, CQC_CQ_PERIOD); ret = hns_roce_cmd_mbox(hr_dev, mailbox->dma, 0, HNS_ROCE_CMD_MODIFY_CQC, hr_cq->cqn); hns_roce_free_cmd_mailbox(hr_dev, mailbox); if (ret) ibdev_err(&hr_dev->ib_dev, "failed to process cmd when modifying CQ, ret = %d.\n", ret); return ret; } static int hns_roce_v2_query_cqc(struct hns_roce_dev *hr_dev, u32 cqn, void *buffer) { struct hns_roce_v2_cq_context *context; struct hns_roce_cmd_mailbox *mailbox; int ret; mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); if (IS_ERR(mailbox)) return PTR_ERR(mailbox); context = mailbox->buf; ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_CQC, cqn); if (ret) { ibdev_err(&hr_dev->ib_dev, "failed to process cmd when querying CQ, ret = %d.\n", ret); goto err_mailbox; } memcpy(buffer, context, sizeof(*context)); err_mailbox: hns_roce_free_cmd_mailbox(hr_dev, mailbox); return ret; } static int hns_roce_v2_query_mpt(struct hns_roce_dev *hr_dev, u32 key, void *buffer) { struct hns_roce_v2_mpt_entry *context; struct hns_roce_cmd_mailbox *mailbox; int ret; mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); if (IS_ERR(mailbox)) return PTR_ERR(mailbox); context = mailbox->buf; ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, HNS_ROCE_CMD_QUERY_MPT, key_to_hw_index(key)); if (ret) { ibdev_err(&hr_dev->ib_dev, "failed to process cmd when querying MPT, ret = %d.\n", ret); goto err_mailbox; } memcpy(buffer, context, sizeof(*context)); err_mailbox: hns_roce_free_cmd_mailbox(hr_dev, mailbox); return ret; } static void hns_roce_irq_work_handle(struct work_struct *work) { struct hns_roce_work *irq_work = container_of(work, struct hns_roce_work, work); struct ib_device *ibdev = &irq_work->hr_dev->ib_dev; switch (irq_work->event_type) { case HNS_ROCE_EVENT_TYPE_PATH_MIG: ibdev_info(ibdev, "path migrated succeeded.\n"); break; case HNS_ROCE_EVENT_TYPE_PATH_MIG_FAILED: ibdev_warn(ibdev, "path migration failed.\n"); break; case HNS_ROCE_EVENT_TYPE_COMM_EST: break; case HNS_ROCE_EVENT_TYPE_SQ_DRAINED: ibdev_warn(ibdev, "send queue drained.\n"); break; case HNS_ROCE_EVENT_TYPE_WQ_CATAS_ERROR: ibdev_err(ibdev, "local work queue 0x%x catast error, sub_event type is: %d\n", irq_work->queue_num, irq_work->sub_type); break; case HNS_ROCE_EVENT_TYPE_INV_REQ_LOCAL_WQ_ERROR: ibdev_err(ibdev, "invalid request local work queue 0x%x error.\n", irq_work->queue_num); break; case HNS_ROCE_EVENT_TYPE_LOCAL_WQ_ACCESS_ERROR: ibdev_err(ibdev, "local access violation work queue 0x%x error, sub_event type is: %d\n", irq_work->queue_num, irq_work->sub_type); break; case HNS_ROCE_EVENT_TYPE_SRQ_LIMIT_REACH: ibdev_warn(ibdev, "SRQ limit reach.\n"); break; case HNS_ROCE_EVENT_TYPE_SRQ_LAST_WQE_REACH: ibdev_warn(ibdev, "SRQ last wqe reach.\n"); break; case HNS_ROCE_EVENT_TYPE_SRQ_CATAS_ERROR: ibdev_err(ibdev, "SRQ catas error.\n"); break; case HNS_ROCE_EVENT_TYPE_CQ_ACCESS_ERROR: ibdev_err(ibdev, "CQ 0x%x access err.\n", irq_work->queue_num); break; case HNS_ROCE_EVENT_TYPE_CQ_OVERFLOW: ibdev_warn(ibdev, "CQ 0x%x overflow\n", irq_work->queue_num); break; case HNS_ROCE_EVENT_TYPE_DB_OVERFLOW: ibdev_warn(ibdev, "DB overflow.\n"); break; case HNS_ROCE_EVENT_TYPE_FLR: ibdev_warn(ibdev, "function level reset.\n"); break; case HNS_ROCE_EVENT_TYPE_XRCD_VIOLATION: ibdev_err(ibdev, "xrc domain violation error.\n"); break; case HNS_ROCE_EVENT_TYPE_INVALID_XRCETH: ibdev_err(ibdev, "invalid xrceth error.