/* * Copyright © 2006-2007 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "display/intel_audio.h" #include "display/intel_crt.h" #include "display/intel_ddi.h" #include "display/intel_display_debugfs.h" #include "display/intel_display_power.h" #include "display/intel_dp.h" #include "display/intel_dp_mst.h" #include "display/intel_dpll.h" #include "display/intel_dpll_mgr.h" #include "display/intel_drrs.h" #include "display/intel_dsi.h" #include "display/intel_dvo.h" #include "display/intel_fb.h" #include "display/intel_gmbus.h" #include "display/intel_hdmi.h" #include "display/intel_lvds.h" #include "display/intel_sdvo.h" #include "display/intel_snps_phy.h" #include "display/intel_tv.h" #include "display/intel_vdsc.h" #include "display/intel_vrr.h" #include "gem/i915_gem_lmem.h" #include "gem/i915_gem_object.h" #include "gt/gen8_ppgtt.h" #include "g4x_dp.h" #include "g4x_hdmi.h" #include "hsw_ips.h" #include "i915_drv.h" #include "i915_utils.h" #include "icl_dsi.h" #include "intel_acpi.h" #include "intel_atomic.h" #include "intel_atomic_plane.h" #include "intel_bw.h" #include "intel_cdclk.h" #include "intel_color.h" #include "intel_crtc.h" #include "intel_crtc_state_dump.h" #include "intel_de.h" #include "intel_display_types.h" #include "intel_dmc.h" #include "intel_dp_link_training.h" #include "intel_dpt.h" #include "intel_dsb.h" #include "intel_fbc.h" #include "intel_fbdev.h" #include "intel_fdi.h" #include "intel_fifo_underrun.h" #include "intel_frontbuffer.h" #include "intel_hdcp.h" #include "intel_hotplug.h" #include "intel_modeset_verify.h" #include "intel_modeset_setup.h" #include "intel_overlay.h" #include "intel_panel.h" #include "intel_pch_display.h" #include "intel_pch_refclk.h" #include "intel_pcode.h" #include "intel_pipe_crc.h" #include "intel_plane_initial.h" #include "intel_pm.h" #include "intel_pps.h" #include "intel_psr.h" #include "intel_quirks.h" #include "intel_sprite.h" #include "intel_tc.h" #include "intel_vga.h" #include "i9xx_plane.h" #include "skl_scaler.h" #include "skl_universal_plane.h" #include "skl_watermark.h" #include "vlv_dsi.h" #include "vlv_dsi_pll.h" #include "vlv_dsi_regs.h" #include "vlv_sideband.h" static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state); static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state); static void hsw_set_transconf(const struct intel_crtc_state *crtc_state); static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state); static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state); /** * intel_update_watermarks - update FIFO watermark values based on current modes * @dev_priv: i915 device * * Calculate watermark values for the various WM regs based on current mode * and plane configuration. * * There are several cases to deal with here: * - normal (i.e. non-self-refresh) * - self-refresh (SR) mode * - lines are large relative to FIFO size (buffer can hold up to 2) * - lines are small relative to FIFO size (buffer can hold more than 2 * lines), so need to account for TLB latency * * The normal calculation is: * watermark = dotclock * bytes per pixel * latency * where latency is platform & configuration dependent (we assume pessimal * values here). * * The SR calculation is: * watermark = (trunc(latency/line time)+1) * surface width * * bytes per pixel * where * line time = htotal / dotclock * surface width = hdisplay for normal plane and 64 for cursor * and latency is assumed to be high, as above. * * The final value programmed to the register should always be rounded up, * and include an extra 2 entries to account for clock crossings. * * We don't use the sprite, so we can ignore that. And on Crestline we have * to set the non-SR watermarks to 8. */ void intel_update_watermarks(struct drm_i915_private *dev_priv) { if (dev_priv->display.funcs.wm->update_wm) dev_priv->display.funcs.wm->update_wm(dev_priv); } static int intel_compute_pipe_wm(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); if (dev_priv->display.funcs.wm->compute_pipe_wm) return dev_priv->display.funcs.wm->compute_pipe_wm(state, crtc); return 0; } static int intel_compute_intermediate_wm(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); if (!dev_priv->display.funcs.wm->compute_intermediate_wm) return 0; if (drm_WARN_ON(&dev_priv->drm, !dev_priv->display.funcs.wm->compute_pipe_wm)) return 0; return dev_priv->display.funcs.wm->compute_intermediate_wm(state, crtc); } static bool intel_initial_watermarks(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); if (dev_priv->display.funcs.wm->initial_watermarks) { dev_priv->display.funcs.wm->initial_watermarks(state, crtc); return true; } return false; } static void intel_atomic_update_watermarks(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); if (dev_priv->display.funcs.wm->atomic_update_watermarks) dev_priv->display.funcs.wm->atomic_update_watermarks(state, crtc); } static void intel_optimize_watermarks(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); if (dev_priv->display.funcs.wm->optimize_watermarks) dev_priv->display.funcs.wm->optimize_watermarks(state, crtc); } static int intel_compute_global_watermarks(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); if (dev_priv->display.funcs.wm->compute_global_watermarks) return dev_priv->display.funcs.wm->compute_global_watermarks(state); return 0; } /* returns HPLL frequency in kHz */ int vlv_get_hpll_vco(struct drm_i915_private *dev_priv) { int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 }; /* Obtain SKU information */ hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) & CCK_FUSE_HPLL_FREQ_MASK; return vco_freq[hpll_freq] * 1000; } int vlv_get_cck_clock(struct drm_i915_private *dev_priv, const char *name, u32 reg, int ref_freq) { u32 val; int divider; val = vlv_cck_read(dev_priv, reg); divider = val & CCK_FREQUENCY_VALUES; drm_WARN(&dev_priv->drm, (val & CCK_FREQUENCY_STATUS) != (divider << CCK_FREQUENCY_STATUS_SHIFT), "%s change in progress\n", name); return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1); } int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv, const char *name, u32 reg) { int hpll; vlv_cck_get(dev_priv); if (dev_priv->hpll_freq == 0) dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv); hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq); vlv_cck_put(dev_priv); return hpll; } static void intel_update_czclk(struct drm_i915_private *dev_priv) { if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) return; dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk", CCK_CZ_CLOCK_CONTROL); drm_dbg(&dev_priv->drm, "CZ clock rate: %d kHz\n", dev_priv->czclk_freq); } static bool is_hdr_mode(const struct intel_crtc_state *crtc_state) { return (crtc_state->active_planes & ~(icl_hdr_plane_mask() | BIT(PLANE_CURSOR))) == 0; } /* WA Display #0827: Gen9:all */ static void skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) { if (enable) intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DUPS1_GATING_DIS | DUPS2_GATING_DIS); else intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS)); } /* Wa_2006604312:icl,ehl */ static void icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) { if (enable) intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS); else intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS); } /* Wa_1604331009:icl,jsl,ehl */ static void icl_wa_cursorclkgating(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable) { intel_de_rmw(dev_priv, CLKGATE_DIS_PSL(pipe), CURSOR_GATING_DIS, enable ? CURSOR_GATING_DIS : 0); } static bool is_trans_port_sync_slave(const struct intel_crtc_state *crtc_state) { return crtc_state->master_transcoder != INVALID_TRANSCODER; } static bool is_trans_port_sync_master(const struct intel_crtc_state *crtc_state) { return crtc_state->sync_mode_slaves_mask != 0; } bool is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state) { return is_trans_port_sync_master(crtc_state) || is_trans_port_sync_slave(crtc_state); } static enum pipe bigjoiner_master_pipe(const struct intel_crtc_state *crtc_state) { return ffs(crtc_state->bigjoiner_pipes) - 1; } u8 intel_crtc_bigjoiner_slave_pipes(const struct intel_crtc_state *crtc_state) { if (crtc_state->bigjoiner_pipes) return crtc_state->bigjoiner_pipes & ~BIT(bigjoiner_master_pipe(crtc_state)); else return 0; } bool intel_crtc_is_bigjoiner_slave(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); return crtc_state->bigjoiner_pipes && crtc->pipe != bigjoiner_master_pipe(crtc_state); } bool intel_crtc_is_bigjoiner_master(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); return crtc_state->bigjoiner_pipes && crtc->pipe == bigjoiner_master_pipe(crtc_state); } static int intel_bigjoiner_num_pipes(const struct intel_crtc_state *crtc_state) { return hweight8(crtc_state->bigjoiner_pipes); } struct intel_crtc *intel_master_crtc(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); if (intel_crtc_is_bigjoiner_slave(crtc_state)) return intel_crtc_for_pipe(i915, bigjoiner_master_pipe(crtc_state)); else return to_intel_crtc(crtc_state->uapi.crtc); } static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv, enum pipe pipe) { i915_reg_t reg = PIPEDSL(pipe); u32 line1, line2; line1 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK; msleep(5); line2 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK; return line1 != line2; } static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* Wait for the display line to settle/start moving */ if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100)) drm_err(&dev_priv->drm, "pipe %c scanline %s wait timed out\n", pipe_name(pipe), str_on_off(state)); } static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc) { wait_for_pipe_scanline_moving(crtc, false); } static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc) { wait_for_pipe_scanline_moving(crtc, true); } static void intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (DISPLAY_VER(dev_priv) >= 4) { enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; /* Wait for the Pipe State to go off */ if (intel_de_wait_for_clear(dev_priv, PIPECONF(cpu_transcoder), PIPECONF_STATE_ENABLE, 100)) drm_WARN(&dev_priv->drm, 1, "pipe_off wait timed out\n"); } else { intel_wait_for_pipe_scanline_stopped(crtc); } } void assert_transcoder(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder, bool state) { bool cur_state; enum intel_display_power_domain power_domain; intel_wakeref_t wakeref; /* we keep both pipes enabled on 830 */ if (IS_I830(dev_priv)) state = true; power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (wakeref) { u32 val = intel_de_read(dev_priv, PIPECONF(cpu_transcoder)); cur_state = !!(val & PIPECONF_ENABLE); intel_display_power_put(dev_priv, power_domain, wakeref); } else { cur_state = false; } I915_STATE_WARN(cur_state != state, "transcoder %s assertion failure (expected %s, current %s)\n", transcoder_name(cpu_transcoder), str_on_off(state), str_on_off(cur_state)); } static void assert_plane(struct intel_plane *plane, bool state) { enum pipe pipe; bool cur_state; cur_state = plane->get_hw_state(plane, &pipe); I915_STATE_WARN(cur_state != state, "%s assertion failure (expected %s, current %s)\n", plane->base.name, str_on_off(state), str_on_off(cur_state)); } #define assert_plane_enabled(p) assert_plane(p, true) #define assert_plane_disabled(p) assert_plane(p, false) static void assert_planes_disabled(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_plane *plane; for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) assert_plane_disabled(plane); } void vlv_wait_port_ready(struct drm_i915_private *dev_priv, struct intel_digital_port *dig_port, unsigned int expected_mask) { u32 port_mask; i915_reg_t dpll_reg; switch (dig_port->base.port) { default: MISSING_CASE(dig_port->base.port); fallthrough; case PORT_B: port_mask = DPLL_PORTB_READY_MASK; dpll_reg = DPLL(0); break; case PORT_C: port_mask = DPLL_PORTC_READY_MASK; dpll_reg = DPLL(0); expected_mask <<= 4; break; case PORT_D: port_mask = DPLL_PORTD_READY_MASK; dpll_reg = DPIO_PHY_STATUS; break; } if (intel_de_wait_for_register(dev_priv, dpll_reg, port_mask, expected_mask, 1000)) drm_WARN(&dev_priv->drm, 1, "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n", dig_port->base.base.base.id, dig_port->base.base.name, intel_de_read(dev_priv, dpll_reg) & port_mask, expected_mask); } void intel_enable_transcoder(const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; enum pipe pipe = crtc->pipe; i915_reg_t reg; u32 val; drm_dbg_kms(&dev_priv->drm, "enabling pipe %c\n", pipe_name(pipe)); assert_planes_disabled(crtc); /* * A pipe without a PLL won't actually be able to drive bits from * a plane. On ILK+ the pipe PLLs are integrated, so we don't * need the check. */ if (HAS_GMCH(dev_priv)) { if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI)) assert_dsi_pll_enabled(dev_priv); else assert_pll_enabled(dev_priv, pipe); } else { if (new_crtc_state->has_pch_encoder) { /* if driving the PCH, we need FDI enabled */ assert_fdi_rx_pll_enabled(dev_priv, intel_crtc_pch_transcoder(crtc)); assert_fdi_tx_pll_enabled(dev_priv, (enum pipe) cpu_transcoder); } /* FIXME: assert CPU port conditions for SNB+ */ } /* Wa_22012358565:adl-p */ if (DISPLAY_VER(dev_priv) == 13) intel_de_rmw(dev_priv, PIPE_ARB_CTL(pipe), 0, PIPE_ARB_USE_PROG_SLOTS); reg = PIPECONF(cpu_transcoder); val = intel_de_read(dev_priv, reg); if (val & PIPECONF_ENABLE) { /* we keep both pipes enabled on 830 */ drm_WARN_ON(&dev_priv->drm, !IS_I830(dev_priv)); return; } intel_de_write(dev_priv, reg, val | PIPECONF_ENABLE); intel_de_posting_read(dev_priv, reg); /* * Until the pipe starts PIPEDSL reads will return a stale value, * which causes an apparent vblank timestamp jump when PIPEDSL * resets to its proper value. That also messes up the frame count * when it's derived from the timestamps. So let's wait for the * pipe to start properly before we call drm_crtc_vblank_on() */ if (intel_crtc_max_vblank_count(new_crtc_state) == 0) intel_wait_for_pipe_scanline_moving(crtc); } void intel_disable_transcoder(const struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder; enum pipe pipe = crtc->pipe; i915_reg_t reg; u32 val; drm_dbg_kms(&dev_priv->drm, "disabling pipe %c\n", pipe_name(pipe)); /* * Make sure planes won't keep trying to pump pixels to us, * or we might hang the display. */ assert_planes_disabled(crtc); reg = PIPECONF(cpu_transcoder); val = intel_de_read(dev_priv, reg); if ((val & PIPECONF_ENABLE) == 0) return; /* * Double wide has implications for planes * so best keep it disabled when not needed. */ if (old_crtc_state->double_wide) val &= ~PIPECONF_DOUBLE_WIDE; /* Don't disable pipe or pipe PLLs if needed */ if (!IS_I830(dev_priv)) val &= ~PIPECONF_ENABLE; if (DISPLAY_VER(dev_priv) >= 14) intel_de_rmw(dev_priv, MTL_CHICKEN_TRANS(cpu_transcoder), FECSTALL_DIS_DPTSTREAM_DPTTG, 0); else if (DISPLAY_VER(dev_priv) >= 12) intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), FECSTALL_DIS_DPTSTREAM_DPTTG, 0); intel_de_write(dev_priv, reg, val); if ((val & PIPECONF_ENABLE) == 0) intel_wait_for_pipe_off(old_crtc_state); } unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info) { unsigned int size = 0; int i; for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) size += rot_info->plane[i].dst_stride * rot_info->plane[i].width; return size; } unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info) { unsigned int size = 0; int i; for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) { unsigned int plane_size; if (rem_info->plane[i].linear) plane_size = rem_info->plane[i].size; else plane_size = rem_info->plane[i].dst_stride * rem_info->plane[i].height; if (plane_size == 0) continue; if (rem_info->plane_alignment) size = ALIGN(size, rem_info->plane_alignment); size += plane_size; } return size; } bool intel_plane_uses_fence(const struct intel_plane_state *plane_state) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); struct drm_i915_private *dev_priv = to_i915(plane->base.dev); return DISPLAY_VER(dev_priv) < 4 || (plane->fbc && plane_state->view.gtt.type == I915_GTT_VIEW_NORMAL); } /* * Convert the x/y offsets into a linear offset. * Only valid with 0/180 degree rotation, which is fine since linear * offset is only used with linear buffers on pre-hsw and tiled buffers * with gen2/3, and 90/270 degree rotations isn't supported on any of them. */ u32 intel_fb_xy_to_linear(int x, int y, const struct intel_plane_state *state, int color_plane) { const struct drm_framebuffer *fb = state->hw.fb; unsigned int cpp = fb->format->cpp[color_plane]; unsigned int pitch = state->view.color_plane[color_plane].mapping_stride; return y * pitch + x * cpp; } /* * Add the x/y offsets derived from fb->offsets[] to the user * specified plane src x/y offsets. The resulting x/y offsets * specify the start of scanout from the beginning of the gtt mapping. */ void intel_add_fb_offsets(int *x, int *y, const struct intel_plane_state *state, int color_plane) { *x += state->view.color_plane[color_plane].x; *y += state->view.color_plane[color_plane].y; } u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv, u32 pixel_format, u64 modifier) { struct intel_crtc *crtc; struct intel_plane *plane; if (!HAS_DISPLAY(dev_priv)) return 0; /* * We assume the primary plane for pipe A has * the highest stride limits of them all, * if in case pipe A is disabled, use the first pipe from pipe_mask. */ crtc = intel_first_crtc(dev_priv); if (!crtc) return 0; plane = to_intel_plane(crtc->base.primary); return plane->max_stride(plane, pixel_format, modifier, DRM_MODE_ROTATE_0); } void intel_set_plane_visible(struct intel_crtc_state *crtc_state, struct intel_plane_state *plane_state, bool visible) { struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); plane_state->uapi.visible = visible; if (visible) crtc_state->uapi.plane_mask |= drm_plane_mask(&plane->base); else crtc_state->uapi.plane_mask &= ~drm_plane_mask(&plane->base); } void intel_plane_fixup_bitmasks(struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); struct drm_plane *plane; /* * Active_planes aliases if multiple "primary" or cursor planes * have been used on the same (or wrong) pipe. plane_mask uses * unique ids, hence we can use that to reconstruct active_planes. */ crtc_state->enabled_planes = 0; crtc_state->active_planes = 0; drm_for_each_plane_mask(plane, &dev_priv->drm, crtc_state->uapi.plane_mask) { crtc_state->enabled_planes |= BIT(to_intel_plane(plane)->id); crtc_state->active_planes |= BIT(to_intel_plane(plane)->id); } } void intel_plane_disable_noatomic(struct intel_crtc *crtc, struct intel_plane *plane) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state); struct intel_plane_state *plane_state = to_intel_plane_state(plane->base.state); drm_dbg_kms(&dev_priv->drm, "Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n", plane->base.base.id, plane->base.name, crtc->base.base.id, crtc->base.name); intel_set_plane_visible(crtc_state, plane_state, false); intel_plane_fixup_bitmasks(crtc_state); crtc_state->data_rate[plane->id] = 0; crtc_state->data_rate_y[plane->id] = 0; crtc_state->rel_data_rate[plane->id] = 0; crtc_state->rel_data_rate_y[plane->id] = 0; crtc_state->min_cdclk[plane->id] = 0; if ((crtc_state->active_planes & ~BIT(PLANE_CURSOR)) == 0 && hsw_ips_disable(crtc_state)) { crtc_state->ips_enabled = false; intel_crtc_wait_for_next_vblank(crtc); } /* * Vblank time updates from the shadow to live plane control register * are blocked if the memory self-refresh mode is active at that * moment. So to make sure the plane gets truly disabled, disable * first the self-refresh mode. The self-refresh enable bit in turn * will be checked/applied by the HW only at the next frame start * event which is after the vblank start event, so we need to have a * wait-for-vblank between disabling the plane and the pipe. */ if (HAS_GMCH(dev_priv) && intel_set_memory_cxsr(dev_priv, false)) intel_crtc_wait_for_next_vblank(crtc); /* * Gen2 reports pipe underruns whenever all planes are disabled. * So disable underrun reporting before all the planes get disabled. */ if (DISPLAY_VER(dev_priv) == 2 && !crtc_state->active_planes) intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); intel_plane_disable_arm(plane, crtc_state); intel_crtc_wait_for_next_vblank(crtc); } unsigned int intel_plane_fence_y_offset(const struct intel_plane_state *plane_state) { int x = 0, y = 0; intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0, plane_state->view.color_plane[0].offset, 0); return y; } static int __intel_display_resume(struct drm_i915_private *i915, struct drm_atomic_state *state, struct drm_modeset_acquire_ctx *ctx) { struct drm_crtc_state *crtc_state; struct drm_crtc *crtc; int i, ret; intel_modeset_setup_hw_state(i915, ctx); intel_vga_redisable(i915); if (!state) return 0; /* * We've duplicated the state, pointers to the old state are invalid. * * Don't attempt to use the old state until we commit the duplicated state. */ for_each_new_crtc_in_state(state, crtc, crtc_state, i) { /* * Force recalculation even if we restore * current state. With fast modeset this may not result * in a modeset when the state is compatible. */ crtc_state->mode_changed = true; } /* ignore any reset values/BIOS leftovers in the WM registers */ if (!HAS_GMCH(i915)) to_intel_atomic_state(state)->skip_intermediate_wm = true; ret = drm_atomic_helper_commit_duplicated_state(state, ctx); drm_WARN_ON(&i915->drm, ret == -EDEADLK); return ret; } static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv) { return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display && intel_has_gpu_reset(to_gt(dev_priv))); } void intel_display_prepare_reset(struct drm_i915_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx; struct drm_atomic_state *state; int ret; if (!HAS_DISPLAY(dev_priv)) return; /* reset doesn't touch the display */ if (!dev_priv->params.force_reset_modeset_test && !gpu_reset_clobbers_display(dev_priv)) return; /* We have a modeset vs reset deadlock, defensively unbreak it. */ set_bit(I915_RESET_MODESET, &to_gt(dev_priv)->reset.flags); smp_mb__after_atomic(); wake_up_bit(&to_gt(dev_priv)->reset.flags, I915_RESET_MODESET); if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) { drm_dbg_kms(&dev_priv->drm, "Modeset potentially stuck, unbreaking through wedging\n"); intel_gt_set_wedged(to_gt(dev_priv)); } /* * Need mode_config.mutex so that we don't * trample ongoing ->detect() and whatnot. */ mutex_lock(&dev->mode_config.mutex); drm_modeset_acquire_init(ctx, 0); while (1) { ret = drm_modeset_lock_all_ctx(dev, ctx); if (ret != -EDEADLK) break; drm_modeset_backoff(ctx); } /* * Disabling the crtcs gracefully seems nicer. Also the * g33 docs say we should at least disable all the planes. */ state = drm_atomic_helper_duplicate_state(dev, ctx); if (IS_ERR(state)) { ret = PTR_ERR(state); drm_err(&dev_priv->drm, "Duplicating state failed with %i\n", ret); return; } ret = drm_atomic_helper_disable_all(dev, ctx); if (ret) { drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", ret); drm_atomic_state_put(state); return; } dev_priv->modeset_restore_state = state; state->acquire_ctx = ctx; } void intel_display_finish_reset(struct drm_i915_private *i915) { struct drm_modeset_acquire_ctx *ctx = &i915->reset_ctx; struct drm_atomic_state *state; int ret; if (!HAS_DISPLAY(i915)) return; /* reset doesn't touch the display */ if (!test_bit(I915_RESET_MODESET, &to_gt(i915)->reset.flags)) return; state = fetch_and_zero(&i915->modeset_restore_state); if (!state) goto unlock; /* reset doesn't touch the display */ if (!gpu_reset_clobbers_display(i915)) { /* for testing only restore the display */ ret = __intel_display_resume(i915, state, ctx); if (ret) drm_err(&i915->drm, "Restoring old state failed with %i\n", ret); } else { /* * The display has been reset as well, * so need a full re-initialization. */ intel_pps_unlock_regs_wa(i915); intel_modeset_init_hw(i915); intel_init_clock_gating(i915); intel_hpd_init(i915); ret = __intel_display_resume(i915, state, ctx); if (ret) drm_err(&i915->drm, "Restoring old state failed with %i\n", ret); intel_hpd_poll_disable(i915); } drm_atomic_state_put(state); unlock: drm_modeset_drop_locks(ctx); drm_modeset_acquire_fini(ctx); mutex_unlock(&i915->drm.mode_config.mutex); clear_bit_unlock(I915_RESET_MODESET, &to_gt(i915)->reset.flags); } static void icl_set_pipe_chicken(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; u32 tmp; tmp = intel_de_read(dev_priv, PIPE_CHICKEN(pipe)); /* * Display WA #1153: icl * enable hardware to bypass the alpha math * and rounding for per-pixel values 00 and 0xff */ tmp |= PER_PIXEL_ALPHA_BYPASS_EN; /* * Display WA # 1605353570: icl * Set the pixel rounding bit to 1 for allowing * passthrough of Frame buffer pixels unmodified * across pipe */ tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU; /* * Underrun recovery must always be disabled on display 13+. * DG2 chicken bit meaning is inverted compared to other platforms. */ if (IS_DG2(dev_priv)) tmp &= ~UNDERRUN_RECOVERY_ENABLE_DG2; else if (DISPLAY_VER(dev_priv) >= 13) tmp |= UNDERRUN_RECOVERY_DISABLE_ADLP; /* Wa_14010547955:dg2 */ if (IS_DG2_DISPLAY_STEP(dev_priv, STEP_B0, STEP_FOREVER)) tmp |= DG2_RENDER_CCSTAG_4_3_EN; intel_de_write(dev_priv, PIPE_CHICKEN(pipe), tmp); } bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv) { struct drm_crtc *crtc; bool cleanup_done; drm_for_each_crtc(crtc, &dev_priv->drm) { struct drm_crtc_commit *commit; spin_lock(&crtc->commit_lock); commit = list_first_entry_or_null(&crtc->commit_list, struct drm_crtc_commit, commit_entry); cleanup_done = commit ? try_wait_for_completion(&commit->cleanup_done) : true; spin_unlock(&crtc->commit_lock); if (cleanup_done) continue; intel_crtc_wait_for_next_vblank(to_intel_crtc(crtc)); return true; } return false; } /* * Finds the encoder associated with the given CRTC. This can only be * used when we know that the CRTC isn't feeding multiple encoders! */ struct intel_encoder * intel_get_crtc_new_encoder(const struct intel_atomic_state *state, const struct intel_crtc_state *crtc_state) { const struct drm_connector_state *connector_state; const struct drm_connector *connector; struct intel_encoder *encoder = NULL; struct intel_crtc *master_crtc; int num_encoders = 0; int i; master_crtc = intel_master_crtc(crtc_state); for_each_new_connector_in_state(&state->base, connector, connector_state, i) { if (connector_state->crtc != &master_crtc->base) continue; encoder = to_intel_encoder(connector_state->best_encoder); num_encoders++; } drm_WARN(state->base.dev, num_encoders != 1, "%d encoders for pipe %c\n", num_encoders, pipe_name(master_crtc->pipe)); return encoder; } static void cpt_verify_modeset(struct drm_i915_private *dev_priv, enum pipe pipe) { i915_reg_t dslreg = PIPEDSL(pipe); u32 temp; temp = intel_de_read(dev_priv, dslreg); udelay(500); if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) { if (wait_for(intel_de_read(dev_priv, dslreg) != temp, 5)) drm_err(&dev_priv->drm, "mode set failed: pipe %c stuck\n", pipe_name(pipe)); } } static void ilk_pfit_enable(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_rect *dst = &crtc_state->pch_pfit.dst; enum pipe pipe = crtc->pipe; int width = drm_rect_width(dst); int height = drm_rect_height(dst); int x = dst->x1; int y = dst->y1; if (!crtc_state->pch_pfit.enabled) return; /* Force use of hard-coded filter coefficients * as some pre-programmed values are broken, * e.g. x201. */ if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) intel_de_write_fw(dev_priv, PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 | PF_PIPE_SEL_IVB(pipe)); else intel_de_write_fw(dev_priv, PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3); intel_de_write_fw(dev_priv, PF_WIN_POS(pipe), x << 16 | y); intel_de_write_fw(dev_priv, PF_WIN_SZ(pipe), width << 16 | height); } static void intel_crtc_dpms_overlay_disable(struct intel_crtc *crtc) { if (crtc->overlay) (void) intel_overlay_switch_off(crtc->overlay); /* Let userspace switch the overlay on again. In most cases userspace * has to recompute where to put it anyway. */ } static bool needs_nv12_wa(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); if (!crtc_state->nv12_planes) return false; /* WA Display #0827: Gen9:all */ if (DISPLAY_VER(dev_priv) == 9) return true; return false; } static bool needs_scalerclk_wa(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); /* Wa_2006604312:icl,ehl */ if (crtc_state->scaler_state.scaler_users > 0 && DISPLAY_VER(dev_priv) == 11) return true; return false; } static bool needs_cursorclk_wa(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); /* Wa_1604331009:icl,jsl,ehl */ if (is_hdr_mode(crtc_state) && crtc_state->active_planes & BIT(PLANE_CURSOR) && DISPLAY_VER(dev_priv) == 11) return true; return false; } static void intel_async_flip_vtd_wa(struct drm_i915_private *i915, enum pipe pipe, bool enable) { if (DISPLAY_VER(i915) == 9) { /* * "Plane N strech max must be programmed to 11b (x1) * when Async flips are enabled on that plane." */ intel_de_rmw(i915, CHICKEN_PIPESL_1(pipe), SKL_PLANE1_STRETCH_MAX_MASK, enable ? SKL_PLANE1_STRETCH_MAX_X1 : SKL_PLANE1_STRETCH_MAX_X8); } else { /* Also needed on HSW/BDW albeit undocumented */ intel_de_rmw(i915, CHICKEN_PIPESL_1(pipe), HSW_PRI_STRETCH_MAX_MASK, enable ? HSW_PRI_STRETCH_MAX_X1 : HSW_PRI_STRETCH_MAX_X8); } } static bool needs_async_flip_vtd_wa(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); return crtc_state->uapi.async_flip && i915_vtd_active(i915) && (DISPLAY_VER(i915) == 9 || IS_BROADWELL(i915) || IS_HASWELL(i915)); } static bool planes_enabling(const struct intel_crtc_state *old_crtc_state, const struct intel_crtc_state *new_crtc_state) { return (!old_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)) && new_crtc_state->active_planes; } static bool planes_disabling(const struct intel_crtc_state *old_crtc_state, const struct intel_crtc_state *new_crtc_state) { return old_crtc_state->active_planes && (!new_crtc_state->active_planes || intel_crtc_needs_modeset(new_crtc_state)); } static void intel_post_plane_update(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); enum pipe pipe = crtc->pipe; intel_frontbuffer_flip(dev_priv, new_crtc_state->fb_bits); if (new_crtc_state->update_wm_post && new_crtc_state->hw.active) intel_update_watermarks(dev_priv); hsw_ips_post_update(state, crtc); intel_fbc_post_update(state, crtc); if (needs_async_flip_vtd_wa(old_crtc_state) && !needs_async_flip_vtd_wa(new_crtc_state)) intel_async_flip_vtd_wa(dev_priv, pipe, false); if (needs_nv12_wa(old_crtc_state) && !needs_nv12_wa(new_crtc_state)) skl_wa_827(dev_priv, pipe, false); if (needs_scalerclk_wa(old_crtc_state) && !needs_scalerclk_wa(new_crtc_state)) icl_wa_scalerclkgating(dev_priv, pipe, false); if (needs_cursorclk_wa(old_crtc_state) && !needs_cursorclk_wa(new_crtc_state)) icl_wa_cursorclkgating(dev_priv, pipe, false); intel_drrs_activate(new_crtc_state); } static void intel_crtc_enable_flip_done(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); u8 update_planes = crtc_state->update_planes; const struct intel_plane_state *plane_state; struct intel_plane *plane; int i; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { if (plane->pipe == crtc->pipe && update_planes & BIT(plane->id)) plane->enable_flip_done(plane); } } static void intel_crtc_disable_flip_done(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); u8 update_planes = crtc_state->update_planes; const struct intel_plane_state *plane_state; struct intel_plane *plane; int i; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { if (plane->pipe == crtc->pipe && update_planes & BIT(plane->id)) plane->disable_flip_done(plane); } } static void intel_crtc_async_flip_disable_wa(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); u8 update_planes = new_crtc_state->update_planes; const struct intel_plane_state *old_plane_state; struct intel_plane *plane; bool need_vbl_wait = false; int i; for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { if (plane->need_async_flip_disable_wa && plane->pipe == crtc->pipe && update_planes & BIT(plane->id)) { /* * Apart from the async flip bit we want to * preserve the old state for the plane. */ plane->async_flip(plane, old_crtc_state, old_plane_state, false); need_vbl_wait = true; } } if (need_vbl_wait) intel_crtc_wait_for_next_vblank(crtc); } static void intel_pre_plane_update(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); enum pipe pipe = crtc->pipe; intel_drrs_deactivate(old_crtc_state); intel_psr_pre_plane_update(state, crtc); if (hsw_ips_pre_update(state, crtc)) intel_crtc_wait_for_next_vblank(crtc); if (intel_fbc_pre_update(state, crtc)) intel_crtc_wait_for_next_vblank(crtc); if (!needs_async_flip_vtd_wa(old_crtc_state) && needs_async_flip_vtd_wa(new_crtc_state)) intel_async_flip_vtd_wa(dev_priv, pipe, true); /* Display WA 827 */ if (!needs_nv12_wa(old_crtc_state) && needs_nv12_wa(new_crtc_state)) skl_wa_827(dev_priv, pipe, true); /* Wa_2006604312:icl,ehl */ if (!needs_scalerclk_wa(old_crtc_state) && needs_scalerclk_wa(new_crtc_state)) icl_wa_scalerclkgating(dev_priv, pipe, true); /* Wa_1604331009:icl,jsl,ehl */ if (!needs_cursorclk_wa(old_crtc_state) && needs_cursorclk_wa(new_crtc_state)) icl_wa_cursorclkgating(dev_priv, pipe, true); /* * Vblank time updates from the shadow to live plane control register * are blocked if the memory self-refresh mode is active at that * moment. So to make sure the plane gets truly disabled, disable * first the self-refresh mode. The self-refresh enable bit in turn * will be checked/applied by the HW only at the next frame start * event which is after the vblank start event, so we need to have a * wait-for-vblank between disabling the plane and the pipe. */ if (HAS_GMCH(dev_priv) && old_crtc_state->hw.active && new_crtc_state->disable_cxsr && intel_set_memory_cxsr(dev_priv, false)) intel_crtc_wait_for_next_vblank(crtc); /* * IVB workaround: must disable low power watermarks for at least * one frame before enabling scaling. LP watermarks can be re-enabled * when scaling is disabled. * * WaCxSRDisabledForSpriteScaling:ivb */ if (old_crtc_state->hw.active && new_crtc_state->disable_lp_wm && ilk_disable_lp_wm(dev_priv)) intel_crtc_wait_for_next_vblank(crtc); /* * If we're doing a modeset we don't need to do any * pre-vblank watermark programming here. */ if (!intel_crtc_needs_modeset(new_crtc_state)) { /* * For platforms that support atomic watermarks, program the * 'intermediate' watermarks immediately. On pre-gen9 platforms, these * will be the intermediate values that are safe for both pre- and * post- vblank; when vblank happens, the 'active' values will be set * to the final 'target' values and we'll do this again to get the * optimal watermarks. For gen9+ platforms, the values we program here * will be the final target values which will get automatically latched * at vblank time; no further programming will be necessary. * * If a platform hasn't been transitioned to atomic watermarks yet, * we'll continue to update watermarks the old way, if flags tell * us to. */ if (!intel_initial_watermarks(state, crtc)) if (new_crtc_state->update_wm_pre) intel_update_watermarks(dev_priv); } /* * Gen2 reports pipe underruns whenever all planes are disabled. * So disable underrun reporting before all the planes get disabled. * * We do this after .initial_watermarks() so that we have a * chance of catching underruns with the intermediate watermarks * vs. the old plane configuration. */ if (DISPLAY_VER(dev_priv) == 2 && planes_disabling(old_crtc_state, new_crtc_state)) intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); /* * WA for platforms where async address update enable bit * is double buffered and only latched at start of vblank. */ if (old_crtc_state->uapi.async_flip && !new_crtc_state->uapi.async_flip) intel_crtc_async_flip_disable_wa(state, crtc); } static void intel_crtc_disable_planes(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); unsigned int update_mask = new_crtc_state->update_planes; const struct intel_plane_state *old_plane_state; struct intel_plane *plane; unsigned fb_bits = 0; int i; intel_crtc_dpms_overlay_disable(crtc); for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) { if (crtc->pipe != plane->pipe || !(update_mask & BIT(plane->id))) continue; intel_plane_disable_arm(plane, new_crtc_state); if (old_plane_state->uapi.visible) fb_bits |= plane->frontbuffer_bit; } intel_frontbuffer_flip(dev_priv, fb_bits); } /* * intel_connector_primary_encoder - get the primary encoder for a connector * @connector: connector for which to return the encoder * * Returns the primary encoder for a connector. There is a 1:1 mapping from * all connectors to their encoder, except for DP-MST connectors which have * both a virtual and a primary encoder. These DP-MST primary encoders can be * pointed to by as many DP-MST connectors as there are pipes. */ static struct intel_encoder * intel_connector_primary_encoder(struct intel_connector *connector) { struct intel_encoder *encoder; if (connector->mst_port) return &dp_to_dig_port(connector->mst_port)->base; encoder = intel_attached_encoder(connector); drm_WARN_ON(connector->base.dev, !encoder); return encoder; } static void intel_encoders_update_prepare(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); struct intel_crtc_state *new_crtc_state, *old_crtc_state; struct intel_crtc *crtc; struct drm_connector_state *new_conn_state; struct drm_connector *connector; int i; /* * Make sure the DPLL state is up-to-date for fastset TypeC ports after non-blocking commits. * TODO: Update the DPLL state for all cases in the encoder->update_prepare() hook. */ if (i915->display.dpll.mgr) { for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (intel_crtc_needs_modeset(new_crtc_state)) continue; new_crtc_state->shared_dpll = old_crtc_state->shared_dpll; new_crtc_state->dpll_hw_state = old_crtc_state->dpll_hw_state; } } if (!state->modeset) return; for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { struct intel_connector *intel_connector; struct intel_encoder *encoder; struct intel_crtc *crtc; if (!intel_connector_needs_modeset(state, connector)) continue; intel_connector = to_intel_connector(connector); encoder = intel_connector_primary_encoder(intel_connector); if (!encoder->update_prepare) continue; crtc = new_conn_state->crtc ? to_intel_crtc(new_conn_state->crtc) : NULL; encoder->update_prepare(state, encoder, crtc); } } static void intel_encoders_update_complete(struct intel_atomic_state *state) { struct drm_connector_state *new_conn_state; struct drm_connector *connector; int i; if (!state->modeset) return; for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) { struct intel_connector *intel_connector; struct intel_encoder *encoder; struct intel_crtc *crtc; if (!intel_connector_needs_modeset(state, connector)) continue; intel_connector = to_intel_connector(connector); encoder = intel_connector_primary_encoder(intel_connector); if (!encoder->update_complete) continue; crtc = new_conn_state->crtc ? to_intel_crtc(new_conn_state->crtc) : NULL; encoder->update_complete(state, encoder, crtc); } } static void intel_encoders_pre_pll_enable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct drm_connector_state *conn_state; struct drm_connector *conn; int i; for_each_new_connector_in_state(&state->base, conn, conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(conn_state->best_encoder); if (conn_state->crtc != &crtc->base) continue; if (encoder->pre_pll_enable) encoder->pre_pll_enable(state, encoder, crtc_state, conn_state); } } static void intel_encoders_pre_enable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct drm_connector_state *conn_state; struct drm_connector *conn; int i; for_each_new_connector_in_state(&state->base, conn, conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(conn_state->best_encoder); if (conn_state->crtc != &crtc->base) continue; if (encoder->pre_enable) encoder->pre_enable(state, encoder, crtc_state, conn_state); } } static void intel_encoders_enable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct drm_connector_state *conn_state; struct drm_connector *conn; int i; for_each_new_connector_in_state(&state->base, conn, conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(conn_state->best_encoder); if (conn_state->crtc != &crtc->base) continue; if (encoder->enable) encoder->enable(state, encoder, crtc_state, conn_state); intel_opregion_notify_encoder(encoder, true); } } static void intel_encoders_disable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct drm_connector_state *old_conn_state; struct drm_connector *conn; int i; for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(old_conn_state->best_encoder); if (old_conn_state->crtc != &crtc->base) continue; intel_opregion_notify_encoder(encoder, false); if (encoder->disable) encoder->disable(state, encoder, old_crtc_state, old_conn_state); } } static void intel_encoders_post_disable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct drm_connector_state *old_conn_state; struct drm_connector *conn; int i; for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(old_conn_state->best_encoder); if (old_conn_state->crtc != &crtc->base) continue; if (encoder->post_disable) encoder->post_disable(state, encoder, old_crtc_state, old_conn_state); } } static void intel_encoders_post_pll_disable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct drm_connector_state *old_conn_state; struct drm_connector *conn; int i; for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(old_conn_state->best_encoder); if (old_conn_state->crtc != &crtc->base) continue; if (encoder->post_pll_disable) encoder->post_pll_disable(state, encoder, old_crtc_state, old_conn_state); } } static void intel_encoders_update_pipe(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct drm_connector_state *conn_state; struct drm_connector *conn; int i; for_each_new_connector_in_state(&state->base, conn, conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(conn_state->best_encoder); if (conn_state->crtc != &crtc->base) continue; if (encoder->update_pipe) encoder->update_pipe(state, encoder, crtc_state, conn_state); } } static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct intel_plane *plane = to_intel_plane(crtc->base.primary); plane->disable_arm(plane, crtc_state); } static void ilk_configure_cpu_transcoder(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (crtc_state->has_pch_encoder) { intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder, &crtc_state->fdi_m_n); } else if (intel_crtc_has_dp_encoder(crtc_state)) { intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder, &crtc_state->dp_m_n); intel_cpu_transcoder_set_m2_n2(crtc, cpu_transcoder, &crtc_state->dp_m2_n2); } intel_set_transcoder_timings(crtc_state); ilk_set_pipeconf(crtc_state); } static void ilk_crtc_enable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; if (drm_WARN_ON(&dev_priv->drm, crtc->active)) return; /* * Sometimes spurious CPU pipe underruns happen during FDI * training, at least with VGA+HDMI cloning. Suppress them. * * On ILK we get an occasional spurious CPU pipe underruns * between eDP port A enable and vdd enable. Also PCH port * enable seems to result in the occasional CPU pipe underrun. * * Spurious PCH underruns also occur during PCH enabling. */ intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); ilk_configure_cpu_transcoder(new_crtc_state); intel_set_pipe_src_size(new_crtc_state); crtc->active = true; intel_encoders_pre_enable(state, crtc); if (new_crtc_state->has_pch_encoder) { ilk_pch_pre_enable(state, crtc); } else { assert_fdi_tx_disabled(dev_priv, pipe); assert_fdi_rx_disabled(dev_priv, pipe); } ilk_pfit_enable(new_crtc_state); /* * On ILK+ LUT must be loaded before the pipe is running but with * clocks enabled */ intel_color_load_luts(new_crtc_state); intel_color_commit_noarm(new_crtc_state); intel_color_commit_arm(new_crtc_state); /* update DSPCNTR to configure gamma for pipe bottom color */ intel_disable_primary_plane(new_crtc_state); intel_initial_watermarks(state, crtc); intel_enable_transcoder(new_crtc_state); if (new_crtc_state->has_pch_encoder) ilk_pch_enable(state, crtc); intel_crtc_vblank_on(new_crtc_state); intel_encoders_enable(state, crtc); if (HAS_PCH_CPT(dev_priv)) cpt_verify_modeset(dev_priv, pipe); /* * Must wait for vblank to avoid spurious PCH FIFO underruns. * And a second vblank wait is needed at least on ILK with * some interlaced HDMI modes. Let's do the double wait always * in case there are more corner cases we don't know about. */ if (new_crtc_state->has_pch_encoder) { intel_crtc_wait_for_next_vblank(crtc); intel_crtc_wait_for_next_vblank(crtc); } intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); } static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv, enum pipe pipe, bool apply) { u32 val = intel_de_read(dev_priv, CLKGATE_DIS_PSL(pipe)); u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS; if (apply) val |= mask; else val &= ~mask; intel_de_write(dev_priv, CLKGATE_DIS_PSL(pipe), val); } static void hsw_set_linetime_wm(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); intel_de_write(dev_priv, WM_LINETIME(crtc->pipe), HSW_LINETIME(crtc_state->linetime) | HSW_IPS_LINETIME(crtc_state->ips_linetime)); } static void hsw_set_frame_start_delay(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder transcoder = crtc_state->cpu_transcoder; i915_reg_t reg = DISPLAY_VER(dev_priv) >= 14 ? MTL_CHICKEN_TRANS(transcoder) : CHICKEN_TRANS(transcoder); u32 val; val = intel_de_read(dev_priv, reg); val &= ~HSW_FRAME_START_DELAY_MASK; val |= HSW_FRAME_START_DELAY(crtc_state->framestart_delay - 1); intel_de_write(dev_priv, reg, val); } static void icl_ddi_bigjoiner_pre_enable(struct intel_atomic_state *state, const struct intel_crtc_state *crtc_state) { struct intel_crtc *master_crtc = intel_master_crtc(crtc_state); /* * Enable sequence steps 1-7 on bigjoiner master */ if (intel_crtc_is_bigjoiner_slave(crtc_state)) intel_encoders_pre_pll_enable(state, master_crtc); if (crtc_state->shared_dpll) intel_enable_shared_dpll(crtc_state); if (intel_crtc_is_bigjoiner_slave(crtc_state)) intel_encoders_pre_enable(state, master_crtc); } static void hsw_configure_cpu_transcoder(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (crtc_state->has_pch_encoder) { intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder, &crtc_state->fdi_m_n); } else if (intel_crtc_has_dp_encoder(crtc_state)) { intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder, &crtc_state->dp_m_n); intel_cpu_transcoder_set_m2_n2(crtc, cpu_transcoder, &crtc_state->dp_m2_n2); } intel_set_transcoder_timings(crtc_state); if (cpu_transcoder != TRANSCODER_EDP) intel_de_write(dev_priv, PIPE_MULT(cpu_transcoder), crtc_state->pixel_multiplier - 1); hsw_set_frame_start_delay(crtc_state); hsw_set_transconf(crtc_state); } static void hsw_crtc_enable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe, hsw_workaround_pipe; enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder; bool psl_clkgate_wa; if (drm_WARN_ON(&dev_priv->drm, crtc->active)) return; if (!new_crtc_state->bigjoiner_pipes) { intel_encoders_pre_pll_enable(state, crtc); if (new_crtc_state->shared_dpll) intel_enable_shared_dpll(new_crtc_state); intel_encoders_pre_enable(state, crtc); } else { icl_ddi_bigjoiner_pre_enable(state, new_crtc_state); } intel_dsc_enable(new_crtc_state); if (DISPLAY_VER(dev_priv) >= 13) intel_uncompressed_joiner_enable(new_crtc_state); intel_set_pipe_src_size(new_crtc_state); if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) bdw_set_pipemisc(new_crtc_state); if (!intel_crtc_is_bigjoiner_slave(new_crtc_state) && !transcoder_is_dsi(cpu_transcoder)) hsw_configure_cpu_transcoder(new_crtc_state); crtc->active = true; /* Display WA #1180: WaDisableScalarClockGating: glk */ psl_clkgate_wa = DISPLAY_VER(dev_priv) == 10 && new_crtc_state->pch_pfit.enabled; if (psl_clkgate_wa) glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true); if (DISPLAY_VER(dev_priv) >= 9) skl_pfit_enable(new_crtc_state); else ilk_pfit_enable(new_crtc_state); /* * On ILK+ LUT must be loaded before the pipe is running but with * clocks enabled */ intel_color_load_luts(new_crtc_state); intel_color_commit_noarm(new_crtc_state); intel_color_commit_arm(new_crtc_state); /* update DSPCNTR to configure gamma/csc for pipe bottom color */ if (DISPLAY_VER(dev_priv) < 9) intel_disable_primary_plane(new_crtc_state); hsw_set_linetime_wm(new_crtc_state); if (DISPLAY_VER(dev_priv) >= 11) icl_set_pipe_chicken(new_crtc_state); intel_initial_watermarks(state, crtc); if (intel_crtc_is_bigjoiner_slave(new_crtc_state)) intel_crtc_vblank_on(new_crtc_state); intel_encoders_enable(state, crtc); if (psl_clkgate_wa) { intel_crtc_wait_for_next_vblank(crtc); glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false); } /* If we change the relative order between pipe/planes enabling, we need * to change the workaround. */ hsw_workaround_pipe = new_crtc_state->hsw_workaround_pipe; if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) { struct intel_crtc *wa_crtc; wa_crtc = intel_crtc_for_pipe(dev_priv, hsw_workaround_pipe); intel_crtc_wait_for_next_vblank(wa_crtc); intel_crtc_wait_for_next_vblank(wa_crtc); } } void ilk_pfit_disable(const struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* To avoid upsetting the power well on haswell only disable the pfit if * it's in use. The hw state code will make sure we get this right. */ if (!old_crtc_state->pch_pfit.enabled) return; intel_de_write_fw(dev_priv, PF_CTL(pipe), 0); intel_de_write_fw(dev_priv, PF_WIN_POS(pipe), 0); intel_de_write_fw(dev_priv, PF_WIN_SZ(pipe), 0); } static void ilk_crtc_disable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* * Sometimes spurious CPU pipe underruns happen when the * pipe is already disabled, but FDI RX/TX is still enabled. * Happens at least with VGA+HDMI cloning. Suppress them. */ intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false); intel_encoders_disable(state, crtc); intel_crtc_vblank_off(old_crtc_state); intel_disable_transcoder(old_crtc_state); ilk_pfit_disable(old_crtc_state); if (old_crtc_state->has_pch_encoder) ilk_pch_disable(state, crtc); intel_encoders_post_disable(state, crtc); if (old_crtc_state->has_pch_encoder) ilk_pch_post_disable(state, crtc); intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true); } static void hsw_crtc_disable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); /* * FIXME collapse everything to one hook. * Need care with mst->ddi interactions. */ if (!intel_crtc_is_bigjoiner_slave(old_crtc_state)) { intel_encoders_disable(state, crtc); intel_encoders_post_disable(state, crtc); } } static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (!crtc_state->gmch_pfit.control) return; /* * The panel fitter should only be adjusted whilst the pipe is disabled, * according to register description and PRM. */ drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, PFIT_CONTROL) & PFIT_ENABLE); assert_transcoder_disabled(dev_priv, crtc_state->cpu_transcoder); intel_de_write(dev_priv, PFIT_PGM_RATIOS, crtc_state->gmch_pfit.pgm_ratios); intel_de_write(dev_priv, PFIT_CONTROL, crtc_state->gmch_pfit.control); /* Border color in case we don't scale up to the full screen. Black by * default, change to something else for debugging. */ intel_de_write(dev_priv, BCLRPAT(crtc->pipe), 0); } bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy) { if (phy == PHY_NONE) return false; else if (IS_ALDERLAKE_S(dev_priv)) return phy <= PHY_E; else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) return phy <= PHY_D; else if (IS_JSL_EHL(dev_priv)) return phy <= PHY_C; else if (IS_ALDERLAKE_P(dev_priv) || IS_DISPLAY_VER(dev_priv, 11, 12)) return phy <= PHY_B; else /* * DG2 outputs labelled as "combo PHY" in the bspec use * SNPS PHYs with completely different programming, * hence we always return false here. */ return false; } bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy) { if (IS_DG2(dev_priv)) /* DG2's "TC1" output uses a SNPS PHY */ return false; else if (IS_ALDERLAKE_P(dev_priv)) return phy >= PHY_F && phy <= PHY_I; else if (IS_TIGERLAKE(dev_priv)) return phy >= PHY_D && phy <= PHY_I; else if (IS_ICELAKE(dev_priv)) return phy >= PHY_C && phy <= PHY_F; else return false; } bool intel_phy_is_snps(struct drm_i915_private *dev_priv, enum phy phy) { if (phy == PHY_NONE) return false; else if (IS_DG2(dev_priv)) /* * All four "combo" ports and the TC1 port (PHY E) use * Synopsis PHYs. */ return phy <= PHY_E; return false; } enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port) { if (DISPLAY_VER(i915) >= 13 && port >= PORT_D_XELPD) return PHY_D + port - PORT_D_XELPD; else if (DISPLAY_VER(i915) >= 13 && port >= PORT_TC1) return PHY_F + port - PORT_TC1; else if (IS_ALDERLAKE_S(i915) && port >= PORT_TC1) return PHY_B + port - PORT_TC1; else if ((IS_DG1(i915) || IS_ROCKETLAKE(i915)) && port >= PORT_TC1) return PHY_C + port - PORT_TC1; else if (IS_JSL_EHL(i915) && port == PORT_D) return PHY_A; return PHY_A + port - PORT_A; } enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port) { if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port))) return TC_PORT_NONE; if (DISPLAY_VER(dev_priv) >= 12) return TC_PORT_1 + port - PORT_TC1; else return TC_PORT_1 + port - PORT_C; } enum intel_display_power_domain intel_aux_power_domain(struct intel_digital_port *dig_port) { struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev); if (intel_tc_port_in_tbt_alt_mode(dig_port)) return intel_display_power_tbt_aux_domain(i915, dig_port->aux_ch); return intel_display_power_legacy_aux_domain(i915, dig_port->aux_ch); } static void get_crtc_power_domains(struct intel_crtc_state *crtc_state, struct intel_power_domain_mask *mask) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; struct drm_encoder *encoder; enum pipe pipe = crtc->pipe; bitmap_zero(mask->bits, POWER_DOMAIN_NUM); if (!crtc_state->hw.active) return; set_bit(POWER_DOMAIN_PIPE(pipe), mask->bits); set_bit(POWER_DOMAIN_TRANSCODER(cpu_transcoder), mask->bits); if (crtc_state->pch_pfit.enabled || crtc_state->pch_pfit.force_thru) set_bit(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe), mask->bits); drm_for_each_encoder_mask(encoder, &dev_priv->drm, crtc_state->uapi.encoder_mask) { struct intel_encoder *intel_encoder = to_intel_encoder(encoder); set_bit(intel_encoder->power_domain, mask->bits); } if (HAS_DDI(dev_priv) && crtc_state->has_audio) set_bit(POWER_DOMAIN_AUDIO_MMIO, mask->bits); if (crtc_state->shared_dpll) set_bit(POWER_DOMAIN_DISPLAY_CORE, mask->bits); if (crtc_state->dsc.compression_enable) set_bit(intel_dsc_power_domain(crtc, cpu_transcoder), mask->bits); } void intel_modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state, struct intel_power_domain_mask *old_domains) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum intel_display_power_domain domain; struct intel_power_domain_mask domains, new_domains; get_crtc_power_domains(crtc_state, &domains); bitmap_andnot(new_domains.bits, domains.bits, crtc->enabled_power_domains.mask.bits, POWER_DOMAIN_NUM); bitmap_andnot(old_domains->bits, crtc->enabled_power_domains.mask.bits, domains.bits, POWER_DOMAIN_NUM); for_each_power_domain(domain, &new_domains) intel_display_power_get_in_set(dev_priv, &crtc->enabled_power_domains, domain); } void intel_modeset_put_crtc_power_domains(struct intel_crtc *crtc, struct intel_power_domain_mask *domains) { intel_display_power_put_mask_in_set(to_i915(crtc->base.dev), &crtc->enabled_power_domains, domains); } static void i9xx_configure_cpu_transcoder(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (intel_crtc_has_dp_encoder(crtc_state)) { intel_cpu_transcoder_set_m1_n1(crtc, cpu_transcoder, &crtc_state->dp_m_n); intel_cpu_transcoder_set_m2_n2(crtc, cpu_transcoder, &crtc_state->dp_m2_n2); } intel_set_transcoder_timings(crtc_state); i9xx_set_pipeconf(crtc_state); } static void valleyview_crtc_enable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; if (drm_WARN_ON(&dev_priv->drm, crtc->active)) return; i9xx_configure_cpu_transcoder(new_crtc_state); intel_set_pipe_src_size(new_crtc_state); if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) { intel_de_write(dev_priv, CHV_BLEND(pipe), CHV_BLEND_LEGACY); intel_de_write(dev_priv, CHV_CANVAS(pipe), 0); } crtc->active = true; intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); intel_encoders_pre_pll_enable(state, crtc); if (IS_CHERRYVIEW(dev_priv)) chv_enable_pll(new_crtc_state); else vlv_enable_pll(new_crtc_state); intel_encoders_pre_enable(state, crtc); i9xx_pfit_enable(new_crtc_state); intel_color_load_luts(new_crtc_state); intel_color_commit_noarm(new_crtc_state); intel_color_commit_arm(new_crtc_state); /* update DSPCNTR to configure gamma for pipe bottom color */ intel_disable_primary_plane(new_crtc_state); intel_initial_watermarks(state, crtc); intel_enable_transcoder(new_crtc_state); intel_crtc_vblank_on(new_crtc_state); intel_encoders_enable(state, crtc); } static void i9xx_crtc_enable(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; if (drm_WARN_ON(&dev_priv->drm, crtc->active)) return; i9xx_configure_cpu_transcoder(new_crtc_state); intel_set_pipe_src_size(new_crtc_state); crtc->active = true; if (DISPLAY_VER(dev_priv) != 2) intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true); intel_encoders_pre_enable(state, crtc); i9xx_enable_pll(new_crtc_state); i9xx_pfit_enable(new_crtc_state); intel_color_load_luts(new_crtc_state); intel_color_commit_noarm(new_crtc_state); intel_color_commit_arm(new_crtc_state); /* update DSPCNTR to configure gamma for pipe bottom color */ intel_disable_primary_plane(new_crtc_state); if (!intel_initial_watermarks(state, crtc)) intel_update_watermarks(dev_priv); intel_enable_transcoder(new_crtc_state); intel_crtc_vblank_on(new_crtc_state); intel_encoders_enable(state, crtc); /* prevents spurious underruns */ if (DISPLAY_VER(dev_priv) == 2) intel_crtc_wait_for_next_vblank(crtc); } static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (!old_crtc_state->gmch_pfit.control) return; assert_transcoder_disabled(dev_priv, old_crtc_state->cpu_transcoder); drm_dbg_kms(&dev_priv->drm, "disabling pfit, current: 0x%08x\n", intel_de_read(dev_priv, PFIT_CONTROL)); intel_de_write(dev_priv, PFIT_CONTROL, 0); } static void i9xx_crtc_disable(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; /* * On gen2 planes are double buffered but the pipe isn't, so we must * wait for planes to fully