// SPDX-License-Identifier: GPL-2.0-only /* * cs_dsp.c -- Cirrus Logic DSP firmware support * * Based on sound/soc/codecs/wm_adsp.c * * Copyright 2012 Wolfson Microelectronics plc * Copyright (C) 2015-2021 Cirrus Logic, Inc. and * Cirrus Logic International Semiconductor Ltd. */ #include #include #include #include #include #include #include #include #include #define cs_dsp_err(_dsp, fmt, ...) \ dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__) #define cs_dsp_warn(_dsp, fmt, ...) \ dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__) #define cs_dsp_info(_dsp, fmt, ...) \ dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__) #define cs_dsp_dbg(_dsp, fmt, ...) \ dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__) #define ADSP1_CONTROL_1 0x00 #define ADSP1_CONTROL_2 0x02 #define ADSP1_CONTROL_3 0x03 #define ADSP1_CONTROL_4 0x04 #define ADSP1_CONTROL_5 0x06 #define ADSP1_CONTROL_6 0x07 #define ADSP1_CONTROL_7 0x08 #define ADSP1_CONTROL_8 0x09 #define ADSP1_CONTROL_9 0x0A #define ADSP1_CONTROL_10 0x0B #define ADSP1_CONTROL_11 0x0C #define ADSP1_CONTROL_12 0x0D #define ADSP1_CONTROL_13 0x0F #define ADSP1_CONTROL_14 0x10 #define ADSP1_CONTROL_15 0x11 #define ADSP1_CONTROL_16 0x12 #define ADSP1_CONTROL_17 0x13 #define ADSP1_CONTROL_18 0x14 #define ADSP1_CONTROL_19 0x16 #define ADSP1_CONTROL_20 0x17 #define ADSP1_CONTROL_21 0x18 #define ADSP1_CONTROL_22 0x1A #define ADSP1_CONTROL_23 0x1B #define ADSP1_CONTROL_24 0x1C #define ADSP1_CONTROL_25 0x1E #define ADSP1_CONTROL_26 0x20 #define ADSP1_CONTROL_27 0x21 #define ADSP1_CONTROL_28 0x22 #define ADSP1_CONTROL_29 0x23 #define ADSP1_CONTROL_30 0x24 #define ADSP1_CONTROL_31 0x26 /* * ADSP1 Control 19 */ #define ADSP1_WDMA_BUFFER_LENGTH_MASK 0x00FF /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */ #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT 0 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */ #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH 8 /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */ /* * ADSP1 Control 30 */ #define ADSP1_DBG_CLK_ENA 0x0008 /* DSP1_DBG_CLK_ENA */ #define ADSP1_DBG_CLK_ENA_MASK 0x0008 /* DSP1_DBG_CLK_ENA */ #define ADSP1_DBG_CLK_ENA_SHIFT 3 /* DSP1_DBG_CLK_ENA */ #define ADSP1_DBG_CLK_ENA_WIDTH 1 /* DSP1_DBG_CLK_ENA */ #define ADSP1_SYS_ENA 0x0004 /* DSP1_SYS_ENA */ #define ADSP1_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */ #define ADSP1_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */ #define ADSP1_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */ #define ADSP1_CORE_ENA 0x0002 /* DSP1_CORE_ENA */ #define ADSP1_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */ #define ADSP1_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */ #define ADSP1_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */ #define ADSP1_START 0x0001 /* DSP1_START */ #define ADSP1_START_MASK 0x0001 /* DSP1_START */ #define ADSP1_START_SHIFT 0 /* DSP1_START */ #define ADSP1_START_WIDTH 1 /* DSP1_START */ /* * ADSP1 Control 31 */ #define ADSP1_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */ #define ADSP1_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */ #define ADSP1_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */ #define ADSP2_CONTROL 0x0 #define ADSP2_CLOCKING 0x1 #define ADSP2V2_CLOCKING 0x2 #define ADSP2_STATUS1 0x4 #define ADSP2_WDMA_CONFIG_1 0x30 #define ADSP2_WDMA_CONFIG_2 0x31 #define ADSP2V2_WDMA_CONFIG_2 0x32 #define ADSP2_RDMA_CONFIG_1 0x34 #define ADSP2_SCRATCH0 0x40 #define ADSP2_SCRATCH1 0x41 #define ADSP2_SCRATCH2 0x42 #define ADSP2_SCRATCH3 0x43 #define ADSP2V2_SCRATCH0_1 0x40 #define ADSP2V2_SCRATCH2_3 0x42 /* * ADSP2 Control */ #define ADSP2_MEM_ENA 0x0010 /* DSP1_MEM_ENA */ #define ADSP2_MEM_ENA_MASK 0x0010 /* DSP1_MEM_ENA */ #define ADSP2_MEM_ENA_SHIFT 4 /* DSP1_MEM_ENA */ #define ADSP2_MEM_ENA_WIDTH 1 /* DSP1_MEM_ENA */ #define ADSP2_SYS_ENA 0x0004 /* DSP1_SYS_ENA */ #define ADSP2_SYS_ENA_MASK 0x0004 /* DSP1_SYS_ENA */ #define ADSP2_SYS_ENA_SHIFT 2 /* DSP1_SYS_ENA */ #define ADSP2_SYS_ENA_WIDTH 1 /* DSP1_SYS_ENA */ #define ADSP2_CORE_ENA 0x0002 /* DSP1_CORE_ENA */ #define ADSP2_CORE_ENA_MASK 0x0002 /* DSP1_CORE_ENA */ #define ADSP2_CORE_ENA_SHIFT 1 /* DSP1_CORE_ENA */ #define ADSP2_CORE_ENA_WIDTH 1 /* DSP1_CORE_ENA */ #define ADSP2_START 0x0001 /* DSP1_START */ #define ADSP2_START_MASK 0x0001 /* DSP1_START */ #define ADSP2_START_SHIFT 0 /* DSP1_START */ #define ADSP2_START_WIDTH 1 /* DSP1_START */ /* * ADSP2 clocking */ #define ADSP2_CLK_SEL_MASK 0x0007 /* CLK_SEL_ENA */ #define ADSP2_CLK_SEL_SHIFT 0 /* CLK_SEL_ENA */ #define ADSP2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */ /* * ADSP2V2 clocking */ #define ADSP2V2_CLK_SEL_MASK 0x70000 /* CLK_SEL_ENA */ #define ADSP2V2_CLK_SEL_SHIFT 16 /* CLK_SEL_ENA */ #define ADSP2V2_CLK_SEL_WIDTH 3 /* CLK_SEL_ENA */ #define ADSP2V2_RATE_MASK 0x7800 /* DSP_RATE */ #define ADSP2V2_RATE_SHIFT 11 /* DSP_RATE */ #define ADSP2V2_RATE_WIDTH 4 /* DSP_RATE */ /* * ADSP2 Status 1 */ #define ADSP2_RAM_RDY 0x0001 #define ADSP2_RAM_RDY_MASK 0x0001 #define ADSP2_RAM_RDY_SHIFT 0 #define ADSP2_RAM_RDY_WIDTH 1 /* * ADSP2 Lock support */ #define ADSP2_LOCK_CODE_0 0x5555 #define ADSP2_LOCK_CODE_1 0xAAAA #define ADSP2_WATCHDOG 0x0A #define ADSP2_BUS_ERR_ADDR 0x52 #define ADSP2_REGION_LOCK_STATUS 0x64 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0 0x66 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2 0x68 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4 0x6A #define ADSP2_LOCK_REGION_7_LOCK_REGION_6 0x6C #define ADSP2_LOCK_REGION_9_LOCK_REGION_8 0x6E #define ADSP2_LOCK_REGION_CTRL 0x7A #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR 0x7C #define ADSP2_REGION_LOCK_ERR_MASK 0x8000 #define ADSP2_ADDR_ERR_MASK 0x4000 #define ADSP2_WDT_TIMEOUT_STS_MASK 0x2000 #define ADSP2_CTRL_ERR_PAUSE_ENA 0x0002 #define ADSP2_CTRL_ERR_EINT 0x0001 #define ADSP2_BUS_ERR_ADDR_MASK 0x00FFFFFF #define ADSP2_XMEM_ERR_ADDR_MASK 0x0000FFFF #define ADSP2_PMEM_ERR_ADDR_MASK 0x7FFF0000 #define ADSP2_PMEM_ERR_ADDR_SHIFT 16 #define ADSP2_WDT_ENA_MASK 0xFFFFFFFD #define ADSP2_LOCK_REGION_SHIFT 16 /* * Event control messages */ #define CS_DSP_FW_EVENT_SHUTDOWN 0x000001 /* * HALO system info */ #define HALO_AHBM_WINDOW_DEBUG_0 0x02040 #define HALO_AHBM_WINDOW_DEBUG_1 0x02044 /* * HALO core */ #define HALO_SCRATCH1 0x005c0 #define HALO_SCRATCH2 0x005c8 #define HALO_SCRATCH3 0x005d0 #define HALO_SCRATCH4 0x005d8 #define HALO_CCM_CORE_CONTROL 0x41000 #define HALO_CORE_SOFT_RESET 0x00010 #define HALO_WDT_CONTROL 0x47000 /* * HALO MPU banks */ #define HALO_MPU_XMEM_ACCESS_0 0x43000 #define HALO_MPU_YMEM_ACCESS_0 0x43004 #define HALO_MPU_WINDOW_ACCESS_0 0x43008 #define HALO_MPU_XREG_ACCESS_0 0x4300C #define HALO_MPU_YREG_ACCESS_0 0x43014 #define HALO_MPU_XMEM_ACCESS_1 0x43018 #define HALO_MPU_YMEM_ACCESS_1 0x4301C #define HALO_MPU_WINDOW_ACCESS_1 0x43020 #define HALO_MPU_XREG_ACCESS_1 0x43024 #define HALO_MPU_YREG_ACCESS_1 0x4302C #define HALO_MPU_XMEM_ACCESS_2 0x43030 #define HALO_MPU_YMEM_ACCESS_2 0x43034 #define HALO_MPU_WINDOW_ACCESS_2 0x43038 #define HALO_MPU_XREG_ACCESS_2 0x4303C #define HALO_MPU_YREG_ACCESS_2 0x43044 #define HALO_MPU_XMEM_ACCESS_3 0x43048 #define HALO_MPU_YMEM_ACCESS_3 0x4304C #define HALO_MPU_WINDOW_ACCESS_3 0x43050 #define HALO_MPU_XREG_ACCESS_3 0x43054 #define HALO_MPU_YREG_ACCESS_3 0x4305C #define HALO_MPU_XM_VIO_ADDR 0x43100 #define HALO_MPU_XM_VIO_STATUS 0x43104 #define HALO_MPU_YM_VIO_ADDR 0x43108 #define HALO_MPU_YM_VIO_STATUS 0x4310C #define HALO_MPU_PM_VIO_ADDR 0x43110 #define HALO_MPU_PM_VIO_STATUS 0x43114 #define HALO_MPU_LOCK_CONFIG 0x43140 /* * HALO_AHBM_WINDOW_DEBUG_1 */ #define HALO_AHBM_CORE_ERR_ADDR_MASK 0x0fffff00 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT 8 #define HALO_AHBM_FLAGS_ERR_MASK 0x000000ff /* * HALO_CCM_CORE_CONTROL */ #define HALO_CORE_RESET 0x00000200 #define HALO_CORE_EN 0x00000001 /* * HALO_CORE_SOFT_RESET */ #define HALO_CORE_SOFT_RESET_MASK 0x00000001 /* * HALO_WDT_CONTROL */ #define HALO_WDT_EN_MASK 0x00000001 /* * HALO_MPU_?M_VIO_STATUS */ #define HALO_MPU_VIO_STS_MASK 0x007e0000 #define HALO_MPU_VIO_STS_SHIFT 17 #define HALO_MPU_VIO_ERR_WR_MASK 0x00008000 #define HALO_MPU_VIO_ERR_SRC_MASK 0x00007fff #define HALO_MPU_VIO_ERR_SRC_SHIFT 0 struct cs_dsp_ops { bool (*validate_version)(struct cs_dsp *dsp, unsigned int version); unsigned int (*parse_sizes)(struct cs_dsp *dsp, const char * const file, unsigned int pos, const struct firmware *firmware); int (*setup_algs)(struct cs_dsp *dsp); unsigned int (*region_to_reg)(struct cs_dsp_region const *mem, unsigned int offset); void (*show_fw_status)(struct cs_dsp *dsp); void (*stop_watchdog)(struct cs_dsp *dsp); int (*enable_memory)(struct cs_dsp *dsp); void (*disable_memory)(struct cs_dsp *dsp); int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions); int (*enable_core)(struct cs_dsp *dsp); void (*disable_core)(struct cs_dsp *dsp); int (*start_core)(struct cs_dsp *dsp); void (*stop_core)(struct cs_dsp *dsp); }; static const struct cs_dsp_ops cs_dsp_adsp1_ops; static const struct cs_dsp_ops cs_dsp_adsp2_ops[]; static const struct cs_dsp_ops cs_dsp_halo_ops; struct cs_dsp_buf { struct list_head list; void *buf; }; static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len, struct list_head *list) { struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL); if (buf == NULL) return NULL; buf->buf = vmalloc(len); if (!buf->buf) { kfree(buf); return NULL; } memcpy(buf->buf, src, len); if (list) list_add_tail(&buf->list, list); return buf; } static void cs_dsp_buf_free(struct list_head *list) { while (!list_empty(list)) { struct cs_dsp_buf *buf = list_first_entry(list, struct cs_dsp_buf, list); list_del(&buf->list); vfree(buf->buf); kfree(buf); } } /** * cs_dsp_mem_region_name() - Return