\n"); break; default: break; } kfree(irq_work); } static void hns_roce_v2_init_irq_work(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq, u32 queue_num) { struct hns_roce_work *irq_work; irq_work = kzalloc(sizeof(struct hns_roce_work), GFP_ATOMIC); if (!irq_work) return; INIT_WORK(&irq_work->work, hns_roce_irq_work_handle); irq_work->hr_dev = hr_dev; irq_work->event_type = eq->event_type; irq_work->sub_type = eq->sub_type; irq_work->queue_num = queue_num; queue_work(hr_dev->irq_workq, &irq_work->work); } static void update_eq_db(struct hns_roce_eq *eq) { struct hns_roce_dev *hr_dev = eq->hr_dev; struct hns_roce_v2_db eq_db = {}; if (eq->type_flag == HNS_ROCE_AEQ) { hr_reg_write(&eq_db, EQ_DB_CMD, eq->arm_st == HNS_ROCE_V2_EQ_ALWAYS_ARMED ? HNS_ROCE_EQ_DB_CMD_AEQ : HNS_ROCE_EQ_DB_CMD_AEQ_ARMED); } else { hr_reg_write(&eq_db, EQ_DB_TAG, eq->eqn); hr_reg_write(&eq_db, EQ_DB_CMD, eq->arm_st == HNS_ROCE_V2_EQ_ALWAYS_ARMED ? HNS_ROCE_EQ_DB_CMD_CEQ : HNS_ROCE_EQ_DB_CMD_CEQ_ARMED); } hr_reg_write(&eq_db, EQ_DB_CI, eq->cons_index); hns_roce_write64(hr_dev, (__le32 *)&eq_db, eq->db_reg); } static struct hns_roce_aeqe *next_aeqe_sw_v2(struct hns_roce_eq *eq) { struct hns_roce_aeqe *aeqe; aeqe = hns_roce_buf_offset(eq->mtr.kmem, (eq->cons_index & (eq->entries - 1)) * eq->eqe_size); return (hr_reg_read(aeqe, AEQE_OWNER) ^ !!(eq->cons_index & eq->entries)) ? aeqe : NULL; } static irqreturn_t hns_roce_v2_aeq_int(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq) { struct device *dev = hr_dev->dev; struct hns_roce_aeqe *aeqe = next_aeqe_sw_v2(eq); irqreturn_t aeqe_found = IRQ_NONE; int event_type; u32 queue_num; int sub_type; while (aeqe) { /* Make sure we read AEQ entry after we have checked the * ownership bit */ dma_rmb(); event_type = hr_reg_read(aeqe, AEQE_EVENT_TYPE); sub_type = hr_reg_read(aeqe, AEQE_SUB_TYPE); queue_num = hr_reg_read(aeqe, AEQE_EVENT_QUEUE_NUM); switch (event_type) { case HNS_ROCE_EVENT_TYPE_PATH_MIG: case HNS_ROCE_EVENT_TYPE_PATH_MIG_FAILED: case HNS_ROCE_EVENT_TYPE_COMM_EST: case HNS_ROCE_EVENT_TYPE_SQ_DRAINED: case HNS_ROCE_EVENT_TYPE_WQ_CATAS_ERROR: case HNS_ROCE_EVENT_TYPE_SRQ_LAST_WQE_REACH: case HNS_ROCE_EVENT_TYPE_INV_REQ_LOCAL_WQ_ERROR: case HNS_ROCE_EVENT_TYPE_LOCAL_WQ_ACCESS_ERROR: case HNS_ROCE_EVENT_TYPE_XRCD_VIOLATION: case HNS_ROCE_EVENT_TYPE_INVALID_XRCETH: hns_roce_qp_event(hr_dev, queue_num, event_type); break; case HNS_ROCE_EVENT_TYPE_SRQ_LIMIT_REACH: case HNS_ROCE_EVENT_TYPE_SRQ_CATAS_ERROR: hns_roce_srq_event(hr_dev, queue_num, event_type); break; case HNS_ROCE_EVENT_TYPE_CQ_ACCESS_ERROR: case HNS_ROCE_EVENT_TYPE_CQ_OVERFLOW: hns_roce_cq_event(hr_dev, queue_num, event_type); break; case HNS_ROCE_EVENT_TYPE_MB: hns_roce_cmd_event(hr_dev, le16_to_cpu(aeqe->event.cmd.token), aeqe->event.cmd.status, le64_to_cpu(aeqe->event.cmd.out_param)); break; case HNS_ROCE_EVENT_TYPE_DB_OVERFLOW: case HNS_ROCE_EVENT_TYPE_FLR: break; default: dev_err(dev, "unhandled event %d on EQ %d at idx %u.\n", event_type, eq->eqn, eq->cons_index); break; } eq->event_type = event_type; eq->sub_type = sub_type; ++eq->cons_index; aeqe_found = IRQ_HANDLED; hns_roce_v2_init_irq_work(hr_dev, eq, queue_num); aeqe = next_aeqe_sw_v2(eq); } update_eq_db(eq); return IRQ_RETVAL(aeqe_found); } static struct hns_roce_ceqe *next_ceqe_sw_v2(struct hns_roce_eq *eq) { struct hns_roce_ceqe *ceqe; ceqe = hns_roce_buf_offset(eq->mtr.kmem, (eq->cons_index & (eq->entries - 1)) * eq->eqe_size); return (hr_reg_read(ceqe, CEQE_OWNER) ^ !!(eq->cons_index & eq->entries)) ? ceqe : NULL; } static irqreturn_t hns_roce_v2_ceq_int(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq) { struct hns_roce_ceqe *ceqe = next_ceqe_sw_v2(eq); irqreturn_t ceqe_found = IRQ_NONE; u32 cqn; while (ceqe) { /* Make sure we read CEQ entry after we have checked the * ownership bit */ dma_rmb(); cqn = hr_reg_read(ceqe, CEQE_CQN); hns_roce_cq_completion(hr_dev, cqn); ++eq->cons_index; ceqe_found = IRQ_HANDLED; ceqe = next_ceqe_sw_v2(eq); } update_eq_db(eq); return IRQ_RETVAL(ceqe_found); } static irqreturn_t hns_roce_v2_msix_interrupt_eq(int irq, void *eq_ptr) { struct hns_roce_eq *eq = eq_ptr; struct hns_roce_dev *hr_dev = eq->hr_dev; irqreturn_t int_work; if (eq->type_flag == HNS_ROCE_CEQ) /* Completion event interrupt */ int_work = hns_roce_v2_ceq_int(hr_dev, eq); else /* Asynchronous event interrupt */ int_work = hns_roce_v2_aeq_int(hr_dev, eq); return IRQ_RETVAL(int_work); } static irqreturn_t abnormal_interrupt_basic(struct hns_roce_dev *hr_dev, u32 int_st) { struct pci_dev *pdev = hr_dev->pci_dev; struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); const struct hnae3_ae_ops *ops = ae_dev->ops; irqreturn_t int_work = IRQ_NONE; u32 int_en; int_en = roce_read(hr_dev, ROCEE_VF_ABN_INT_EN_REG); if (int_st & BIT(HNS_ROCE_V2_VF_INT_ST_AEQ_OVERFLOW_S)) { dev_err(hr_dev->dev, "AEQ overflow!\n"); roce_write(hr_dev, ROCEE_VF_ABN_INT_ST_REG, 1 << HNS_ROCE_V2_VF_INT_ST_AEQ_OVERFLOW_S); /* Set reset level for reset_event() */ if (ops->set_default_reset_request) ops->set_default_reset_request(ae_dev, HNAE3_FUNC_RESET); if (ops->reset_event) ops->reset_event(pdev, NULL); int_en |= 1 << HNS_ROCE_V2_VF_ABN_INT_EN_S; roce_write(hr_dev, ROCEE_VF_ABN_INT_EN_REG, int_en); int_work = IRQ_HANDLED; } else { dev_err(hr_dev->dev, "there is no basic abn irq found.\n"); } return IRQ_RETVAL(int_work); } static int fmea_ram_ecc_query(struct hns_roce_dev *hr_dev, struct fmea_ram_ecc *ecc_info) { struct hns_roce_cmq_desc desc; struct hns_roce_cmq_req *req = (struct hns_roce_cmq_req *)desc.data; int ret; hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_QUERY_RAM_ECC, true); ret = hns_roce_cmq_send(hr_dev, &desc, 1); if (ret) return ret; ecc_info->is_ecc_err = hr_reg_read(req, QUERY_RAM_ECC_1BIT_ERR); ecc_info->res_type = hr_reg_read(req, QUERY_RAM_ECC_RES_TYPE); ecc_info->index = hr_reg_read(req, QUERY_RAM_ECC_TAG); return 0; } static int fmea_recover_gmv(struct hns_roce_dev *hr_dev, u32 idx) { struct hns_roce_cmq_desc desc; struct hns_roce_cmq_req *req = (struct hns_roce_cmq_req *)desc.data; u32 addr_upper; u32 addr_low; int ret; hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CFG_GMV_BT, true); hr_reg_write(req, CFG_GMV_BT_IDX, idx); ret = hns_roce_cmq_send(hr_dev, &desc, 1); if (ret) { dev_err(hr_dev->dev, "failed to execute cmd to read gmv, ret = %d.\n", ret); return ret; } addr_low = hr_reg_read(req, CFG_GMV_BT_BA_L); addr_upper = hr_reg_read(req, CFG_GMV_BT_BA_H); hns_roce_cmq_setup_basic_desc(&desc, HNS_ROCE_OPC_CFG_GMV_BT, false); hr_reg_write(req, CFG_GMV_BT_BA_L, addr_low); hr_reg_write(req, CFG_GMV_BT_BA_H, addr_upper); hr_reg_write(req, CFG_GMV_BT_IDX, idx); return hns_roce_cmq_send(hr_dev, &desc, 1); } static u64 fmea_get_ram_res_addr(u32 res_type, __le64 *data) { if (res_type == ECC_RESOURCE_QPC_TIMER || res_type == ECC_RESOURCE_CQC_TIMER || res_type == ECC_RESOURCE_SCCC) return le64_to_cpu(*data); return le64_to_cpu(*data) << PAGE_SHIFT; } static int fmea_recover_others(struct hns_roce_dev *hr_dev, u32 res_type, u32 index) { u8 write_bt0_op = fmea_ram_res[res_type].write_bt0_op; u8 read_bt0_op = fmea_ram_res[res_type].read_bt0_op; struct hns_roce_cmd_mailbox *mailbox; u64 addr; int ret; mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); if (IS_ERR(mailbox)) return PTR_ERR(mailbox); ret = hns_roce_cmd_mbox(hr_dev, 0, mailbox->dma, read_bt0_op, index); if (ret) { dev_err(hr_dev->dev, "failed to execute cmd to read fmea ram, ret = %d.\n", ret); goto out; } addr = fmea_get_ram_res_addr(res_type, mailbox->buf); ret = hns_roce_cmd_mbox(hr_dev, addr, 0, write_bt0_op, index); if (ret) dev_err(hr_dev->dev, "failed to execute cmd to write fmea ram, ret = %d.\n", ret); out: hns_roce_free_cmd_mailbox(hr_dev, mailbox); return ret; } static void fmea_ram_ecc_recover(struct hns_roce_dev *hr_dev, struct fmea_ram_ecc *ecc_info) { u32 res_type = ecc_info->res_type; u32 index = ecc_info->index; int ret; BUILD_BUG_ON(ARRAY_SIZE(fmea_ram_res) != ECC_RESOURCE_COUNT); if (res_type >= ECC_RESOURCE_COUNT) { dev_err(hr_dev->dev, "unsupported fmea ram ecc type %u.