turn off before disabling the pipe. */ if (DISPLAY_VER(dev_priv) == 2) intel_crtc_wait_for_next_vblank(crtc); intel_encoders_disable(state, crtc); intel_crtc_vblank_off(old_crtc_state); intel_disable_transcoder(old_crtc_state); i9xx_pfit_disable(old_crtc_state); intel_encoders_post_disable(state, crtc); if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) { if (IS_CHERRYVIEW(dev_priv)) chv_disable_pll(dev_priv, pipe); else if (IS_VALLEYVIEW(dev_priv)) vlv_disable_pll(dev_priv, pipe); else i9xx_disable_pll(old_crtc_state); } intel_encoders_post_pll_disable(state, crtc); if (DISPLAY_VER(dev_priv) != 2) intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false); if (!dev_priv->display.funcs.wm->initial_watermarks) intel_update_watermarks(dev_priv); /* clock the pipe down to 640x480@60 to potentially save power */ if (IS_I830(dev_priv)) i830_enable_pipe(dev_priv, pipe); } /* * turn all crtc's off, but do not adjust state * This has to be paired with a call to intel_modeset_setup_hw_state. */ int intel_display_suspend(struct drm_device *dev) { struct drm_i915_private *dev_priv = to_i915(dev); struct drm_atomic_state *state; int ret; if (!HAS_DISPLAY(dev_priv)) return 0; state = drm_atomic_helper_suspend(dev); ret = PTR_ERR_OR_ZERO(state); if (ret) drm_err(&dev_priv->drm, "Suspending crtc's failed with %i\n", ret); else dev_priv->modeset_restore_state = state; return ret; } void intel_encoder_destroy(struct drm_encoder *encoder) { struct intel_encoder *intel_encoder = to_intel_encoder(encoder); drm_encoder_cleanup(encoder); kfree(intel_encoder); } static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc) { const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); /* GDG double wide on either pipe, otherwise pipe A only */ return DISPLAY_VER(dev_priv) < 4 && (crtc->pipe == PIPE_A || IS_I915G(dev_priv)); } static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *crtc_state) { u32 pixel_rate = crtc_state->hw.pipe_mode.crtc_clock; struct drm_rect src; /* * We only use IF-ID interlacing. If we ever use * PF-ID we'll need to adjust the pixel_rate here. */ if (!crtc_state->pch_pfit.enabled) return pixel_rate; drm_rect_init(&src, 0, 0, drm_rect_width(&crtc_state->pipe_src) << 16, drm_rect_height(&crtc_state->pipe_src) << 16); return intel_adjusted_rate(&src, &crtc_state->pch_pfit.dst, pixel_rate); } static void intel_mode_from_crtc_timings(struct drm_display_mode *mode, const struct drm_display_mode *timings) { mode->hdisplay = timings->crtc_hdisplay; mode->htotal = timings->crtc_htotal; mode->hsync_start = timings->crtc_hsync_start; mode->hsync_end = timings->crtc_hsync_end; mode->vdisplay = timings->crtc_vdisplay; mode->vtotal = timings->crtc_vtotal; mode->vsync_start = timings->crtc_vsync_start; mode->vsync_end = timings->crtc_vsync_end; mode->flags = timings->flags; mode->type = DRM_MODE_TYPE_DRIVER; mode->clock = timings->crtc_clock; drm_mode_set_name(mode); } static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); if (HAS_GMCH(dev_priv)) /* FIXME calculate proper pipe pixel rate for GMCH pfit */ crtc_state->pixel_rate = crtc_state->hw.pipe_mode.crtc_clock; else crtc_state->pixel_rate = ilk_pipe_pixel_rate(crtc_state); } static void intel_bigjoiner_adjust_timings(const struct intel_crtc_state *crtc_state, struct drm_display_mode *mode) { int num_pipes = intel_bigjoiner_num_pipes(crtc_state); if (num_pipes < 2) return; mode->crtc_clock /= num_pipes; mode->crtc_hdisplay /= num_pipes; mode->crtc_hblank_start /= num_pipes; mode->crtc_hblank_end /= num_pipes; mode->crtc_hsync_start /= num_pipes; mode->crtc_hsync_end /= num_pipes; mode->crtc_htotal /= num_pipes; } static void intel_splitter_adjust_timings(const struct intel_crtc_state *crtc_state, struct drm_display_mode *mode) { int overlap = crtc_state->splitter.pixel_overlap; int n = crtc_state->splitter.link_count; if (!crtc_state->splitter.enable) return; /* * eDP MSO uses segment timings from EDID for transcoder * timings, but full mode for everything else. * * h_full = (h_segment - pixel_overlap) * link_count */ mode->crtc_hdisplay = (mode->crtc_hdisplay - overlap) * n; mode->crtc_hblank_start = (mode->crtc_hblank_start - overlap) * n; mode->crtc_hblank_end = (mode->crtc_hblank_end - overlap) * n; mode->crtc_hsync_start = (mode->crtc_hsync_start - overlap) * n; mode->crtc_hsync_end = (mode->crtc_hsync_end - overlap) * n; mode->crtc_htotal = (mode->crtc_htotal - overlap) * n; mode->crtc_clock *= n; } static void intel_crtc_readout_derived_state(struct intel_crtc_state *crtc_state) { struct drm_display_mode *mode = &crtc_state->hw.mode; struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; /* * Start with the adjusted_mode crtc timings, which * have been filled with the transcoder timings. */ drm_mode_copy(pipe_mode, adjusted_mode); /* Expand MSO per-segment transcoder timings to full */ intel_splitter_adjust_timings(crtc_state, pipe_mode); /* * We want the full numbers in adjusted_mode normal timings, * adjusted_mode crtc timings are left with the raw transcoder * timings. */ intel_mode_from_crtc_timings(adjusted_mode, pipe_mode); /* Populate the "user" mode with full numbers */ drm_mode_copy(mode, pipe_mode); intel_mode_from_crtc_timings(mode, mode); mode->hdisplay = drm_rect_width(&crtc_state->pipe_src) * (intel_bigjoiner_num_pipes(crtc_state) ?: 1); mode->vdisplay = drm_rect_height(&crtc_state->pipe_src); /* Derive per-pipe timings in case bigjoiner is used */ intel_bigjoiner_adjust_timings(crtc_state, pipe_mode); intel_mode_from_crtc_timings(pipe_mode, pipe_mode); intel_crtc_compute_pixel_rate(crtc_state); } void intel_encoder_get_config(struct intel_encoder *encoder, struct intel_crtc_state *crtc_state) { encoder->get_config(encoder, crtc_state); intel_crtc_readout_derived_state(crtc_state); } static void intel_bigjoiner_compute_pipe_src(struct intel_crtc_state *crtc_state) { int num_pipes = intel_bigjoiner_num_pipes(crtc_state); int width, height; if (num_pipes < 2) return; width = drm_rect_width(&crtc_state->pipe_src); height = drm_rect_height(&crtc_state->pipe_src); drm_rect_init(&crtc_state->pipe_src, 0, 0, width / num_pipes, height); } static int intel_crtc_compute_pipe_src(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); intel_bigjoiner_compute_pipe_src(crtc_state); /* * Pipe horizontal size must be even in: * - DVO ganged mode * - LVDS dual channel mode * - Double wide pipe */ if (drm_rect_width(&crtc_state->pipe_src) & 1) { if (crtc_state->double_wide) { drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Odd pipe source width not supported with double wide pipe\n", crtc->base.base.id, crtc->base.name); return -EINVAL; } if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) && intel_is_dual_link_lvds(i915)) { drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Odd pipe source width not supported with dual link LVDS\n", crtc->base.base.id, crtc->base.name); return -EINVAL; } } return 0; } static int intel_crtc_compute_pipe_mode(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; int clock_limit = i915->max_dotclk_freq; /* * Start with the adjusted_mode crtc timings, which * have been filled with the transcoder timings. */ drm_mode_copy(pipe_mode, adjusted_mode); /* Expand MSO per-segment transcoder timings to full */ intel_splitter_adjust_timings(crtc_state, pipe_mode); /* Derive per-pipe timings in case bigjoiner is used */ intel_bigjoiner_adjust_timings(crtc_state, pipe_mode); intel_mode_from_crtc_timings(pipe_mode, pipe_mode); if (DISPLAY_VER(i915) < 4) { clock_limit = i915->display.cdclk.max_cdclk_freq * 9 / 10; /* * Enable double wide mode when the dot clock * is > 90% of the (display) core speed. */ if (intel_crtc_supports_double_wide(crtc) && pipe_mode->crtc_clock > clock_limit) { clock_limit = i915->max_dotclk_freq; crtc_state->double_wide = true; } } if (pipe_mode->crtc_clock > clock_limit) { drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n", crtc->base.base.id, crtc->base.name, pipe_mode->crtc_clock, clock_limit, str_yes_no(crtc_state->double_wide)); return -EINVAL; } return 0; } static int intel_crtc_compute_config(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); int ret; ret = intel_dpll_crtc_compute_clock(state, crtc); if (ret) return ret; ret = intel_crtc_compute_pipe_src(crtc_state); if (ret) return ret; ret = intel_crtc_compute_pipe_mode(crtc_state); if (ret) return ret; intel_crtc_compute_pixel_rate(crtc_state); if (crtc_state->has_pch_encoder) return ilk_fdi_compute_config(crtc, crtc_state); return 0; } static void intel_reduce_m_n_ratio(u32 *num, u32 *den) { while (*num > DATA_LINK_M_N_MASK || *den > DATA_LINK_M_N_MASK) { *num >>= 1; *den >>= 1; } } static void compute_m_n(u32 *ret_m, u32 *ret_n, u32 m, u32 n, u32 constant_n) { if (constant_n) *ret_n = constant_n; else *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX); *ret_m = div_u64(mul_u32_u32(m, *ret_n), n); intel_reduce_m_n_ratio(ret_m, ret_n); } void intel_link_compute_m_n(u16 bits_per_pixel, int nlanes, int pixel_clock, int link_clock, struct intel_link_m_n *m_n, bool fec_enable) { u32 data_clock = bits_per_pixel * pixel_clock; if (fec_enable) data_clock = intel_dp_mode_to_fec_clock(data_clock); /* * Windows/BIOS uses fixed M/N values always. Follow suit. * * Also several DP dongles in particular seem to be fussy * about too large link M/N values. Presumably the 20bit * value used by Windows/BIOS is acceptable to everyone. */ m_n->tu = 64; compute_m_n(&m_n->data_m, &m_n->data_n, data_clock, link_clock * nlanes * 8, 0x8000000); compute_m_n(&m_n->link_m, &m_n->link_n, pixel_clock, link_clock, 0x80000); } static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv) { /* * There may be no VBT; and if the BIOS enabled SSC we can * just keep using it to avoid unnecessary flicker. Whereas if the * BIOS isn't using it, don't assume it will work even if the VBT * indicates as much. */ if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { bool bios_lvds_use_ssc = intel_de_read(dev_priv, PCH_DREF_CONTROL) & DREF_SSC1_ENABLE; if (dev_priv->display.vbt.lvds_use_ssc != bios_lvds_use_ssc) { drm_dbg_kms(&dev_priv->drm, "SSC %s by BIOS, overriding VBT which says %s\n", str_enabled_disabled(bios_lvds_use_ssc), str_enabled_disabled(dev_priv->display.vbt.lvds_use_ssc)); dev_priv->display.vbt.lvds_use_ssc = bios_lvds_use_ssc; } } } void intel_zero_m_n(struct intel_link_m_n *m_n) { /* corresponds to 0 register value */ memset(m_n, 0, sizeof(*m_n)); m_n->tu = 1; } void intel_set_m_n(struct drm_i915_private *i915, const struct intel_link_m_n *m_n, i915_reg_t data_m_reg, i915_reg_t data_n_reg, i915_reg_t link_m_reg, i915_reg_t link_n_reg) { intel_de_write(i915, data_m_reg, TU_SIZE(m_n->tu) | m_n->data_m); intel_de_write(i915, data_n_reg, m_n->data_n); intel_de_write(i915, link_m_reg, m_n->link_m); /* * On BDW+ writing LINK_N arms the double buffered update * of all the M/N registers, so it must be written last. */ intel_de_write(i915, link_n_reg, m_n->link_n); } bool intel_cpu_transcoder_has_m2_n2(struct drm_i915_private *dev_priv, enum transcoder transcoder) { if (IS_HASWELL(dev_priv)) return transcoder == TRANSCODER_EDP; return IS_DISPLAY_VER(dev_priv, 5, 7) || IS_CHERRYVIEW(dev_priv); } void intel_cpu_transcoder_set_m1_n1(struct intel_crtc *crtc, enum transcoder transcoder, const struct intel_link_m_n *m_n) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; if (DISPLAY_VER(dev_priv) >= 5) intel_set_m_n(dev_priv, m_n, PIPE_DATA_M1(transcoder), PIPE_DATA_N1(transcoder), PIPE_LINK_M1(transcoder), PIPE_LINK_N1(transcoder)); else intel_set_m_n(dev_priv, m_n, PIPE_DATA_M_G4X(pipe), PIPE_DATA_N_G4X(pipe), PIPE_LINK_M_G4X(pipe), PIPE_LINK_N_G4X(pipe)); } void intel_cpu_transcoder_set_m2_n2(struct intel_crtc *crtc, enum transcoder transcoder, const struct intel_link_m_n *m_n) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (!intel_cpu_transcoder_has_m2_n2(dev_priv, transcoder)) return; intel_set_m_n(dev_priv, m_n, PIPE_DATA_M2(transcoder), PIPE_DATA_N2(transcoder), PIPE_LINK_M2(transcoder), PIPE_LINK_N2(transcoder)); } static void intel_set_transcoder_timings(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; u32 crtc_vtotal, crtc_vblank_end; int vsyncshift = 0; /* We need to be careful not to changed the adjusted mode, for otherwise * the hw state checker will get angry at the mismatch. */ crtc_vtotal = adjusted_mode->crtc_vtotal; crtc_vblank_end = adjusted_mode->crtc_vblank_end; if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { /* the chip adds 2 halflines automatically */ crtc_vtotal -= 1; crtc_vblank_end -= 1; if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2; else vsyncshift = adjusted_mode->crtc_hsync_start - adjusted_mode->crtc_htotal / 2; if (vsyncshift < 0) vsyncshift += adjusted_mode->crtc_htotal; } if (DISPLAY_VER(dev_priv) > 3) intel_de_write(dev_priv, VSYNCSHIFT(cpu_transcoder), vsyncshift); intel_de_write(dev_priv, HTOTAL(cpu_transcoder), (adjusted_mode->crtc_hdisplay - 1) | ((adjusted_mode->crtc_htotal - 1) << 16)); intel_de_write(dev_priv, HBLANK(cpu_transcoder), (adjusted_mode->crtc_hblank_start - 1) | ((adjusted_mode->crtc_hblank_end - 1) << 16)); intel_de_write(dev_priv, HSYNC(cpu_transcoder), (adjusted_mode->crtc_hsync_start - 1) | ((adjusted_mode->crtc_hsync_end - 1) << 16)); intel_de_write(dev_priv, VTOTAL(cpu_transcoder), (adjusted_mode->crtc_vdisplay - 1) | ((crtc_vtotal - 1) << 16)); intel_de_write(dev_priv, VBLANK(cpu_transcoder), (adjusted_mode->crtc_vblank_start - 1) | ((crtc_vblank_end - 1) << 16)); intel_de_write(dev_priv, VSYNC(cpu_transcoder), (adjusted_mode->crtc_vsync_start - 1) | ((adjusted_mode->crtc_vsync_end - 1) << 16)); /* Workaround: when the EDP input selection is B, the VTOTAL_B must be * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is * documented on the DDI_FUNC_CTL register description, EDP Input Select * bits. */ if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP && (pipe == PIPE_B || pipe == PIPE_C)) intel_de_write(dev_priv, VTOTAL(pipe), intel_de_read(dev_priv, VTOTAL(cpu_transcoder))); } static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); int width = drm_rect_width(&crtc_state->pipe_src); int height = drm_rect_height(&crtc_state->pipe_src); enum pipe pipe = crtc->pipe; /* pipesrc controls the size that is scaled from, which should * always be the user's requested size. */ intel_de_write(dev_priv, PIPESRC(pipe), PIPESRC_WIDTH(width - 1) | PIPESRC_HEIGHT(height - 1)); } static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; if (DISPLAY_VER(dev_priv) == 2) return false; if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW; else return intel_de_read(dev_priv, PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK; } static void intel_get_transcoder_timings(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; u32 tmp; tmp = intel_de_read(dev_priv, HTOTAL(cpu_transcoder)); pipe_config->hw.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1; pipe_config->hw.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1; if (!transcoder_is_dsi(cpu_transcoder)) { tmp = intel_de_read(dev_priv, HBLANK(cpu_transcoder)); pipe_config->hw.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1; pipe_config->hw.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1; } tmp = intel_de_read(dev_priv, HSYNC(cpu_transcoder)); pipe_config->hw.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1; pipe_config->hw.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1; tmp = intel_de_read(dev_priv, VTOTAL(cpu_transcoder)); pipe_config->hw.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1; pipe_config->hw.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1; if (!transcoder_is_dsi(cpu_transcoder)) { tmp = intel_de_read(dev_priv, VBLANK(cpu_transcoder)); pipe_config->hw.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1; pipe_config->hw.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1; } tmp = intel_de_read(dev_priv, VSYNC(cpu_transcoder)); pipe_config->hw.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1; pipe_config->hw.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1; if (intel_pipe_is_interlaced(pipe_config)) { pipe_config->hw.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE; pipe_config->hw.adjusted_mode.crtc_vtotal += 1; pipe_config->hw.adjusted_mode.crtc_vblank_end += 1; } } static void intel_bigjoiner_adjust_pipe_src(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); int num_pipes = intel_bigjoiner_num_pipes(crtc_state); enum pipe master_pipe, pipe = crtc->pipe; int width; if (num_pipes < 2) return; master_pipe = bigjoiner_master_pipe(crtc_state); width = drm_rect_width(&crtc_state->pipe_src); drm_rect_translate_to(&crtc_state->pipe_src, (pipe - master_pipe) * width, 0); } static void intel_get_pipe_src_size(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); u32 tmp; tmp = intel_de_read(dev_priv, PIPESRC(crtc->pipe)); drm_rect_init(&pipe_config->pipe_src, 0, 0, REG_FIELD_GET(PIPESRC_WIDTH_MASK, tmp) + 1, REG_FIELD_GET(PIPESRC_HEIGHT_MASK, tmp) + 1); intel_bigjoiner_adjust_pipe_src(pipe_config); } void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 pipeconf = 0; /* * - We keep both pipes enabled on 830 * - During modeset the pipe is still disabled and must remain so * - During fastset the pipe is already enabled and must remain so */ if (IS_I830(dev_priv) || !intel_crtc_needs_modeset(crtc_state)) pipeconf |= PIPECONF_ENABLE; if (crtc_state->double_wide) pipeconf |= PIPECONF_DOUBLE_WIDE; /* only g4x and later have fancy bpc/dither controls */ if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { /* Bspec claims that we can't use dithering for 30bpp pipes. */ if (crtc_state->dither && crtc_state->pipe_bpp != 30) pipeconf |= PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP; switch (crtc_state->pipe_bpp) { default: /* Case prevented by intel_choose_pipe_bpp_dither. */ MISSING_CASE(crtc_state->pipe_bpp); fallthrough; case 18: pipeconf |= PIPECONF_BPC_6; break; case 24: pipeconf |= PIPECONF_BPC_8; break; case 30: pipeconf |= PIPECONF_BPC_10; break; } } if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) { if (DISPLAY_VER(dev_priv) < 4 || intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION; else pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT; } else { pipeconf |= PIPECONF_INTERLACE_PROGRESSIVE; } if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && crtc_state->limited_color_range) pipeconf |= PIPECONF_COLOR_RANGE_SELECT; pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); pipeconf |= PIPECONF_FRAME_START_DELAY(crtc_state->framestart_delay - 1); intel_de_write(dev_priv, PIPECONF(crtc->pipe), pipeconf); intel_de_posting_read(dev_priv, PIPECONF(crtc->pipe)); } static bool i9xx_has_pfit(struct drm_i915_private *dev_priv) { if (IS_I830(dev_priv)) return false; return DISPLAY_VER(dev_priv) >= 4 || IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv); } static void i9xx_get_pfit_config(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 tmp; if (!i9xx_has_pfit(dev_priv)) return; tmp = intel_de_read(dev_priv, PFIT_CONTROL); if (!(tmp & PFIT_ENABLE)) return; /* Check whether the pfit is attached to our pipe. */ if (DISPLAY_VER(dev_priv) < 4) { if (crtc->pipe != PIPE_B) return; } else { if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT)) return; } crtc_state->gmch_pfit.control = tmp; crtc_state->gmch_pfit.pgm_ratios = intel_de_read(dev_priv, PFIT_PGM_RATIOS); } static void vlv_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum pipe pipe = crtc->pipe; struct dpll clock; u32 mdiv; int refclk = 100000; /* In case of DSI, DPLL will not be used */ if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) return; vlv_dpio_get(dev_priv); mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe)); vlv_dpio_put(dev_priv); clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7; clock.m2 = mdiv & DPIO_M2DIV_MASK; clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf; clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7; clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f; pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock); } static void chv_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum pipe pipe = crtc->pipe; enum dpio_channel port = vlv_pipe_to_channel(pipe); struct dpll clock; u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3; int refclk = 100000; /* In case of DSI, DPLL will not be used */ if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0) return; vlv_dpio_get(dev_priv); cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port)); pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port)); pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port)); pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port)); pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port)); vlv_dpio_put(dev_priv); clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0; clock.m2 = (pll_dw0 & 0xff) << 22; if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN) clock.m2 |= pll_dw2 & 0x3fffff; clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf; clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7; clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f; pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock); } static enum intel_output_format bdw_get_pipemisc_output_format(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 tmp; tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); if (tmp & PIPEMISC_YUV420_ENABLE) { /* We support 4:2:0 in full blend mode only */ drm_WARN_ON(&dev_priv->drm, (tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0); return INTEL_OUTPUT_FORMAT_YCBCR420; } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) { return INTEL_OUTPUT_FORMAT_YCBCR444; } else { return INTEL_OUTPUT_FORMAT_RGB; } } static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct intel_plane *plane = to_intel_plane(crtc->base.primary); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum i9xx_plane_id i9xx_plane = plane->i9xx_plane; u32 tmp; tmp = intel_de_read(dev_priv, DSPCNTR(i9xx_plane)); if (tmp & DISP_PIPE_GAMMA_ENABLE) crtc_state->gamma_enable = true; if (!HAS_GMCH(dev_priv) && tmp & DISP_PIPE_CSC_ENABLE) crtc_state->csc_enable = true; } static bool i9xx_get_pipe_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum intel_display_power_domain power_domain; intel_wakeref_t wakeref; u32 tmp; bool ret; power_domain = POWER_DOMAIN_PIPE(crtc->pipe); wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!wakeref) return false; pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; pipe_config->shared_dpll = NULL; ret = false; tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); if (!(tmp & PIPECONF_ENABLE)) goto out; if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { switch (tmp & PIPECONF_BPC_MASK) { case PIPECONF_BPC_6: pipe_config->pipe_bpp = 18; break; case PIPECONF_BPC_8: pipe_config->pipe_bpp = 24; break; case PIPECONF_BPC_10: pipe_config->pipe_bpp = 30; break; default: MISSING_CASE(tmp); break; } } if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && (tmp & PIPECONF_COLOR_RANGE_SELECT)) pipe_config->limited_color_range = true; pipe_config->gamma_mode = REG_FIELD_GET(PIPECONF_GAMMA_MODE_MASK_I9XX, tmp); pipe_config->framestart_delay = REG_FIELD_GET(PIPECONF_FRAME_START_DELAY_MASK, tmp) + 1; if (IS_CHERRYVIEW(dev_priv)) pipe_config->cgm_mode = intel_de_read(dev_priv, CGM_PIPE_MODE(crtc->pipe)); i9xx_get_pipe_color_config(pipe_config); intel_color_get_config(pipe_config); if (DISPLAY_VER(dev_priv) < 4) pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE; intel_get_transcoder_timings(crtc, pipe_config); intel_get_pipe_src_size(crtc, pipe_config); i9xx_get_pfit_config(pipe_config); if (DISPLAY_VER(dev_priv) >= 4) { /* No way to read it out on pipes B and C */ if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A) tmp = dev_priv->chv_dpll_md[crtc->pipe]; else tmp = intel_de_read(dev_priv, DPLL_MD(crtc->pipe)); pipe_config->pixel_multiplier = ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK) >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1; pipe_config->dpll_hw_state.dpll_md = tmp; } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) { tmp = intel_de_read(dev_priv, DPLL(crtc->pipe)); pipe_config->pixel_multiplier = ((tmp & SDVO_MULTIPLIER_MASK) >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1; } else { /* Note that on i915G/GM the pixel multiplier is in the sdvo * port and will be fixed up in the encoder->get_config * function. */ pipe_config->pixel_multiplier = 1; } pipe_config->dpll_hw_state.dpll = intel_de_read(dev_priv, DPLL(crtc->pipe)); if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) { pipe_config->dpll_hw_state.fp0 = intel_de_read(dev_priv, FP0(crtc->pipe)); pipe_config->dpll_hw_state.fp1 = intel_de_read(dev_priv, FP1(crtc->pipe)); } else { /* Mask out read-only status bits. */ pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV | DPLL_PORTC_READY_MASK | DPLL_PORTB_READY_MASK); } if (IS_CHERRYVIEW(dev_priv)) chv_crtc_clock_get(crtc, pipe_config); else if (IS_VALLEYVIEW(dev_priv)) vlv_crtc_clock_get(crtc, pipe_config); else i9xx_crtc_clock_get(crtc, pipe_config); /* * Normally the dotclock is filled in by the encoder .get_config() * but in case the pipe is enabled w/o any ports we need a sane * default. */ pipe_config->hw.adjusted_mode.crtc_clock = pipe_config->port_clock / pipe_config->pixel_multiplier; ret = true; out: intel_display_power_put(dev_priv, power_domain, wakeref); return ret; } void ilk_set_pipeconf(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; u32 val = 0; /* * - During modeset the pipe is still disabled and must remain so * - During fastset the pipe is already enabled and must remain so */ if (!intel_crtc_needs_modeset(crtc_state)) val |= PIPECONF_ENABLE; switch (crtc_state->pipe_bpp) { default: /* Case prevented by intel_choose_pipe_bpp_dither. */ MISSING_CASE(crtc_state->pipe_bpp); fallthrough; case 18: val |= PIPECONF_BPC_6; break; case 24: val |= PIPECONF_BPC_8; break; case 30: val |= PIPECONF_BPC_10; break; case 36: val |= PIPECONF_BPC_12; break; } if (crtc_state->dither) val |= PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP; if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) val |= PIPECONF_INTERLACE_IF_ID_ILK; else val |= PIPECONF_INTERLACE_PF_PD_ILK; /* * This would end up with an odd purple hue over * the entire display. Make sure we don't do it. */ drm_WARN_ON(&dev_priv->drm, crtc_state->limited_color_range && crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB); if (crtc_state->limited_color_range && !