a name string for a memory type * @type: the memory type to match * * Return: A const string identifying the memory region. */ const char *cs_dsp_mem_region_name(unsigned int type) { switch (type) { case WMFW_ADSP1_PM: return "PM"; case WMFW_HALO_PM_PACKED: return "PM_PACKED"; case WMFW_ADSP1_DM: return "DM"; case WMFW_ADSP2_XM: return "XM"; case WMFW_HALO_XM_PACKED: return "XM_PACKED"; case WMFW_ADSP2_YM: return "YM"; case WMFW_HALO_YM_PACKED: return "YM_PACKED"; case WMFW_ADSP1_ZM: return "ZM"; default: return NULL; } } EXPORT_SYMBOL_GPL(cs_dsp_mem_region_name); #ifdef CONFIG_DEBUG_FS static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s) { char *tmp = kasprintf(GFP_KERNEL, "%s\n", s); kfree(dsp->wmfw_file_name); dsp->wmfw_file_name = tmp; } static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s) { char *tmp = kasprintf(GFP_KERNEL, "%s\n", s); kfree(dsp->bin_file_name); dsp->bin_file_name = tmp; } static void cs_dsp_debugfs_clear(struct cs_dsp *dsp) { kfree(dsp->wmfw_file_name); kfree(dsp->bin_file_name); dsp->wmfw_file_name = NULL; dsp->bin_file_name = NULL; } static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct cs_dsp *dsp = file->private_data; ssize_t ret; mutex_lock(&dsp->pwr_lock); if (!dsp->wmfw_file_name || !dsp->booted) ret = 0; else ret = simple_read_from_buffer(user_buf, count, ppos, dsp->wmfw_file_name, strlen(dsp->wmfw_file_name)); mutex_unlock(&dsp->pwr_lock); return ret; } static ssize_t cs_dsp_debugfs_bin_read(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct cs_dsp *dsp = file->private_data; ssize_t ret; mutex_lock(&dsp->pwr_lock); if (!dsp->bin_file_name || !dsp->booted) ret = 0; else ret = simple_read_from_buffer(user_buf, count, ppos, dsp->bin_file_name, strlen(dsp->bin_file_name)); mutex_unlock(&dsp->pwr_lock); return ret; } static const struct { const char *name; const struct file_operations fops; } cs_dsp_debugfs_fops[] = { { .name = "wmfw_file_name", .fops = { .open = simple_open, .read = cs_dsp_debugfs_wmfw_read, }, }, { .name = "bin_file_name", .fops = { .open = simple_open, .read = cs_dsp_debugfs_bin_read, }, }, }; /** * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs * @dsp: pointer to DSP structure * @debugfs_root: pointer to debugfs directory in which to create this DSP * representation */ void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root) { struct dentry *root = NULL; int i; root = debugfs_create_dir(dsp->name, debugfs_root); debugfs_create_bool("booted", 0444, root, &dsp->booted); debugfs_create_bool("running", 0444, root, &dsp->running); debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id); debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version); for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i) debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root, dsp, &cs_dsp_debugfs_fops[i].fops); dsp->debugfs_root = root; } EXPORT_SYMBOL_GPL(cs_dsp_init_debugfs); /** * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs * @dsp: pointer to DSP structure */ void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp) { cs_dsp_debugfs_clear(dsp); debugfs_remove_recursive(dsp->debugfs_root); dsp->debugfs_root = NULL; } EXPORT_SYMBOL_GPL(cs_dsp_cleanup_debugfs); #else void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root) { } EXPORT_SYMBOL_GPL(cs_dsp_init_debugfs); void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp) { } EXPORT_SYMBOL_GPL(cs_dsp_cleanup_debugfs); static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s) { } static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s) { } static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp) { } #endif static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp, int type) { int i; for (i = 0; i < dsp->num_mems; i++) if (dsp->mem[i].type == type) return &dsp->mem[i]; return NULL; } static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem, unsigned int offset) { switch (mem->type) { case WMFW_ADSP1_PM: return mem->base + (offset * 3); case WMFW_ADSP1_DM: case WMFW_ADSP2_XM: case WMFW_ADSP2_YM: case WMFW_ADSP1_ZM: return mem->base + (offset * 2); default: WARN(1, "Unknown memory region type"); return offset; } } static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem, unsigned int offset) { switch (mem->type) { case WMFW_ADSP2_XM: case WMFW_ADSP2_YM: return mem->base + (offset * 4); case WMFW_HALO_XM_PACKED: case WMFW_HALO_YM_PACKED: return (mem->base + (offset * 3)) & ~0x3; case WMFW_HALO_PM_PACKED: return mem->base + (offset * 5); default: WARN(1, "Unknown memory region type"); return offset; } } static void cs_dsp_read_fw_status(struct cs_dsp *dsp, int noffs, unsigned int *offs) { unsigned int i; int ret; for (i = 0; i < noffs; ++i) { ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]); if (ret) { cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret); return; } } } static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp) { unsigned int offs[] = { ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3, }; cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs); cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n", offs[0], offs[1], offs[2], offs[3]); } static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp) { unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 }; cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs); cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n", offs[0] & 0xFFFF, offs[0] >> 16, offs[1] & 0xFFFF, offs[1] >> 16); } static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp) { unsigned int offs[] = { HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4, }; cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs); cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n", offs[0], offs[1], offs[2], offs[3]); } static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg, unsigned int off) { const struct cs_dsp_alg_region *alg_region = &ctl->alg_region; struct cs_dsp *dsp = ctl->dsp; const struct cs_dsp_region *mem; mem = cs_dsp_find_region(dsp, alg_region->type); if (!mem) { cs_dsp_err(dsp, "No base for region %x\n", alg_region->type); return -EINVAL; } *reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off); return 0; } /** * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control * @ctl: pointer to acked coefficient control * @event_id: the value to write to the given acked control * * Once the value has been written to the control the function shall block * until the running firmware acknowledges the write or timeout is exceeded. * * Must be called with pwr_lock held. * * Return: Zero for success, a negative number on error. */ int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id) { struct cs_dsp *dsp = ctl->dsp; __be32 val = cpu_to_be32(event_id); unsigned int reg; int i, ret; lockdep_assert_held(&dsp->pwr_lock); if (!dsp->running) return -EPERM; ret = cs_dsp_coeff_base_reg(ctl, ®, 0); if (ret) return ret; cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n", event_id, ctl->alg_region.alg, cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset); ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val)); if (ret) { cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret); return ret; } /* * Poll for ack, we initially poll at ~1ms intervals for firmwares * that respond quickly, then go to ~10ms polls. A firmware is unlikely * to ack instantly so we do the first 1ms delay before reading the * control to avoid a pointless bus transaction */ for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) { switch (i) { case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1: usleep_range(1000, 2000); i++; break; default: usleep_range(10000, 20000); i += 10; break; } ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val)); if (ret) { cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret); return ret; } if (val == 0) { cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i); return 0; } } cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n", reg, ctl->alg_region.alg, cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset); return -ETIMEDOUT; } EXPORT_SYMBOL_GPL(cs_dsp_coeff_write_acked_control); static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl, unsigned int off, const void *buf, size_t len) { struct cs_dsp *dsp = ctl->dsp; void *scratch; int ret; unsigned int reg; ret = cs_dsp_coeff_base_reg(ctl, ®, off); if (ret) return ret; scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA); if (!scratch) return -ENOMEM; ret = regmap_raw_write(dsp->regmap, reg, scratch, len); if (ret) { cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n", len, reg, ret); kfree(scratch); return ret; } cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg); kfree(scratch); return 0; } /** * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control * @ctl: pointer to coefficient control * @off: word offset at which data should be written * @buf: the buffer to write to the given control * @len: the length of the buffer in bytes * * Must be called with pwr_lock held. * * Return: Zero for success, a negative number on error. */ int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl, unsigned int off, const void *buf, size_t len) { int ret = 0; if (!ctl) return -ENOENT; lockdep_assert_held(&ctl->dsp->pwr_lock); if (len + off * sizeof(u32) > ctl->len) return -EINVAL; if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) ret = -EPERM; else if (buf != ctl->cache) memcpy(ctl->cache + off * sizeof(u32), buf, len); ctl->set = 1; if (ctl->enabled && ctl->dsp->running) ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len); return ret; } EXPORT_SYMBOL_GPL(cs_dsp_coeff_write_ctrl); static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl, unsigned