\n", res_type); return; } if (res_type == ECC_RESOURCE_GMV) ret = fmea_recover_gmv(hr_dev, index); else ret = fmea_recover_others(hr_dev, res_type, index); if (ret) dev_err(hr_dev->dev, "failed to recover %s, index = %u, ret = %d.\n", fmea_ram_res[res_type].name, index, ret); } static void fmea_ram_ecc_work(struct work_struct *ecc_work) { struct hns_roce_dev *hr_dev = container_of(ecc_work, struct hns_roce_dev, ecc_work); struct fmea_ram_ecc ecc_info = {}; if (fmea_ram_ecc_query(hr_dev, &ecc_info)) { dev_err(hr_dev->dev, "failed to query fmea ram ecc.\n"); return; } if (!ecc_info.is_ecc_err) { dev_err(hr_dev->dev, "there is no fmea ram ecc err found.\n"); return; } fmea_ram_ecc_recover(hr_dev, &ecc_info); } static irqreturn_t hns_roce_v2_msix_interrupt_abn(int irq, void *dev_id) { struct hns_roce_dev *hr_dev = dev_id; irqreturn_t int_work = IRQ_NONE; u32 int_st; int_st = roce_read(hr_dev, ROCEE_VF_ABN_INT_ST_REG); if (int_st) { int_work = abnormal_interrupt_basic(hr_dev, int_st); } else if (hr_dev->pci_dev->revision >= PCI_REVISION_ID_HIP09) { queue_work(hr_dev->irq_workq, &hr_dev->ecc_work); int_work = IRQ_HANDLED; } else { dev_err(hr_dev->dev, "there is no abnormal irq found.\n"); } return IRQ_RETVAL(int_work); } static void hns_roce_v2_int_mask_enable(struct hns_roce_dev *hr_dev, int eq_num, u32 enable_flag) { int i; for (i = 0; i < eq_num; i++) roce_write(hr_dev, ROCEE_VF_EVENT_INT_EN_REG + i * EQ_REG_OFFSET, enable_flag); roce_write(hr_dev, ROCEE_VF_ABN_INT_EN_REG, enable_flag); roce_write(hr_dev, ROCEE_VF_ABN_INT_CFG_REG, enable_flag); } static void hns_roce_v2_destroy_eqc(struct hns_roce_dev *hr_dev, u32 eqn) { struct device *dev = hr_dev->dev; int ret; u8 cmd; if (eqn < hr_dev->caps.num_comp_vectors) cmd = HNS_ROCE_CMD_DESTROY_CEQC; else cmd = HNS_ROCE_CMD_DESTROY_AEQC; ret = hns_roce_destroy_hw_ctx(hr_dev, cmd, eqn & HNS_ROCE_V2_EQN_M); if (ret) dev_err(dev, "[mailbox cmd] destroy eqc(%u) failed.\n", eqn); } static void free_eq_buf(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq) { hns_roce_mtr_destroy(hr_dev, &eq->mtr); } static void init_eq_config(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq) { eq->db_reg = hr_dev->reg_base + ROCEE_VF_EQ_DB_CFG0_REG; eq->cons_index = 0; eq->over_ignore = HNS_ROCE_V2_EQ_OVER_IGNORE_0; eq->coalesce = HNS_ROCE_V2_EQ_COALESCE_0; eq->arm_st = HNS_ROCE_V2_EQ_ALWAYS_ARMED; eq->shift = ilog2((unsigned int)eq->entries); } static int config_eqc(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq, void *mb_buf) { u64 eqe_ba[MTT_MIN_COUNT] = { 0 }; struct hns_roce_eq_context *eqc; u64 bt_ba = 0; int count; eqc = mb_buf; memset(eqc, 0, sizeof(struct hns_roce_eq_context)); init_eq_config(hr_dev, eq); /* if not multi-hop, eqe buffer only use one trunk */ count = hns_roce_mtr_find(hr_dev, &eq->mtr, 0, eqe_ba, MTT_MIN_COUNT, &bt_ba); if (count < 1) { dev_err(hr_dev->dev, "failed to find EQE mtr\n"); return -ENOBUFS; } hr_reg_write(eqc, EQC_EQ_ST, HNS_ROCE_V2_EQ_STATE_VALID); hr_reg_write(eqc, EQC_EQE_HOP_NUM, eq->hop_num); hr_reg_write(eqc, EQC_OVER_IGNORE, eq->over_ignore); hr_reg_write(eqc, EQC_COALESCE, eq->coalesce); hr_reg_write(eqc, EQC_ARM_ST, eq->arm_st); hr_reg_write(eqc, EQC_EQN, eq->eqn); hr_reg_write(eqc, EQC_EQE_CNT, HNS_ROCE_EQ_INIT_EQE_CNT); hr_reg_write(eqc, EQC_EQE_BA_PG_SZ, to_hr_hw_page_shift(eq->mtr.hem_cfg.ba_pg_shift)); hr_reg_write(eqc, EQC_EQE_BUF_PG_SZ, to_hr_hw_page_shift(eq->mtr.hem_cfg.buf_pg_shift)); hr_reg_write(eqc, EQC_EQ_PROD_INDX, HNS_ROCE_EQ_INIT_PROD_IDX); hr_reg_write(eqc, EQC_EQ_MAX_CNT, eq->eq_max_cnt); if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) { if (eq->eq_period * HNS_ROCE_CLOCK_ADJUST > USHRT_MAX) { dev_info(hr_dev->dev, "eq_period(%u) reached the upper limit, adjusted to 65.