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) val |= PIPECONF_COLOR_RANGE_SELECT; if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) val |= PIPECONF_OUTPUT_COLORSPACE_YUV709; val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode); val |= PIPECONF_FRAME_START_DELAY(crtc_state->framestart_delay - 1); val |= PIPECONF_MSA_TIMING_DELAY(crtc_state->msa_timing_delay); intel_de_write(dev_priv, PIPECONF(pipe), val); intel_de_posting_read(dev_priv, PIPECONF(pipe)); } static void hsw_set_transconf(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; u32 val = 0; /* * - During modeset the pipe is still disabled and must remain so * - During fastset the pipe is already enabled and must remain so */ if (!intel_crtc_needs_modeset(crtc_state)) val |= PIPECONF_ENABLE; if (IS_HASWELL(dev_priv) && crtc_state->dither) val |= PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP; if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) val |= PIPECONF_INTERLACE_IF_ID_ILK; else val |= PIPECONF_INTERLACE_PF_PD_ILK; if (IS_HASWELL(dev_priv) && crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB) val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW; intel_de_write(dev_priv, PIPECONF(cpu_transcoder), val); intel_de_posting_read(dev_priv, PIPECONF(cpu_transcoder)); } static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 val = 0; switch (crtc_state->pipe_bpp) { case 18: val |= PIPEMISC_BPC_6; break; case 24: val |= PIPEMISC_BPC_8; break; case 30: val |= PIPEMISC_BPC_10; break; case 36: /* Port output 12BPC defined for ADLP+ */ if (DISPLAY_VER(dev_priv) > 12) val |= PIPEMISC_BPC_12_ADLP; break; default: MISSING_CASE(crtc_state->pipe_bpp); break; } if (crtc_state->dither) val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP; if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 || crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) val |= PIPEMISC_OUTPUT_COLORSPACE_YUV; if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) val |= PIPEMISC_YUV420_ENABLE | PIPEMISC_YUV420_MODE_FULL_BLEND; if (DISPLAY_VER(dev_priv) >= 11 && is_hdr_mode(crtc_state)) val |= PIPEMISC_HDR_MODE_PRECISION; if (DISPLAY_VER(dev_priv) >= 12) val |= PIPEMISC_PIXEL_ROUNDING_TRUNC; intel_de_write(dev_priv, PIPEMISC(crtc->pipe), val); } int bdw_get_pipemisc_bpp(struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 tmp; tmp = intel_de_read(dev_priv, PIPEMISC(crtc->pipe)); switch (tmp & PIPEMISC_BPC_MASK) { case PIPEMISC_BPC_6: return 18; case PIPEMISC_BPC_8: return 24; case PIPEMISC_BPC_10: return 30; /* * PORT OUTPUT 12 BPC defined for ADLP+. * * TODO: * For previous platforms with DSI interface, bits 5:7 * are used for storing pipe_bpp irrespective of dithering. * Since the value of 12 BPC is not defined for these bits * on older platforms, need to find a workaround for 12 BPC * MIPI DSI HW readout. */ case PIPEMISC_BPC_12_ADLP: if (DISPLAY_VER(dev_priv) > 12) return 36; fallthrough; default: MISSING_CASE(tmp); return 0; } } int ilk_get_lanes_required(int target_clock, int link_bw, int bpp) { /* * Account for spread spectrum to avoid * oversubscribing the link. Max center spread * is 2.5%; use 5% for safety's sake. */ u32 bps = target_clock * bpp * 21 / 20; return DIV_ROUND_UP(bps, link_bw * 8); } void intel_get_m_n(struct drm_i915_private *i915, struct intel_link_m_n *m_n, i915_reg_t data_m_reg, i915_reg_t data_n_reg, i915_reg_t link_m_reg, i915_reg_t link_n_reg) { m_n->link_m = intel_de_read(i915, link_m_reg) & DATA_LINK_M_N_MASK; m_n->link_n = intel_de_read(i915, link_n_reg) & DATA_LINK_M_N_MASK; m_n->data_m = intel_de_read(i915, data_m_reg) & DATA_LINK_M_N_MASK; m_n->data_n = intel_de_read(i915, data_n_reg) & DATA_LINK_M_N_MASK; m_n->tu = REG_FIELD_GET(TU_SIZE_MASK, intel_de_read(i915, data_m_reg)) + 1; } void intel_cpu_transcoder_get_m1_n1(struct intel_crtc *crtc, enum transcoder transcoder, struct intel_link_m_n *m_n) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); enum pipe pipe = crtc->pipe; if (DISPLAY_VER(dev_priv) >= 5) intel_get_m_n(dev_priv, m_n, PIPE_DATA_M1(transcoder), PIPE_DATA_N1(transcoder), PIPE_LINK_M1(transcoder), PIPE_LINK_N1(transcoder)); else intel_get_m_n(dev_priv, m_n, PIPE_DATA_M_G4X(pipe), PIPE_DATA_N_G4X(pipe), PIPE_LINK_M_G4X(pipe), PIPE_LINK_N_G4X(pipe)); } void intel_cpu_transcoder_get_m2_n2(struct intel_crtc *crtc, enum transcoder transcoder, struct intel_link_m_n *m_n) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (!intel_cpu_transcoder_has_m2_n2(dev_priv, transcoder)) return; intel_get_m_n(dev_priv, m_n, PIPE_DATA_M2(transcoder), PIPE_DATA_N2(transcoder), PIPE_LINK_M2(transcoder), PIPE_LINK_N2(transcoder)); } static void ilk_get_pfit_pos_size(struct intel_crtc_state *crtc_state, u32 pos, u32 size) { drm_rect_init(&crtc_state->pch_pfit.dst, pos >> 16, pos & 0xffff, size >> 16, size & 0xffff); } static void skl_get_pfit_config(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state; int id = -1; int i; /* find scaler attached to this pipe */ for (i = 0; i < crtc->num_scalers; i++) { u32 ctl, pos, size; ctl = intel_de_read(dev_priv, SKL_PS_CTRL(crtc->pipe, i)); if ((ctl & (PS_SCALER_EN | PS_PLANE_SEL_MASK)) != PS_SCALER_EN) continue; id = i; crtc_state->pch_pfit.enabled = true; pos = intel_de_read(dev_priv, SKL_PS_WIN_POS(crtc->pipe, i)); size = intel_de_read(dev_priv, SKL_PS_WIN_SZ(crtc->pipe, i)); ilk_get_pfit_pos_size(crtc_state, pos, size); scaler_state->scalers[i].in_use = true; break; } scaler_state->scaler_id = id; if (id >= 0) scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX); else scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX); } static void ilk_get_pfit_config(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); u32 ctl, pos, size; ctl = intel_de_read(dev_priv, PF_CTL(crtc->pipe)); if ((ctl & PF_ENABLE) == 0) return; crtc_state->pch_pfit.enabled = true; pos = intel_de_read(dev_priv, PF_WIN_POS(crtc->pipe)); size = intel_de_read(dev_priv, PF_WIN_SZ(crtc->pipe)); ilk_get_pfit_pos_size(crtc_state, pos, size); /* * We currently do not free assignements of panel fitters on * ivb/hsw (since we don't use the higher upscaling modes which * differentiates them) so just WARN about this case for now. */ drm_WARN_ON(&dev_priv->drm, DISPLAY_VER(dev_priv) == 7 && (ctl & PF_PIPE_SEL_MASK_IVB) != PF_PIPE_SEL_IVB(crtc->pipe)); } static bool ilk_get_pipe_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum intel_display_power_domain power_domain; intel_wakeref_t wakeref; u32 tmp; bool ret; power_domain = POWER_DOMAIN_PIPE(crtc->pipe); wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain); if (!wakeref) return false; pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe; pipe_config->shared_dpll = NULL; ret = false; tmp = intel_de_read(dev_priv, PIPECONF(crtc->pipe)); if (!(tmp & PIPECONF_ENABLE)) goto out; switch (tmp & PIPECONF_BPC_MASK) { case PIPECONF_BPC_6: pipe_config->pipe_bpp = 18; break; case PIPECONF_BPC_8: pipe_config->pipe_bpp = 24; break; case PIPECONF_BPC_10: pipe_config->pipe_bpp = 30; break; case PIPECONF_BPC_12: pipe_config->pipe_bpp = 36; break; default: break; } if (tmp & PIPECONF_COLOR_RANGE_SELECT) pipe_config->limited_color_range = true; switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) { case PIPECONF_OUTPUT_COLORSPACE_YUV601: case PIPECONF_OUTPUT_COLORSPACE_YUV709: pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; break; default: pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; break; } pipe_config->gamma_mode = REG_FIELD_GET(PIPECONF_GAMMA_MODE_MASK_ILK, tmp); pipe_config->framestart_delay = REG_FIELD_GET(PIPECONF_FRAME_START_DELAY_MASK, tmp) + 1; pipe_config->msa_timing_delay = REG_FIELD_GET(PIPECONF_MSA_TIMING_DELAY_MASK, tmp); pipe_config->csc_mode = intel_de_read(dev_priv, PIPE_CSC_MODE(crtc->pipe)); i9xx_get_pipe_color_config(pipe_config); intel_color_get_config(pipe_config); pipe_config->pixel_multiplier = 1; ilk_pch_get_config(pipe_config); intel_get_transcoder_timings(crtc, pipe_config); intel_get_pipe_src_size(crtc, pipe_config); ilk_get_pfit_config(pipe_config); ret = true; out: intel_display_power_put(dev_priv, power_domain, wakeref); return ret; } static u8 bigjoiner_pipes(struct drm_i915_private *i915) { u8 pipes; if (DISPLAY_VER(i915) >= 12) pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D); else if (DISPLAY_VER(i915) >= 11) pipes = BIT(PIPE_B) | BIT(PIPE_C); else pipes = 0; return pipes & RUNTIME_INFO(i915)->pipe_mask; } static bool transcoder_ddi_func_is_enabled(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) { enum intel_display_power_domain power_domain; intel_wakeref_t wakeref; u32 tmp = 0; power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); with_intel_display_power_if_enabled(dev_priv, power_domain, wakeref) tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)); return tmp & TRANS_DDI_FUNC_ENABLE; } static void enabled_bigjoiner_pipes(struct drm_i915_private *dev_priv, u8 *master_pipes, u8 *slave_pipes) { struct intel_crtc *crtc; *master_pipes = 0; *slave_pipes = 0; for_each_intel_crtc_in_pipe_mask(&dev_priv->drm, crtc, bigjoiner_pipes(dev_priv)) { enum intel_display_power_domain power_domain; enum pipe pipe = crtc->pipe; intel_wakeref_t wakeref; power_domain = intel_dsc_power_domain(crtc, (enum transcoder) pipe); with_intel_display_power_if_enabled(dev_priv, power_domain, wakeref) { u32 tmp = intel_de_read(dev_priv, ICL_PIPE_DSS_CTL1(pipe)); if (!(tmp & BIG_JOINER_ENABLE)) continue; if (tmp & MASTER_BIG_JOINER_ENABLE) *master_pipes |= BIT(pipe); else *slave_pipes |= BIT(pipe); } if (DISPLAY_VER(dev_priv) < 13) continue; power_domain = POWER_DOMAIN_PIPE(pipe); with_intel_display_power_if_enabled(dev_priv, power_domain, wakeref) { u32 tmp = intel_de_read(dev_priv, ICL_PIPE_DSS_CTL1(pipe)); if (tmp & UNCOMPRESSED_JOINER_MASTER) *master_pipes |= BIT(pipe); if (tmp & UNCOMPRESSED_JOINER_SLAVE) *slave_pipes |= BIT(pipe); } } /* Bigjoiner pipes should always be consecutive master and slave */ drm_WARN(&dev_priv->drm, *slave_pipes != *master_pipes << 1, "Bigjoiner misconfigured (master pipes 0x%x, slave pipes 0x%x)\n", *master_pipes, *slave_pipes); } static enum pipe get_bigjoiner_master_pipe(enum pipe pipe, u8 master_pipes, u8 slave_pipes) { if ((slave_pipes & BIT(pipe)) == 0) return pipe; /* ignore everything above our pipe */ master_pipes &= ~GENMASK(7, pipe); /* highest remaining bit should be our master pipe */ return fls(master_pipes) - 1; } static u8 get_bigjoiner_slave_pipes(enum pipe pipe, u8 master_pipes, u8 slave_pipes) { enum pipe master_pipe, next_master_pipe; master_pipe = get_bigjoiner_master_pipe(pipe, master_pipes, slave_pipes); if ((master_pipes & BIT(master_pipe)) == 0) return 0; /* ignore our master pipe and everything below it */ master_pipes &= ~GENMASK(master_pipe, 0); /* make sure a high bit is set for the ffs() */ master_pipes |= BIT(7); /* lowest remaining bit should be the next master pipe */ next_master_pipe = ffs(master_pipes) - 1; return slave_pipes & GENMASK(next_master_pipe - 1, master_pipe); } static u8 hsw_panel_transcoders(struct drm_i915_private *i915) { u8 panel_transcoder_mask = BIT(TRANSCODER_EDP); if (DISPLAY_VER(i915) >= 11) panel_transcoder_mask |= BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1); return panel_transcoder_mask; } static u8 hsw_enabled_transcoders(struct intel_crtc *crtc) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); u8 panel_transcoder_mask = hsw_panel_transcoders(dev_priv); enum transcoder cpu_transcoder; u8 master_pipes, slave_pipes; u8 enabled_transcoders = 0; /* * XXX: Do intel_display_power_get_if_enabled before reading this (for * consistency and less surprising code; it's in always on power). */ for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, panel_transcoder_mask) { enum intel_display_power_domain power_domain; intel_wakeref_t wakeref; enum pipe trans_pipe; u32 tmp = 0; power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder); with_intel_display_power_if_enabled(dev_priv, power_domain, wakeref) tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)); if (!(tmp & TRANS_DDI_FUNC_ENABLE)) continue; switch (tmp & TRANS_DDI_EDP_INPUT_MASK) { default: drm_WARN(dev, 1, "unknown pipe linked to transcoder %s\n", transcoder_name(cpu_transcoder)); fallthrough; case TRANS_DDI_EDP_INPUT_A_ONOFF: case TRANS_DDI_EDP_INPUT_A_ON: trans_pipe = PIPE_A; break; case TRANS_DDI_EDP_INPUT_B_ONOFF: trans_pipe = PIPE_B; break; case TRANS_DDI_EDP_INPUT_C_ONOFF: trans_pipe = PIPE_C; break; case TRANS_DDI_EDP_INPUT_D_ONOFF: trans_pipe = PIPE_D; break; } if (trans_pipe == crtc->pipe) enabled_transcoders |= BIT(cpu_transcoder); } /* single pipe or bigjoiner master */ cpu_transcoder = (enum transcoder) crtc->pipe; if (transcoder_ddi_func_is_enabled(dev_priv, cpu_transcoder)) enabled_transcoders |= BIT(cpu_transcoder); /* bigjoiner slave -> consider the master pipe's transcoder as well */ enabled_bigjoiner_pipes(dev_priv, &master_pipes, &slave_pipes); if (slave_pipes & BIT(crtc->pipe)) { cpu_transcoder = (enum transcoder) get_bigjoiner_master_pipe(crtc->pipe, master_pipes, slave_pipes); if (transcoder_ddi_func_is_enabled(dev_priv, cpu_transcoder)) enabled_transcoders |= BIT(cpu_transcoder); } return enabled_transcoders; } static bool has_edp_transcoders(u8 enabled_transcoders) { return enabled_transcoders & BIT(TRANSCODER_EDP); } static bool has_dsi_transcoders(u8 enabled_transcoders) { return enabled_transcoders & (BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1)); } static bool has_pipe_transcoders(u8 enabled_transcoders) { return enabled_transcoders & ~(BIT(TRANSCODER_EDP) | BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1)); } static void assert_enabled_transcoders(struct drm_i915_private *i915, u8 enabled_transcoders) { /* Only one type of transcoder please */ drm_WARN_ON(&i915->drm, has_edp_transcoders(enabled_transcoders) + has_dsi_transcoders(enabled_transcoders) + has_pipe_transcoders(enabled_transcoders) > 1); /* Only DSI transcoders can be ganged */ drm_WARN_ON(&i915->drm, !has_dsi_transcoders(enabled_transcoders) && !is_power_of_2(enabled_transcoders)); } static bool hsw_get_transcoder_state(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config, struct intel_display_power_domain_set *power_domain_set) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); unsigned long enabled_transcoders; u32 tmp; enabled_transcoders = hsw_enabled_transcoders(crtc); if (!enabled_transcoders) return false; assert_enabled_transcoders(dev_priv, enabled_transcoders); /* * With the exception of DSI we should only ever have * a single enabled transcoder. With DSI let's just * pick the first one. */ pipe_config->cpu_transcoder = ffs(enabled_transcoders) - 1; if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder))) return false; if (hsw_panel_transcoders(dev_priv) & BIT(pipe_config->cpu_transcoder)) { tmp = intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder)); if ((tmp & TRANS_DDI_EDP_INPUT_MASK) == TRANS_DDI_EDP_INPUT_A_ONOFF) pipe_config->pch_pfit.force_thru = true; } tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); return tmp & PIPECONF_ENABLE; } static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config, struct intel_display_power_domain_set *power_domain_set) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum transcoder cpu_transcoder; enum port port; u32 tmp; for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) { if (port == PORT_A) cpu_transcoder = TRANSCODER_DSI_A; else cpu_transcoder = TRANSCODER_DSI_C; if (!intel_display_power_get_in_set_if_enabled(dev_priv, power_domain_set, POWER_DOMAIN_TRANSCODER(cpu_transcoder))) continue; /* * The PLL needs to be enabled with a valid divider * configuration, otherwise accessing DSI registers will hang * the machine. See BSpec North Display Engine * registers/MIPI[BXT]. We can break out here early, since we * need the same DSI PLL to be enabled for both DSI ports. */ if (!bxt_dsi_pll_is_enabled(dev_priv)) break; /* XXX: this works for video mode only */ tmp = intel_de_read(dev_priv, BXT_MIPI_PORT_CTRL(port)); if (!(tmp & DPI_ENABLE)) continue; tmp = intel_de_read(dev_priv, MIPI_CTRL(port)); if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe)) continue; pipe_config->cpu_transcoder = cpu_transcoder; break; } return transcoder_is_dsi(pipe_config->cpu_transcoder); } static void intel_bigjoiner_get_config(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); u8 master_pipes, slave_pipes; enum pipe pipe = crtc->pipe; enabled_bigjoiner_pipes(i915, &master_pipes, &slave_pipes); if (((master_pipes | slave_pipes) & BIT(pipe)) == 0) return; crtc_state->bigjoiner_pipes = BIT(get_bigjoiner_master_pipe(pipe, master_pipes, slave_pipes)) | get_bigjoiner_slave_pipes(pipe, master_pipes, slave_pipes); } static bool hsw_get_pipe_config(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_display_power_domain_set power_domain_set = { }; bool active; u32 tmp; if (!intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, POWER_DOMAIN_PIPE(crtc->pipe))) return false; pipe_config->shared_dpll = NULL; active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_set); if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_set)) { drm_WARN_ON(&dev_priv->drm, active); active = true; } if (!active) goto out; intel_dsc_get_config(pipe_config); intel_bigjoiner_get_config(pipe_config); if (!transcoder_is_dsi(pipe_config->cpu_transcoder) || DISPLAY_VER(dev_priv) >= 11) intel_get_transcoder_timings(crtc, pipe_config); if (HAS_VRR(dev_priv) && !transcoder_is_dsi(pipe_config->cpu_transcoder)) intel_vrr_get_config(crtc, pipe_config); intel_get_pipe_src_size(crtc, pipe_config); if (IS_HASWELL(dev_priv)) { u32 tmp = intel_de_read(dev_priv, PIPECONF(pipe_config->cpu_transcoder)); if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW) pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444; else pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; } else { pipe_config->output_format = bdw_get_pipemisc_output_format(crtc); } pipe_config->gamma_mode = intel_de_read(dev_priv, GAMMA_MODE(crtc->pipe)); pipe_config->csc_mode = intel_de_read(dev_priv, PIPE_CSC_MODE(crtc->pipe)); if (DISPLAY_VER(dev_priv) >= 9) { tmp = intel_de_read(dev_priv, SKL_BOTTOM_COLOR(crtc->pipe)); if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE) pipe_config->gamma_enable = true; if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE) pipe_config->csc_enable = true; } else { i9xx_get_pipe_color_config(pipe_config); } intel_color_get_config(pipe_config); tmp = intel_de_read(dev_priv, WM_LINETIME(crtc->pipe)); pipe_config->linetime = REG_FIELD_GET(HSW_LINETIME_MASK, tmp); if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) pipe_config->ips_linetime = REG_FIELD_GET(HSW_IPS_LINETIME_MASK, tmp); if (intel_display_power_get_in_set_if_enabled(dev_priv, &power_domain_set, POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe))) { if (DISPLAY_VER(dev_priv) >= 9) skl_get_pfit_config(pipe_config); else ilk_get_pfit_config(pipe_config); } hsw_ips_get_config(pipe_config); if (pipe_config->cpu_transcoder != TRANSCODER_EDP && !transcoder_is_dsi(pipe_config->cpu_transcoder)) { pipe_config->pixel_multiplier = intel_de_read(dev_priv, PIPE_MULT(pipe_config->cpu_transcoder)) + 1; } else { pipe_config->pixel_multiplier = 1; } if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) { tmp = intel_de_read(dev_priv, DISPLAY_VER(dev_priv) >= 14 ? MTL_CHICKEN_TRANS(pipe_config->cpu_transcoder) : CHICKEN_TRANS(pipe_config->cpu_transcoder)); pipe_config->framestart_delay = REG_FIELD_GET(HSW_FRAME_START_DELAY_MASK, tmp) + 1; } else { /* no idea if this is correct */ pipe_config->framestart_delay = 1; } out: intel_display_power_put_all_in_set(dev_priv, &power_domain_set); return active; } bool intel_crtc_get_pipe_config(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *i915 = to_i915(crtc->base.dev); if (!i915->display.funcs.display->get_pipe_config(crtc, crtc_state)) return false; crtc_state->hw.active = true; intel_crtc_readout_derived_state(crtc_state); return true; } /* VESA 640x480x72Hz mode to set on the pipe */ static const struct drm_display_mode load_detect_mode = { DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664, 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), }; static int intel_modeset_disable_planes(struct drm_atomic_state *state, struct drm_crtc *crtc) { struct drm_plane *plane; struct drm_plane_state *plane_state; int ret, i; ret = drm_atomic_add_affected_planes(state, crtc); if (ret) return ret; for_each_new_plane_in_state(state, plane, plane_state, i) { if (plane_state->crtc != crtc) continue; ret = drm_atomic_set_crtc_for_plane(plane_state, NULL); if (ret) return ret; drm_atomic_set_fb_for_plane(plane_state, NULL); } return 0; } int intel_get_load_detect_pipe(struct drm_connector *connector, struct intel_load_detect_pipe *old, struct drm_modeset_acquire_ctx *ctx) { struct intel_encoder *encoder = intel_attached_encoder(to_intel_connector(connector)); struct intel_crtc *possible_crtc; struct intel_crtc *crtc = NULL; struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct drm_mode_config *config = &dev->mode_config; struct drm_atomic_state *state = NULL, *restore_state = NULL; struct drm_connector_state *connector_state; struct intel_crtc_state *crtc_state; int ret; drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", connector->base.id, connector->name, encoder->base.base.id, encoder->base.name); old->restore_state = NULL; drm_WARN_ON(dev, !drm_modeset_is_locked(&config->connection_mutex)); /* * Algorithm gets a little messy: * * - if the connector already has an assigned crtc, use it (but make * sure it's on first) * * - try to find the first unused crtc that can drive this connector, * and use that if we find one */ /* See if we already have a CRTC for this connector */ if (connector->state->crtc) { crtc = to_intel_crtc(connector->state->crtc); ret = drm_modeset_lock(&crtc->base.mutex, ctx); if (ret) goto fail; /* Make sure the crtc and connector are running */ goto found; } /* Find an unused one (if possible) */ for_each_intel_crtc(dev, possible_crtc) { if (!(encoder->base.possible_crtcs & drm_crtc_mask(&possible_crtc->base))) continue; ret = drm_modeset_lock(&possible_crtc->base.mutex, ctx); if (ret) goto fail; if (possible_crtc->base.state->enable) { drm_modeset_unlock(&possible_crtc->base.mutex); continue; } crtc = possible_crtc; break; } /* * If we didn't find an unused CRTC, don't use any. */ if (!crtc) { drm_dbg_kms(&dev_priv->drm, "no pipe available for load-detect\n"); ret = -ENODEV; goto fail; } found: state = drm_atomic_state_alloc(dev); restore_state = drm_atomic_state_alloc(dev); if (!state || !restore_state) { ret = -ENOMEM; goto fail; } state->acquire_ctx = ctx; restore_state->acquire_ctx = ctx; connector_state = drm_atomic_get_connector_state(state, connector); if (IS_ERR(connector_state)) { ret = PTR_ERR(connector_state); goto fail; } ret = drm_atomic_set_crtc_for_connector(connector_state, &crtc->base); if (ret) goto fail; crtc_state = intel_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); goto fail; } crtc_state->uapi.active = true; ret = drm_atomic_set_mode_for_crtc(&crtc_state->uapi, &load_detect_mode); if (ret) goto fail; ret = intel_modeset_disable_planes(state, &crtc->base); if (ret) goto fail; ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector)); if (!ret) ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, &crtc->base)); if (!ret) ret = drm_atomic_add_affected_planes(restore_state, &crtc->base); if (ret) { drm_dbg_kms(&dev_priv->drm, "Failed to create a copy of old state to restore: %i\n", ret); goto fail; } ret = drm_atomic_commit(state); if (ret) { drm_dbg_kms(&dev_priv->drm, "failed to set mode on load-detect pipe\n"); goto fail; } old->restore_state = restore_state; drm_atomic_state_put(state); /* let the connector get through one full cycle before testing */ intel_crtc_wait_for_next_vblank(crtc); return true; fail: if (state) { drm_atomic_state_put(state); state = NULL; } if (restore_state) { drm_atomic_state_put(restore_state); restore_state = NULL; } if (ret == -EDEADLK) return ret; return false; } void intel_release_load_detect_pipe(struct drm_connector *connector, struct intel_load_detect_pipe *old, struct drm_modeset_acquire_ctx *ctx) { struct intel_encoder *intel_encoder = intel_attached_encoder(to_intel_connector(connector)); struct drm_i915_private *i915 = to_i915(intel_encoder->base.dev); struct drm_encoder *encoder = &intel_encoder->base; struct drm_atomic_state *state = old->restore_state; int ret; drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n", connector->base.id, connector->name, encoder->base.id, encoder->name); if (!state) return; ret = drm_atomic_helper_commit_duplicated_state(state, ctx); if (ret) drm_dbg_kms(&i915->drm, "Couldn't release load detect pipe: %i\n", ret); drm_atomic_state_put(state); } static int i9xx_pll_refclk(struct drm_device *dev, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(dev); u32 dpll = pipe_config->dpll_hw_state.dpll; if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN) return dev_priv->display.vbt.lvds_ssc_freq; else if (HAS_PCH_SPLIT(dev_priv)) return 120000; else if (DISPLAY_VER(dev_priv) != 2) return 96000; else return 48000; } /* Returns the clock of the currently programmed mode of the given pipe. */ void i9xx_crtc_clock_get(struct intel_crtc *crtc, struct intel_crtc_state *pipe_config) { struct drm_device *dev = crtc->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); u32 dpll = pipe_config->dpll_hw_state.dpll; u32 fp; struct dpll clock; int port_clock; int refclk = i9xx_pll_refclk(dev, pipe_config); if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0) fp = pipe_config->dpll_hw_state.fp0; else fp = pipe_config->dpll_hw_state.fp1; clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT; if (IS_PINEVIEW(dev_priv)) { clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1; clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT; } else { clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT; clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT; } if (DISPLAY_VER(dev_priv) != 2) { if (IS_PINEVIEW(dev_priv)) clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >> DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW); else clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >> DPLL_FPA01_P1_POST_DIV_SHIFT); switch (dpll & DPLL_MODE_MASK) { case DPLLB_MODE_DAC_SERIAL: clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 5 : 10; break; case DPLLB_MODE_LVDS: clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 7 : 14; break; default: drm_dbg_kms(&dev_priv->drm, "Unknown DPLL mode %08x in programmed " "mode\n", (int)(dpll & DPLL_MODE_MASK)); return; } if (IS_PINEVIEW(dev_priv)) port_clock = pnv_calc_dpll_params(refclk, &clock); else port_clock = i9xx_calc_dpll_params(refclk, &clock); } else { enum pipe lvds_pipe; if (IS_I85X(dev_priv) && intel_lvds_port_enabled(dev_priv, LVDS, &lvds_pipe) && lvds_pipe == crtc->pipe) { u32 lvds = intel_de_read(dev_priv, LVDS); clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >> DPLL_FPA01_P1_POST_DIV_SHIFT); if (lvds & LVDS_CLKB_POWER_UP) clock.p2 = 7; else clock.p2 = 14; } else { if (dpll & PLL_P1_DIVIDE_BY_TWO) clock.p1 = 2; else { clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >> DPLL_FPA01_P1_POST_DIV_SHIFT) + 2; } if (dpll & PLL_P2_DIVIDE_BY_4) clock.p2 = 4; else clock.p2 = 2; } port_clock = i9xx_calc_dpll_params(refclk, &clock); } /* * This value includes pixel_multiplier. We will use * port_clock to compute adjusted_mode.crtc_clock in the * encoder's get_config() function. */ pipe_config->port_clock = port_clock; } int intel_dotclock_calculate(int link_freq, const struct intel_link_m_n *m_n) { /* * The calculation for the data clock is: * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp * But we want to avoid losing precison if possible, so: * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp)) * * and the link clock is simpler: * link_clock = (m * link_clock) / n */ if (!m_n->link_n) return 0; return DIV_ROUND_UP_ULL(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n); } int intel_crtc_dotclock(const struct intel_crtc_state *pipe_config) { int dotclock; if (intel_crtc_has_dp_encoder(pipe_config)) dotclock = intel_dotclock_calculate(pipe_config->port_clock, &pipe_config->dp_m_n); else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp > 24) dotclock = DIV_ROUND_CLOSEST(pipe_config->port_clock * 24, pipe_config->pipe_bpp); else dotclock = pipe_config->port_clock; if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 && !intel_crtc_has_dp_encoder(pipe_config)) dotclock *= 2; if (pipe_config->pixel_multiplier) dotclock /= pipe_config->pixel_multiplier; return dotclock; } /* Returns the currently programmed mode of the given encoder. */ struct drm_display_mode * intel_encoder_current_mode(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_crtc_state *crtc_state; struct drm_display_mode *mode; struct intel_crtc *crtc; enum pipe pipe; if (!encoder->get_hw_state(encoder, &pipe)) return NULL; crtc = intel_crtc_for_pipe(dev_priv, pipe); mode = kzalloc(sizeof(*mode), GFP_KERNEL); if (!mode) return NULL; crtc_state = intel_crtc_state_alloc(crtc); if (!crtc_state) { kfree(mode); return NULL; } if (!intel_crtc_get_pipe_config(crtc_state)) { kfree(crtc_state); kfree(mode); return NULL; } intel_encoder_get_config(encoder, crtc_state); intel_mode_from_crtc_timings(mode, &crtc_state->hw.adjusted_mode); kfree(crtc_state); return mode; } static bool encoders_cloneable(const struct intel_encoder *a, const struct intel_encoder *b) { /* masks could be asymmetric, so check both ways */ return a == b || (a->cloneable & (1 << b->type) && b->cloneable & (1 << a->type)); } static bool check_single_encoder_cloning(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_encoder *encoder) { struct intel_encoder *source_encoder; struct drm_connector *connector; struct drm_connector_state *connector_state; int i; for_each_new_connector_in_state(&state->base, connector, connector_state, i) { if (connector_state->crtc != &crtc->base) continue; source_encoder = to_intel_encoder(connector_state->best_encoder); if (!encoders_cloneable(encoder, source_encoder)) return false; } return true; } static int icl_add_linked_planes(struct intel_atomic_state *state) { struct intel_plane *plane, *linked; struct intel_plane_state *plane_state, *linked_plane_state; int i; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { linked = plane_state->planar_linked_plane; if (!linked) continue; linked_plane_state = intel_atomic_get_plane_state(state, linked); if (IS_ERR(linked_plane_state)) return PTR_ERR(linked_plane_state); drm_WARN_ON(state->base.dev, linked_plane_state->planar_linked_plane != plane); drm_WARN_ON(state->base.dev, linked_plane_state->planar_slave == plane_state->planar_slave); } return 0; } static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state); struct intel_plane *plane, *linked; struct intel_plane_state *plane_state; int i; if (DISPLAY_VER(dev_priv) < 11) return 0; /* * Destroy all old plane links and make the slave plane invisible * in the crtc_state->active_planes mask. */ for_each_new_intel_plane_in_state(state, plane, plane_state, i) { if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane) continue; plane_state->planar_linked_plane = NULL; if (plane_state->planar_slave && !plane_state->uapi.visible) { crtc_state->enabled_planes &= ~BIT(plane->id); crtc_state->active_planes &= ~BIT(plane->id); crtc_state->update_planes |= BIT(plane->id); crtc_state->data_rate[plane->id] = 0; crtc_state->rel_data_rate[plane->id] = 0; } plane_state->planar_slave = false; } if (!crtc_state->nv12_planes) return 0; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { struct intel_plane_state *linked_state = NULL; if (plane->pipe != crtc->pipe || !