int off, void *buf, size_t len) { struct cs_dsp *dsp = ctl->dsp; void *scratch; int ret; unsigned int reg; ret = cs_dsp_coeff_base_reg(ctl, ®, off); if (ret) return ret; scratch = kmalloc(len, GFP_KERNEL | GFP_DMA); if (!scratch) return -ENOMEM; ret = regmap_raw_read(dsp->regmap, reg, scratch, len); if (ret) { cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n", len, reg, ret); kfree(scratch); return ret; } cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg); memcpy(buf, scratch, len); kfree(scratch); return 0; } /** * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer * @ctl: pointer to coefficient control * @off: word offset at which data should be read * @buf: the buffer to store to the given control * @len: the length of the buffer in bytes * * Must be called with pwr_lock held. * * Return: Zero for success, a negative number on error. */ int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl, unsigned int off, void *buf, size_t len) { int ret = 0; if (!ctl) return -ENOENT; lockdep_assert_held(&ctl->dsp->pwr_lock); if (len + off * sizeof(u32) > ctl->len) return -EINVAL; if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) { if (ctl->enabled && ctl->dsp->running) return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len); else return -EPERM; } else { if (!ctl->flags && ctl->enabled && ctl->dsp->running) ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len); if (buf != ctl->cache) memcpy(buf, ctl->cache + off * sizeof(u32), len); } return ret; } EXPORT_SYMBOL_GPL(cs_dsp_coeff_read_ctrl); static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp) { struct cs_dsp_coeff_ctl *ctl; int ret; list_for_each_entry(ctl, &dsp->ctl_list, list) { if (!ctl->enabled || ctl->set) continue; if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) continue; /* * For readable controls populate the cache from the DSP memory. * For non-readable controls the cache was zero-filled when * created so we don't need to do anything. */ if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) { ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len); if (ret < 0) return ret; } } return 0; } static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp) { struct cs_dsp_coeff_ctl *ctl; int ret; list_for_each_entry(ctl, &dsp->ctl_list, list) { if (!ctl->enabled) continue; if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) { ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache, ctl->len); if (ret < 0) return ret; } } return 0; } static void cs_dsp_signal_event_controls(struct cs_dsp *dsp, unsigned int event) { struct cs_dsp_coeff_ctl *ctl; int ret; list_for_each_entry(ctl, &dsp->ctl_list, list) { if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT) continue; if (!ctl->enabled) continue; ret = cs_dsp_coeff_write_acked_control(ctl, event); if (ret) cs_dsp_warn(dsp, "Failed to send 0x%x event to alg 0x%x (%d)\n", event, ctl->alg_region.alg, ret); } } static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl) { kfree(ctl->cache); kfree(ctl->subname); kfree(ctl); } static int cs_dsp_create_control(struct cs_dsp *dsp, const struct cs_dsp_alg_region *alg_region, unsigned int offset, unsigned int len, const char *subname, unsigned int subname_len, unsigned int flags, unsigned int type) { struct cs_dsp_coeff_ctl *ctl; int ret; list_for_each_entry(ctl, &dsp->ctl_list, list) { if (ctl->fw_name == dsp->fw_name && ctl->alg_region.alg == alg_region->alg && ctl->alg_region.type == alg_region->type) { if ((!subname && !ctl->subname) || (subname && (ctl->subname_len == subname_len) && !strncmp(ctl->subname, subname, ctl->subname_len))) { if (!ctl->enabled) ctl->enabled = 1; return 0; } } } ctl = kzalloc(sizeof(*ctl), GFP_KERNEL); if (!ctl) return -ENOMEM; ctl->fw_name = dsp->fw_name; ctl->alg_region = *alg_region; if (subname && dsp->fw_ver >= 2) { ctl->subname_len = subname_len; ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname); if (!ctl->subname) { ret = -ENOMEM; goto err_ctl; } } ctl->enabled = 1; ctl->set = 0; ctl->dsp = dsp; ctl->flags = flags; ctl->type = type; ctl->offset = offset; ctl->len = len; ctl->cache = kzalloc(ctl->len, GFP_KERNEL); if (!ctl->cache) { ret = -ENOMEM; goto err_ctl_subname; } list_add(&ctl->list, &dsp->ctl_list); if (dsp->client_ops->control_add) { ret = dsp->client_ops->control_add(ctl); if (ret) goto err_list_del; } return 0; err_list_del: list_del(&ctl->list); kfree(ctl->cache); err_ctl_subname: kfree(ctl->subname); err_ctl: kfree(ctl); return ret; } struct cs_dsp_coeff_parsed_alg { int id; const u8 *name; int name_len; int ncoeff; }; struct cs_dsp_coeff_parsed_coeff { int offset; int mem_type; const u8 *name; int name_len; unsigned int ctl_type; int flags; int len; }; static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, const u8 **str) { int length; switch (bytes) { case 1: length = **pos; break; case 2: length = le16_to_cpu(*((__le16 *)*pos)); break; default: return 0; } if (str) *str = *pos + bytes; *pos += ((length + bytes) + 3) & ~0x03; return length; } static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos) { int val = 0; switch (bytes) { case 2: val = le16_to_cpu(*((__le16 *)*pos)); break; case 4: val = le32_to_cpu(*((__le32 *)*pos)); break; default: break; } *pos += bytes; return val; } static inline void cs_dsp_coeff_parse_alg(struct cs_dsp *dsp, const u8 **data, struct cs_dsp_coeff_parsed_alg *blk) { const struct wmfw_adsp_alg_data *raw; switch (dsp->fw_ver) { case 0: case 1: raw = (const struct wmfw_adsp_alg_data *)*data; *data = raw->data; blk->id = le32_to_cpu(raw->id); blk->name = raw->name; blk->name_len = strlen(raw->name); blk->ncoeff = le32_to_cpu(raw->ncoeff); break; default: blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), data); blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), data, &blk->name); cs_dsp_coeff_parse_string(sizeof(u16), data, NULL); blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), data); break; } cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id); cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name); cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff); } static inline void cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp, const u8 **data, struct cs_dsp_coeff_parsed_coeff *blk) { const struct wmfw_adsp_coeff_data *raw; const u8 *tmp; int length; switch (dsp->fw_ver) { case 0: case 1: raw = (const struct wmfw_adsp_coeff_data *)*data; *data = *data + sizeof(raw->hdr) + le32_to_cpu(raw->hdr.size); blk->offset = le16_to_cpu(raw->hdr.offset); blk->mem_type = le16_to_cpu(raw->hdr.type); blk->name = raw->name; blk->name_len = strlen(raw->name); blk->ctl_type = le16_to_cpu(raw->ctl_type); blk->flags = le16_to_cpu(raw->flags); blk->len = le32_to_cpu(raw->len); break; default: tmp = *data; blk->offset = cs_dsp_coeff_parse_int(sizeof(raw->hdr.offset), &tmp); blk->mem_type = cs_dsp_coeff_parse_int(sizeof(raw->hdr.type), &tmp); length = cs_dsp_coeff_parse_int(sizeof(raw->hdr.size), &tmp); blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, &blk->name); cs_dsp_coeff_parse_string(sizeof(u8), &tmp, NULL); cs_dsp_coeff_parse_string(sizeof(u16), &tmp, NULL); blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp); blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp); blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp); *data = *data + sizeof(raw->hdr) + length; break; } cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type); cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset); cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name); cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags); cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type); cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len); } static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp, const struct cs_dsp_coeff_parsed_coeff *coeff_blk, unsigned int f_required, unsigned int f_illegal) { if ((coeff_blk->flags & f_illegal) || ((coeff_blk->flags & f_required) != f_required)) { cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n", coeff_blk->flags, coeff_blk->ctl_type); return -EINVAL; } return 0; } static int cs_dsp_parse_coeff(struct cs_dsp *dsp, const struct wmfw_region *region) { struct cs_dsp_alg_region alg_region = {}; struct cs_dsp_coeff_parsed_alg alg_blk; struct cs_dsp_coeff_parsed_coeff coeff_blk; const u8 *data = region->data; int i, ret; cs_dsp_coeff_parse_alg(dsp, &data, &alg_blk); for (i = 0; i < alg_blk.ncoeff; i++) { cs_dsp_coeff_parse_coeff(dsp, &data, &coeff_blk); switch (coeff_blk.ctl_type) { case WMFW_CTL_TYPE_BYTES: break; case WMFW_CTL_TYPE_ACKED: if (coeff_blk.flags & WMFW_CTL_FLAG_SYS) continue; /* ignore */ ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk, WMFW_CTL_FLAG_VOLATILE | WMFW_CTL_FLAG_WRITEABLE | WMFW_CTL_FLAG_READABLE, 0); if (ret) return -EINVAL; break; case WMFW_CTL_TYPE_HOSTEVENT: case WMFW_CTL_TYPE_FWEVENT: ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk, WMFW_CTL_FLAG_SYS | WMFW_CTL_FLAG_VOLATILE | WMFW_CTL_FLAG_WRITEABLE | WMFW_CTL_FLAG_READABLE, 0); if (ret) return -EINVAL; break; case WMFW_CTL_TYPE_HOST_BUFFER: ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk, WMFW_CTL_FLAG_SYS | WMFW_CTL_FLAG_VOLATILE | WMFW_CTL_FLAG_READABLE, 0); if (ret) return -EINVAL; break; default: cs_dsp_err(dsp, "Unknown control type: %d\n", coeff_blk.ctl_type); return -EINVAL; } alg_region.type = coeff_blk.mem_type; alg_region.alg = alg_blk.id; ret = cs_dsp_create_control(dsp, &alg_region, coeff_blk.offset, coeff_blk.len, coeff_blk.name, coeff_blk.name_len, coeff_blk.flags, coeff_blk.ctl_type); if (ret < 0) cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n", coeff_blk.name_len, coeff_blk.name, ret); } return 0; } static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp, const