\n", eq->eq_period); eq->eq_period = HNS_ROCE_MAX_EQ_PERIOD; } eq->eq_period *= HNS_ROCE_CLOCK_ADJUST; } hr_reg_write(eqc, EQC_EQ_PERIOD, eq->eq_period); hr_reg_write(eqc, EQC_EQE_REPORT_TIMER, HNS_ROCE_EQ_INIT_REPORT_TIMER); hr_reg_write(eqc, EQC_EQE_BA_L, bt_ba >> 3); hr_reg_write(eqc, EQC_EQE_BA_H, bt_ba >> 35); hr_reg_write(eqc, EQC_SHIFT, eq->shift); hr_reg_write(eqc, EQC_MSI_INDX, HNS_ROCE_EQ_INIT_MSI_IDX); hr_reg_write(eqc, EQC_CUR_EQE_BA_L, eqe_ba[0] >> 12); hr_reg_write(eqc, EQC_CUR_EQE_BA_M, eqe_ba[0] >> 28); hr_reg_write(eqc, EQC_CUR_EQE_BA_H, eqe_ba[0] >> 60); hr_reg_write(eqc, EQC_EQ_CONS_INDX, HNS_ROCE_EQ_INIT_CONS_IDX); hr_reg_write(eqc, EQC_NEX_EQE_BA_L, eqe_ba[1] >> 12); hr_reg_write(eqc, EQC_NEX_EQE_BA_H, eqe_ba[1] >> 44); hr_reg_write(eqc, EQC_EQE_SIZE, eq->eqe_size == HNS_ROCE_V3_EQE_SIZE); return 0; } static int alloc_eq_buf(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq) { struct hns_roce_buf_attr buf_attr = {}; int err; if (hr_dev->caps.eqe_hop_num == HNS_ROCE_HOP_NUM_0) eq->hop_num = 0; else eq->hop_num = hr_dev->caps.eqe_hop_num; buf_attr.page_shift = hr_dev->caps.eqe_buf_pg_sz + PAGE_SHIFT; buf_attr.region[0].size = eq->entries * eq->eqe_size; buf_attr.region[0].hopnum = eq->hop_num; buf_attr.region_count = 1; err = hns_roce_mtr_create(hr_dev, &eq->mtr, &buf_attr, hr_dev->caps.eqe_ba_pg_sz + PAGE_SHIFT, NULL, 0); if (err) dev_err(hr_dev->dev, "failed to alloc EQE mtr, err %d\n", err); return err; } static int hns_roce_v2_create_eq(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq, u8 eq_cmd) { struct hns_roce_cmd_mailbox *mailbox; int ret; /* Allocate mailbox memory */ mailbox = hns_roce_alloc_cmd_mailbox(hr_dev); if (IS_ERR(mailbox)) return PTR_ERR(mailbox); ret = alloc_eq_buf(hr_dev, eq); if (ret) goto free_cmd_mbox; ret = config_eqc(hr_dev, eq, mailbox->buf); if (ret) goto err_cmd_mbox; ret = hns_roce_create_hw_ctx(hr_dev, mailbox, eq_cmd, eq->eqn); if (ret) { dev_err(hr_dev->dev, "[mailbox cmd] create eqc failed.\n"); goto err_cmd_mbox; } hns_roce_free_cmd_mailbox(hr_dev, mailbox); return 0; err_cmd_mbox: free_eq_buf(hr_dev, eq); free_cmd_mbox: hns_roce_free_cmd_mailbox(hr_dev, mailbox); return ret; } static int __hns_roce_request_irq(struct hns_roce_dev *hr_dev, int irq_num, int comp_num, int aeq_num, int other_num) { struct hns_roce_eq_table *eq_table = &hr_dev->eq_table; int i, j; int ret; for (i = 0; i < irq_num; i++) { hr_dev->irq_names[i] = kzalloc(HNS_ROCE_INT_NAME_LEN, GFP_KERNEL); if (!hr_dev->irq_names[i]) { ret = -ENOMEM; goto err_kzalloc_failed; } } /* irq contains: abnormal + AEQ + CEQ */ for (j = 0; j < other_num; j++) snprintf((char *)hr_dev->irq_names[j], HNS_ROCE_INT_NAME_LEN, "hns-abn-%d", j); for (j = other_num; j < (other_num + aeq_num); j++) snprintf((char *)hr_dev->irq_names[j], HNS_ROCE_INT_NAME_LEN, "hns-aeq-%d", j - other_num); for (j = (other_num + aeq_num); j < irq_num; j++) snprintf((char *)hr_dev->irq_names[j], HNS_ROCE_INT_NAME_LEN, "hns-ceq-%d", j - other_num - aeq_num); for (j = 0; j < irq_num; j++) { if (j < other_num) ret = request_irq(hr_dev->irq[j], hns_roce_v2_msix_interrupt_abn, 0, hr_dev->irq_names[j], hr_dev); else if (j < (other_num + comp_num)) ret = request_irq(eq_table->eq[j - other_num].irq, hns_roce_v2_msix_interrupt_eq, 0, hr_dev->irq_names[j + aeq_num], &eq_table->eq[j - other_num]); else ret = request_irq(eq_table->eq[j - other_num].irq, hns_roce_v2_msix_interrupt_eq, 0, hr_dev->irq_names[j - comp_num], &eq_table->eq[j - other_num]); if (ret) { dev_err(hr_dev->dev, "request irq error!