(crtc_state->nv12_planes & BIT(plane->id))) continue; for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) { if (!icl_is_nv12_y_plane(dev_priv, linked->id)) continue; if (crtc_state->active_planes & BIT(linked->id)) continue; linked_state = intel_atomic_get_plane_state(state, linked); if (IS_ERR(linked_state)) return PTR_ERR(linked_state); break; } if (!linked_state) { drm_dbg_kms(&dev_priv->drm, "Need %d free Y planes for planar YUV\n", hweight8(crtc_state->nv12_planes)); return -EINVAL; } plane_state->planar_linked_plane = linked; linked_state->planar_slave = true; linked_state->planar_linked_plane = plane; crtc_state->enabled_planes |= BIT(linked->id); crtc_state->active_planes |= BIT(linked->id); crtc_state->update_planes |= BIT(linked->id); crtc_state->data_rate[linked->id] = crtc_state->data_rate_y[plane->id]; crtc_state->rel_data_rate[linked->id] = crtc_state->rel_data_rate_y[plane->id]; drm_dbg_kms(&dev_priv->drm, "Using %s as Y plane for %s\n", linked->base.name, plane->base.name); /* Copy parameters to slave plane */ linked_state->ctl = plane_state->ctl | PLANE_CTL_YUV420_Y_PLANE; linked_state->color_ctl = plane_state->color_ctl; linked_state->view = plane_state->view; linked_state->decrypt = plane_state->decrypt; intel_plane_copy_hw_state(linked_state, plane_state); linked_state->uapi.src = plane_state->uapi.src; linked_state->uapi.dst = plane_state->uapi.dst; if (icl_is_hdr_plane(dev_priv, plane->id)) { if (linked->id == PLANE_SPRITE5) plane_state->cus_ctl |= PLANE_CUS_Y_PLANE_7_ICL; else if (linked->id == PLANE_SPRITE4) plane_state->cus_ctl |= PLANE_CUS_Y_PLANE_6_ICL; else if (linked->id == PLANE_SPRITE3) plane_state->cus_ctl |= PLANE_CUS_Y_PLANE_5_RKL; else if (linked->id == PLANE_SPRITE2) plane_state->cus_ctl |= PLANE_CUS_Y_PLANE_4_RKL; else MISSING_CASE(linked->id); } } return 0; } static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes; } static u16 hsw_linetime_wm(const struct intel_crtc_state *crtc_state) { const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; int linetime_wm; if (!crtc_state->hw.enable) return 0; linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, pipe_mode->crtc_clock); return min(linetime_wm, 0x1ff); } static u16 hsw_ips_linetime_wm(const struct intel_crtc_state *crtc_state, const struct intel_cdclk_state *cdclk_state) { const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; int linetime_wm; if (!crtc_state->hw.enable) return 0; linetime_wm = DIV_ROUND_CLOSEST(pipe_mode->crtc_htotal * 1000 * 8, cdclk_state->logical.cdclk); return min(linetime_wm, 0x1ff); } static u16 skl_linetime_wm(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; int linetime_wm; if (!crtc_state->hw.enable) return 0; linetime_wm = DIV_ROUND_UP(pipe_mode->crtc_htotal * 1000 * 8, crtc_state->pixel_rate); /* Display WA #1135: BXT:ALL GLK:ALL */ if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) && skl_watermark_ipc_enabled(dev_priv)) linetime_wm /= 2; return min(linetime_wm, 0x1ff); } static int hsw_compute_linetime_wm(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct intel_cdclk_state *cdclk_state; if (DISPLAY_VER(dev_priv) >= 9) crtc_state->linetime = skl_linetime_wm(crtc_state); else crtc_state->linetime = hsw_linetime_wm(crtc_state); if (!hsw_crtc_supports_ips(crtc)) return 0; cdclk_state = intel_atomic_get_cdclk_state(state); if (IS_ERR(cdclk_state)) return PTR_ERR(cdclk_state); crtc_state->ips_linetime = hsw_ips_linetime_wm(crtc_state, cdclk_state); return 0; } static int intel_crtc_atomic_check(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); bool mode_changed = intel_crtc_needs_modeset(crtc_state); int ret; if (DISPLAY_VER(dev_priv) < 5 && !IS_G4X(dev_priv) && mode_changed && !crtc_state->hw.active) crtc_state->update_wm_post = true; if (mode_changed) { ret = intel_dpll_crtc_get_shared_dpll(state, crtc); if (ret) return ret; } /* * May need to update pipe gamma enable bits * when C8 planes are getting enabled/disabled. */ if (c8_planes_changed(crtc_state)) crtc_state->uapi.color_mgmt_changed = true; if (mode_changed || crtc_state->update_pipe || crtc_state->uapi.color_mgmt_changed) { ret = intel_color_check(crtc_state); if (ret) return ret; } ret = intel_compute_pipe_wm(state, crtc); if (ret) { drm_dbg_kms(&dev_priv->drm, "Target pipe watermarks are invalid\n"); return ret; } /* * Calculate 'intermediate' watermarks that satisfy both the * old state and the new state. We can program these * immediately. */ ret = intel_compute_intermediate_wm(state, crtc); if (ret) { drm_dbg_kms(&dev_priv->drm, "No valid intermediate pipe watermarks are possible\n"); return ret; } if (DISPLAY_VER(dev_priv) >= 9) { if (mode_changed || crtc_state->update_pipe) { ret = skl_update_scaler_crtc(crtc_state); if (ret) return ret; } ret = intel_atomic_setup_scalers(dev_priv, crtc, crtc_state); if (ret) return ret; } if (HAS_IPS(dev_priv)) { ret = hsw_ips_compute_config(state, crtc); if (ret) return ret; } if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { ret = hsw_compute_linetime_wm(state, crtc); if (ret) return ret; } ret = intel_psr2_sel_fetch_update(state, crtc); if (ret) return ret; return 0; } static int compute_sink_pipe_bpp(const struct drm_connector_state *conn_state, struct intel_crtc_state *crtc_state) { struct drm_connector *connector = conn_state->connector; struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); const struct drm_display_info *info = &connector->display_info; int bpp; switch (conn_state->max_bpc) { case 6 ... 7: bpp = 6 * 3; break; case 8 ... 9: bpp = 8 * 3; break; case 10 ... 11: bpp = 10 * 3; break; case 12 ... 16: bpp = 12 * 3; break; default: MISSING_CASE(conn_state->max_bpc); return -EINVAL; } if (bpp < crtc_state->pipe_bpp) { drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] Limiting display bpp to %d " "(EDID bpp %d, max requested bpp %d, max platform bpp %d)\n", connector->base.id, connector->name, bpp, 3 * info->bpc, 3 * conn_state->max_requested_bpc, crtc_state->pipe_bpp); crtc_state->pipe_bpp = bpp; } return 0; } static int compute_baseline_pipe_bpp(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct drm_connector *connector; struct drm_connector_state *connector_state; int bpp, i; if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))) bpp = 10*3; else if (DISPLAY_VER(dev_priv) >= 5) bpp = 12*3; else bpp = 8*3; crtc_state->pipe_bpp = bpp; /* Clamp display bpp to connector max bpp */ for_each_new_connector_in_state(&state->base, connector, connector_state, i) { int ret; if (connector_state->crtc != &crtc->base) continue; ret = compute_sink_pipe_bpp(connector_state, crtc_state); if (ret) return ret; } return 0; } static bool check_digital_port_conflicts(struct intel_atomic_state *state) { struct drm_device *dev = state->base.dev; struct drm_connector *connector; struct drm_connector_list_iter conn_iter; unsigned int used_ports = 0; unsigned int used_mst_ports = 0; bool ret = true; /* * We're going to peek into connector->state, * hence connection_mutex must be held. */ drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex); /* * Walk the connector list instead of the encoder * list to detect the problem on ddi platforms * where there's just one encoder per digital port. */ drm_connector_list_iter_begin(dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { struct drm_connector_state *connector_state; struct intel_encoder *encoder; connector_state = drm_atomic_get_new_connector_state(&state->base, connector); if (!connector_state) connector_state = connector->state; if (!connector_state->best_encoder) continue; encoder = to_intel_encoder(connector_state->best_encoder); drm_WARN_ON(dev, !connector_state->crtc); switch (encoder->type) { case INTEL_OUTPUT_DDI: if (drm_WARN_ON(dev, !HAS_DDI(to_i915(dev)))) break; fallthrough; case INTEL_OUTPUT_DP: case INTEL_OUTPUT_HDMI: case INTEL_OUTPUT_EDP: /* the same port mustn't appear more than once */ if (used_ports & BIT(encoder->port)) ret = false; used_ports |= BIT(encoder->port); break; case INTEL_OUTPUT_DP_MST: used_mst_ports |= 1 << encoder->port; break; default: break; } } drm_connector_list_iter_end(&conn_iter); /* can't mix MST and SST/HDMI on the same port */ if (used_ports & used_mst_ports) return false; return ret; } static void intel_crtc_copy_uapi_to_hw_state_nomodeset(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); WARN_ON(intel_crtc_is_bigjoiner_slave(crtc_state)); drm_property_replace_blob(&crtc_state->hw.degamma_lut, crtc_state->uapi.degamma_lut); drm_property_replace_blob(&crtc_state->hw.gamma_lut, crtc_state->uapi.gamma_lut); drm_property_replace_blob(&crtc_state->hw.ctm, crtc_state->uapi.ctm); } static void intel_crtc_copy_uapi_to_hw_state_modeset(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); WARN_ON(intel_crtc_is_bigjoiner_slave(crtc_state)); crtc_state->hw.enable = crtc_state->uapi.enable; crtc_state->hw.active = crtc_state->uapi.active; drm_mode_copy(&crtc_state->hw.mode, &crtc_state->uapi.mode); drm_mode_copy(&crtc_state->hw.adjusted_mode, &crtc_state->uapi.adjusted_mode); crtc_state->hw.scaling_filter = crtc_state->uapi.scaling_filter; intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc); } static void copy_bigjoiner_crtc_state_nomodeset(struct intel_atomic_state *state, struct intel_crtc *slave_crtc) { struct intel_crtc_state *slave_crtc_state = intel_atomic_get_new_crtc_state(state, slave_crtc); struct intel_crtc *master_crtc = intel_master_crtc(slave_crtc_state); const struct intel_crtc_state *master_crtc_state = intel_atomic_get_new_crtc_state(state, master_crtc); drm_property_replace_blob(&slave_crtc_state->hw.degamma_lut, master_crtc_state->hw.degamma_lut); drm_property_replace_blob(&slave_crtc_state->hw.gamma_lut, master_crtc_state->hw.gamma_lut); drm_property_replace_blob(&slave_crtc_state->hw.ctm, master_crtc_state->hw.ctm); slave_crtc_state->uapi.color_mgmt_changed = master_crtc_state->uapi.color_mgmt_changed; } static int copy_bigjoiner_crtc_state_modeset(struct intel_atomic_state *state, struct intel_crtc *slave_crtc) { struct intel_crtc_state *slave_crtc_state = intel_atomic_get_new_crtc_state(state, slave_crtc); struct intel_crtc *master_crtc = intel_master_crtc(slave_crtc_state); const struct intel_crtc_state *master_crtc_state = intel_atomic_get_new_crtc_state(state, master_crtc); struct intel_crtc_state *saved_state; WARN_ON(master_crtc_state->bigjoiner_pipes != slave_crtc_state->bigjoiner_pipes); saved_state = kmemdup(master_crtc_state, sizeof(*saved_state), GFP_KERNEL); if (!saved_state) return -ENOMEM; /* preserve some things from the slave's original crtc state */ saved_state->uapi = slave_crtc_state->uapi; saved_state->scaler_state = slave_crtc_state->scaler_state; saved_state->shared_dpll = slave_crtc_state->shared_dpll; saved_state->crc_enabled = slave_crtc_state->crc_enabled; intel_crtc_free_hw_state(slave_crtc_state); memcpy(slave_crtc_state, saved_state, sizeof(*slave_crtc_state)); kfree(saved_state); /* Re-init hw state */ memset(&slave_crtc_state->hw, 0, sizeof(slave_crtc_state->hw)); slave_crtc_state->hw.enable = master_crtc_state->hw.enable; slave_crtc_state->hw.active = master_crtc_state->hw.active; drm_mode_copy(&slave_crtc_state->hw.mode, &master_crtc_state->hw.mode); drm_mode_copy(&slave_crtc_state->hw.pipe_mode, &master_crtc_state->hw.pipe_mode); drm_mode_copy(&slave_crtc_state->hw.adjusted_mode, &master_crtc_state->hw.adjusted_mode); slave_crtc_state->hw.scaling_filter = master_crtc_state->hw.scaling_filter; copy_bigjoiner_crtc_state_nomodeset(state, slave_crtc); slave_crtc_state->uapi.mode_changed = master_crtc_state->uapi.mode_changed; slave_crtc_state->uapi.connectors_changed = master_crtc_state->uapi.connectors_changed; slave_crtc_state->uapi.active_changed = master_crtc_state->uapi.active_changed; WARN_ON(master_crtc_state->bigjoiner_pipes != slave_crtc_state->bigjoiner_pipes); return 0; } static int intel_crtc_prepare_cleared_state(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct intel_crtc_state *saved_state; saved_state = intel_crtc_state_alloc(crtc); if (!saved_state) return -ENOMEM; /* free the old crtc_state->hw members */ intel_crtc_free_hw_state(crtc_state); /* FIXME: before the switch to atomic started, a new pipe_config was * kzalloc'd. Code that depends on any field being zero should be * fixed, so that the crtc_state can be safely duplicated. For now, * only fields that are know to not cause problems are preserved. */ saved_state->uapi = crtc_state->uapi; saved_state->inherited = crtc_state->inherited; saved_state->scaler_state = crtc_state->scaler_state; saved_state->shared_dpll = crtc_state->shared_dpll; saved_state->dpll_hw_state = crtc_state->dpll_hw_state; memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls, sizeof(saved_state->icl_port_dplls)); saved_state->crc_enabled = crtc_state->crc_enabled; if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) saved_state->wm = crtc_state->wm; memcpy(crtc_state, saved_state, sizeof(*crtc_state)); kfree(saved_state); intel_crtc_copy_uapi_to_hw_state_modeset(state, crtc); return 0; } static int intel_modeset_pipe_config(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct drm_connector *connector; struct drm_connector_state *connector_state; int pipe_src_w, pipe_src_h; int base_bpp, ret, i; bool retry = true; crtc_state->cpu_transcoder = (enum transcoder) crtc->pipe; crtc_state->framestart_delay = 1; /* * Sanitize sync polarity flags based on requested ones. If neither * positive or negative polarity is requested, treat this as meaning * negative polarity. */ if (!(crtc_state->hw.adjusted_mode.flags & (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC))) crtc_state->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC; if (!(crtc_state->hw.adjusted_mode.flags & (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC))) crtc_state->hw.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC; ret = compute_baseline_pipe_bpp(state, crtc); if (ret) return ret; base_bpp = crtc_state->pipe_bpp; /* * Determine the real pipe dimensions. Note that stereo modes can * increase the actual pipe size due to the frame doubling and * insertion of additional space for blanks between the frame. This * is stored in the crtc timings. We use the requested mode to do this * computation to clearly distinguish it from the adjusted mode, which * can be changed by the connectors in the below retry loop. */ drm_mode_get_hv_timing(&crtc_state->hw.mode, &pipe_src_w, &pipe_src_h); drm_rect_init(&crtc_state->pipe_src, 0, 0, pipe_src_w, pipe_src_h); for_each_new_connector_in_state(&state->base, connector, connector_state, i) { struct intel_encoder *encoder = to_intel_encoder(connector_state->best_encoder); if (connector_state->crtc != &crtc->base) continue; if (!check_single_encoder_cloning(state, crtc, encoder)) { drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] rejecting invalid cloning configuration\n", encoder->base.base.id, encoder->base.name); return -EINVAL; } /* * Determine output_types before calling the .compute_config() * hooks so that the hooks can use this information safely. */ if (encoder->compute_output_type) crtc_state->output_types |= BIT(encoder->compute_output_type(encoder, crtc_state, connector_state)); else crtc_state->output_types |= BIT(encoder->type); } encoder_retry: /* Ensure the port clock defaults are reset when retrying. */ crtc_state->port_clock = 0; crtc_state->pixel_multiplier = 1; /* Fill in default crtc timings, allow encoders to overwrite them. */ drm_mode_set_crtcinfo(&crtc_state->hw.adjusted_mode, CRTC_STEREO_DOUBLE); /* Pass our mode to the connectors and the CRTC to give them a chance to * adjust it according to limitations or connector properties, and also * a chance to reject the mode entirely. */ for_each_new_connector_in_state(&state->base, connector, connector_state, i) { struct intel_encoder *encoder = to_intel_encoder(connector_state->best_encoder); if (connector_state->crtc != &crtc->base) continue; ret = encoder->compute_config(encoder, crtc_state, connector_state); if (ret == -EDEADLK) return ret; if (ret < 0) { drm_dbg_kms(&i915->drm, "[ENCODER:%d:%s] config failure: %d\n", encoder->base.base.id, encoder->base.name, ret); return ret; } } /* Set default port clock if not overwritten by the encoder. Needs to be * done afterwards in case the encoder adjusts the mode. */ if (!crtc_state->port_clock) crtc_state->port_clock = crtc_state->hw.adjusted_mode.crtc_clock * crtc_state->pixel_multiplier; ret = intel_crtc_compute_config(state, crtc); if (ret == -EDEADLK) return ret; if (ret == -EAGAIN) { if (drm_WARN(&i915->drm, !retry, "[CRTC:%d:%s] loop in pipe configuration computation\n", crtc->base.base.id, crtc->base.name)) return -EINVAL; drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] bw constrained, retrying\n", crtc->base.base.id, crtc->base.name); retry = false; goto encoder_retry; } if (ret < 0) { drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] config failure: %d\n", crtc->base.base.id, crtc->base.name, ret); return ret; } /* Dithering seems to not pass-through bits correctly when it should, so * only enable it on 6bpc panels and when its not a compliance * test requesting 6bpc video pattern. */ crtc_state->dither = (crtc_state->pipe_bpp == 6*3) && !crtc_state->dither_force_disable; drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] hw max bpp: %i, pipe bpp: %i, dithering: %i\n", crtc->base.base.id, crtc->base.name, base_bpp, crtc_state->pipe_bpp, crtc_state->dither); return 0; } static int intel_modeset_pipe_config_late(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); struct drm_connector_state *conn_state; struct drm_connector *connector; int i; intel_bigjoiner_adjust_pipe_src(crtc_state); for_each_new_connector_in_state(&state->base, connector, conn_state, i) { struct intel_encoder *encoder = to_intel_encoder(conn_state->best_encoder); int ret; if (conn_state->crtc != &crtc->base || !encoder->compute_config_late) continue; ret = encoder->compute_config_late(encoder, crtc_state, conn_state); if (ret) return ret; } return 0; } bool intel_fuzzy_clock_check(int clock1, int clock2) { int diff; if (clock1 == clock2) return true; if (!clock1 || !clock2) return false; diff = abs(clock1 - clock2); if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105) return true; return false; } static bool intel_compare_link_m_n(const struct intel_link_m_n *m_n, const struct intel_link_m_n *m2_n2) { return m_n->tu == m2_n2->tu && m_n->data_m == m2_n2->data_m && m_n->data_n == m2_n2->data_n && m_n->link_m == m2_n2->link_m && m_n->link_n == m2_n2->link_n; } static bool intel_compare_infoframe(const union hdmi_infoframe *a, const union hdmi_infoframe *b) { return memcmp(a, b, sizeof(*a)) == 0; } static bool intel_compare_dp_vsc_sdp(const struct drm_dp_vsc_sdp *a, const struct drm_dp_vsc_sdp *b) { return memcmp(a, b, sizeof(*a)) == 0; } static void pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv, bool fastset, const char *name, const union hdmi_infoframe *a, const union hdmi_infoframe *b) { if (fastset) { if (!drm_debug_enabled(DRM_UT_KMS)) return; drm_dbg_kms(&dev_priv->drm, "fastset mismatch in %s infoframe\n", name); drm_dbg_kms(&dev_priv->drm, "expected:\n"); hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a); drm_dbg_kms(&dev_priv->drm, "found:\n"); hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b); } else { drm_err(&dev_priv->drm, "mismatch in %s infoframe\n", name); drm_err(&dev_priv->drm, "expected:\n"); hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a); drm_err(&dev_priv->drm, "found:\n"); hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b); } } static void pipe_config_dp_vsc_sdp_mismatch(struct drm_i915_private *dev_priv, bool fastset, const char *name, const struct drm_dp_vsc_sdp *a, const struct drm_dp_vsc_sdp *b) { if (fastset) { if (!drm_debug_enabled(DRM_UT_KMS)) return; drm_dbg_kms(&dev_priv->drm, "fastset mismatch in %s dp sdp\n", name); drm_dbg_kms(&dev_priv->drm, "expected:\n"); drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, a); drm_dbg_kms(&dev_priv->drm, "found:\n"); drm_dp_vsc_sdp_log(KERN_DEBUG, dev_priv->drm.dev, b); } else { drm_err(&dev_priv->drm, "mismatch in %s dp sdp\n", name); drm_err(&dev_priv->drm, "expected:\n"); drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, a); drm_err(&dev_priv->drm, "found:\n"); drm_dp_vsc_sdp_log(KERN_ERR, dev_priv->drm.dev, b); } } static void __printf(4, 5) pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc, const char *name, const char *format, ...) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); struct va_format vaf; va_list args; va_start(args, format); vaf.fmt = format; vaf.va = &args; if (fastset) drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] fastset mismatch in %s %pV\n", crtc->base.base.id, crtc->base.name, name, &vaf); else drm_err(&i915->drm, "[CRTC:%d:%s] mismatch in %s %pV\n", crtc->base.base.id, crtc->base.name, name, &vaf); va_end(args); } static bool fastboot_enabled(struct drm_i915_private *dev_priv) { if (dev_priv->params.fastboot != -1) return dev_priv->params.fastboot; /* Enable fastboot by default on Skylake and newer */ if (DISPLAY_VER(dev_priv) >= 9) return true; /* Enable fastboot by default on VLV and CHV */ if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) return true; /* Disabled by default on all others */ return false; } bool intel_pipe_config_compare(const struct intel_crtc_state *current_config, const struct intel_crtc_state *pipe_config, bool fastset) { struct drm_i915_private *dev_priv = to_i915(current_config->uapi.crtc->dev); struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); bool ret = true; u32 bp_gamma = 0; bool fixup_inherited = fastset && current_config->inherited && !pipe_config->inherited; if (fixup_inherited && !fastboot_enabled(dev_priv)) { drm_dbg_kms(&dev_priv->drm, "initial modeset and fastboot not set\n"); ret = false; } #define PIPE_CONF_CHECK_X(name) do { \ if (current_config->name != pipe_config->name) { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "(expected 0x%08x, found 0x%08x)", \ current_config->name, \ pipe_config->name); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_X_WITH_MASK(name, mask) do { \ if ((current_config->name & (mask)) != (pipe_config->name & (mask))) { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "(expected 0x%08x, found 0x%08x)", \ current_config->name & (mask), \ pipe_config->name & (mask)); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_I(name) do { \ if (current_config->name != pipe_config->name) { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "(expected %i, found %i)", \ current_config->name, \ pipe_config->name); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_BOOL(name) do { \ if (current_config->name != pipe_config->name) { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "(expected %s, found %s)", \ str_yes_no(current_config->name), \ str_yes_no(pipe_config->name)); \ ret = false; \ } \ } while (0) /* * Checks state where we only read out the enabling, but not the entire * state itself (like full infoframes or ELD for audio). These states * require a full modeset on bootup to fix up. */ #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \ if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \ PIPE_CONF_CHECK_BOOL(name); \ } else { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \ str_yes_no(current_config->name), \ str_yes_no(pipe_config->name)); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_P(name) do { \ if (current_config->name != pipe_config->name) { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "(expected %p, found %p)", \ current_config->name, \ pipe_config->name); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_M_N(name) do { \ if (!intel_compare_link_m_n(¤t_config->name, \ &pipe_config->name)) { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "(expected tu %i data %i/%i link %i/%i, " \ "found tu %i, data %i/%i link %i/%i)", \ current_config->name.tu, \ current_config->name.data_m, \ current_config->name.data_n, \ current_config->name.link_m, \ current_config->name.link_n, \ pipe_config->name.tu, \ pipe_config->name.data_m, \ pipe_config->name.data_n, \ pipe_config->name.link_m, \ pipe_config->name.link_n); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_TIMINGS(name) do { \ PIPE_CONF_CHECK_I(name.crtc_hdisplay); \ PIPE_CONF_CHECK_I(name.crtc_htotal); \ PIPE_CONF_CHECK_I(name.crtc_hblank_start); \ PIPE_CONF_CHECK_I(name.crtc_hblank_end); \ PIPE_CONF_CHECK_I(name.crtc_hsync_start); \ PIPE_CONF_CHECK_I(name.crtc_hsync_end); \ PIPE_CONF_CHECK_I(name.crtc_vdisplay); \ PIPE_CONF_CHECK_I(name.crtc_vtotal); \ PIPE_CONF_CHECK_I(name.crtc_vblank_start); \ PIPE_CONF_CHECK_I(name.crtc_vblank_end); \ PIPE_CONF_CHECK_I(name.crtc_vsync_start); \ PIPE_CONF_CHECK_I(name.crtc_vsync_end); \ } while (0) #define PIPE_CONF_CHECK_RECT(name) do { \ PIPE_CONF_CHECK_I(name.x1); \ PIPE_CONF_CHECK_I(name.x2); \ PIPE_CONF_CHECK_I(name.y1); \ PIPE_CONF_CHECK_I(name.y2); \ } while (0) /* This is required for BDW+ where there is only one set of registers for * switching between high and low RR. * This macro can be used whenever a comparison has to be made between one * hw state and multiple sw state variables. */ #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \ if (!intel_compare_link_m_n(¤t_config->name, \ &pipe_config->name) && \ !intel_compare_link_m_n(¤t_config->alt_name, \ &pipe_config->name)) { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "(expected tu %i data %i/%i link %i/%i, " \ "or tu %i data %i/%i link %i/%i, " \ "found tu %i, data %i/%i link %i/%i)", \ current_config->name.tu, \ current_config->name.data_m, \ current_config->name.data_n, \ current_config->name.link_m, \ current_config->name.link_n, \ current_config->alt_name.tu, \ current_config->alt_name.data_m, \ current_config->alt_name.data_n, \ current_config->alt_name.link_m, \ current_config->alt_name.link_n, \ pipe_config->name.tu, \ pipe_config->name.data_m, \ pipe_config->name.data_n, \ pipe_config->name.link_m, \ pipe_config->name.link_n); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \ if ((current_config->name ^ pipe_config->name) & (mask)) { \ pipe_config_mismatch(fastset, crtc, __stringify(name), \ "(%x) (expected %i, found %i)", \ (mask), \ current_config->name & (mask), \ pipe_config->name & (mask)); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_INFOFRAME(name) do { \ if (!intel_compare_infoframe(¤t_config->infoframes.name, \ &pipe_config->infoframes.name)) { \ pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \ ¤t_config->infoframes.name, \ &pipe_config->infoframes.name); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_DP_VSC_SDP(name) do { \ if (!current_config->has_psr && !pipe_config->has_psr && \ !intel_compare_dp_vsc_sdp(¤t_config->infoframes.name, \ &pipe_config->infoframes.name)) { \ pipe_config_dp_vsc_sdp_mismatch(dev_priv, fastset, __stringify(name), \ ¤t_config->infoframes.name, \ &pipe_config->infoframes.name); \ ret = false; \ } \ } while (0) #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \ if (current_config->name1 != pipe_config->name1) { \ pipe_config_mismatch(fastset, crtc, __stringify(name1), \ "(expected %i, found %i, won't compare lut values)", \ current_config->name1, \ pipe_config->name1); \ ret = false;\ } else { \ if (!intel_color_lut_equal(current_config->name2, \ pipe_config->name2, pipe_config->name1, \ bit_precision)) { \ pipe_config_mismatch(fastset, crtc, __stringify(name2), \ "hw_state doesn't match sw_state"); \ ret = false; \ } \ } \ } while (0) #define PIPE_CONF_QUIRK(quirk) \ ((current_config->quirks | pipe_config->quirks) & (quirk)) PIPE_CONF_CHECK_I(hw.enable); PIPE_CONF_CHECK_I(hw.active); PIPE_CONF_CHECK_I(cpu_transcoder); PIPE_CONF_CHECK_I(mst_master_transcoder); PIPE_CONF_CHECK_BOOL(has_pch_encoder); PIPE_CONF_CHECK_I(fdi_lanes); PIPE_CONF_CHECK_M_N(fdi_m_n); PIPE_CONF_CHECK_I(lane_count); PIPE_CONF_CHECK_X(lane_lat_optim_mask); if (HAS_DOUBLE_BUFFERED_M_N(dev_priv)) { if (!fastset || !pipe_config->seamless_m_n) PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2); } else { PIPE_CONF_CHECK_M_N(dp_m_n); PIPE_CONF_CHECK_M_N(dp_m2_n2); } PIPE_CONF_CHECK_X(output_types); PIPE_CONF_CHECK_I(framestart_delay); PIPE_CONF_CHECK_I(msa_timing_delay); PIPE_CONF_CHECK_TIMINGS(hw.pipe_mode); PIPE_CONF_CHECK_TIMINGS(hw.adjusted_mode); PIPE_CONF_CHECK_I(pixel_multiplier); PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, DRM_MODE_FLAG_INTERLACE); if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) { PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, DRM_MODE_FLAG_PHSYNC); PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, DRM_MODE_FLAG_NHSYNC); PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, DRM_MODE_FLAG_PVSYNC); PIPE_CONF_CHECK_FLAGS(hw.adjusted_mode.flags, DRM_MODE_FLAG_NVSYNC); } PIPE_CONF_CHECK_I(output_format); PIPE_CONF_CHECK_BOOL(has_hdmi_sink); if ((DISPLAY_VER(dev_priv) < 8 && !IS_HASWELL(dev_priv)) || IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) PIPE_CONF_CHECK_BOOL(limited_color_range); PIPE_CONF_CHECK_BOOL(hdmi_scrambling); PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio); PIPE_CONF_CHECK_BOOL(has_infoframe); PIPE_CONF_CHECK_BOOL(fec_enable); PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio); PIPE_CONF_CHECK_X(gmch_pfit.control); /* pfit ratios are autocomputed by the hw on gen4+ */ if (DISPLAY_VER(dev_priv) < 4) PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios); PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits); /* * Changing the EDP transcoder input mux * (A_ONOFF vs. A_ON) requires a full modeset. */ PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru); if (!fastset) { PIPE_CONF_CHECK_RECT(pipe_src); PIPE_CONF_CHECK_BOOL(pch_pfit.enabled); PIPE_CONF_CHECK_RECT(pch_pfit.dst); PIPE_CONF_CHECK_I(scaler_state.scaler_id); PIPE_CONF_CHECK_I(pixel_rate); PIPE_CONF_CHECK_X(gamma_mode); if (IS_CHERRYVIEW(dev_priv)) PIPE_CONF_CHECK_X(cgm_mode); else PIPE_CONF_CHECK_X(csc_mode); PIPE_CONF_CHECK_BOOL(gamma_enable); PIPE_CONF_CHECK_BOOL(csc_enable); PIPE_CONF_CHECK_I(linetime); PIPE_CONF_CHECK_I(ips_linetime); bp_gamma = intel_color_get_gamma_bit_precision(pipe_config); if (bp_gamma) PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, hw.gamma_lut, bp_gamma); if (current_config->active_planes) { PIPE_CONF_CHECK_BOOL(has_psr); PIPE_CONF_CHECK_BOOL(has_psr2); PIPE_CONF_CHECK_BOOL(enable_psr2_sel_fetch); PIPE_CONF_CHECK_I(dc3co_exitline); } } PIPE_CONF_CHECK_BOOL(double_wide); if (dev_priv->display.dpll.mgr) { PIPE_CONF_CHECK_P(shared_dpll); PIPE_CONF_CHECK_X(dpll_hw_state.dpll); PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md); PIPE_CONF_CHECK_X(dpll_hw_state.fp0); PIPE_CONF_CHECK_X(dpll_hw_state.fp1); PIPE_CONF_CHECK_X(dpll_hw_state.wrpll); PIPE_CONF_CHECK_X(dpll_hw_state.spll); PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1); PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1); PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2); PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0); PIPE_CONF_CHECK_X(dpll_hw_state.div0); PIPE_CONF_CHECK_X(dpll_hw_state.ebb0); PIPE_CONF_CHECK_X(dpll_hw_state.ebb4); PIPE_CONF_CHECK_X(dpll_hw_state.pll0); PIPE_CONF_CHECK_X(dpll_hw_state.pll1); PIPE_CONF_CHECK_X(dpll_hw_state.pll2); PIPE_CONF_CHECK_X(dpll_hw_state.pll3); PIPE_CONF_CHECK_X(dpll_hw_state.pll6); PIPE_CONF_CHECK_X(dpll_hw_state.pll8); PIPE_CONF_CHECK_X(dpll_hw_state.pll9); PIPE_CONF_CHECK_X(dpll_hw_state.pll10); PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12); PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl); PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1); PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias); PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias); } PIPE_CONF_CHECK_X(dsi_pll.ctrl); PIPE_CONF_CHECK_X(dsi_pll.div); if (IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) >= 5) PIPE_CONF_CHECK_I(pipe_bpp); if (!fastset || !pipe_config->seamless_m_n) { PIPE_CONF_CHECK_I(hw.pipe_mode.crtc_clock); PIPE_CONF_CHECK_I(hw.adjusted_mode.crtc_clock); } PIPE_CONF_CHECK_I(port_clock); PIPE_CONF_CHECK_I(min_voltage_level); if (current_config->has_psr || pipe_config->has_psr) PIPE_CONF_CHECK_X_WITH_MASK(infoframes.enable, ~intel_hdmi_infoframe_enable(DP_SDP_VSC)); else PIPE_CONF_CHECK_X(infoframes.enable); PIPE_CONF_CHECK_X(infoframes.gcp); PIPE_CONF_CHECK_INFOFRAME(avi); PIPE_CONF_CHECK_INFOFRAME(spd); PIPE_CONF_CHECK_INFOFRAME(hdmi); PIPE_CONF_CHECK_INFOFRAME(drm); PIPE_CONF_CHECK_DP_VSC_SDP(vsc); PIPE_CONF_CHECK_X(sync_mode_slaves_mask); PIPE_CONF_CHECK_I(master_transcoder); PIPE_CONF_CHECK_X(bigjoiner_pipes); PIPE_CONF_CHECK_I(dsc.compression_enable); PIPE_CONF_CHECK_I(dsc.dsc_split); PIPE_CONF_CHECK_I(dsc.compressed_bpp); PIPE_CONF_CHECK_BOOL(splitter.enable); PIPE_CONF_CHECK_I(splitter.link_count); PIPE_CONF_CHECK_I(splitter.pixel_overlap); PIPE_CONF_CHECK_BOOL(vrr.enable); PIPE_CONF_CHECK_I(vrr.vmin); PIPE_CONF_CHECK_I(vrr.vmax); PIPE_CONF_CHECK_I(vrr.flipline); PIPE_CONF_CHECK_I(vrr.pipeline_full); PIPE_CONF_CHECK_I(vrr.guardband); #undef PIPE_CONF_CHECK_X #undef PIPE_CONF_CHECK_I #undef PIPE_CONF_CHECK_BOOL #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE #undef PIPE_CONF_CHECK_P #undef PIPE_CONF_CHECK_FLAGS #undef PIPE_CONF_CHECK_COLOR_LUT #undef PIPE_CONF_CHECK_TIMINGS #undef PIPE_CONF_CHECK_RECT #undef PIPE_CONF_QUIRK return ret; } static void intel_verify_planes(struct intel_atomic_state *state) { struct intel_plane *plane; const struct intel_plane_state *plane_state; int i; for_each_new_intel_plane_in_state(state, plane, plane_state, i) assert_plane(plane, plane_state->planar_slave || plane_state->uapi.visible); } int intel_modeset_all_pipes(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc *crtc; /* * Add all pipes to the state, and force * a modeset on all the active ones. */ for_each_intel_crtc(&dev_priv->drm, crtc) { struct intel_crtc_state *crtc_state; int ret; crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); if (!crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&crtc_state->uapi)) continue; crtc_state->uapi.mode_changed = true; ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base); if (ret) return ret; ret = intel_dp_mst_add_topology_state_for_crtc(state, crtc); if (ret) return ret; ret = intel_atomic_add_affected_planes(state, crtc); if (ret) return ret; crtc_state->update_planes |= crtc_state->active_planes; } return 0; } void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state) { struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); struct drm_display_mode adjusted_mode; drm_mode_init(&adjusted_mode, &crtc_state->hw.adjusted_mode); if (crtc_state->vrr.enable) { adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax; adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax; adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state); crtc->vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state); } drm_calc_timestamping_constants(&crtc->base, &adjusted_mode); crtc->mode_flags = crtc_state->mode_flags; /* * The scanline counter increments at the leading edge of hsync. * * On most platforms it starts counting from vtotal-1 on the * first active line. That means the scanline counter value is * always one less than what we would expect. Ie. just after * start of vblank, which also occurs at start of hsync (on the * last active line), the scanline counter will read vblank_start-1. * * On gen2 the scanline counter starts counting from 1 instead * of vtotal-1, so we have to subtract one (or rather add vtotal-1 * to keep the value positive), instead of adding one. * * On HSW+ the behaviour of the scanline counter depends on the output * type. For DP ports it behaves like most other platforms, but on HDMI * there's an extra 1 line difference. So we need to add two instead of * one to the value. * * On VLV/CHV DSI the scanline counter would appear to increment * approx. 1/3 of a scanline before start of vblank. Unfortunately * that means we can't tell whether we're in vblank or not while * we're on that particular line. We must still set scanline_offset * to 1 so that the vblank timestamps come out correct when we query * the scanline counter from within the vblank interrupt handler. * However if queried just before the start of vblank we'll get an * answer that's slightly in the future. */ if (DISPLAY_VER(dev_priv) == 2) { int vtotal; vtotal = adjusted_mode.crtc_vtotal; if (adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) vtotal /= 2; crtc->scanline_offset = vtotal - 1; } else if (HAS_DDI(dev_priv) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) { crtc->scanline_offset = 2; } else { crtc->scanline_offset = 1; } } /* * This implements the workaround described in the "notes" section of the mode * set sequence documentation. When going from no pipes or single pipe to * multiple pipes, and planes are enabled after the pipe, we need to wait at * least 2 vblanks on the first pipe before enabling planes on the second pipe. */ static int hsw_mode_set_planes_workaround(struct intel_atomic_state *state) { struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; struct intel_crtc_state *first_crtc_state = NULL; struct intel_crtc_state *other_crtc_state = NULL; enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE; int i; /* look at all crtc's that are going to be enabled in during modeset */ for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { if (!crtc_state->hw.active || !intel_crtc_needs_modeset(crtc_state)) continue; if (first_crtc_state) { other_crtc_state = crtc_state; break; } else { first_crtc_state = crtc_state; first_pipe = crtc->pipe; } } /* No workaround needed? */ if (!first_crtc_state) return 0; /* w/a possibly needed, check how many crtc's are already enabled. */ for_each_intel_crtc(state->base.dev, crtc) { crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); crtc_state->hsw_workaround_pipe = INVALID_PIPE; if (!crtc_state->hw.active || intel_crtc_needs_modeset(crtc_state)) continue; /* 2 or more enabled crtcs means no need for w/a */ if (enabled_pipe != INVALID_PIPE) return 0; enabled_pipe = crtc->pipe; } if (enabled_pipe != INVALID_PIPE) first_crtc_state->hsw_workaround_pipe = enabled_pipe; else if (other_crtc_state) other_crtc_state->hsw_workaround_pipe = first_pipe; return 0; } u8 intel_calc_active_pipes(struct intel_atomic_state *state, u8 active_pipes) { const struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; int i; for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { if (crtc_state->hw.active) active_pipes |= BIT(crtc->pipe); else active_pipes &= ~BIT(crtc->pipe); } return active_pipes; } static int intel_modeset_checks(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); state->modeset = true; if (IS_HASWELL(dev_priv)) return hsw_mode_set_planes_workaround(state); return 0; } static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *new_crtc_state) { if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true)) return; new_crtc_state->uapi.mode_changed = false; new_crtc_state->update_pipe = true; } static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state, struct intel_crtc *crtc, u8 plane_ids_mask) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_plane *plane; for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) { struct intel_plane_state *plane_state; if ((plane_ids_mask & BIT(plane->id)) == 0) continue; plane_state = intel_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) return PTR_ERR(plane_state); } return 0; } int intel_atomic_add_affected_planes(struct intel_atomic_state *state, struct intel_crtc *crtc) { const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); return intel_crtc_add_planes_to_state(state, crtc, old_crtc_state->enabled_planes | new_crtc_state->enabled_planes); } static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv) { /* See {hsw,vlv,ivb}_plane_ratio() */ return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) || IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) || IS_IVYBRIDGE(dev_priv); } static int intel_crtc_add_bigjoiner_planes(struct intel_atomic_state *state, struct intel_crtc *crtc, struct intel_crtc *other) { const struct intel_plane_state *plane_state; struct intel_plane *plane; u8 plane_ids = 0; int i; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { if (plane->pipe == crtc->pipe) plane_ids |= BIT(plane->id); } return intel_crtc_add_planes_to_state(state, other, plane_ids); } static int intel_bigjoiner_add_affected_planes(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; int i; for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { struct intel_crtc *other; for_each_intel_crtc_in_pipe_mask(&i915->drm, other, crtc_state->bigjoiner_pipes) { int ret; if (crtc == other) continue; ret = intel_crtc_add_bigjoiner_planes(state, crtc, other); if (ret) return ret; } } return 0; } static int intel_atomic_check_planes(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc_state *old_crtc_state, *new_crtc_state; struct intel_plane_state *plane_state; struct intel_plane *plane; struct intel_crtc *crtc; int i, ret; ret = icl_add_linked_planes(state); if (ret) return ret; ret = intel_bigjoiner_add_affected_planes(state); if (ret) return ret; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { ret = intel_plane_atomic_check(state, plane); if (ret) { drm_dbg_atomic(&dev_priv->drm, "[PLANE:%d:%s] atomic driver check failed\n", plane->base.base.id, plane->base.name); return ret; } } for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { u8 old_active_planes, new_active_planes; ret = icl_check_nv12_planes(new_crtc_state); if (ret) return ret; /* * On some platforms the number of active planes affects * the planes' minimum cdclk calculation. Add such planes * to the state before we compute the minimum cdclk. */ if (!active_planes_affects_min_cdclk(dev_priv)) continue; old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR); new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR); if (hweight8(old_active_planes) == hweight8(new_active_planes)) continue; ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes); if (ret) return ret; } return 0; } static int intel_atomic_check_crtcs(struct intel_atomic_state *state) { struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; int i; for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { struct drm_i915_private *i915 = to_i915(crtc->base.dev); int ret; ret = intel_crtc_atomic_check(state, crtc); if (ret) { drm_dbg_atomic(&i915->drm, "[CRTC:%d:%s] atomic driver check failed\n", crtc->base.base.id, crtc->base.name); return ret; } } return 0; } static bool intel_cpu_transcoders_need_modeset(struct intel_atomic_state *state, u8 transcoders) { const struct intel_crtc_state *new_crtc_state; struct intel_crtc *crtc; int i; for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { if (new_crtc_state->hw.enable && transcoders & BIT(new_crtc_state->cpu_transcoder) && intel_crtc_needs_modeset(new_crtc_state)) return true; } return false; } static bool intel_pipes_need_modeset(struct intel_atomic_state *state, u8 pipes) { const struct intel_crtc_state *new_crtc_state; struct intel_crtc *crtc; int i; for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { if (new_crtc_state->hw.enable && pipes & BIT(crtc->pipe) && intel_crtc_needs_modeset(new_crtc_state)) return true; } return false; } static int intel_atomic_check_bigjoiner(struct intel_atomic_state *state, struct intel_crtc *master_crtc) { struct drm_i915_private *i915 = to_i915(state->base.dev); struct intel_crtc_state *master_crtc_state = intel_atomic_get_new_crtc_state(state, master_crtc); struct intel_crtc *slave_crtc; if (!master_crtc_state->bigjoiner_pipes) return 0; /* sanity check */ if (drm_WARN_ON(&i915->drm, master_crtc->pipe != bigjoiner_master_pipe(master_crtc_state))) return -EINVAL; if (master_crtc_state->bigjoiner_pipes & ~bigjoiner_pipes(i915)) { drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Cannot act as big joiner master " "(need 0x%x as pipes, only 0x%x possible)\n", master_crtc->base.base.id, master_crtc->base.name, master_crtc_state->bigjoiner_pipes, bigjoiner_pipes(i915)); return -EINVAL; } for_each_intel_crtc_in_pipe_mask(&i915->drm, slave_crtc, intel_crtc_bigjoiner_slave_pipes(master_crtc_state)) { struct intel_crtc_state *slave_crtc_state; int ret; slave_crtc_state = intel_atomic_get_crtc_state(&state->base, slave_crtc); if (IS_ERR(slave_crtc_state)) return PTR_ERR(slave_crtc_state); /* master being enabled, slave was already configured? */ if (slave_crtc_state->uapi.enable) { drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Slave is enabled as normal CRTC, but " "[CRTC:%d:%s] claiming this CRTC for bigjoiner.\n", slave_crtc->base.base.id, slave_crtc->base.name, master_crtc->base.base.id, master_crtc->base.name); return -EINVAL; } /* * The state copy logic assumes the master crtc gets processed * before the slave crtc during the main compute_config loop. * This works because the crtcs are created in pipe order, * and the hardware requires master pipe < slave pipe as well. * Should that change we need to rethink the logic. */ if (WARN_ON(drm_crtc_index(&master_crtc->base) > drm_crtc_index(&slave_crtc->base))) return -EINVAL; drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Used as slave for big joiner master [CRTC:%d:%s]\n", slave_crtc->base.base.id, slave_crtc->base.name, master_crtc->base.base.id, master_crtc->base.name); slave_crtc_state->bigjoiner_pipes = master_crtc_state->bigjoiner_pipes; ret = copy_bigjoiner_crtc_state_modeset(state, slave_crtc); if (ret) return ret; } return 0; } static void kill_bigjoiner_slave(struct intel_atomic_state *state, struct intel_crtc *master_crtc) { struct drm_i915_private *i915 = to_i915(state->base.dev); struct intel_crtc_state *master_crtc_state = intel_atomic_get_new_crtc_state(state, master_crtc); struct intel_crtc *slave_crtc; for_each_intel_crtc_in_pipe_mask(&i915->drm, slave_crtc, intel_crtc_bigjoiner_slave_pipes(master_crtc_state)) { struct intel_crtc_state *slave_crtc_state = intel_atomic_get_new_crtc_state(state, slave_crtc); slave_crtc_state->bigjoiner_pipes = 0; intel_crtc_copy_uapi_to_hw_state_modeset(state, slave_crtc); } master_crtc_state->bigjoiner_pipes = 0; } /** * DOC: asynchronous flip implementation * * Asynchronous page flip is the implementation for the DRM_MODE_PAGE_FLIP_ASYNC * flag. Currently async flip is only supported via the drmModePageFlip IOCTL. * Correspondingly, support is currently added for primary plane only. * * Async flip can only change the plane surface address, so anything else * changing is rejected from the intel_async_flip_check_hw() function. * Once this check is cleared, flip done interrupt is enabled using * the intel_crtc_enable_flip_done() function. * * As soon as the surface address register is written, flip done interrupt is * generated and the requested events are sent to the usersapce in the interrupt * handler itself. The timestamp and sequence sent during the flip done event * correspond to the last vblank and have no relation to the actual time when * the flip done event was sent. */ static int intel_async_flip_check_uapi(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); const struct intel_plane_state *old_plane_state; struct intel_plane_state *new_plane_state; struct intel_plane *plane; int i; if (!new_crtc_state->uapi.async_flip) return 0; if (!new_crtc_state->uapi.active) { drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] not active\n", crtc->base.base.id, crtc->base.name); return -EINVAL; } if (intel_crtc_needs_modeset(new_crtc_state)) { drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] modeset required\n", crtc->base.base.id, crtc->base.name); return -EINVAL; } for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { if (plane->pipe != crtc->pipe) continue; /* * TODO: Async flip is only supported through the page flip IOCTL * as of now. So support currently added for primary plane only. * Support for other planes on platforms on which supports * this(vlv/chv and icl+) should be added when async flip is * enabled in the atomic IOCTL path. */ if (!plane->async_flip) { drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] async flip not supported\n", plane->base.base.id, plane->base.name); return -EINVAL; } if (!old_plane_state->uapi.fb || !new_plane_state->uapi.fb) { drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] no old or new framebuffer\n", plane->base.base.id, plane->base.name); return -EINVAL; } } return 0; } static int intel_async_flip_check_hw(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_crtc_state *old_crtc_state, *new_crtc_state; const struct intel_plane_state *new_plane_state, *old_plane_state; struct intel_plane *plane; int i; old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); if (!new_crtc_state->uapi.async_flip) return 0; if (!new_crtc_state->hw.active) { drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] not active\n", crtc->base.base.id, crtc->base.name); return -EINVAL; } if (intel_crtc_needs_modeset(new_crtc_state)) { drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] modeset required\n", crtc->base.base.id, crtc->base.name); return -EINVAL; } if (old_crtc_state->active_planes != new_crtc_state->active_planes) { drm_dbg_kms(&i915->drm, "[CRTC:%d:%s] Active planes cannot be in async flip\n", crtc->base.base.id, crtc->base.name); return -EINVAL; } for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, new_plane_state, i) { if (plane->pipe != crtc->pipe) continue; /* * Only async flip capable planes should be in the state * if we're really about to ask the hardware to perform * an async flip. We should never get this far otherwise. */ if (drm_WARN_ON(&i915->drm, new_crtc_state->do_async_flip && !plane->async_flip)) return -EINVAL; /* * Only check async flip capable planes other planes * may be involved in the initial commit due to * the wm0/ddb optimization. * * TODO maybe should track which planes actually * were requested to do the async flip... */ if (!plane->async_flip) continue; /* * FIXME: This check is kept generic for all platforms. * Need to verify this for all gen9 platforms to enable * this selectively if required. */ switch (new_plane_state->hw.fb->modifier) { case I915_FORMAT_MOD_X_TILED: case I915_FORMAT_MOD_Y_TILED: case I915_FORMAT_MOD_Yf_TILED: case I915_FORMAT_MOD_4_TILED: break; default: drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] Modifier does not support async flips\n", plane->base.base.id, plane->base.name); return -EINVAL; } if (new_plane_state->hw.fb->format->num_planes > 1) { drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] Planar formats do not support async flips\n", plane->base.base.id, plane->base.name); return -EINVAL; } if (old_plane_state->view.color_plane[0].mapping_stride != new_plane_state->view.color_plane[0].mapping_stride) { drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] Stride cannot be changed in async flip\n", plane->base.base.id, plane->base.name); return -EINVAL; } if (old_plane_state->hw.fb->modifier != new_plane_state->hw.fb->modifier) { drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] Modifier cannot be changed in async flip\n", plane->base.base.id, plane->base.name); return -EINVAL; } if (old_plane_state->hw.fb->format != new_plane_state->hw.fb->format) { drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] Pixel format cannot be changed in async flip\n", plane->base.base.id, plane->base.name); return -EINVAL; } if (old_plane_state->hw.rotation != new_plane_state->hw.rotation) { drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] Rotation cannot be changed in async flip\n", plane->base.base.id, plane->base.name); return -EINVAL; } if (!drm_rect_equals(&old_plane_state->uapi.src, &new_plane_state->uapi.src) || !drm_rect_equals(&old_plane_state->uapi.dst, &new_plane_state->uapi.dst)) { drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] Size/co-ordinates cannot be changed in async flip\n", plane->base.base.id, plane->base.name); return -EINVAL; } if (old_plane_state->hw.alpha != new_plane_state->hw.alpha) { drm_dbg_kms(&i915->drm, "[PLANES:%d:%s] Alpha value cannot be changed in async flip\n", plane->base.base.id, plane->base.name); return -EINVAL; } if (old_plane_state->hw.pixel_blend_mode != new_plane_state->hw.pixel_blend_mode) { drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] Pixel blend mode cannot be changed in async flip\n", plane->base.base.id, plane->base.name); return -EINVAL; } if (old_plane_state->hw.color_encoding != new_plane_state->hw.color_encoding) { drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] Color encoding cannot be changed in async flip\n", plane->base.base.id, plane->base.name); return -EINVAL; } if (old_plane_state->hw.color_range != new_plane_state->hw.color_range) { drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] Color range cannot be changed in async flip\n", plane->base.base.id, plane->base.name); return -EINVAL; } /* plane decryption is allow to change only in synchronous flips */ if (old_plane_state->decrypt != new_plane_state->decrypt) { drm_dbg_kms(&i915->drm, "[PLANE:%d:%s] Decryption cannot be changed in async flip\n", plane->base.base.id, plane->base.name); return -EINVAL; } } return 0; } static int intel_bigjoiner_add_affected_crtcs(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; u8 affected_pipes = 0; u8 modeset_pipes = 0; int i; for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { affected_pipes |= crtc_state->bigjoiner_pipes; if (intel_crtc_needs_modeset(crtc_state)) modeset_pipes |= crtc_state->bigjoiner_pipes; } for_each_intel_crtc_in_pipe_mask(&i915->drm, crtc, affected_pipes) { crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); } for_each_intel_crtc_in_pipe_mask(&i915->drm, crtc, modeset_pipes) { int ret; crtc_state = intel_atomic_get_new_crtc_state(state, crtc); crtc_state->uapi.mode_changed = true; ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base); if (ret) return ret; ret = intel_atomic_add_affected_planes(state, crtc); if (ret) return ret; } for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { /* Kill old bigjoiner link, we may re-establish afterwards */ if (intel_crtc_needs_modeset(crtc_state) && intel_crtc_is_bigjoiner_master(crtc_state)) kill_bigjoiner_slave(state, crtc); } return 0; } /** * intel_atomic_check - validate state object * @dev: drm device * @_state: state to validate */ static int intel_atomic_check(struct drm_device *dev, struct drm_atomic_state *_state) { struct drm_i915_private *dev_priv = to_i915(dev); struct intel_atomic_state *state = to_intel_atomic_state(_state); struct intel_crtc_state *old_crtc_state, *new_crtc_state; struct intel_crtc *crtc; int ret, i; bool any_ms = false; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (new_crtc_state->inherited != old_crtc_state->inherited) new_crtc_state->uapi.mode_changed = true; if (new_crtc_state->uapi.scaling_filter != old_crtc_state->uapi.scaling_filter) new_crtc_state->uapi.mode_changed = true; } intel_vrr_check_modeset(state); ret = drm_atomic_helper_check_modeset(dev, &state->base); if (ret) goto fail; for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { ret = intel_async_flip_check_uapi(state, crtc); if (ret) return ret; } ret = intel_bigjoiner_add_affected_crtcs(state); if (ret) goto fail; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (!intel_crtc_needs_modeset(new_crtc_state)) { if (intel_crtc_is_bigjoiner_slave(new_crtc_state)) copy_bigjoiner_crtc_state_nomodeset(state, crtc); else intel_crtc_copy_uapi_to_hw_state_nomodeset(state, crtc); continue; } if (intel_crtc_is_bigjoiner_slave(new_crtc_state)) { drm_WARN_ON(&dev_priv->drm, new_crtc_state->uapi.enable); continue; } ret = intel_crtc_prepare_cleared_state(state, crtc); if (ret) goto fail; if (!new_crtc_state->hw.enable) continue; ret = intel_modeset_pipe_config(state, crtc); if (ret) goto fail; ret = intel_atomic_check_bigjoiner(state, crtc); if (ret) goto fail; } for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (!intel_crtc_needs_modeset(new_crtc_state)) continue; if (new_crtc_state->hw.enable) { ret = intel_modeset_pipe_config_late(state, crtc); if (ret) goto fail; } intel_crtc_check_fastset(old_crtc_state, new_crtc_state); } /** * Check if fastset is allowed by external dependencies like other * pipes and transcoders. * * Right now it only forces a fullmodeset when the MST master * transcoder did not changed but the pipe of the master transcoder * needs a fullmodeset so all slaves also needs to do a fullmodeset or * in case of port synced crtcs, if one of the synced crtcs * needs a full modeset, all other synced crtcs should be * forced a full modeset. */ for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { if (!new_crtc_state->hw.enable || intel_crtc_needs_modeset(new_crtc_state)) continue; if (intel_dp_mst_is_slave_trans(new_crtc_state)) { enum transcoder master = new_crtc_state->mst_master_transcoder; if (intel_cpu_transcoders_need_modeset(state, BIT(master))) { new_crtc_state->uapi.mode_changed = true; new_crtc_state->update_pipe = false; } } if (is_trans_port_sync_mode(new_crtc_state)) { u8 trans = new_crtc_state->sync_mode_slaves_mask; if (new_crtc_state->master_transcoder != INVALID_TRANSCODER) trans |= BIT(new_crtc_state->master_transcoder); if (intel_cpu_transcoders_need_modeset(state, trans)) { new_crtc_state->uapi.mode_changed = true; new_crtc_state->update_pipe = false; } } if (new_crtc_state->bigjoiner_pipes) { if (intel_pipes_need_modeset(state, new_crtc_state->bigjoiner_pipes)) { new_crtc_state->uapi.mode_changed = true; new_crtc_state->update_pipe = false; } } } for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (!intel_crtc_needs_modeset(new_crtc_state)) continue; any_ms = true; intel_release_shared_dplls(state, crtc); } if (any_ms && !check_digital_port_conflicts(state)) { drm_dbg_kms(&dev_priv->drm, "rejecting conflicting digital port configuration\n"); ret = -EINVAL; goto fail; } ret = drm_dp_mst_atomic_check(&state->base); if (ret) goto fail; ret = intel_atomic_check_planes(state); if (ret) goto fail; ret = intel_compute_global_watermarks(state); if (ret) goto fail; ret = intel_bw_atomic_check(state); if (ret) goto fail; ret = intel_cdclk_atomic_check(state, &any_ms); if (ret) goto fail; if (intel_any_crtc_needs_modeset(state)) any_ms = true; if (any_ms) { ret = intel_modeset_checks(state); if (ret) goto fail; ret = intel_modeset_calc_cdclk(state); if (ret) return ret; } ret = intel_atomic_check_crtcs(state); if (ret) goto fail; ret = intel_fbc_atomic_check(state); if (ret) goto