char * const file, unsigned int pos, const struct firmware *firmware) { const struct wmfw_adsp1_sizes *adsp1_sizes; adsp1_sizes = (void *)&firmware->data[pos]; cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file, le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm), le32_to_cpu(adsp1_sizes->zm)); return pos + sizeof(*adsp1_sizes); } static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp, const char * const file, unsigned int pos, const struct firmware *firmware) { const struct wmfw_adsp2_sizes *adsp2_sizes; adsp2_sizes = (void *)&firmware->data[pos]; cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file, le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym), le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm)); return pos + sizeof(*adsp2_sizes); } static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version) { switch (version) { case 0: cs_dsp_warn(dsp, "Deprecated file format %d\n", version); return true; case 1: case 2: return true; default: return false; } } static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version) { switch (version) { case 3: return true; default: return false; } } static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware, const char *file) { LIST_HEAD(buf_list); struct regmap *regmap = dsp->regmap; unsigned int pos = 0; const struct wmfw_header *header; const struct wmfw_adsp1_sizes *adsp1_sizes; const struct wmfw_footer *footer; const struct wmfw_region *region; const struct cs_dsp_region *mem; const char *region_name; char *text = NULL; struct cs_dsp_buf *buf; unsigned int reg; int regions = 0; int ret, offset, type; ret = -EINVAL; pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer); if (pos >= firmware->size) { cs_dsp_err(dsp, "%s: file too short, %zu bytes\n", file, firmware->size); goto out_fw; } header = (void *)&firmware->data[0]; if (memcmp(&header->magic[0], "WMFW", 4) != 0) { cs_dsp_err(dsp, "%s: invalid magic\n", file); goto out_fw; } if (!dsp->ops->validate_version(dsp, header->ver)) { cs_dsp_err(dsp, "%s: unknown file format %d\n", file, header->ver); goto out_fw; } cs_dsp_info(dsp, "Firmware version: %d\n", header->ver); dsp->fw_ver = header->ver; if (header->core != dsp->type) { cs_dsp_err(dsp, "%s: invalid core %d != %d\n", file, header->core, dsp->type); goto out_fw; } pos = sizeof(*header); pos = dsp->ops->parse_sizes(dsp, file, pos, firmware); footer = (void *)&firmware->data[pos]; pos += sizeof(*footer); if (le32_to_cpu(header->len) != pos) { cs_dsp_err(dsp, "%s: unexpected header length %d\n", file, le32_to_cpu(header->len)); goto out_fw; } cs_dsp_dbg(dsp, "%s: timestamp %llu\n", file, le64_to_cpu(footer->timestamp)); while (pos < firmware->size && sizeof(*region) < firmware->size - pos) { region = (void *)&(firmware->data[pos]); region_name = "Unknown"; reg = 0; text = NULL; offset = le32_to_cpu(region->offset) & 0xffffff; type = be32_to_cpu(region->type) & 0xff; switch (type) { case WMFW_NAME_TEXT: region_name = "Firmware name"; text = kzalloc(le32_to_cpu(region->len) + 1, GFP_KERNEL); break; case WMFW_ALGORITHM_DATA: region_name = "Algorithm"; ret = cs_dsp_parse_coeff(dsp, region); if (ret != 0) goto out_fw; break; case WMFW_INFO_TEXT: region_name = "Information"; text = kzalloc(le32_to_cpu(region->len) + 1, GFP_KERNEL); break; case WMFW_ABSOLUTE: region_name = "Absolute"; reg = offset; break; case WMFW_ADSP1_PM: case WMFW_ADSP1_DM: case WMFW_ADSP2_XM: case WMFW_ADSP2_YM: case WMFW_ADSP1_ZM: case WMFW_HALO_PM_PACKED: case WMFW_HALO_XM_PACKED: case WMFW_HALO_YM_PACKED: mem = cs_dsp_find_region(dsp, type); if (!mem) { cs_dsp_err(dsp, "No region of type: %x\n", type); ret = -EINVAL; goto out_fw; } region_name = cs_dsp_mem_region_name(type); reg = dsp->ops->region_to_reg(mem, offset); break; default: cs_dsp_warn(dsp, "%s.%d: Unknown region type %x at %d(%x)\n", file, regions, type, pos, pos); break; } cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file, regions, le32_to_cpu(region->len), offset, region_name); if (le32_to_cpu(region->len) > firmware->size - pos - sizeof(*region)) { cs_dsp_err(dsp, "%s.%d: %s region len %d bytes exceeds file length %zu\n", file, regions, region_name, le32_to_cpu(region->len), firmware->size); ret = -EINVAL; goto out_fw; } if (text) { memcpy(text, region->data, le32_to_cpu(region->len)); cs_dsp_info(dsp, "%s: %s\n", file, text); kfree(text); text = NULL; } if (reg) { buf = cs_dsp_buf_alloc(region->data, le32_to_cpu(region->len), &buf_list); if (!buf) { cs_dsp_err(dsp, "Out of memory\n"); ret = -ENOMEM; goto out_fw; } ret = regmap_raw_write_async(regmap, reg, buf->buf, le32_to_cpu(region->len)); if (ret != 0) { cs_dsp_err(dsp, "%s.%d: Failed to write %d bytes at %d in %s: %d\n", file, regions, le32_to_cpu(region->len), offset, region_name, ret); goto out_fw; } } pos += le32_to_cpu(region->len) + sizeof(*region); regions++; } ret = regmap_async_complete(regmap); if (ret != 0) { cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret); goto out_fw; } if (pos > firmware->size) cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n", file, regions, pos - firmware->size); cs_dsp_debugfs_save_wmfwname(dsp, file); out_fw: regmap_async_complete(regmap); cs_dsp_buf_free(&buf_list); kfree(text); return ret; } /** * cs_dsp_get_ctl() - Finds a matching coefficient control * @dsp: pointer to DSP structure * @name: pointer to string to match with a control's subname * @type: the algorithm type to match * @alg: the algorithm id to match * * Find cs_dsp_coeff_ctl with input name as its subname * * Return: pointer to the control on success, NULL if not found */ struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type, unsigned int alg) { struct cs_dsp_coeff_ctl *pos, *rslt = NULL; lockdep_assert_held(&dsp->pwr_lock); list_for_each_entry(pos, &dsp->ctl_list, list) { if (!pos->subname) continue; if (strncmp(pos->subname, name, pos->subname_len) == 0 && pos->fw_name == dsp->fw_name && pos->alg_region.alg == alg && pos->alg_region.type == type) { rslt = pos; break; } } return rslt; } EXPORT_SYMBOL_GPL(cs_dsp_get_ctl); static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp, const struct cs_dsp_alg_region *alg_region) { struct cs_dsp_coeff_ctl *ctl; list_for_each_entry(ctl, &dsp->ctl_list, list) { if (ctl->fw_name == dsp->fw_name && alg_region->alg == ctl->alg_region.alg && alg_region->type == ctl->alg_region.type) { ctl->alg_region.base = alg_region->base; } } } static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs, const struct cs_dsp_region *mem, unsigned int pos, unsigned int len) { void *alg; unsigned int reg; int ret; __be32 val; if (n_algs == 0) { cs_dsp_err(dsp, "No algorithms\n"); return ERR_PTR(-EINVAL); } if (n_algs > 1024) { cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs); return ERR_PTR(-EINVAL); } /* Read the terminator first to validate the length */ reg = dsp->ops->region_to_reg(mem, pos + len); ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val)); if (ret != 0) { cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n", ret); return ERR_PTR(ret); } if (be32_to_cpu(val) != 0xbedead) cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n", reg, be32_to_cpu(val)); /* Convert length from DSP words to bytes */ len *= sizeof(u32); alg = kzalloc(len, GFP_KERNEL | GFP_DMA); if (!alg) return ERR_PTR(-ENOMEM); reg = dsp->ops->region_to_reg(mem, pos); ret = regmap_raw_read(dsp->regmap, reg, alg, len); if (ret != 0) { cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret); kfree(alg); return ERR_PTR(ret); } return alg; } /** * cs_dsp_find_alg_region() - Finds a matching algorithm region * @dsp: pointer to DSP structure * @type: the algorithm type to match * @id: the algorithm id to match * * Return: Pointer to matching algorithm region, or NULL if not found. */ struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp, int type, unsigned int id) { struct cs_dsp_alg_region *alg_region; lockdep_assert_held(&dsp->pwr_lock); list_for_each_entry(alg_region, &dsp->alg_regions, list) { if (id == alg_region->alg && type == alg_region->type) return alg_region; } return NULL; } EXPORT_SYMBOL_GPL(cs_dsp_find_alg_region); static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp, int type, __be32 id, __be32 ver, __be32 base) { struct cs_dsp_alg_region *alg_region; alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL); if (!alg_region) return ERR_PTR(-ENOMEM); alg_region->type = type; alg_region->alg = be32_to_cpu(id); alg_region->ver = be32_to_cpu(ver); alg_region->base = be32_to_cpu(base); list_add_tail(&alg_region->list, &dsp->alg_regions); if (dsp->fw_ver > 0) cs_dsp_ctl_fixup_base(dsp, alg_region); return alg_region; } static void cs_dsp_free_alg_regions(struct cs_dsp *dsp) { struct cs_dsp_alg_region *alg_region; while (!list_empty(&dsp->alg_regions)) { alg_region = list_first_entry(&dsp->alg_regions, struct cs_dsp_alg_region, list); list_del(&alg_region->list); kfree(alg_region); } } static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp, struct wmfw_id_hdr *fw, int nalgs) { dsp->fw_id = be32_to_cpu(fw->id); dsp->fw_id_version = be32_to_cpu(fw->ver); cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n", dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16, (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff, nalgs); } static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp, struct wmfw_v3_id_hdr *fw, int nalgs) { dsp->fw_id = be32_to_cpu(fw->id); dsp->fw_id_version = be32_to_cpu(fw->ver); dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id); cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n", dsp->fw_id, dsp->fw_vendor_id, (dsp->fw_id_version & 0xff0000) >> 