/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _LINUX_FS_H #define _LINUX_FS_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct backing_dev_info; struct bdi_writeback; struct bio; struct io_comp_batch; struct export_operations; struct fiemap_extent_info; struct hd_geometry; struct iovec; struct kiocb; struct kobject; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct vm_area_struct; struct vfsmount; struct cred; struct swap_info_struct; struct seq_file; struct workqueue_struct; struct iov_iter; struct fscrypt_info; struct fscrypt_operations; struct fsverity_info; struct fsverity_operations; struct fs_context; struct fs_parameter_spec; struct fileattr; struct iomap_ops; extern void __init inode_init(void); extern void __init inode_init_early(void); extern void __init files_init(void); extern void __init files_maxfiles_init(void); extern unsigned long get_max_files(void); extern unsigned int sysctl_nr_open; typedef __kernel_rwf_t rwf_t; struct buffer_head; typedef int (get_block_t)(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create); typedef int (dio_iodone_t)(struct kiocb *iocb, loff_t offset, ssize_t bytes, void *private); #define MAY_EXEC 0x00000001 #define MAY_WRITE 0x00000002 #define MAY_READ 0x00000004 #define MAY_APPEND 0x00000008 #define MAY_ACCESS 0x00000010 #define MAY_OPEN 0x00000020 #define MAY_CHDIR 0x00000040 /* called from RCU mode, don't block */ #define MAY_NOT_BLOCK 0x00000080 /* * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond * to O_WRONLY and O_RDWR via the strange trick in do_dentry_open() */ /* file is open for reading */ #define FMODE_READ ((__force fmode_t)0x1) /* file is open for writing */ #define FMODE_WRITE ((__force fmode_t)0x2) /* file is seekable */ #define FMODE_LSEEK ((__force fmode_t)0x4) /* file can be accessed using pread */ #define FMODE_PREAD ((__force fmode_t)0x8) /* file can be accessed using pwrite */ #define FMODE_PWRITE ((__force fmode_t)0x10) /* File is opened for execution with sys_execve / sys_uselib */ #define FMODE_EXEC ((__force fmode_t)0x20) /* File is opened with O_NDELAY (only set for block devices) */ #define FMODE_NDELAY ((__force fmode_t)0x40) /* File is opened with O_EXCL (only set for block devices) */ #define FMODE_EXCL ((__force fmode_t)0x80) /* File is opened using open(.., 3, ..) and is writeable only for ioctls (specialy hack for floppy.c) */ #define FMODE_WRITE_IOCTL ((__force fmode_t)0x100) /* 32bit hashes as llseek() offset (for directories) */ #define FMODE_32BITHASH ((__force fmode_t)0x200) /* 64bit hashes as llseek() offset (for directories) */ #define FMODE_64BITHASH ((__force fmode_t)0x400) /* * Don't update ctime and mtime. * * Currently a special hack for the XFS open_by_handle ioctl, but we'll * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. */ #define FMODE_NOCMTIME ((__force fmode_t)0x800) /* Expect random access pattern */ #define FMODE_RANDOM ((__force fmode_t)0x1000) /* File is huge (eg. /dev/mem): treat loff_t as unsigned */ #define FMODE_UNSIGNED_OFFSET ((__force fmode_t)0x2000) /* File is opened with O_PATH; almost nothing can be done with it */ #define FMODE_PATH ((__force fmode_t)0x4000) /* File needs atomic accesses to f_pos */ #define FMODE_ATOMIC_POS ((__force fmode_t)0x8000) /* Write access to underlying fs */ #define FMODE_WRITER ((__force fmode_t)0x10000) /* Has read method(s) */ #define FMODE_CAN_READ ((__force fmode_t)0x20000) /* Has write method(s) */ #define FMODE_CAN_WRITE ((__force fmode_t)0x40000) #define FMODE_OPENED ((__force fmode_t)0x80000) #define FMODE_CREATED ((__force fmode_t)0x100000) /* File is stream-like */ #define FMODE_STREAM ((__force fmode_t)0x200000) /* File supports DIRECT IO */ #define FMODE_CAN_ODIRECT ((__force fmode_t)0x400000) /* File was opened by fanotify and shouldn't generate fanotify events */ #define FMODE_NONOTIFY ((__force fmode_t)0x4000000) /* File is capable of returning -EAGAIN if I/O will block */ #define FMODE_NOWAIT ((__force fmode_t)0x8000000) /* File represents mount that needs unmounting */ #define FMODE_NEED_UNMOUNT ((__force fmode_t)0x10000000) /* File does not contribute to nr_files count */ #define FMODE_NOACCOUNT ((__force fmode_t)0x20000000) /* File supports async buffered reads */ #define FMODE_BUF_RASYNC ((__force fmode_t)0x40000000) /* File supports async nowait buffered writes */ #define FMODE_BUF_WASYNC ((__force fmode_t)0x80000000) /* * Attribute flags. These should be or-ed together to figure out what * has been changed! */ #define ATTR_MODE (1 << 0) #define ATTR_UID (1 << 1) #define ATTR_GID (1 << 2) #define ATTR_SIZE (1 << 3) #define ATTR_ATIME (1 << 4) #define ATTR_MTIME (1 << 5) #define ATTR_CTIME (1 << 6) #define ATTR_ATIME_SET (1 << 7) #define ATTR_MTIME_SET (1 << 8) #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ #define ATTR_KILL_SUID (1 << 11) #define ATTR_KILL_SGID (1 << 12) #define ATTR_FILE (1 << 13) #define ATTR_KILL_PRIV (1 << 14) #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ #define ATTR_TIMES_SET (1 << 16) #define ATTR_TOUCH (1 << 17) /* * Whiteout is represented by a char device. The following constants define the * mode and device number to use. */ #define WHITEOUT_MODE 0 #define WHITEOUT_DEV 0 /* * This is the Inode Attributes structure, used for notify_change(). It * uses the above definitions as flags, to know which