fail; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { ret = intel_async_flip_check_hw(state, crtc); if (ret) goto fail; if (!intel_crtc_needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe) continue; intel_crtc_state_dump(new_crtc_state, state, intel_crtc_needs_modeset(new_crtc_state) ? "modeset" : "fastset"); } return 0; fail: if (ret == -EDEADLK) return ret; /* * FIXME would probably be nice to know which crtc specifically * caused the failure, in cases where we can pinpoint it. */ for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) intel_crtc_state_dump(new_crtc_state, state, "failed"); return ret; } static int intel_atomic_prepare_commit(struct intel_atomic_state *state) { struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; int i, ret; ret = drm_atomic_helper_prepare_planes(state->base.dev, &state->base); if (ret < 0) return ret; for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) { bool mode_changed = intel_crtc_needs_modeset(crtc_state); if (mode_changed || crtc_state->update_pipe || crtc_state->uapi.color_mgmt_changed) { intel_dsb_prepare(crtc_state); } } return 0; } void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (DISPLAY_VER(dev_priv) != 2 || crtc_state->active_planes) intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); if (crtc_state->has_pch_encoder) { enum pipe pch_transcoder = intel_crtc_pch_transcoder(crtc); intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true); } } static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state, const struct intel_crtc_state *new_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); /* * Update pipe size and adjust fitter if needed: the reason for this is * that in compute_mode_changes we check the native mode (not the pfit * mode) to see if we can flip rather than do a full mode set. In the * fastboot case, we'll flip, but if we don't update the pipesrc and * pfit state, we'll end up with a big fb scanned out into the wrong * sized surface. */ intel_set_pipe_src_size(new_crtc_state); /* on skylake this is done by detaching scalers */ if (DISPLAY_VER(dev_priv) >= 9) { if (new_crtc_state->pch_pfit.enabled) skl_pfit_enable(new_crtc_state); } else if (HAS_PCH_SPLIT(dev_priv)) { if (new_crtc_state->pch_pfit.enabled) ilk_pfit_enable(new_crtc_state); else if (old_crtc_state->pch_pfit.enabled) ilk_pfit_disable(old_crtc_state); } /* * The register is supposedly single buffered so perhaps * not 100% correct to do this here. But SKL+ calculate * this based on the adjust pixel rate so pfit changes do * affect it and so it must be updated for fastsets. * HSW/BDW only really need this here for fastboot, after * that the value should not change without a full modeset. */ if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) hsw_set_linetime_wm(new_crtc_state); if (new_crtc_state->seamless_m_n) intel_cpu_transcoder_set_m1_n1(crtc, new_crtc_state->cpu_transcoder, &new_crtc_state->dp_m_n); } static void commit_pipe_pre_planes(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); bool modeset = intel_crtc_needs_modeset(new_crtc_state); /* * During modesets pipe configuration was programmed as the * CRTC was enabled. */ if (!modeset) { if (new_crtc_state->uapi.color_mgmt_changed || new_crtc_state->update_pipe) intel_color_commit_arm(new_crtc_state); if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv)) bdw_set_pipemisc(new_crtc_state); if (new_crtc_state->update_pipe) intel_pipe_fastset(old_crtc_state, new_crtc_state); } intel_psr2_program_trans_man_trk_ctl(new_crtc_state); intel_atomic_update_watermarks(state, crtc); } static void commit_pipe_post_planes(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); /* * Disable the scaler(s) after the plane(s) so that we don't * get a catastrophic underrun even if the two operations * end up happening in two different frames. */ if (DISPLAY_VER(dev_priv) >= 9 && !intel_crtc_needs_modeset(new_crtc_state)) skl_detach_scalers(new_crtc_state); } static void intel_enable_crtc(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); const struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); if (!intel_crtc_needs_modeset(new_crtc_state)) return; intel_crtc_update_active_timings(new_crtc_state); dev_priv->display.funcs.display->crtc_enable(state, crtc); if (intel_crtc_is_bigjoiner_slave(new_crtc_state)) return; /* vblanks work again, re-enable pipe CRC. */ intel_crtc_enable_pipe_crc(crtc); } static void intel_update_crtc(struct intel_atomic_state *state, struct intel_crtc *crtc) { struct drm_i915_private *i915 = to_i915(state->base.dev); const struct intel_crtc_state *old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc); struct intel_crtc_state *new_crtc_state = intel_atomic_get_new_crtc_state(state, crtc); bool modeset = intel_crtc_needs_modeset(new_crtc_state); if (!modeset) { if (new_crtc_state->preload_luts && (new_crtc_state->uapi.color_mgmt_changed || new_crtc_state->update_pipe)) intel_color_load_luts(new_crtc_state); intel_pre_plane_update(state, crtc); if (new_crtc_state->update_pipe) intel_encoders_update_pipe(state, crtc); if (DISPLAY_VER(i915) >= 11 && new_crtc_state->update_pipe) icl_set_pipe_chicken(new_crtc_state); } intel_fbc_update(state, crtc); if (!modeset && (new_crtc_state->uapi.color_mgmt_changed || new_crtc_state->update_pipe)) intel_color_commit_noarm(new_crtc_state); intel_crtc_planes_update_noarm(state, crtc); /* Perform vblank evasion around commit operation */ intel_pipe_update_start(new_crtc_state); commit_pipe_pre_planes(state, crtc); intel_crtc_planes_update_arm(state, crtc); commit_pipe_post_planes(state, crtc); intel_pipe_update_end(new_crtc_state); /* * We usually enable FIFO underrun interrupts as part of the * CRTC enable sequence during modesets. But when we inherit a * valid pipe configuration from the BIOS we need to take care * of enabling them on the CRTC's first fastset. */ if (new_crtc_state->update_pipe && !modeset && old_crtc_state->inherited) intel_crtc_arm_fifo_underrun(crtc, new_crtc_state); } static void intel_old_crtc_state_disables(struct intel_atomic_state *state, struct intel_crtc_state *old_crtc_state, struct intel_crtc_state *new_crtc_state, struct intel_crtc *crtc) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); /* * We need to disable pipe CRC before disabling the pipe, * or we race against vblank off. */ intel_crtc_disable_pipe_crc(crtc); dev_priv->display.funcs.display->crtc_disable(state, crtc); crtc->active = false; intel_fbc_disable(crtc); intel_disable_shared_dpll(old_crtc_state); /* FIXME unify this for all platforms */ if (!new_crtc_state->hw.active && !HAS_GMCH(dev_priv)) intel_initial_watermarks(state, crtc); } static void intel_commit_modeset_disables(struct intel_atomic_state *state) { struct intel_crtc_state *new_crtc_state, *old_crtc_state; struct intel_crtc *crtc; u32 handled = 0; int i; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (!intel_crtc_needs_modeset(new_crtc_state)) continue; if (!old_crtc_state->hw.active) continue; intel_pre_plane_update(state, crtc); intel_crtc_disable_planes(state, crtc); } /* Only disable port sync and MST slaves */ for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (!intel_crtc_needs_modeset(new_crtc_state)) continue; if (!old_crtc_state->hw.active) continue; /* In case of Transcoder port Sync master slave CRTCs can be * assigned in any order and we need to make sure that * slave CRTCs are disabled first and then master CRTC since * Slave vblanks are masked till Master Vblanks. */ if (!is_trans_port_sync_slave(old_crtc_state) && !intel_dp_mst_is_slave_trans(old_crtc_state) && !intel_crtc_is_bigjoiner_slave(old_crtc_state)) continue; intel_old_crtc_state_disables(state, old_crtc_state, new_crtc_state, crtc); handled |= BIT(crtc->pipe); } /* Disable everything else left on */ for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (!intel_crtc_needs_modeset(new_crtc_state) || (handled & BIT(crtc->pipe))) continue; if (!old_crtc_state->hw.active) continue; intel_old_crtc_state_disables(state, old_crtc_state, new_crtc_state, crtc); } } static void intel_commit_modeset_enables(struct intel_atomic_state *state) { struct intel_crtc_state *new_crtc_state; struct intel_crtc *crtc; int i; for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { if (!new_crtc_state->hw.active) continue; intel_enable_crtc(state, crtc); intel_update_crtc(state, crtc); } } static void skl_commit_modeset_enables(struct intel_atomic_state *state) { struct drm_i915_private *dev_priv = to_i915(state->base.dev); struct intel_crtc *crtc; struct intel_crtc_state *old_crtc_state, *new_crtc_state; struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; u8 update_pipes = 0, modeset_pipes = 0; int i; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { enum pipe pipe = crtc->pipe; if (!new_crtc_state->hw.active) continue; /* ignore allocations for crtc's that have been turned off. */ if (!intel_crtc_needs_modeset(new_crtc_state)) { entries[pipe] = old_crtc_state->wm.skl.ddb; update_pipes |= BIT(pipe); } else { modeset_pipes |= BIT(pipe); } } /* * Whenever the number of active pipes changes, we need to make sure we * update the pipes in the right order so that their ddb allocations * never overlap with each other between CRTC updates. Otherwise we'll * cause pipe underruns and other bad stuff. * * So first lets enable all pipes that do not need a fullmodeset as * those don't have any external dependency. */ while (update_pipes) { for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { enum pipe pipe = crtc->pipe; if ((update_pipes & BIT(pipe)) == 0) continue; if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, entries, I915_MAX_PIPES, pipe)) continue; entries[pipe] = new_crtc_state->wm.skl.ddb; update_pipes &= ~BIT(pipe); intel_update_crtc(state, crtc); /* * If this is an already active pipe, it's DDB changed, * and this isn't the last pipe that needs updating * then we need to wait for a vblank to pass for the * new ddb allocation to take effect. */ if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb, &old_crtc_state->wm.skl.ddb) && (update_pipes | modeset_pipes)) intel_crtc_wait_for_next_vblank(crtc); } } update_pipes = modeset_pipes; /* * Enable all pipes that needs a modeset and do not depends on other * pipes */ for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { enum pipe pipe = crtc->pipe; if ((modeset_pipes & BIT(pipe)) == 0) continue; if (intel_dp_mst_is_slave_trans(new_crtc_state) || is_trans_port_sync_master(new_crtc_state) || intel_crtc_is_bigjoiner_master(new_crtc_state)) continue; modeset_pipes &= ~BIT(pipe); intel_enable_crtc(state, crtc); } /* * Then we enable all remaining pipes that depend on other * pipes: MST slaves and port sync masters, big joiner master */ for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { enum pipe pipe = crtc->pipe; if ((modeset_pipes & BIT(pipe)) == 0) continue; modeset_pipes &= ~BIT(pipe); intel_enable_crtc(state, crtc); } /* * Finally we do the plane updates/etc. for all pipes that got enabled. */ for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { enum pipe pipe = crtc->pipe; if ((update_pipes & BIT(pipe)) == 0) continue; drm_WARN_ON(&dev_priv->drm, skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb, entries, I915_MAX_PIPES, pipe)); entries[pipe] = new_crtc_state->wm.skl.ddb; update_pipes &= ~BIT(pipe); intel_update_crtc(state, crtc); } drm_WARN_ON(&dev_priv->drm, modeset_pipes); drm_WARN_ON(&dev_priv->drm, update_pipes); } static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv) { struct intel_atomic_state *state, *next; struct llist_node *freed; freed = llist_del_all(&dev_priv->display.atomic_helper.free_list); llist_for_each_entry_safe(state, next, freed, freed) drm_atomic_state_put(&state->base); } static void intel_atomic_helper_free_state_worker(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), display.atomic_helper.free_work); intel_atomic_helper_free_state(dev_priv); } static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state) { struct wait_queue_entry wait_fence, wait_reset; struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev); init_wait_entry(&wait_fence, 0); init_wait_entry(&wait_reset, 0); for (;;) { prepare_to_wait(&intel_state->commit_ready.wait, &wait_fence, TASK_UNINTERRUPTIBLE); prepare_to_wait(bit_waitqueue(&to_gt(dev_priv)->reset.flags, I915_RESET_MODESET), &wait_reset, TASK_UNINTERRUPTIBLE); if (i915_sw_fence_done(&intel_state->commit_ready) || test_bit(I915_RESET_MODESET, &to_gt(dev_priv)->reset.flags)) break; schedule(); } finish_wait(&intel_state->commit_ready.wait, &wait_fence); finish_wait(bit_waitqueue(&to_gt(dev_priv)->reset.flags, I915_RESET_MODESET), &wait_reset); } static void intel_cleanup_dsbs(struct intel_atomic_state *state) { struct intel_crtc_state *old_crtc_state, *new_crtc_state; struct intel_crtc *crtc; int i; for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) intel_dsb_cleanup(old_crtc_state); } static void intel_atomic_cleanup_work(struct work_struct *work) { struct intel_atomic_state *state = container_of(work, struct intel_atomic_state, base.commit_work); struct drm_i915_private *i915 = to_i915(state->base.dev); intel_cleanup_dsbs(state); drm_atomic_helper_cleanup_planes(&i915->drm, &state->base); drm_atomic_helper_commit_cleanup_done(&state->base); drm_atomic_state_put(&state->base); intel_atomic_helper_free_state(i915); } static void intel_atomic_prepare_plane_clear_colors(struct intel_atomic_state *state) { struct drm_i915_private *i915 = to_i915(state->base.dev); struct intel_plane *plane; struct intel_plane_state *plane_state; int i; for_each_new_intel_plane_in_state(state, plane, plane_state, i) { struct drm_framebuffer *fb = plane_state->hw.fb; int cc_plane; int ret; if (!fb) continue; cc_plane = intel_fb_rc_ccs_cc_plane(fb); if (cc_plane < 0) continue; /* * The layout of the fast clear color value expected by HW * (the DRM ABI requiring this value to be located in fb at * offset 0 of cc plane, plane #2 previous generations or * plane #1 for flat ccs): * - 4 x 4 bytes per-channel value * (in surface type specific float/int format provided by the fb user) * - 8 bytes native color value used by the display * (converted/written by GPU during a fast clear operation using the * above per-channel values) * * The commit's FB prepare hook already ensured that FB obj is pinned and the * caller made sure that the object is synced wrt. the related color clear value * GPU write on it. */ ret = i915_gem_object_read_from_page(intel_fb_obj(fb), fb->offsets[cc_plane] + 16, &plane_state->ccval, sizeof(plane_state->ccval)); /* The above could only fail if the FB obj has an unexpected backing store type. */ drm_WARN_ON(&i915->drm, ret); } } static void intel_atomic_commit_tail(struct intel_atomic_state *state) { struct drm_device *dev = state->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); struct intel_crtc_state *new_crtc_state, *old_crtc_state; struct intel_crtc *crtc; struct intel_power_domain_mask put_domains[I915_MAX_PIPES] = {}; intel_wakeref_t wakeref = 0; int i; intel_atomic_commit_fence_wait(state); drm_atomic_helper_wait_for_dependencies(&state->base); drm_dp_mst_atomic_wait_for_dependencies(&state->base); if (state->modeset) wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET); intel_atomic_prepare_plane_clear_colors(state); for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { if (intel_crtc_needs_modeset(new_crtc_state) || new_crtc_state->update_pipe) { intel_modeset_get_crtc_power_domains(new_crtc_state, &put_domains[crtc->pipe]); } } intel_commit_modeset_disables(state); /* FIXME: Eventually get rid of our crtc->config pointer */ for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) crtc->config = new_crtc_state; if (state->modeset) { drm_atomic_helper_update_legacy_modeset_state(dev, &state->base); intel_set_cdclk_pre_plane_update(state); intel_modeset_verify_disabled(dev_priv, state); } intel_sagv_pre_plane_update(state); /* Complete the events for pipes that have now been disabled */ for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { bool modeset = intel_crtc_needs_modeset(new_crtc_state); /* Complete events for now disable pipes here. */ if (modeset && !new_crtc_state->hw.active && new_crtc_state->uapi.event) { spin_lock_irq(&dev->event_lock); drm_crtc_send_vblank_event(&crtc->base, new_crtc_state->uapi.event); spin_unlock_irq(&dev->event_lock); new_crtc_state->uapi.event = NULL; } } intel_encoders_update_prepare(state); intel_dbuf_pre_plane_update(state); intel_mbus_dbox_update(state); for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { if (new_crtc_state->do_async_flip) intel_crtc_enable_flip_done(state, crtc); } /* Now enable the clocks, plane, pipe, and connectors that we set up. */ dev_priv->display.funcs.display->commit_modeset_enables(state); intel_encoders_update_complete(state); if (state->modeset) intel_set_cdclk_post_plane_update(state); intel_wait_for_vblank_workers(state); /* FIXME: We should call drm_atomic_helper_commit_hw_done() here * already, but still need the state for the delayed optimization. To * fix this: * - wrap the optimization/post_plane_update stuff into a per-crtc work. * - schedule that vblank worker _before_ calling hw_done * - at the start of commit_tail, cancel it _synchrously * - switch over to the vblank wait helper in the core after that since * we don't need out special handling any more. */ drm_atomic_helper_wait_for_flip_done(dev, &state->base); for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { if (new_crtc_state->do_async_flip) intel_crtc_disable_flip_done(state, crtc); } /* * Now that the vblank has passed, we can go ahead and program the * optimal watermarks on platforms that need two-step watermark * programming. * * TODO: Move this (and other cleanup) to an async worker eventually. */ for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { /* * Gen2 reports pipe underruns whenever all planes are disabled. * So re-enable underrun reporting after some planes get enabled. * * We do this before .optimize_watermarks() so that we have a * chance of catching underruns with the intermediate watermarks * vs. the new plane configuration. */ if (DISPLAY_VER(dev_priv) == 2 && planes_enabling(old_crtc_state, new_crtc_state)) intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); intel_optimize_watermarks(state, crtc); } intel_dbuf_post_plane_update(state); intel_psr_post_plane_update(state); for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { intel_post_plane_update(state, crtc); intel_modeset_put_crtc_power_domains(crtc, &put_domains[crtc->pipe]); intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state); /* * DSB cleanup is done in cleanup_work aligning with framebuffer * cleanup. So copy and reset the dsb structure to sync with * commit_done and later do dsb cleanup in cleanup_work. */ old_crtc_state->dsb = fetch_and_zero(&new_crtc_state->dsb); } /* Underruns don't always raise interrupts, so check manually */ intel_check_cpu_fifo_underruns(dev_priv); intel_check_pch_fifo_underruns(dev_priv); if (state->modeset) intel_verify_planes(state); intel_sagv_post_plane_update(state); drm_atomic_helper_commit_hw_done(&state->base); if (state->modeset) { /* As one of the primary mmio accessors, KMS has a high * likelihood of triggering bugs in unclaimed access. After we * finish modesetting, see if an error has been flagged, and if * so enable debugging for the next modeset - and hope we catch * the culprit. */ intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore); intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref); } intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); /* * Defer the cleanup of the old state to a separate worker to not * impede the current task (userspace for blocking modesets) that * are executed inline. For out-of-line asynchronous modesets/flips, * deferring to a new worker seems overkill, but we would place a * schedule point (cond_resched()) here anyway to keep latencies * down. */ INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work); queue_work(system_highpri_wq, &state->base.commit_work); } static void intel_atomic_commit_work(struct work_struct *work) { struct intel_atomic_state *state = container_of(work, struct intel_atomic_state, base.commit_work); intel_atomic_commit_tail(state); } static int intel_atomic_commit_ready(struct i915_sw_fence *fence, enum i915_sw_fence_notify notify) { struct intel_atomic_state *state = container_of(fence, struct intel_atomic_state, commit_ready); switch (notify) { case FENCE_COMPLETE: /* we do blocking waits in the worker, nothing to do here */ break; case FENCE_FREE: { struct intel_atomic_helper *helper = &to_i915(state->base.dev)->display.atomic_helper; if (llist_add(&state->freed, &helper->free_list)) schedule_work(&helper->free_work); break; } } return NOTIFY_DONE; } static void intel_atomic_track_fbs(struct intel_atomic_state *state) { struct intel_plane_state *old_plane_state, *new_plane_state; struct intel_plane *plane; int i; for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, new_plane_state, i) intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->hw.fb), to_intel_frontbuffer(new_plane_state->hw.fb), plane->frontbuffer_bit); } static int intel_atomic_commit(struct drm_device *dev, struct drm_atomic_state *_state, bool nonblock) { struct intel_atomic_state *state = to_intel_atomic_state(_state); struct drm_i915_private *dev_priv = to_i915(dev); int ret = 0; state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); drm_atomic_state_get(&state->base); i915_sw_fence_init(&state->commit_ready, intel_atomic_commit_ready); /* * The intel_legacy_cursor_update() fast path takes care * of avoiding the vblank waits for simple cursor * movement and flips. For cursor on/off and size changes, * we want to perform the vblank waits so that watermark * updates happen during the correct frames. Gen9+ have * double buffered watermarks and so shouldn't need this. * * Unset state->legacy_cursor_update before the call to * drm_atomic_helper_setup_commit() because otherwise * drm_atomic_helper_wait_for_flip_done() is a noop and * we get FIFO underruns because we didn't wait * for vblank. * * FIXME doing watermarks and fb cleanup from a vblank worker * (assuming we had any) would solve these problems. */ if (DISPLAY_VER(dev_priv) < 9 && state->base.legacy_cursor_update) { struct intel_crtc_state *new_crtc_state; struct intel_crtc *crtc; int i; for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) if (new_crtc_state->wm.need_postvbl_update || new_crtc_state->update_wm_post) state->base.legacy_cursor_update = false; } ret = intel_atomic_prepare_commit(state); if (ret) { drm_dbg_atomic(&dev_priv->drm, "Preparing state failed with %i\n", ret); i915_sw_fence_commit(&state->commit_ready); intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); return ret; } ret = drm_atomic_helper_setup_commit(&state->base, nonblock); if (!ret) ret = drm_atomic_helper_swap_state(&state->base, true); if (!ret) intel_atomic_swap_global_state(state); if (ret) { struct intel_crtc_state *new_crtc_state; struct intel_crtc *crtc; int i; i915_sw_fence_commit(&state->commit_ready); for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) intel_dsb_cleanup(new_crtc_state); drm_atomic_helper_cleanup_planes(dev, &state->base); intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref); return ret; } intel_shared_dpll_swap_state(state); intel_atomic_track_fbs(state); drm_atomic_state_get(&state->base); INIT_WORK(&state->base.commit_work, intel_atomic_commit_work); i915_sw_fence_commit(&state->commit_ready); if (nonblock && state->modeset) { queue_work(dev_priv->display.wq.modeset, &state->base.commit_work); } else if (nonblock) { queue_work(dev_priv->display.wq.flip, &state->base.commit_work); } else { if (state->modeset) flush_workqueue(dev_priv->display.wq.modeset); intel_atomic_commit_tail(state); } return 0; } /** * intel_plane_destroy - destroy a plane * @plane: plane to destroy * * Common destruction function for all types of planes (primary, cursor, * sprite). */ void intel_plane_destroy(struct drm_plane *plane) { drm_plane_cleanup(plane); kfree(to_intel_plane(plane)); } static void intel_plane_possible_crtcs_init(struct drm_i915_private *dev_priv) { struct intel_plane *plane; for_each_intel_plane(&dev_priv->drm, plane) { struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, plane->pipe); plane->base.possible_crtcs = drm_crtc_mask(&crtc->base); } } int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data; struct drm_crtc *drmmode_crtc; struct intel_crtc *crtc; drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id); if (!drmmode_crtc) return -ENOENT; crtc = to_intel_crtc(drmmode_crtc); pipe_from_crtc_id->pipe = crtc->pipe; return 0; } static u32 intel_encoder_possible_clones(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct intel_encoder *source_encoder; u32 possible_clones = 0; for_each_intel_encoder(dev, source_encoder) { if (encoders_cloneable(encoder, source_encoder)) possible_clones |= drm_encoder_mask(&source_encoder->base); } return possible_clones; } static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct intel_crtc *crtc; u32 possible_crtcs = 0; for_each_intel_crtc_in_pipe_mask(dev, crtc, encoder->pipe_mask) possible_crtcs |= drm_crtc_mask(&crtc->base); return possible_crtcs; } static bool ilk_has_edp_a(struct drm_i915_private *dev_priv) { if (!IS_MOBILE(dev_priv)) return false; if ((intel_de_read(dev_priv, DP_A) & DP_DETECTED) == 0) return false; if (IS_IRONLAKE(dev_priv) && (intel_de_read(dev_priv, FUSE_STRAP) & ILK_eDP_A_DISABLE)) return false; return true; } static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv) { if (DISPLAY_VER(dev_priv) >= 9) return false; if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv)) return false; if (HAS_PCH_LPT_H(dev_priv) && intel_de_read(dev_priv, SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED) return false; /* DDI E can't be used if DDI A requires 4 lanes */ if (intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) return false; if (!dev_priv->display.vbt.int_crt_support) return false; return true; } static void intel_setup_outputs(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; bool dpd_is_edp = false; intel_pps_unlock_regs_wa(dev_priv); if (!HAS_DISPLAY(dev_priv)) return; if (IS_DG2(dev_priv)) { intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); intel_ddi_init(dev_priv, PORT_C); intel_ddi_init(dev_priv, PORT_D_XELPD); intel_ddi_init(dev_priv, PORT_TC1); } else if (IS_ALDERLAKE_P(dev_priv)) { intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); intel_ddi_init(dev_priv, PORT_TC1); intel_ddi_init(dev_priv, PORT_TC2); intel_ddi_init(dev_priv, PORT_TC3); intel_ddi_init(dev_priv, PORT_TC4); icl_dsi_init(dev_priv); } else if (IS_ALDERLAKE_S(dev_priv)) { intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_TC1); intel_ddi_init(dev_priv, PORT_TC2); intel_ddi_init(dev_priv, PORT_TC3); intel_ddi_init(dev_priv, PORT_TC4); } else if (IS_DG1(dev_priv) || IS_ROCKETLAKE(dev_priv)) { intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); intel_ddi_init(dev_priv, PORT_TC1); intel_ddi_init(dev_priv, PORT_TC2); } else if (DISPLAY_VER(dev_priv) >= 12) { intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); intel_ddi_init(dev_priv, PORT_TC1); intel_ddi_init(dev_priv, PORT_TC2); intel_ddi_init(dev_priv, PORT_TC3); intel_ddi_init(dev_priv, PORT_TC4); intel_ddi_init(dev_priv, PORT_TC5); intel_ddi_init(dev_priv, PORT_TC6); icl_dsi_init(dev_priv); } else if (IS_JSL_EHL(dev_priv)) { intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); intel_ddi_init(dev_priv, PORT_C); intel_ddi_init(dev_priv, PORT_D); icl_dsi_init(dev_priv); } else if (DISPLAY_VER(dev_priv) == 11) { intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); intel_ddi_init(dev_priv, PORT_C); intel_ddi_init(dev_priv, PORT_D); intel_ddi_init(dev_priv, PORT_E); intel_ddi_init(dev_priv, PORT_F); icl_dsi_init(dev_priv); } else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) { intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); intel_ddi_init(dev_priv, PORT_C); vlv_dsi_init(dev_priv); } else if (DISPLAY_VER(dev_priv) >= 9) { intel_ddi_init(dev_priv, PORT_A); intel_ddi_init(dev_priv, PORT_B); intel_ddi_init(dev_priv, PORT_C); intel_ddi_init(dev_priv, PORT_D); intel_ddi_init(dev_priv, PORT_E); } else if (HAS_DDI(dev_priv)) { u32 found; if (intel_ddi_crt_present(dev_priv)) intel_crt_init(dev_priv); /* Haswell uses DDI functions to detect digital outputs. */ found = intel_de_read(dev_priv, DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED; if (found) intel_ddi_init(dev_priv, PORT_A); found = intel_de_read(dev_priv, SFUSE_STRAP); if (found & SFUSE_STRAP_DDIB_DETECTED) intel_ddi_init(dev_priv, PORT_B); if (found & SFUSE_STRAP_DDIC_DETECTED) intel_ddi_init(dev_priv, PORT_C); if (found & SFUSE_STRAP_DDID_DETECTED) intel_ddi_init(dev_priv, PORT_D); if (found & SFUSE_STRAP_DDIF_DETECTED) intel_ddi_init(dev_priv, PORT_F); } else if (HAS_PCH_SPLIT(dev_priv)) { int found; /* * intel_edp_init_connector() depends on this completing first, * to prevent the registration of both eDP and LVDS and the * incorrect sharing of the PPS. */ intel_lvds_init(dev_priv); intel_crt_init(dev_priv); dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D); if (ilk_has_edp_a(dev_priv)) g4x_dp_init(dev_priv, DP_A, PORT_A); if (intel_de_read(dev_priv, PCH_HDMIB) & SDVO_DETECTED) { /* PCH SDVOB multiplex with HDMIB */ found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B); if (!found) g4x_hdmi_init(dev_priv, PCH_HDMIB, PORT_B); if (!found && (intel_de_read(dev_priv, PCH_DP_B) & DP_DETECTED)) g4x_dp_init(dev_priv, PCH_DP_B, PORT_B); } if (intel_de_read(dev_priv, PCH_HDMIC) & SDVO_DETECTED) g4x_hdmi_init(dev_priv, PCH_HDMIC, PORT_C); if (!dpd_is_edp && intel_de_read(dev_priv, PCH_HDMID) & SDVO_DETECTED) g4x_hdmi_init(dev_priv, PCH_HDMID, PORT_D); if (intel_de_read(dev_priv, PCH_DP_C) & DP_DETECTED) g4x_dp_init(dev_priv, PCH_DP_C, PORT_C); if (intel_de_read(dev_priv, PCH_DP_D) & DP_DETECTED) g4x_dp_init(dev_priv, PCH_DP_D, PORT_D); } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { bool has_edp, has_port; if (IS_VALLEYVIEW(dev_priv) && dev_priv->display.vbt.int_crt_support) intel_crt_init(dev_priv); /* * The DP_DETECTED bit is the latched state of the DDC * SDA pin at boot. However since eDP doesn't require DDC * (no way to plug in a DP->HDMI dongle) the DDC pins for * eDP ports may have been muxed to an alternate function. * Thus we can't rely on the DP_DETECTED bit alone to detect * eDP ports. Consult the VBT as well as DP_DETECTED to * detect eDP ports. * * Sadly the straps seem to be missing sometimes even for HDMI * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap * and VBT for the presence of the port. Additionally we can't * trust the port type the VBT declares as we've seen at least * HDMI ports that the VBT claim are DP or eDP. */ has_edp = intel_dp_is_port_edp(dev_priv, PORT_B); has_port = intel_bios_is_port_present(dev_priv, PORT_B); if (intel_de_read(dev_priv, VLV_DP_B) & DP_DETECTED || has_port) has_edp &= g4x_dp_init(dev_priv, VLV_DP_B, PORT_B); if ((intel_de_read(dev_priv, VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp) g4x_hdmi_init(dev_priv, VLV_HDMIB, PORT_B); has_edp = intel_dp_is_port_edp(dev_priv, PORT_C); has_port = intel_bios_is_port_present(dev_priv, PORT_C); if (intel_de_read(dev_priv, VLV_DP_C) & DP_DETECTED || has_port) has_edp &= g4x_dp_init(dev_priv, VLV_DP_C, PORT_C); if ((intel_de_read(dev_priv, VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp) g4x_hdmi_init(dev_priv, VLV_HDMIC, PORT_C); if (IS_CHERRYVIEW(dev_priv)) { /* * eDP not supported on port D, * so no need to worry about it */ has_port = intel_bios_is_port_present(dev_priv, PORT_D); if (intel_de_read(dev_priv, CHV_DP_D) & DP_DETECTED || has_port) g4x_dp_init(dev_priv, CHV_DP_D, PORT_D); if (intel_de_read(dev_priv, CHV_HDMID) & SDVO_DETECTED || has_port) g4x_hdmi_init(dev_priv, CHV_HDMID, PORT_D); } vlv_dsi_init(dev_priv); } else if (IS_PINEVIEW(dev_priv)) { intel_lvds_init(dev_priv); intel_crt_init(dev_priv); } else if (IS_DISPLAY_VER(dev_priv, 3, 4)) { bool found = false; if (IS_MOBILE(dev_priv)) intel_lvds_init(dev_priv); intel_crt_init(dev_priv); if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { drm_dbg_kms(&dev_priv->drm, "probing SDVOB\n"); found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B); if (!found && IS_G4X(dev_priv)) { drm_dbg_kms(&dev_priv->drm, "probing HDMI on SDVOB\n"); g4x_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B); } if (!found && IS_G4X(dev_priv)) g4x_dp_init(dev_priv, DP_B, PORT_B); } /* Before G4X SDVOC doesn't have its own detect register */ if (intel_de_read(dev_priv, GEN3_SDVOB) & SDVO_DETECTED) { drm_dbg_kms(&dev_priv->drm, "probing SDVOC\n"); found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C); } if (!found && (intel_de_read(dev_priv, GEN3_SDVOC) & SDVO_DETECTED)) { if (IS_G4X(dev_priv)) { drm_dbg_kms(&dev_priv->drm, "probing HDMI on SDVOC\n"); g4x_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C); } if (IS_G4X(dev_priv)) g4x_dp_init(dev_priv, DP_C, PORT_C); } if (IS_G4X(dev_priv) && (intel_de_read(dev_priv, DP_D) & DP_DETECTED)) g4x_dp_init(dev_priv, DP_D, PORT_D); if (SUPPORTS_TV(dev_priv)) intel_tv_init(dev_priv); } else if (DISPLAY_VER(dev_priv) == 2) { if (IS_I85X(dev_priv)) intel_lvds_init(dev_priv); intel_crt_init(dev_priv); intel_dvo_init(dev_priv); } for_each_intel_encoder(&dev_priv->drm, encoder) { encoder->base.possible_crtcs = intel_encoder_possible_crtcs(encoder); encoder->base.possible_clones = intel_encoder_possible_clones(encoder); } intel_init_pch_refclk(dev_priv); drm_helper_move_panel_connectors_to_head(&dev_priv->drm); } static int max_dotclock(struct drm_i915_private *i915) { int max_dotclock = i915->max_dotclk_freq; /* icl+ might use bigjoiner */ if (DISPLAY_VER(i915) >= 11) max_dotclock *= 2; return max_dotclock; } static enum drm_mode_status intel_mode_valid(struct drm_device *dev, const struct drm_display_mode *mode) { struct drm_i915_private *dev_priv = to_i915(dev); int hdisplay_max, htotal_max; int vdisplay_max, vtotal_max; /* * Can't reject DBLSCAN here because Xorg ddxen can add piles * of DBLSCAN modes to the output's mode list when they detect * the scaling mode property on the connector. And they don't * ask the kernel to validate those modes in any way until * modeset time at which point the client gets a protocol error. * So in order to not upset those clients we silently ignore the * DBLSCAN flag on such connectors. For other connectors we will * reject modes with the DBLSCAN flag in encoder->compute_config(). * And we always reject DBLSCAN modes in connector->mode_valid() * as we never want such modes on the connector's mode list. */ if (mode->vscan > 1) return MODE_NO_VSCAN; if (mode->flags & DRM_MODE_FLAG_HSKEW) return MODE_H_ILLEGAL; if (mode->flags & (DRM_MODE_FLAG_CSYNC | DRM_MODE_FLAG_NCSYNC | DRM_MODE_FLAG_PCSYNC)) return MODE_HSYNC; if (mode->flags & (DRM_MODE_FLAG_BCAST | DRM_MODE_FLAG_PIXMUX | DRM_MODE_FLAG_CLKDIV2)) return MODE_BAD; /* * Reject clearly excessive dotclocks early to * avoid having to worry about huge integers later. */ if (mode->clock > max_dotclock(dev_priv)) return MODE_CLOCK_HIGH; /* Transcoder timing limits */ if (DISPLAY_VER(dev_priv) >= 11) { hdisplay_max = 16384; vdisplay_max = 8192; htotal_max = 16384; vtotal_max = 8192; } else if (DISPLAY_VER(dev_priv) >= 9 || IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) { hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */ vdisplay_max = 4096; htotal_max = 8192; vtotal_max = 8192; } else if (DISPLAY_VER(dev_priv) >= 3) { hdisplay_max = 4096; vdisplay_max = 4096; htotal_max = 8192; vtotal_max = 8192; } else { hdisplay_max = 2048; vdisplay_max = 2048; htotal_max = 4096; vtotal_max = 4096; } if (mode->hdisplay > hdisplay_max || mode->hsync_start > htotal_max || mode->hsync_end > htotal_max || mode->htotal > htotal_max) return MODE_H_ILLEGAL; if (mode->vdisplay > vdisplay_max || mode->vsync_start > vtotal_max || mode->vsync_end > vtotal_max || mode->vtotal > vtotal_max) return MODE_V_ILLEGAL; if (DISPLAY_VER(dev_priv) >= 5) { if (mode->hdisplay < 64 || mode->htotal - mode->hdisplay < 32) return MODE_H_ILLEGAL; if (mode->vtotal - mode->vdisplay < 5) return MODE_V_ILLEGAL; } else { if (mode->htotal - mode->hdisplay < 32) return MODE_H_ILLEGAL; if (mode->vtotal - mode->vdisplay < 3) return MODE_V_ILLEGAL; } /* * Cantiga+ cannot handle modes with a hsync front porch of 0. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw. */ if ((DISPLAY_VER(dev_priv) > 4 || IS_G4X(dev_priv)) && mode->hsync_start == mode->hdisplay) return MODE_H_ILLEGAL; return MODE_OK; } enum drm_mode_status intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv, const struct drm_display_mode *mode, bool bigjoiner) { int plane_width_max, plane_height_max; /* * intel_mode_valid() should be * sufficient on older platforms. */ if (DISPLAY_VER(dev_priv) < 9) return MODE_OK; /* * Most people will probably want a fullscreen * plane so let's not advertize modes that are * too big for that. */ if (DISPLAY_VER(dev_priv) >= 11) { plane_width_max = 5120 << bigjoiner; plane_height_max = 4320; } else { plane_width_max = 5120; plane_height_max = 4096; } if (mode->hdisplay > plane_width_max) return MODE_H_ILLEGAL; if (mode->vdisplay > plane_height_max) return MODE_V_ILLEGAL; return MODE_OK; } static const struct drm_mode_config_funcs intel_mode_funcs = { .fb_create = intel_user_framebuffer_create, .get_format_info = intel_fb_get_format_info, .output_poll_changed = intel_fbdev_output_poll_changed, .mode_valid = intel_mode_valid, .atomic_check = intel_atomic_check, .atomic_commit = intel_atomic_commit, .atomic_state_alloc = intel_atomic_state_alloc, .atomic_state_clear = intel_atomic_state_clear, .atomic_state_free = intel_atomic_state_free, }; static const struct intel_display_funcs skl_display_funcs = { .get_pipe_config = hsw_get_pipe_config, .crtc_enable = hsw_crtc_enable, .crtc_disable = hsw_crtc_disable, .commit_modeset_enables = skl_commit_modeset_enables, .get_initial_plane_config = skl_get_initial_plane_config, }; static const struct intel_display_funcs ddi_display_funcs = { .get_pipe_config = hsw_get_pipe_config, .crtc_enable = hsw_crtc_enable, .crtc_disable = hsw_crtc_disable, .commit_modeset_enables = intel_commit_modeset_enables, .get_initial_plane_config = i9xx_get_initial_plane_config, }; static const struct intel_display_funcs pch_split_display_funcs = { .get_pipe_config = ilk_get_pipe_config, .crtc_enable = ilk_crtc_enable, .crtc_disable = ilk_crtc_disable, .commit_modeset_enables = intel_commit_modeset_enables, .get_initial_plane_config = i9xx_get_initial_plane_config, }; static const struct intel_display_funcs vlv_display_funcs = { .get_pipe_config = i9xx_get_pipe_config, .crtc_enable = valleyview_crtc_enable, .crtc_disable = i9xx_crtc_disable, .commit_modeset_enables = intel_commit_modeset_enables, .get_initial_plane_config = i9xx_get_initial_plane_config, }; static const struct intel_display_funcs i9xx_display_funcs = { .get_pipe_config = i9xx_get_pipe_config, .crtc_enable = i9xx_crtc_enable, .crtc_disable = i9xx_crtc_disable, .commit_modeset_enables = intel_commit_modeset_enables, .get_initial_plane_config = i9xx_get_initial_plane_config, }; /** * intel_init_display_hooks - initialize the display modesetting hooks * @dev_priv: device private */ void intel_init_display_hooks(struct drm_i915_private *dev_priv) { if (!HAS_DISPLAY(dev_priv)) return; intel_init_cdclk_hooks(dev_priv); intel_audio_hooks_init(dev_priv); intel_dpll_init_clock_hook(dev_priv); if (DISPLAY_VER(dev_priv) >= 9) { dev_priv->display.funcs.display = &skl_display_funcs; } else if (HAS_DDI(dev_priv)) { dev_priv->display.funcs.display = &ddi_display_funcs; } else if (HAS_PCH_SPLIT(dev_priv)) { dev_priv->display.funcs.display = &pch_split_display_funcs; } else if (IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv)) { dev_priv->display.funcs.display = &vlv_display_funcs; } else { dev_priv->display.funcs.display = &i9xx_display_funcs; } intel_fdi_init_hook(dev_priv); } void intel_modeset_init_hw(struct drm_i915_private *i915) { struct intel_cdclk_state *cdclk_state; if (!HAS_DISPLAY(i915)) return; cdclk_state = to_intel_cdclk_state(i915->display.cdclk.obj.state); intel_update_cdclk(i915); intel_cdclk_dump_config(i915, &i915->display.cdclk.hw, "Current CDCLK"); cdclk_state->logical = cdclk_state->actual = i915->display.cdclk.hw; } static int sanitize_watermarks_add_affected(struct drm_atomic_state *state) { struct drm_plane *plane; struct intel_crtc *crtc; for_each_intel_crtc(state->dev, crtc) { struct intel_crtc_state *crtc_state; crtc_state = intel_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); if (crtc_state->hw.active) { /* * Preserve the inherited flag to avoid * taking the full modeset path. */ crtc_state->inherited = true; } } drm_for_each_plane(plane, state->dev) { struct drm_plane_state *plane_state; plane_state = drm_atomic_get_plane_state(state, plane); if (IS_ERR(plane_state)) return PTR_ERR(plane_state); } return 0; } /* * Calculate what we think the watermarks should be for the state we've read * out of the hardware and then immediately program those watermarks so that * we ensure the hardware settings match our internal state. * * We can calculate what we think WM's should be by creating a duplicate of the * current state (which was constructed during hardware readout) and running it * through the atomic check code to calculate new watermark values in the * state object. */ static void sanitize_watermarks(struct drm_i915_private *dev_priv) { struct drm_atomic_state *state; struct intel_atomic_state *intel_state; struct intel_crtc *crtc; struct intel_crtc_state *crtc_state; struct drm_modeset_acquire_ctx ctx; int ret; int i; /* Only supported on platforms that use atomic watermark design */ if (!dev_priv->display.funcs.wm->optimize_watermarks) return; state = drm_atomic_state_alloc(&dev_priv->drm); if (drm_WARN_ON(&dev_priv->drm, !state)) return; intel_state = to_intel_atomic_state(state); drm_modeset_acquire_init(&ctx, 0); retry: state->acquire_ctx = &ctx; /* * Hardware readout is the only time we don't want to calculate * intermediate watermarks (since we don't trust the current * watermarks). */ if (!HAS_GMCH(dev_priv)) intel_state->skip_intermediate_wm = true; ret = sanitize_watermarks_add_affected(state); if (ret) goto fail; ret = intel_atomic_check(&dev_priv->drm, state); if (ret) goto fail; /* Write calculated watermark values back */ for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) { crtc_state->wm.need_postvbl_update = true; intel_optimize_watermarks(intel_state, crtc); to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm; } fail: if (ret == -EDEADLK) { drm_atomic_state_clear(state); drm_modeset_backoff(&ctx); goto retry; } /* * If we fail here, it means that the hardware appears to be * programmed in a way that shouldn't be possible, given our * understanding of watermark requirements. This might mean a * mistake in the hardware readout code or a mistake in the * watermark calculations for a given platform. Raise a WARN * so that this is noticeable. * * If this actually happens, we'll have to just leave the * BIOS-programmed watermarks untouched and hope for the best. */ drm_WARN(&dev_priv->drm, ret, "Could not determine valid watermarks for inherited state\n"); drm_atomic_state_put(state); drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); } static int intel_initial_commit(struct drm_device *dev) { struct drm_atomic_state *state = NULL; struct drm_modeset_acquire_ctx ctx; struct intel_crtc *crtc; int ret = 0; state = drm_atomic_state_alloc(dev); if (!state) return -ENOMEM; drm_modeset_acquire_init(&ctx, 0); retry: state->acquire_ctx = &ctx; for_each_intel_crtc(dev, crtc) { struct intel_crtc_state *crtc_state = intel_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) { ret = PTR_ERR(crtc_state); goto out; } if (crtc_state->hw.active) { struct intel_encoder *encoder; /* * We've not yet detected sink capabilities * (audio,infoframes,etc.) and thus we don't want to * force a full state recomputation yet. We want that to * happen only for the first real commit from userspace. * So preserve the inherited flag for the time being. */ crtc_state->inherited = true; ret = drm_atomic_add_affected_planes(state, &crtc->base); if (ret) goto out; /* * FIXME hack to force a LUT update to avoid the * plane update forcing the pipe gamma on without * having a proper LUT loaded. Remove once we * have readout for pipe gamma enable. */ crtc_state->uapi.color_mgmt_changed = true; for_each_intel_encoder_mask(dev, encoder, crtc_state->uapi.encoder_mask) { if (encoder->initial_fastset_check && !encoder->initial_fastset_check(encoder, crtc_state)) { ret = drm_atomic_add_affected_connectors(state, &crtc->base); if (ret) goto out; } } } } ret = drm_atomic_commit(state); out: if (ret == -EDEADLK) { drm_atomic_state_clear(state); drm_modeset_backoff(&ctx); goto retry; } drm_atomic_state_put(state); drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); return ret; } static const struct drm_mode_config_helper_funcs intel_mode_config_funcs = { .atomic_commit_setup = drm_dp_mst_atomic_setup_commit, }; static void intel_mode_config_init(struct drm_i915_private *i915) { struct drm_mode_config *mode_config = &i915->drm.mode_config; drm_mode_config_init(&i915->drm); INIT_LIST_HEAD(&i915->global_obj_list); mode_config->min_width = 0; mode_config->min_height = 0; mode_config->preferred_depth = 24; mode_config->prefer_shadow = 1; mode_config->funcs = &intel_mode_funcs; mode_config->helper_private = &intel_mode_config_funcs; mode_config->async_page_flip = HAS_ASYNC_FLIPS(i915); /* * Maximum framebuffer dimensions, chosen to match * the maximum render engine surface size on gen4+. */ if (DISPLAY_VER(i915) >= 7) { mode_config->max_width = 16384; mode_config->max_height = 16384; } else if (DISPLAY_VER(i915) >= 4) { mode_config->max_width = 8192; mode_config->max_height = 8192; } else if (DISPLAY_VER(i915) == 3) { mode_config->max_width = 4096; mode_config->max_height = 4096; } else { mode_config->max_width = 2048; mode_config->max_height = 2048; } if (IS_I845G(i915) || IS_I865G(i915)) { mode_config->cursor_width = IS_I845G(i915) ? 64 : 512; mode_config->cursor_height = 1023; } else if (IS_I830(i915) || IS_I85X(i915) || IS_I915G(i915) || IS_I915GM(i915)) { mode_config->cursor_width = 64; mode_config->cursor_height = 64; } else { mode_config->cursor_width = 256; mode_config->cursor_height = 256; } } static void intel_mode_config_cleanup(struct drm_i915_private *i915) { intel_atomic_global_obj_cleanup(i915); drm_mode_config_cleanup(&i915->drm); } /* part #1: call before irq install */ int intel_modeset_init_noirq(struct drm_i915_private *i915) { int ret; if (i915_inject_probe_failure(i915)) return -ENODEV; if (HAS_DISPLAY(i915)) { ret = drm_vblank_init(&i915->drm, INTEL_NUM_PIPES(i915)); if (ret) return ret; } intel_bios_init(i915); ret = intel_vga_register(i915); if (ret) goto cleanup_bios; /* FIXME: completely on the wrong abstraction layer */ intel_power_domains_init_hw(i915, false); if (!HAS_DISPLAY(i915)) return 0; intel_dmc_ucode_init(i915); i915->display.wq.modeset = alloc_ordered_workqueue("i915_modeset", 0); i915->display.wq.flip = alloc_workqueue("i915_flip", WQ_HIGHPRI | WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE); intel_mode_config_init(i915); ret = intel_cdclk_init(i915); if (ret) goto cleanup_vga_client_pw_domain_dmc; ret = intel_dbuf_init(i915); if (ret) goto cleanup_vga_client_pw_domain_dmc; ret = intel_bw_init(i915); if (ret) goto cleanup_vga_client_pw_domain_dmc; init_llist_head(&i915->display.atomic_helper.free_list); INIT_WORK(&i915->display.atomic_helper.free_work, intel_atomic_helper_free_state_worker); intel_init_quirks(i915); intel_fbc_init(i915); return 0; cleanup_vga_client_pw_domain_dmc: intel_dmc_ucode_fini(i915); intel_power_domains_driver_remove(i915); intel_vga_unregister(i915); cleanup_bios: intel_bios_driver_remove(i915); return ret; } /* part #2: call after irq install, but before gem init */ int intel_modeset_init_nogem(struct drm_i915_private *i915) { struct drm_device *dev = &i915->drm; enum pipe pipe; struct intel_crtc *crtc; int ret; if (!HAS_DISPLAY(i915)) return 0; intel_init_pm(i915); intel_panel_sanitize_ssc(i915); intel_pps_setup(i915); intel_gmbus_setup(i915); drm_dbg_kms(&i915->drm, "%d display pipe%s available.\n", INTEL_NUM_PIPES(i915), INTEL_NUM_PIPES(i915) > 1 ? "s" : ""); for_each_pipe(i915, pipe) { ret = intel_crtc_init(i915, pipe); if (ret) { intel_mode_config_cleanup(i915); return ret; } } intel_plane_possible_crtcs_init(i915); intel_shared_dpll_init(i915); intel_fdi_pll_freq_update(i915); intel_update_czclk(i915); intel_modeset_init_hw(i915); intel_dpll_update_ref_clks(i915); intel_hdcp_component_init(i915); if (i915->display.cdclk.max_cdclk_freq == 0) intel_update_max_cdclk(i915); /* * If the platform has HTI, we need to find out whether it has reserved * any display resources before we create our display outputs. */ if (INTEL_INFO(i915)->display.has_hti) i915->hti_state = intel_de_read(i915, HDPORT_STATE); /* Just disable it once at startup */ intel_vga_disable(i915); intel_setup_outputs(i915); drm_modeset_lock_all(dev); intel_modeset_setup_hw_state(i915, dev->mode_config.acquire_ctx); intel_acpi_assign_connector_fwnodes(i915); drm_modeset_unlock_all(dev); for_each_intel_crtc(dev, crtc) { if (!to_intel_crtc_state(crtc->base.state)->uapi.active) continue; intel_crtc_initial_plane_config(crtc); } /* * Make sure hardware watermarks really match the state we read out. * Note that we need to do this after reconstructing the BIOS fb's * since the watermark calculation done here will use pstate->fb. */ if (!HAS_GMCH(i915)) sanitize_watermarks(i915); return 0; } /* part #3: call after gem init */ int intel_modeset_init(struct drm_i915_private *i915) { int ret; if (!HAS_DISPLAY(i915)) return 0; /* * Force all active planes to recompute their states. So that on * mode_setcrtc after probe, all the intel_plane_state variables * are already calculated and there is no assert_plane warnings * during bootup. */ ret = intel_initial_commit(&i915->drm); if (ret) drm_dbg_kms(&i915->drm, "Initial modeset failed, %d\n", ret); intel_overlay_setup(i915); ret = intel_fbdev_init(&i915->drm); if (ret) return ret; /* Only enable hotplug handling once the fbdev is fully set up. */ intel_hpd_init(i915); intel_hpd_poll_disable(i915); skl_watermark_ipc_init(i915); return 0; } void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) { struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe); /* 640x480@60Hz, ~25175 kHz */ struct dpll clock = { .m1 = 18, .m2 = 7, .p1 = 13, .p2 = 4, .n = 2, }; u32 dpll, fp; int i; drm_WARN_ON(&dev_priv->drm, i9xx_calc_dpll_params(48000, &clock) != 25154); drm_dbg_kms(&dev_priv->drm, "enabling pipe %c due to force quirk (vco=%d dot=%d)\n", pipe_name(pipe), clock.vco, clock.dot); fp = i9xx_dpll_compute_fp(&clock); dpll = DPLL_DVO_2X_MODE | DPLL_VGA_MODE_DIS | ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) | PLL_P2_DIVIDE_BY_4 | PLL_REF_INPUT_DREFCLK | DPLL_VCO_ENABLE; intel_de_write(dev_priv, HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16)); intel_de_write(dev_priv, HBLANK(pipe), (640 - 1) | ((800 - 1) << 16)); intel_de_write(dev_priv, HSYNC(pipe), (656 - 1) | ((752 - 1) << 16)); intel_de_write(dev_priv, VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16)); intel_de_write(dev_priv, VBLANK(pipe), (480 - 1) | ((525 - 1) << 16)); intel_de_write(dev_priv, VSYNC(pipe), (490 - 1) | ((492 - 1) << 16)); intel_de_write(dev_priv, PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1)); intel_de_write(dev_priv, FP0(pipe), fp); intel_de_write(dev_priv, FP1(pipe), fp); /* * Apparently we need to have VGA mode enabled prior to changing * the P1/P2 dividers. Otherwise the DPLL will keep using the old * dividers, even though the register value does change. */ intel_de_write(dev_priv, DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS); intel_de_write(dev_priv, DPLL(pipe), dpll); /* Wait for the clocks to stabilize. */ intel_de_posting_read(dev_priv, DPLL(pipe)); udelay(150); /* The pixel multiplier can only be updated once the * DPLL is enabled and the clocks are stable. * * So write it again. */ intel_de_write(dev_priv, DPLL(pipe), dpll); /* We do this three times for luck */ for (i = 0; i < 3 ; i++) { intel_de_write(dev_priv, DPLL(pipe), dpll); intel_de_posting_read(dev_priv, DPLL(pipe)); udelay(150); /* wait for warmup */ } intel_de_write(dev_priv, PIPECONF(pipe), PIPECONF_ENABLE); intel_de_posting_read(dev_priv, PIPECONF(pipe)); intel_wait_for_pipe_scanline_moving(crtc); } void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe) { struct intel_crtc *crtc = intel_crtc_for_pipe(dev_priv, pipe); drm_dbg_kms(&dev_priv->drm, "disabling pipe %c due to force quirk\n", pipe_name(pipe)); drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, DSPCNTR(PLANE_A)) & DISP_ENABLE); drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, DSPCNTR(PLANE_B)) & DISP_ENABLE); drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, DSPCNTR(PLANE_C)) & DISP_ENABLE); drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, CURCNTR(PIPE_A)) & MCURSOR_MODE_MASK); drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, CURCNTR(PIPE_B)) & MCURSOR_MODE_MASK); intel_de_write(dev_priv, PIPECONF(pipe), 0); intel_de_posting_read(dev_priv, PIPECONF(pipe)); intel_wait_for_pipe_scanline_stopped(crtc); intel_de_write(dev_priv, DPLL(pipe), DPLL_VGA_MODE_DIS); intel_de_posting_read(dev_priv, DPLL(pipe)); } void intel_display_resume(struct drm_device *dev) { struct drm_i915_private *i915 = to_i915(dev); struct drm_atomic_state *state = i915->modeset_restore_state; struct drm_modeset_acquire_ctx ctx; int ret; if (!HAS_DISPLAY(i915)) return; i915->modeset_restore_state = NULL; if (state) state->acquire_ctx = &ctx; drm_modeset_acquire_init(&ctx, 0); while (1) { ret = drm_modeset_lock_all_ctx(dev, &ctx); if (ret != -EDEADLK) break; drm_modeset_backoff(&ctx); } if (!ret) ret = __intel_display_resume(i915, state, &ctx); skl_watermark_ipc_update(i915); drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); if (ret) drm_err(&i915->drm, "Restoring old state failed with %i\n", ret); if (state) drm_atomic_state_put(state); } static void intel_hpd_poll_fini(struct drm_i915_private *i915) { struct intel_connector *connector; struct drm_connector_list_iter conn_iter; /* Kill all the work that may have been queued by hpd. */ drm_connector_list_iter_begin(&i915->drm, &conn_iter); for_each_intel_connector_iter(connector, &conn_iter) { if (connector->modeset_retry_work.func) cancel_work_sync(&connector->modeset_retry_work); if (connector->hdcp.shim) { cancel_delayed_work_sync(&connector->hdcp.check_work); cancel_work_sync(&connector->hdcp.prop_work); } } drm_connector_list_iter_end(&conn_iter); } /* part #1: call before irq uninstall */ void intel_modeset_driver_remove(struct drm_i915_private *i915) { if (!HAS_DISPLAY(i915)) return; flush_workqueue(i915->display.wq.flip); flush_workqueue(i915->display.wq.modeset); flush_work(&i915->display.atomic_helper.free_work); drm_WARN_ON(&i915->drm, !llist_empty(&i915->display.atomic_helper.free_list)); /* * MST topology needs to be suspended so we don't have any calls to * fbdev after it's finalized. MST will be destroyed later as part of * drm_mode_config_cleanup() */ intel_dp_mst_suspend(i915); } /* part #2: call after irq uninstall */ void intel_modeset_driver_remove_noirq(struct drm_i915_private *i915) { if (!HAS_DISPLAY(i915)) return; /* * Due to the hpd irq storm handling the hotplug work can re-arm the * poll handlers. Hence disable polling after hpd handling is shut down. */ intel_hpd_poll_fini(i915); /* poll work can call into fbdev, hence clean that up afterwards */ intel_fbdev_fini(i915); intel_unregister_dsm_handler(); /* flush any delayed tasks or pending work */ flush_scheduled_work(); intel_hdcp_component_fini(i915); intel_mode_config_cleanup(i915); intel_overlay_cleanup(i915); intel_gmbus_teardown(i915); destroy_workqueue(i915->display.wq.flip); destroy_workqueue(i915->display.wq.modeset); intel_fbc_cleanup(i915); } /* part #3: call after gem init */ void intel_modeset_driver_remove_nogem(struct drm_i915_private *i915) { intel_dmc_ucode_fini(i915); intel_power_domains_driver_remove(i915); intel_vga_unregister(i915); intel_bios_driver_remove(i915); } bool intel_modeset_probe_defer(struct pci_dev *pdev) { struct drm_privacy_screen *privacy_screen; /* * apple-gmux is needed on dual GPU MacBook Pro * to probe the panel if we're the inactive GPU. */ if (vga_switcheroo_client_probe_defer(pdev)) return true; /* If the LCD panel has a privacy-screen, wait for it */ privacy_screen = drm_privacy_screen_get(&pdev->dev, NULL); if (IS_ERR(privacy_screen) && PTR_ERR(privacy_screen) == -EPROBE_DEFER) return true; drm_privacy_screen_put(privacy_screen); return false; } void intel_display_driver_register(struct drm_i915_private *i915) { if (!HAS_DISPLAY(i915)) return; intel_display_debugfs_register(i915); /* Must be done after probing outputs */ intel_opregion_register(i915); intel_acpi_video_register(i915); intel_audio_init(i915); /* * Some ports require correctly set-up hpd registers for * detection to work properly (leading to ghost connected * connector status), e.g. VGA on gm45. Hence we can only set * up the initial fbdev config after hpd irqs are fully * enabled. We do it last so that the async config cannot run * before the connectors are registered. */ intel_fbdev_initial_config_async(&i915->drm); /* * We need to coordinate the hotplugs with the asynchronous * fbdev configuration, for which we use the * fbdev->async_cookie. */ drm_kms_helper_poll_init(&i915->drm); } void intel_display_driver_unregister(struct drm_i915_private *i915) { if (!HAS_DISPLAY(i915)) return; intel_fbdev_unregister(i915); intel_audio_deinit(i915); /* * After flushing the fbdev (incl. a late async config which * will have delayed queuing of a hotplug event), then flush * the hotplug events. */ drm_kms_helper_poll_fini(&i915->drm); drm_atomic_helper_shutdown(&i915->drm); acpi_video_unregister(); intel_opregion_unregister(i915); } bool intel_scanout_needs_vtd_wa(struct drm_i915_private *i915) { return DISPLAY_VER(i915) >= 6 && i915_vtd_active(i915); }