16, (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff, nalgs); } static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver, int nregions, const int *type, __be32 *base) { struct cs_dsp_alg_region *alg_region; int i; for (i = 0; i < nregions; i++) { alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]); if (IS_ERR(alg_region)) return PTR_ERR(alg_region); } return 0; } static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp) { struct wmfw_adsp1_id_hdr adsp1_id; struct wmfw_adsp1_alg_hdr *adsp1_alg; struct cs_dsp_alg_region *alg_region; const struct cs_dsp_region *mem; unsigned int pos, len; size_t n_algs; int i, ret; mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM); if (WARN_ON(!mem)) return -EINVAL; ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id, sizeof(adsp1_id)); if (ret != 0) { cs_dsp_err(dsp, "Failed to read algorithm info: %d\n", ret); return ret; } n_algs = be32_to_cpu(adsp1_id.n_algs); cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs); alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM, adsp1_id.fw.id, adsp1_id.fw.ver, adsp1_id.zm); if (IS_ERR(alg_region)) return PTR_ERR(alg_region); alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM, adsp1_id.fw.id, adsp1_id.fw.ver, adsp1_id.dm); if (IS_ERR(alg_region)) return PTR_ERR(alg_region); /* Calculate offset and length in DSP words */ pos = sizeof(adsp1_id) / sizeof(u32); len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32); adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len); if (IS_ERR(adsp1_alg)) return PTR_ERR(adsp1_alg); for (i = 0; i < n_algs; i++) { cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n", i, be32_to_cpu(adsp1_alg[i].alg.id), (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16, (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8, be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff, be32_to_cpu(adsp1_alg[i].dm), be32_to_cpu(adsp1_alg[i].zm)); alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM, adsp1_alg[i].alg.id, adsp1_alg[i].alg.ver, adsp1_alg[i].dm); if (IS_ERR(alg_region)) { ret = PTR_ERR(alg_region); goto out; } if (dsp->fw_ver == 0) { if (i + 1 < n_algs) { len = be32_to_cpu(adsp1_alg[i + 1].dm); len -= be32_to_cpu(adsp1_alg[i].dm); len *= 4; cs_dsp_create_control(dsp, alg_region, 0, len, NULL, 0, 0, WMFW_CTL_TYPE_BYTES); } else { cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n", be32_to_cpu(adsp1_alg[i].alg.id)); } } alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM, adsp1_alg[i].alg.id, adsp1_alg[i].alg.ver, adsp1_alg[i].zm); if (IS_ERR(alg_region)) { ret = PTR_ERR(alg_region); goto out; } if (dsp->fw_ver == 0) { if (i + 1 < n_algs) { len = be32_to_cpu(adsp1_alg[i + 1].zm); len -= be32_to_cpu(adsp1_alg[i].zm); len *= 4; cs_dsp_create_control(dsp, alg_region, 0, len, NULL, 0, 0, WMFW_CTL_TYPE_BYTES); } else { cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n", be32_to_cpu(adsp1_alg[i].alg.id)); } } } out: kfree(adsp1_alg); return ret; } static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp) { struct wmfw_adsp2_id_hdr adsp2_id; struct wmfw_adsp2_alg_hdr *adsp2_alg; struct cs_dsp_alg_region *alg_region; const struct cs_dsp_region *mem; unsigned int pos, len; size_t n_algs; int i, ret; mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM); if (WARN_ON(!mem)) return -EINVAL; ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id, sizeof(adsp2_id)); if (ret != 0) { cs_dsp_err(dsp, "Failed to read algorithm info: %d\n", ret); return ret; } n_algs = be32_to_cpu(adsp2_id.n_algs); cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs); alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM, adsp2_id.fw.id, adsp2_id.fw.ver, adsp2_id.xm); if (IS_ERR(alg_region)) return PTR_ERR(alg_region); alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM, adsp2_id.fw.id, adsp2_id.fw.ver, adsp2_id.ym); if (IS_ERR(alg_region)) return PTR_ERR(alg_region); alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM, adsp2_id.fw.id, adsp2_id.fw.ver, adsp2_id.zm); if (IS_ERR(alg_region)) return PTR_ERR(alg_region); /* Calculate offset and length in DSP words */ pos = sizeof(adsp2_id) / sizeof(u32); len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32); adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len); if (IS_ERR(adsp2_alg)) return PTR_ERR(adsp2_alg); for (i = 0; i < n_algs; i++) { cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n", i, be32_to_cpu(adsp2_alg[i].alg.id), (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16, (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8, be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff, be32_to_cpu(adsp2_alg[i].xm), be32_to_cpu(adsp2_alg[i].ym), be32_to_cpu(adsp2_alg[i].zm)); alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM, adsp2_alg[i].alg.id, adsp2_alg[i].alg.ver, adsp2_alg[i].xm); if (IS_ERR(alg_region)) { ret = PTR_ERR(alg_region); goto out; } if (dsp->fw_ver == 0) { if (i + 1 < n_algs) { len = be32_to_cpu(adsp2_alg[i + 1].xm); len -= be32_to_cpu(adsp2_alg[i].xm); len *= 4; cs_dsp_create_control(dsp, alg_region, 0, len, NULL, 0, 0, WMFW_CTL_TYPE_BYTES); } else { cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n", be32_to_cpu(adsp2_alg[i].alg.id)); } } alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM, adsp2_alg[i].alg.id, adsp2_alg[i].alg.ver, adsp2_alg[i].ym); if (IS_ERR(alg_region)) { ret = PTR_ERR(alg_region); goto out; } if (dsp->fw_ver == 0) { if (i + 1 < n_algs) { len = be32_to_cpu(adsp2_alg[i + 1].ym); len -= be32_to_cpu(adsp2_alg[i].ym); len *= 4; cs_dsp_create_control(dsp, alg_region, 0, len, NULL, 0, 0, WMFW_CTL_TYPE_BYTES); } else { cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n", be32_to_cpu(adsp2_alg[i].alg.id)); } } alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM, adsp2_alg[i].alg.id, adsp2_alg[i].alg.ver, adsp2_alg[i].zm); if (IS_ERR(alg_region)) { ret = PTR_ERR(alg_region); goto out; } if (dsp->fw_ver == 0) { if (i + 1 < n_algs) { len = be32_to_cpu(adsp2_alg[i + 1].zm); len -= be32_to_cpu(adsp2_alg[i].zm); len *= 4; cs_dsp_create_control(dsp, alg_region, 0, len, NULL, 0, 0, WMFW_CTL_TYPE_BYTES); } else { cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n", be32_to_cpu(adsp2_alg[i].alg.id)); } } } out: kfree(adsp2_alg); return ret; } static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver, __be32 xm_base, __be32 ym_base) { static const int types[] = { WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED, WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED }; __be32 bases[] = { xm_base, xm_base, ym_base, ym_base }; return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases); } static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp) { struct wmfw_halo_id_hdr halo_id; struct wmfw_halo_alg_hdr *halo_alg; const struct cs_dsp_region *mem; unsigned int pos, len; size_t n_algs; int i, ret; mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM); if (WARN_ON(!mem)) return -EINVAL; ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id, sizeof(halo_id)); if (ret != 0) { cs_dsp_err(dsp, "Failed to read algorithm info: %d\n", ret); return ret; } n_algs = be32_to_cpu(halo_id.n_algs); cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs); ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver, halo_id.xm_base, halo_id.ym_base); if (ret) return ret; /* Calculate offset and length in DSP words */ pos = sizeof(halo_id) / sizeof(u32); len = (sizeof(*halo_alg) * n_algs) / sizeof(u32); halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len); if (IS_ERR(halo_alg)) return PTR_ERR(halo_alg); for (i = 0; i < n_algs; i++) { cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d XM@%x YM@%x\n", i, be32_to_cpu(halo_alg[i].alg.id), (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16, (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8, be32_to_cpu(halo_alg[i].alg.ver) & 0xff, be32_to_cpu(halo_alg[i].xm_base), be32_to_cpu(halo_alg[i].ym_base)); ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id, halo_alg[i].alg.ver, halo_alg[i].xm_base, halo_alg[i].ym_base); if (ret) goto out; } out: kfree(halo_alg); return ret; } static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware, const char *file) { LIST_HEAD(buf_list); struct regmap *regmap = dsp->regmap; struct wmfw_coeff_hdr *hdr; struct wmfw_coeff_item *blk; const struct cs_dsp_region *mem; struct cs_dsp_alg_region *alg_region; const char *region_name; int ret, pos, blocks, type, offset, reg, version; char *text = NULL; struct cs_dsp_buf *buf; if (!firmware) return 0; ret = -EINVAL; if (sizeof(*hdr) >= firmware->size) { cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n", file, firmware->size); goto out_fw; } hdr = (void *)&firmware->data[0]; if (memcmp(hdr->magic, "WMDR", 4) != 0) { cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file); goto out_fw; } switch (be32_to_cpu(hdr->rev) & 0xff) { case 1: case 2: break; default: cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n", file, be32_to_cpu(hdr->rev) & 0xff); ret = -EINVAL; goto out_fw; } cs_dsp_dbg(dsp, "%s: v%d.%d.