\n"); goto err_request_failed; } } return 0; err_request_failed: for (j -= 1; j >= 0; j--) if (j < other_num) free_irq(hr_dev->irq[j], hr_dev); else free_irq(eq_table->eq[j - other_num].irq, &eq_table->eq[j - other_num]); err_kzalloc_failed: for (i -= 1; i >= 0; i--) kfree(hr_dev->irq_names[i]); return ret; } static void __hns_roce_free_irq(struct hns_roce_dev *hr_dev) { int irq_num; int eq_num; int i; eq_num = hr_dev->caps.num_comp_vectors + hr_dev->caps.num_aeq_vectors; irq_num = eq_num + hr_dev->caps.num_other_vectors; for (i = 0; i < hr_dev->caps.num_other_vectors; i++) free_irq(hr_dev->irq[i], hr_dev); for (i = 0; i < eq_num; i++) free_irq(hr_dev->eq_table.eq[i].irq, &hr_dev->eq_table.eq[i]); for (i = 0; i < irq_num; i++) kfree(hr_dev->irq_names[i]); } static int hns_roce_v2_init_eq_table(struct hns_roce_dev *hr_dev) { struct hns_roce_eq_table *eq_table = &hr_dev->eq_table; struct device *dev = hr_dev->dev; struct hns_roce_eq *eq; int other_num; int comp_num; int aeq_num; int irq_num; int eq_num; u8 eq_cmd; int ret; int i; other_num = hr_dev->caps.num_other_vectors; comp_num = hr_dev->caps.num_comp_vectors; aeq_num = hr_dev->caps.num_aeq_vectors; eq_num = comp_num + aeq_num; irq_num = eq_num + other_num; eq_table->eq = kcalloc(eq_num, sizeof(*eq_table->eq), GFP_KERNEL); if (!eq_table->eq) return -ENOMEM; /* create eq */ for (i = 0; i < eq_num; i++) { eq = &eq_table->eq[i]; eq->hr_dev = hr_dev; eq->eqn = i; if (i < comp_num) { /* CEQ */ eq_cmd = HNS_ROCE_CMD_CREATE_CEQC; eq->type_flag = HNS_ROCE_CEQ; eq->entries = hr_dev->caps.ceqe_depth; eq->eqe_size = hr_dev->caps.ceqe_size; eq->irq = hr_dev->irq[i + other_num + aeq_num]; eq->eq_max_cnt = HNS_ROCE_CEQ_DEFAULT_BURST_NUM; eq->eq_period = HNS_ROCE_CEQ_DEFAULT_INTERVAL; } else { /* AEQ */ eq_cmd = HNS_ROCE_CMD_CREATE_AEQC; eq->type_flag = HNS_ROCE_AEQ; eq->entries = hr_dev->caps.aeqe_depth; eq->eqe_size = hr_dev->caps.aeqe_size; eq->irq = hr_dev->irq[i - comp_num + other_num]; eq->eq_max_cnt = HNS_ROCE_AEQ_DEFAULT_BURST_NUM; eq->eq_period = HNS_ROCE_AEQ_DEFAULT_INTERVAL; } ret = hns_roce_v2_create_eq(hr_dev, eq, eq_cmd); if (ret) { dev_err(dev, "failed to create eq.\n"); goto err_create_eq_fail; } } INIT_WORK(&hr_dev->ecc_work, fmea_ram_ecc_work); hr_dev->irq_workq = alloc_ordered_workqueue("hns_roce_irq_workq", 0); if (!hr_dev->irq_workq) { dev_err(dev, "failed to create irq workqueue.\n"); ret = -ENOMEM; goto err_create_eq_fail; } ret = __hns_roce_request_irq(hr_dev, irq_num, comp_num, aeq_num, other_num); if (ret) { dev_err(dev, "failed to request irq.\n"); goto err_request_irq_fail; } /* enable irq */ hns_roce_v2_int_mask_enable(hr_dev, eq_num, EQ_ENABLE); return 0; err_request_irq_fail: destroy_workqueue(hr_dev->irq_workq); err_create_eq_fail: for (i -= 1; i >= 0; i--) free_eq_buf(hr_dev, &eq_table->eq[i]); kfree(eq_table->eq); return ret; } static void hns_roce_v2_cleanup_eq_table(struct hns_roce_dev *hr_dev) { struct hns_roce_eq_table *eq_table = &hr_dev->eq_table; int eq_num; int i; eq_num = hr_dev->caps.num_comp_vectors + hr_dev->caps.num_aeq_vectors; /* Disable irq */ hns_roce_v2_int_mask_enable(hr_dev, eq_num, EQ_DISABLE); __hns_roce_free_irq(hr_dev); destroy_workqueue(hr_dev->irq_workq); for (i = 0; i < eq_num; i++) { hns_roce_v2_destroy_eqc(hr_dev, i); free_eq_buf(hr_dev, &eq_table->eq[i]); } kfree(eq_table->eq); } static const struct ib_device_ops hns_roce_v2_dev_ops = { .destroy_qp = hns_roce_v2_destroy_qp, .modify_cq = hns_roce_v2_modify_cq, .poll_cq = hns_roce_v2_poll_cq, .post_recv = hns_roce_v2_post_recv, .post_send = hns_roce_v2_post_send, .query_qp = hns_roce_v2_query_qp, .req_notify_cq = hns_roce_v2_req_notify_cq, }; static const struct ib_device_ops hns_roce_v2_dev_srq_ops = { .modify_srq = hns_roce_v2_modify_srq, .post_srq_recv = hns_roce_v2_post_srq_recv, .query_srq = hns_roce_v2_query_srq, }; static const struct hns_roce_hw hns_roce_hw_v2 = { .cmq_init = hns_roce_v2_cmq_init, .cmq_exit = hns_roce_v2_cmq_exit, .hw_profile = hns_roce_v2_profile, .hw_init = hns_roce_v2_init, .hw_exit = hns_roce_v2_exit, .post_mbox = v2_post_mbox, .poll_mbox_done = v2_poll_mbox_done, .chk_mbox_avail = v2_chk_mbox_is_avail, .set_gid = hns_roce_v2_set_gid, .set_mac = hns_roce_v2_set_mac, .write_mtpt = hns_roce_v2_write_mtpt, .rereg_write_mtpt = hns_roce_v2_rereg_write_mtpt, .frmr_write_mtpt = hns_roce_v2_frmr_write_mtpt, .mw_write_mtpt = hns_roce_v2_mw_write_mtpt, .write_cqc = hns_roce_v2_write_cqc, .set_hem = hns_roce_v2_set_hem, .clear_hem = hns_roce_v2_clear_hem, .modify_qp = hns_roce_v2_modify_qp, .dereg_mr = hns_roce_v2_dereg_mr, .qp_flow_control_init = hns_roce_v2_qp_flow_control_init, .init_eq = hns_roce_v2_init_eq_table, .cleanup_eq = hns_roce_v2_cleanup_eq_table, .write_srqc = hns_roce_v2_write_srqc, .query_cqc = hns_roce_v2_query_cqc, .query_qpc = hns_roce_v2_query_qpc, .query_mpt = hns_roce_v2_query_mpt, .hns_roce_dev_ops = &hns_roce_v2_dev_ops, .hns_roce_dev_srq_ops = &hns_roce_v2_dev_srq_ops, }; static const struct pci_device_id hns_roce_hw_v2_pci_tbl[] = { {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA), 0}, {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF), HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, /* required last entry */ {0, } }; MODULE_DEVICE_TABLE(pci, hns_roce_hw_v2_pci_tbl); static void hns_roce_hw_v2_get_cfg(struct hns_roce_dev *hr_dev, struct hnae3_handle *handle) { struct hns_roce_v2_priv *priv = hr_dev->priv; const struct pci_device_id *id; int i; hr_dev->pci_dev = handle->pdev; id = pci_match_id(hns_roce_hw_v2_pci_tbl, hr_dev->pci_dev); hr_dev->is_vf = id->driver_data; hr_dev->dev = &handle->pdev->dev; hr_dev->hw = &hns_roce_hw_v2; hr_dev->sdb_offset = ROCEE_DB_SQ_L_0_REG; hr_dev->odb_offset = hr_dev->sdb_offset; /* Get info from NIC driver. */ hr_dev->reg_base = handle->rinfo.roce_io_base; hr_dev->mem_base = handle->rinfo.roce_mem_base; hr_dev->caps.num_ports = 1; hr_dev->iboe.netdevs[0] = handle->rinfo.netdev; hr_dev->iboe.phy_port[0] = 0; addrconf_addr_eui48((u8 *)&hr_dev->ib_dev.node_guid, hr_dev->iboe.netdevs[0]->dev_addr); for (i = 0; i < handle->rinfo.num_vectors; i++) hr_dev->irq[i] = pci_irq_vector(handle->pdev, i + handle->rinfo.base_vector); /* cmd issue mode: 0 is poll, 1 is event */ hr_dev->cmd_mod = 1; hr_dev->loop_idc = 0; hr_dev->reset_cnt = handle->ae_algo->ops->ae_dev_reset_cnt(handle); priv->handle = handle; } static int __hns_roce_hw_v2_init_instance(struct hnae3_handle *handle) { struct hns_roce_dev *hr_dev; int ret; hr_dev = ib_alloc_device(hns_roce_dev, ib_dev); if (!hr_dev) return -ENOMEM; hr_dev->priv = kzalloc(sizeof(struct hns_roce_v2_priv), GFP_KERNEL); if (!hr_dev->priv) { ret = -ENOMEM; goto error_failed_kzalloc; } hns_roce_hw_v2_get_cfg(hr_dev, handle); ret = hns_roce_init(hr_dev); if (ret) { dev_err(hr_dev->dev, "RoCE Engine init failed!\n"); goto error_failed_roce_init; } if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) { ret = free_mr_init(hr_dev); if (ret) { dev_err(hr_dev->dev, "failed to init free mr!\n"); goto error_failed_free_mr_init; } } handle->priv = hr_dev; return 0; error_failed_free_mr_init: hns_roce_exit(hr_dev); error_failed_roce_init: kfree(hr_dev->priv); error_failed_kzalloc: ib_dealloc_device(&hr_dev->ib_dev); return ret; } static void __hns_roce_hw_v2_uninit_instance(struct hnae3_handle *handle, bool reset) { struct hns_roce_dev *hr_dev = handle->priv; if (!hr_dev) return; handle->priv = NULL; hr_dev->state = HNS_ROCE_DEVICE_STATE_UNINIT; hns_roce_handle_device_err(hr_dev); if (hr_dev->pci_dev->revision == PCI_REVISION_ID_HIP08) free_mr_exit(hr_dev); hns_roce_exit(hr_dev); kfree(hr_dev->priv); ib_dealloc_device(&hr_dev->ib_dev); } static int hns_roce_hw_v2_init_instance(struct hnae3_handle *handle) { const struct hnae3_ae_ops *ops = handle->ae_algo->ops; const struct pci_device_id *id; struct device *dev = &handle->pdev->dev; int ret; handle->rinfo.instance_state = HNS_ROCE_STATE_INIT; if (ops->ae_dev_resetting(handle) || ops->get_hw_reset_stat(handle)) { handle->rinfo.instance_state = HNS_ROCE_STATE_NON_INIT; goto reset_chk_err; } id = pci_match_id(hns_roce_hw_v2_pci_tbl, handle->pdev); if (!id) return 0; if (id->driver_data && handle->pdev->revision == PCI_REVISION_ID_HIP08) return 0; ret = __hns_roce_hw_v2_init_instance(handle); if (ret) { handle->rinfo.instance_state = HNS_ROCE_STATE_NON_INIT; dev_err(dev, "RoCE instance init failed! ret = %d\n", ret); if (ops->ae_dev_resetting(handle) || ops->get_hw_reset_stat(handle)) goto reset_chk_err; else return ret; } handle->rinfo.instance_state = HNS_ROCE_STATE_INITED; return 0; reset_chk_err: dev_err(dev, "Device is busy in resetting state.