%d\n", file, (le32_to_cpu(hdr->ver) >> 16) & 0xff, (le32_to_cpu(hdr->ver) >> 8) & 0xff, le32_to_cpu(hdr->ver) & 0xff); pos = le32_to_cpu(hdr->len); blocks = 0; while (pos < firmware->size && sizeof(*blk) < firmware->size - pos) { blk = (void *)(&firmware->data[pos]); type = le16_to_cpu(blk->type); offset = le16_to_cpu(blk->offset); version = le32_to_cpu(blk->ver) >> 8; cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n", file, blocks, le32_to_cpu(blk->id), (le32_to_cpu(blk->ver) >> 16) & 0xff, (le32_to_cpu(blk->ver) >> 8) & 0xff, le32_to_cpu(blk->ver) & 0xff); cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n", file, blocks, le32_to_cpu(blk->len), offset, type); reg = 0; region_name = "Unknown"; switch (type) { case (WMFW_NAME_TEXT << 8): text = kzalloc(le32_to_cpu(blk->len) + 1, GFP_KERNEL); break; case (WMFW_INFO_TEXT << 8): case (WMFW_METADATA << 8): break; case (WMFW_ABSOLUTE << 8): /* * Old files may use this for global * coefficients. */ if (le32_to_cpu(blk->id) == dsp->fw_id && offset == 0) { region_name = "global coefficients"; mem = cs_dsp_find_region(dsp, type); if (!mem) { cs_dsp_err(dsp, "No ZM\n"); break; } reg = dsp->ops->region_to_reg(mem, 0); } else { region_name = "register"; reg = offset; } break; case WMFW_ADSP1_DM: case WMFW_ADSP1_ZM: case WMFW_ADSP2_XM: case WMFW_ADSP2_YM: case WMFW_HALO_XM_PACKED: case WMFW_HALO_YM_PACKED: case WMFW_HALO_PM_PACKED: cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n", file, blocks, le32_to_cpu(blk->len), type, le32_to_cpu(blk->id)); mem = cs_dsp_find_region(dsp, type); if (!mem) { cs_dsp_err(dsp, "No base for region %x\n", type); break; } alg_region = cs_dsp_find_alg_region(dsp, type, le32_to_cpu(blk->id)); if (alg_region) { if (version != alg_region->ver) cs_dsp_warn(dsp, "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n", (version >> 16) & 0xFF, (version >> 8) & 0xFF, version & 0xFF, (alg_region->ver >> 16) & 0xFF, (alg_region->ver >> 8) & 0xFF, alg_region->ver & 0xFF); reg = alg_region->base; reg = dsp->ops->region_to_reg(mem, reg); reg += offset; } else { cs_dsp_err(dsp, "No %x for algorithm %x\n", type, le32_to_cpu(blk->id)); } break; default: cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n", file, blocks, type, pos); break; } if (text) { memcpy(text, blk->data, le32_to_cpu(blk->len)); cs_dsp_info(dsp, "%s: %s\n", dsp->fw_name, text); kfree(text); text = NULL; } if (reg) { if (le32_to_cpu(blk->len) > firmware->size - pos - sizeof(*blk)) { cs_dsp_err(dsp, "%s.%d: %s region len %d bytes exceeds file length %zu\n", file, blocks, region_name, le32_to_cpu(blk->len), firmware->size); ret = -EINVAL; goto out_fw; } buf = cs_dsp_buf_alloc(blk->data, le32_to_cpu(blk->len), &buf_list); if (!buf) { cs_dsp_err(dsp, "Out of memory\n"); ret = -ENOMEM; goto out_fw; } cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n", file, blocks, le32_to_cpu(blk->len), reg); ret = regmap_raw_write_async(regmap, reg, buf->buf, le32_to_cpu(blk->len)); if (ret != 0) { cs_dsp_err(dsp, "%s.%d: Failed to write to %x in %s: %d\n", file, blocks, reg, region_name, ret); } } pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03; blocks++; } ret = regmap_async_complete(regmap); if (ret != 0) cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret); if (pos > firmware->size) cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n", file, blocks, pos - firmware->size); cs_dsp_debugfs_save_binname(dsp, file); out_fw: regmap_async_complete(regmap); cs_dsp_buf_free(&buf_list); kfree(text); return ret; } static int cs_dsp_create_name(struct cs_dsp *dsp) { if (!dsp->name) { dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d", dsp->num); if (!dsp->name) return -ENOMEM; } return 0; } static int cs_dsp_common_init(struct cs_dsp *dsp) { int ret; ret = cs_dsp_create_name(dsp); if (ret) return ret; INIT_LIST_HEAD(&dsp->alg_regions); INIT_LIST_HEAD(&dsp->ctl_list); mutex_init(&dsp->pwr_lock); return 0; } /** * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device * @dsp: pointer to DSP structure * * Return: Zero for success, a negative number on error. */ int cs_dsp_adsp1_init(struct cs_dsp *dsp) { dsp->ops = &cs_dsp_adsp1_ops; return cs_dsp_common_init(dsp); } EXPORT_SYMBOL_GPL(cs_dsp_adsp1_init); /** * cs_dsp_adsp1_power_up() - Load and start the named firmware * @dsp: pointer to DSP structure * @wmfw_firmware: the firmware to be sent * @wmfw_filename: file name of firmware to be sent * @coeff_firmware: the coefficient data to be sent * @coeff_filename: file name of coefficient to data be sent * @fw_name: the user-friendly firmware name * * Return: Zero for success, a negative number on error. */ int cs_dsp_adsp1_power_up(struct cs_dsp *dsp, const struct firmware *wmfw_firmware, char *wmfw_filename, const struct firmware *coeff_firmware, char *coeff_filename, const char *fw_name) { unsigned int val; int ret; mutex_lock(&dsp->pwr_lock); dsp->fw_name = fw_name; regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_SYS_ENA, ADSP1_SYS_ENA); /* * For simplicity set the DSP clock rate to be the * SYSCLK rate rather than making it configurable. */ if (dsp->sysclk_reg) { ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val); if (ret != 0) { cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret); goto err_mutex; } val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift; ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_31, ADSP1_CLK_SEL_MASK, val); if (ret != 0) { cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret); goto err_mutex; } } ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename); if (ret != 0) goto err_ena; ret = cs_dsp_adsp1_setup_algs(dsp); if (ret != 0) goto err_ena; ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename); if (ret != 0) goto err_ena; /* Initialize caches for enabled and unset controls */ ret = cs_dsp_coeff_init_control_caches(dsp); if (ret != 0) goto err_ena; /* Sync set controls */ ret = cs_dsp_coeff_sync_controls(dsp); if (ret != 0) goto err_ena; dsp->booted = true; /* Start the core running */ regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_CORE_ENA | ADSP1_START, ADSP1_CORE_ENA | ADSP1_START); dsp->running = true; mutex_unlock(&dsp->pwr_lock); return 0; err_ena: regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_SYS_ENA, 0); err_mutex: mutex_unlock(&dsp->pwr_lock); return ret; } EXPORT_SYMBOL_GPL(cs_dsp_adsp1_power_up); /** * cs_dsp_adsp1_power_down() - Halts the DSP * @dsp: pointer to DSP structure */ void cs_dsp_adsp1_power_down(struct cs_dsp *dsp) { struct cs_dsp_coeff_ctl *ctl; mutex_lock(&dsp->pwr_lock); dsp->running = false; dsp->booted = false; /* Halt the core */ regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_CORE_ENA | ADSP1_START, 0); regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19, ADSP1_WDMA_BUFFER_LENGTH_MASK, 0); regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30, ADSP1_SYS_ENA, 0); list_for_each_entry(ctl, &dsp->ctl_list, list) ctl->enabled = 0; cs_dsp_free_alg_regions(dsp); mutex_unlock(&dsp->pwr_lock); } EXPORT_SYMBOL_GPL(cs_dsp_adsp1_power_down); static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp) { unsigned int val; int ret, count; /* Wait for the RAM to start, should be near instantaneous */ for (count = 0; count < 10; ++count) { ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val); if (ret != 0) return ret; if (val & ADSP2_RAM_RDY) break; usleep_range(250, 500); } if (!(val & ADSP2_RAM_RDY)) { cs_dsp_err(dsp, "Failed to start DSP RAM\n"); return -EBUSY; } cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count); return 0; } static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp) { int ret; ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_SYS_ENA, ADSP2_SYS_ENA); if (ret != 0) return ret; return cs_dsp_adsp2v2_enable_core(dsp); } static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions) { struct regmap *regmap = dsp->regmap; unsigned int code0, code1, lock_reg; if (!(lock_regions & CS_ADSP2_REGION_ALL)) return 0; lock_regions &= CS_ADSP2_REGION_ALL; lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0; while (lock_regions) { code0 = code1 = 0; if (lock_regions & BIT(0)) { code0 = ADSP2_LOCK_CODE_0; code1 = ADSP2_LOCK_CODE_1; } if (lock_regions & BIT(1)) { code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT; code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT; } regmap_write(regmap, lock_reg, code0); regmap_write(regmap, lock_reg, code1); lock_regions >>= 2; lock_reg += 2; } return 0; } static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp) { return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_MEM_ENA, ADSP2_MEM_ENA); } static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp) { regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_MEM_ENA, 0); } static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp) { regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0); regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0); regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0); regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_SYS_ENA, 0); } static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp) { regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0); regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0); regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0); } static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions) { struct reg_sequence config[] = { { dsp->base + HALO_MPU_LOCK_CONFIG, 0x5555 }, { dsp->base + HALO_MPU_LOCK_CONFIG, 0xAAAA }, { dsp->base + HALO_MPU_XMEM_ACCESS_0, 0xFFFFFFFF }, { dsp->base + HALO_MPU_YMEM_ACCESS_0, 0xFFFFFFFF }, { dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions }, { dsp->base + HALO_MPU_XREG_ACCESS_0, lock_regions }, { dsp->base + HALO_MPU_YREG_ACCESS_0, lock_regions }, { dsp->base + HALO_MPU_XMEM_ACCESS_1, 0xFFFFFFFF }, { dsp->base + HALO_MPU_YMEM_ACCESS_1, 0xFFFFFFFF }, { dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions }, { dsp->base + HALO_MPU_XREG_ACCESS_1, lock_regions }, { dsp->base + HALO_MPU_YREG_ACCESS_1, lock_regions }, { dsp->base + HALO_MPU_XMEM_ACCESS_2, 0xFFFFFFFF }, { dsp->base + HALO_MPU_YMEM_ACCESS_2, 0xFFFFFFFF }, { dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions }, { dsp->base + HALO_MPU_XREG_ACCESS_2, lock_regions }, { dsp->base + HALO_MPU_YREG_ACCESS_2, lock_regions }, { dsp->base + HALO_MPU_XMEM_ACCESS_3, 0xFFFFFFFF }, { dsp->base + HALO_MPU_YMEM_ACCESS_3, 0xFFFFFFFF }, { dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions }, { dsp->base + HALO_MPU_XREG_ACCESS_3, lock_regions }, { dsp->base + HALO_MPU_YREG_ACCESS_3, lock_regions }, { dsp->base + HALO_MPU_LOCK_CONFIG, 0 }, }; return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config)); } /** * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp * @dsp: pointer to DSP structure * @freq: clock rate to set * * This is only for use on ADSP2 cores. * * Return: Zero for success, a negative number on error. */ int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq) { int ret; ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING, ADSP2_CLK_SEL_MASK, freq << ADSP2_CLK_SEL_SHIFT); if (ret) cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret); return ret; } EXPORT_SYMBOL_GPL(cs_dsp_set_dspclk); static void cs_dsp_stop_watchdog(struct cs_dsp *dsp) { regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG, ADSP2_WDT_ENA_MASK, 0); } static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp) { regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL, HALO_WDT_EN_MASK, 0); } /** * cs_dsp_power_up() - Downloads firmware to the DSP * @dsp: pointer to DSP structure * @wmfw_firmware: the firmware to be sent * @wmfw_filename: file name of firmware to be sent * @coeff_firmware: the coefficient data to be sent * @coeff_filename: file name of coefficient to data be sent * @fw_name: the user-friendly firmware name * * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core * and downloads the firmware but does not start the firmware running. The * cs_dsp booted flag will be set once completed and if the core has a low-power * memory retention mode it will be put into this state after the firmware is * downloaded. * * Return: Zero for success, a negative number on error. */ int cs_dsp_power_up(struct cs_dsp *dsp, const struct firmware *wmfw_firmware, char *wmfw_filename, const struct firmware *coeff_firmware, char *coeff_filename, const char *fw_name) { int ret; mutex_lock(&dsp->pwr_lock); dsp->fw_name = fw_name; if (dsp->ops->enable_memory) { ret = dsp->ops->enable_memory(dsp); if (ret != 0) goto err_mutex; } if (dsp->ops->enable_core) { ret = dsp->ops->enable_core(dsp); if (ret != 0) goto err_mem; } ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename); if (ret != 0) goto err_ena; ret = dsp->ops->setup_algs(dsp); if (ret != 0) goto err_ena; ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename); if (ret != 0) goto err_ena; /* Initialize caches for enabled and unset controls */ ret = cs_dsp_coeff_init_control_caches(dsp); if (ret != 0) goto err_ena; if (dsp->ops->disable_core) dsp->ops->disable_core(dsp); dsp->booted = true; mutex_unlock(&dsp->pwr_lock); return 0; err_ena: if (dsp->ops->disable_core) dsp->ops->disable_core(dsp); err_mem: if (dsp->ops->disable_memory) dsp->ops->disable_memory(dsp); err_mutex: mutex_unlock(&dsp->pwr_lock); return ret; } EXPORT_SYMBOL_GPL(cs_dsp_power_up); /** * cs_dsp_power_down() - Powers-down the DSP * @dsp: pointer to DSP structure * * cs_dsp_stop() must have been called before this function. The core will be * fully powered down and so the memory will not be retained. */ void cs_dsp_power_down(struct cs_dsp *dsp) { struct cs_dsp_coeff_ctl *ctl; mutex_lock(&dsp->pwr_lock); cs_dsp_debugfs_clear(dsp); dsp->fw_id = 0; dsp->fw_id_version = 0; dsp->booted = false; if (dsp->ops->disable_memory) dsp->ops->disable_memory(dsp); list_for_each_entry(ctl, &dsp->ctl_list, list) ctl->enabled = 0; cs_dsp_free_alg_regions(dsp); mutex_unlock(&dsp->pwr_lock); cs_dsp_dbg(dsp, "Shutdown complete\n"); } EXPORT_SYMBOL_GPL(cs_dsp_power_down); static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp) { return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_CORE_ENA | ADSP2_START, ADSP2_CORE_ENA | ADSP2_START); } static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp) { regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_CORE_ENA | ADSP2_START, 0); } /** * cs_dsp_run() - Starts the firmware running * @dsp: pointer to DSP structure * * cs_dsp_power_up() must have previously been called successfully. * * Return: Zero for success, a negative number on error. */ int cs_dsp_run(struct cs_dsp *dsp) { int ret; mutex_lock(&dsp->pwr_lock); if (!dsp->booted) { ret = -EIO; goto err; } if (dsp->ops->enable_core) { ret = dsp->ops->enable_core(dsp); if (ret != 0) goto err; } if (dsp->client_ops->pre_run) { ret = dsp->client_ops->pre_run(dsp); if (ret) goto err; } /* Sync set controls */ ret = cs_dsp_coeff_sync_controls(dsp); if (ret != 0) goto err; if (dsp->ops->lock_memory) { ret = dsp->ops->lock_memory(dsp, dsp->lock_regions); if (ret != 0) { cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret); goto err; } } if (dsp->ops->start_core) { ret = dsp->ops->start_core(dsp); if (ret != 0) goto err; } dsp->running = true; if (dsp->client_ops->post_run) { ret = dsp->client_ops->post_run(dsp); if (ret) goto err; } mutex_unlock(&dsp->pwr_lock); return 0; err: if (dsp->ops->stop_core) dsp->ops->stop_core(dsp); if (dsp->ops->disable_core) dsp->ops->disable_core(dsp); mutex_unlock(&dsp->pwr_lock); return ret; } EXPORT_SYMBOL_GPL(cs_dsp_run); /** * cs_dsp_stop() - Stops the firmware * @dsp: pointer to DSP structure * * Memory will not be disabled so firmware will remain loaded. */ void cs_dsp_stop(struct cs_dsp *dsp) { /* Tell the firmware to cleanup */ cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN); if (dsp->ops->stop_watchdog) dsp->ops->stop_watchdog(dsp); /* Log firmware state, it can be useful for analysis */ if (dsp->ops->show_fw_status) dsp->ops->show_fw_status(dsp); mutex_lock(&dsp->pwr_lock); if (dsp->client_ops->pre_stop) dsp->client_ops->pre_stop(dsp); dsp->running = false; if (dsp->ops->stop_core) dsp->ops->stop_core(dsp); if (dsp->ops->disable_core) dsp->ops->disable_core(dsp); if (dsp->client_ops->post_stop) dsp->client_ops->post_stop(dsp); mutex_unlock(&dsp->pwr_lock); cs_dsp_dbg(dsp, "Execution stopped\n"); } EXPORT_SYMBOL_GPL(cs_dsp_stop); static int cs_dsp_halo_start_core(struct cs_dsp *dsp) { int ret; ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL, HALO_CORE_RESET | HALO_CORE_EN, HALO_CORE_RESET | HALO_CORE_EN); if (ret) return ret; return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL, HALO_CORE_RESET, 0); } static void cs_dsp_halo_stop_core(struct cs_dsp *dsp) { regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL, HALO_CORE_EN, 0); /* reset halo core with CORE_SOFT_RESET */ regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET, HALO_CORE_SOFT_RESET_MASK, 1); } /** * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core * @dsp: pointer to DSP structure * * Return: Zero for success, a negative number on error. */ int cs_dsp_adsp2_init(struct cs_dsp *dsp) { int ret; switch (dsp->rev) { case 0: /* * Disable the DSP memory by default when in reset for a small * power saving. */ ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL, ADSP2_MEM_ENA, 0); if (ret) { cs_dsp_err(dsp, "Failed to clear memory retention: %d\n", ret); return ret; } dsp->ops = &cs_dsp_adsp2_ops[0]; break; case 1: dsp->ops = &cs_dsp_adsp2_ops[1]; break; default: dsp->ops = &cs_dsp_adsp2_ops[2]; break; } return cs_dsp_common_init(dsp); } EXPORT_SYMBOL_GPL(cs_dsp_adsp2_init); /** * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP * @dsp: pointer to DSP structure * * Return: Zero for success, a negative number on error. */ int cs_dsp_halo_init(struct cs_dsp *dsp) { dsp->ops = &cs_dsp_halo_ops; return cs_dsp_common_init(dsp); } EXPORT_SYMBOL_GPL(cs_dsp_halo_init); /** * cs_dsp_remove() - Clean a cs_dsp before deletion * @dsp: pointer to DSP structure */ void cs_dsp_remove(struct cs_dsp *dsp) { struct cs_dsp_coeff_ctl *ctl; while (!list_empty(&dsp->ctl_list)) { ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list); if (dsp->client_ops->control_remove) dsp->client_ops->control_remove(ctl); list_del(&ctl->list); cs_dsp_free_ctl_blk(ctl); } } EXPORT_SYMBOL_GPL(cs_dsp_remove); /** * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory * @dsp: pointer to DSP structure * @mem_type: the type of DSP memory containing the data to be read * @mem_addr: the address of the data within the memory region * @num_words: the length of the data to read * @data: a buffer to store the fetched data * * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using * cs_dsp_remove_padding() * * Return: Zero for success, a negative number on error. */ int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, unsigned int num_words, __be32 *data) { struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type); unsigned int reg; int ret; lockdep_assert_held(&dsp->pwr_lock); if (!mem) return -EINVAL; reg = dsp->ops->region_to_reg(mem, mem_addr); ret = regmap_raw_read(dsp->regmap, reg, data, sizeof(*data) * num_words); if (ret < 0) return ret; return 0; } EXPORT_SYMBOL_GPL(cs_dsp_read_raw_data_block); /** * cs_dsp_read_data_word() - Reads a word from DSP memory * @dsp: pointer to DSP structure * @mem_type: the type of DSP memory containing the data to be read * @mem_addr: the address of the data within the memory region * @data: a buffer to store the fetched data * * Return: Zero for success, a negative number on error. */ int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data) { __be32 raw; int ret; ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw); if (ret < 0) return ret; *data = be32_to_cpu(raw) & 0x00ffffffu; return 0; } EXPORT_SYMBOL_GPL(cs_dsp_read_data_word); /** * cs_dsp_write_data_word() - Writes a word to DSP memory * @dsp: pointer to DSP structure * @mem_type: the type of DSP memory containing the data to be written * @mem_addr: the address of the data within the memory region * @data: the data to be written * * Return: Zero for success, a