\n" "please retry later.\n"); return -EBUSY; } static void hns_roce_hw_v2_uninit_instance(struct hnae3_handle *handle, bool reset) { if (handle->rinfo.instance_state != HNS_ROCE_STATE_INITED) return; handle->rinfo.instance_state = HNS_ROCE_STATE_UNINIT; __hns_roce_hw_v2_uninit_instance(handle, reset); handle->rinfo.instance_state = HNS_ROCE_STATE_NON_INIT; } static int hns_roce_hw_v2_reset_notify_down(struct hnae3_handle *handle) { struct hns_roce_dev *hr_dev; if (handle->rinfo.instance_state != HNS_ROCE_STATE_INITED) { set_bit(HNS_ROCE_RST_DIRECT_RETURN, &handle->rinfo.state); return 0; } handle->rinfo.reset_state = HNS_ROCE_STATE_RST_DOWN; clear_bit(HNS_ROCE_RST_DIRECT_RETURN, &handle->rinfo.state); hr_dev = handle->priv; if (!hr_dev) return 0; hr_dev->active = false; hr_dev->dis_db = true; hr_dev->state = HNS_ROCE_DEVICE_STATE_RST_DOWN; return 0; } static int hns_roce_hw_v2_reset_notify_init(struct hnae3_handle *handle) { struct device *dev = &handle->pdev->dev; int ret; if (test_and_clear_bit(HNS_ROCE_RST_DIRECT_RETURN, &handle->rinfo.state)) { handle->rinfo.reset_state = HNS_ROCE_STATE_RST_INITED; return 0; } handle->rinfo.reset_state = HNS_ROCE_STATE_RST_INIT; dev_info(&handle->pdev->dev, "In reset process RoCE client reinit.\n"); ret = __hns_roce_hw_v2_init_instance(handle); if (ret) { /* when reset notify type is HNAE3_INIT_CLIENT In reset notify * callback function, RoCE Engine reinitialize. If RoCE reinit * failed, we should inform NIC driver. */ handle->priv = NULL; dev_err(dev, "In reset process RoCE reinit failed %d.\n", ret); } else { handle->rinfo.reset_state = HNS_ROCE_STATE_RST_INITED; dev_info(dev, "reset done, RoCE client reinit finished.\n"); } return ret; } static int hns_roce_hw_v2_reset_notify_uninit(struct hnae3_handle *handle) { if (test_bit(HNS_ROCE_RST_DIRECT_RETURN, &handle->rinfo.state)) return 0; handle->rinfo.reset_state = HNS_ROCE_STATE_RST_UNINIT; dev_info(&handle->pdev->dev, "In reset process RoCE client uninit.\n"); msleep(HNS_ROCE_V2_HW_RST_UNINT_DELAY); __hns_roce_hw_v2_uninit_instance(handle, false); return 0; } static int hns_roce_hw_v2_reset_notify(struct hnae3_handle *handle, enum hnae3_reset_notify_type type) { int ret = 0; switch (type) { case HNAE3_DOWN_CLIENT: ret = hns_roce_hw_v2_reset_notify_down(handle); break; case HNAE3_INIT_CLIENT: ret = hns_roce_hw_v2_reset_notify_init(handle); break; case HNAE3_UNINIT_CLIENT: ret = hns_roce_hw_v2_reset_notify_uninit(handle); break; default: break; } return ret; } static const struct hnae3_client_ops hns_roce_hw_v2_ops = { .init_instance = hns_roce_hw_v2_init_instance, .uninit_instance = hns_roce_hw_v2_uninit_instance, .reset_notify = hns_roce_hw_v2_reset_notify, }; static struct hnae3_client hns_roce_hw_v2_client = { .name = "hns_roce_hw_v2", .type = HNAE3_CLIENT_ROCE, .ops = &hns_roce_hw_v2_ops, }; static int __init hns_roce_hw_v2_init(void) { return hnae3_register_client(&hns_roce_hw_v2_client); } static void __exit hns_roce_hw_v2_exit(void) { hnae3_unregister_client(&hns_roce_hw_v2_client); } module_init(hns_roce_hw_v2_init); module_exit(hns_roce_hw_v2_exit); MODULE_LICENSE("Dual BSD/GPL"); MODULE_AUTHOR("Wei Hu "); MODULE_AUTHOR("Lijun Ou "); MODULE_AUTHOR("Shaobo Xu "); MODULE_DESCRIPTION("Hisilicon Hip08 Family RoCE Driver");