negative number on error. */ int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data) { struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type); __be32 val = cpu_to_be32(data & 0x00ffffffu); unsigned int reg; lockdep_assert_held(&dsp->pwr_lock); if (!mem) return -EINVAL; reg = dsp->ops->region_to_reg(mem, mem_addr); return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val)); } EXPORT_SYMBOL_GPL(cs_dsp_write_data_word); /** * cs_dsp_remove_padding() - Convert unpacked words to packed bytes * @buf: buffer containing DSP words read from DSP memory * @nwords: number of words to convert * * DSP words from the register map have pad bytes and the data bytes * are in swapped order. This swaps to the native endian order and * strips the pad bytes. */ void cs_dsp_remove_padding(u32 *buf, int nwords) { const __be32 *pack_in = (__be32 *)buf; u8 *pack_out = (u8 *)buf; int i; for (i = 0; i < nwords; i++) { u32 word = be32_to_cpu(*pack_in++); *pack_out++ = (u8)word; *pack_out++ = (u8)(word >> 8); *pack_out++ = (u8)(word >> 16); } } EXPORT_SYMBOL_GPL(cs_dsp_remove_padding); /** * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt * @dsp: pointer to DSP structure * * The firmware and DSP state will be logged for future analysis. */ void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp) { unsigned int val; struct regmap *regmap = dsp->regmap; int ret = 0; mutex_lock(&dsp->pwr_lock); ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val); if (ret) { cs_dsp_err(dsp, "Failed to read Region Lock Ctrl register: %d\n", ret); goto error; } if (val & ADSP2_WDT_TIMEOUT_STS_MASK) { cs_dsp_err(dsp, "watchdog timeout error\n"); dsp->ops->stop_watchdog(dsp); if (dsp->client_ops->watchdog_expired) dsp->client_ops->watchdog_expired(dsp); } if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) { if (val & ADSP2_ADDR_ERR_MASK) cs_dsp_err(dsp, "bus error: address error\n"); else cs_dsp_err(dsp, "bus error: region lock error\n"); ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val); if (ret) { cs_dsp_err(dsp, "Failed to read Bus Err Addr register: %d\n", ret); goto error; } cs_dsp_err(dsp, "bus error address = 0x%x\n", val & ADSP2_BUS_ERR_ADDR_MASK); ret = regmap_read(regmap, dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR, &val); if (ret) { cs_dsp_err(dsp, "Failed to read Pmem Xmem Err Addr register: %d\n", ret); goto error; } cs_dsp_err(dsp, "xmem error address = 0x%x\n", val & ADSP2_XMEM_ERR_ADDR_MASK); cs_dsp_err(dsp, "pmem error address = 0x%x\n", (val & ADSP2_PMEM_ERR_ADDR_MASK) >> ADSP2_PMEM_ERR_ADDR_SHIFT); } regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT); error: mutex_unlock(&dsp->pwr_lock); } EXPORT_SYMBOL_GPL(cs_dsp_adsp2_bus_error); /** * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt * @dsp: pointer to DSP structure * * The firmware and DSP state will be logged for future analysis. */ void cs_dsp_halo_bus_error(struct cs_dsp *dsp) { struct regmap *regmap = dsp->regmap; unsigned int fault[6]; struct reg_sequence clear[] = { { dsp->base + HALO_MPU_XM_VIO_STATUS, 0x0 }, { dsp->base + HALO_MPU_YM_VIO_STATUS, 0x0 }, { dsp->base + HALO_MPU_PM_VIO_STATUS, 0x0 }, }; int ret; mutex_lock(&dsp->pwr_lock); ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1, fault); if (ret) { cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret); goto exit_unlock; } cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n", *fault & HALO_AHBM_FLAGS_ERR_MASK, (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >> HALO_AHBM_CORE_ERR_ADDR_SHIFT); ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0, fault); if (ret) { cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret); goto exit_unlock; } cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault); ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR, fault, ARRAY_SIZE(fault)); if (ret) { cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret); goto exit_unlock; } cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]); cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]); cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]); ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear)); if (ret) cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret); exit_unlock: mutex_unlock(&dsp->pwr_lock); } EXPORT_SYMBOL_GPL(cs_dsp_halo_bus_error); /** * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry * @dsp: pointer to DSP structure * * This is logged for future analysis. */ void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp) { mutex_lock(&dsp->pwr_lock); cs_dsp_warn(dsp, "WDT Expiry Fault\n"); dsp->ops->stop_watchdog(dsp); if (dsp->client_ops->watchdog_expired) dsp->client_ops->watchdog_expired(dsp); mutex_unlock(&dsp->pwr_lock); } EXPORT_SYMBOL_GPL(cs_dsp_halo_wdt_expire); static const struct cs_dsp_ops cs_dsp_adsp1_ops = { .validate_version = cs_dsp_validate_version, .parse_sizes = cs_dsp_adsp1_parse_sizes, .region_to_reg = cs_dsp_region_to_reg, }; static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = { { .parse_sizes = cs_dsp_adsp2_parse_sizes, .validate_version = cs_dsp_validate_version, .setup_algs = cs_dsp_adsp2_setup_algs, .region_to_reg = cs_dsp_region_to_reg, .show_fw_status = cs_dsp_adsp2_show_fw_status, .enable_memory = cs_dsp_adsp2_enable_memory, .disable_memory = cs_dsp_adsp2_disable_memory, .enable_core = cs_dsp_adsp2_enable_core, .disable_core = cs_dsp_adsp2_disable_core, .start_core = cs_dsp_adsp2_start_core, .stop_core = cs_dsp_adsp2_stop_core, }, { .parse_sizes = cs_dsp_adsp2_parse_sizes, .validate_version = cs_dsp_validate_version, .setup_algs = cs_dsp_adsp2_setup_algs, .region_to_reg = cs_dsp_region_to_reg, .show_fw_status = cs_dsp_adsp2v2_show_fw_status, .enable_memory = cs_dsp_adsp2_enable_memory, .disable_memory = cs_dsp_adsp2_disable_memory, .lock_memory = cs_dsp_adsp2_lock, .enable_core = cs_dsp_adsp2v2_enable_core, .disable_core = cs_dsp_adsp2v2_disable_core, .start_core = cs_dsp_adsp2_start_core, .stop_core = cs_dsp_adsp2_stop_core, }, { .parse_sizes = cs_dsp_adsp2_parse_sizes, .validate_version = cs_dsp_validate_version, .setup_algs = cs_dsp_adsp2_setup_algs, .region_to_reg = cs_dsp_region_to_reg, .show_fw_status = cs_dsp_adsp2v2_show_fw_status, .stop_watchdog = cs_dsp_stop_watchdog, .enable_memory = cs_dsp_adsp2_enable_memory, .disable_memory = cs_dsp_adsp2_disable_memory, .lock_memory = cs_dsp_adsp2_lock, .enable_core = cs_dsp_adsp2v2_enable_core, .disable_core = cs_dsp_adsp2v2_disable_core, .start_core = cs_dsp_adsp2_start_core, .stop_core = cs_dsp_adsp2_stop_core, }, }; static const struct cs_dsp_ops cs_dsp_halo_ops = { .parse_sizes = cs_dsp_adsp2_parse_sizes, .validate_version = cs_dsp_halo_validate_version, .setup_algs = cs_dsp_halo_setup_algs, .region_to_reg = cs_dsp_halo_region_to_reg, .show_fw_status = cs_dsp_halo_show_fw_status, .stop_watchdog = cs_dsp_halo_stop_watchdog, .lock_memory = cs_dsp_halo_configure_mpu, .start_core = cs_dsp_halo_start_core, .stop_core = cs_dsp_halo_stop_core, }; /** * cs_dsp_chunk_write() - Format data to a DSP memory chunk * @ch: Pointer to the chunk structure * @nbits: Number of bits to write * @val: Value to write * * This function sequentially writes values into the format required for DSP * memory, it handles both inserting of the padding bytes and converting to * big endian. Note that data is only committed to the chunk when a whole DSP * words worth of data is available. * * Return: Zero for success, a negative number on error. */ int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val) { int nwrite, i; nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits); ch->cache <<= nwrite; ch->cache |= val >> (nbits - nwrite); ch->cachebits += nwrite; nbits -= nwrite; if (ch->cachebits == CS_DSP_DATA_WORD_BITS) { if (cs_dsp_chunk_end(ch)) return -ENOSPC; ch->cache &= 0xFFFFFF; for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE) *ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS; ch->bytes += sizeof(ch->cache); ch->cachebits = 0; } if (nbits) return cs_dsp_chunk_write(ch, nbits, val); return 0; } EXPORT_SYMBOL_GPL(cs_dsp_chunk_write); /** * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk * @ch: Pointer to the chunk structure * * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to * be written out it is possible that some data will remain in the cache, this * function will pad that data with zeros upto a whole DSP word and write out. * * Return: Zero for success, a negative number on error. */ int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch) { if (!ch->cachebits) return 0; return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0); } EXPORT_SYMBOL_GPL(cs_dsp_chunk_flush); /** * cs_dsp_chunk_read() - Parse data from a DSP memory chunk * @ch: Pointer to the chunk structure * @nbits: Number of bits to read * * This function sequentially reads values from a DSP memory formatted buffer, * it handles both removing of the padding bytes and converting from big endian. * * Return: A negative number is returned on error, otherwise the read value. */ int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits) { int nread, i; u32 result; if (!ch->cachebits) { if (cs_dsp_chunk_end(ch)) return -ENOSPC; ch->cache = 0; ch->cachebits = CS_DSP_DATA_WORD_BITS; for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE) ch->cache |= *ch->data++; ch->bytes += sizeof(ch->cache); } nread = min(ch->cachebits, nbits); nbits -= nread; result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread); ch->cache <<= nread; ch->cachebits -= nread; if (nbits) result = (result << nbits) | cs_dsp_chunk_read(ch, nbits); return result; } EXPORT_SYMBOL_GPL(cs_dsp_chunk_read); MODULE_DESCRIPTION("Cirrus Logic DSP Support"); MODULE_AUTHOR("Simon Trimmer "); MODULE_LICENSE("GPL v2");