values have changed. * Also, in this manner, a Filesystem can look at only the values it cares * about. Basically, these are the attributes that the VFS layer can * request to change from the FS layer. * * Derek Atkins 94-10-20 */ struct iattr { unsigned int ia_valid; umode_t ia_mode; /* * The two anonymous unions wrap structures with the same member. * * Filesystems raising FS_ALLOW_IDMAP need to use ia_vfs{g,u}id which * are a dedicated type requiring the filesystem to use the dedicated * helpers. Other filesystem can continue to use ia_{g,u}id until they * have been ported. * * They always contain the same value. In other words FS_ALLOW_IDMAP * pass down the same value on idmapped mounts as they would on regular * mounts. */ union { kuid_t ia_uid; vfsuid_t ia_vfsuid; }; union { kgid_t ia_gid; vfsgid_t ia_vfsgid; }; loff_t ia_size; struct timespec64 ia_atime; struct timespec64 ia_mtime; struct timespec64 ia_ctime; /* * Not an attribute, but an auxiliary info for filesystems wanting to * implement an ftruncate() like method. NOTE: filesystem should * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). */ struct file *ia_file; }; /* * Includes for diskquotas. */ #include /* * Maximum number of layers of fs stack. Needs to be limited to * prevent kernel stack overflow */ #define FILESYSTEM_MAX_STACK_DEPTH 2 /** * enum positive_aop_returns - aop return codes with specific semantics * * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has * completed, that the page is still locked, and * should be considered active. The VM uses this hint * to return the page to the active list -- it won't * be a candidate for writeback again in the near * future. Other callers must be careful to unlock * the page if they get this return. Returned by * writepage(); * * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has * unlocked it and the page might have been truncated. * The caller should back up to acquiring a new page and * trying again. The aop will be taking reasonable * precautions not to livelock. If the caller held a page * reference, it should drop it before retrying. Returned * by read_folio(). * * address_space_operation functions return these large constants to indicate * special semantics to the caller. These are much larger than the bytes in a * page to allow for functions that return the number of bytes operated on in a * given page. */ enum positive_aop_returns { AOP_WRITEPAGE_ACTIVATE = 0x80000, AOP_TRUNCATED_PAGE = 0x80001, }; /* * oh the beauties of C type declarations. */ struct page; struct address_space; struct writeback_control; struct readahead_control; /* * Write life time hint values. * Stored in struct inode as u8. */ enum rw_hint { WRITE_LIFE_NOT_SET = 0, WRITE_LIFE_NONE = RWH_WRITE_LIFE_NONE, WRITE_LIFE_SHORT = RWH_WRITE_LIFE_SHORT, WRITE_LIFE_MEDIUM = RWH_WRITE_LIFE_MEDIUM, WRITE_LIFE_LONG = RWH_WRITE_LIFE_LONG, WRITE_LIFE_EXTREME = RWH_WRITE_LIFE_EXTREME, }; /* Match RWF_* bits to IOCB bits */ #define IOCB_HIPRI (__force int) RWF_HIPRI #define IOCB_DSYNC (__force int) RWF_DSYNC #define IOCB_SYNC (__force int) RWF_SYNC #define IOCB_NOWAIT (__force int) RWF_NOWAIT #define IOCB_APPEND (__force int) RWF_APPEND /* non-RWF related bits - start at 16 */ #define IOCB_EVENTFD (1 << 16) #define IOCB_DIRECT (1 << 17) #define IOCB_WRITE (1 << 18) /* iocb->ki_waitq is valid */ #define IOCB_WAITQ (1 << 19) #define IOCB_NOIO (1 << 20) /* can use bio alloc cache */ #define IOCB_ALLOC_CACHE (1 << 21) struct kiocb { struct file *ki_filp; loff_t ki_pos; void (*ki_complete)(struct kiocb *iocb, long ret); void *private; int ki_flags; u16 ki_ioprio; /* See linux/ioprio.h */ struct wait_page_queue *ki_waitq; /* for async buffered IO */ }; static inline bool is_sync_kiocb(struct kiocb *kiocb) { return kiocb->ki_complete == NULL; } struct address_space_operations { int (*writepage)(struct page *page, struct writeback_control *wbc); int (*read_folio)(struct file *, struct folio *); /* Write back some dirty pages from this mapping. */ int (*writepages)(struct address_space *, struct writeback_control *); /* Mark a folio dirty. Return true if this dirtied it */ bool (*dirty_folio)(struct address_space *, struct folio *); void (*readahead)(struct readahead_control *); int (*write_begin)(struct file *, struct address_space *mapping, loff_t pos, unsigned len, struct page **pagep, void **fsdata); int (*write_end)(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata); /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ sector_t (*bmap)(struct address_space *, sector_t); void (*invalidate_folio) (struct folio *, size_t offset, size_t len); bool (*release_folio)(struct folio *, gfp_t); void (*free_folio)(struct folio *folio); ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); /* * migrate the contents of a folio to the specified target. If * migrate_mode is MIGRATE_ASYNC, it must not block. */ int (*migrate_folio)(struct address_space *, struct folio *dst, struct folio *src, enum migrate_mode); int (*launder_folio)(struct folio *); bool (*is_partially_uptodate) (struct folio *, size_t from, size_t count); void (*is_dirty_writeback) (struct folio *, bool *dirty, bool *wb); int (*error_remove_page)(struct address_space *, struct page *); /* swapfile support */ int (*swap_activate)(struct swap_info_struct *sis, struct file *file, sector_t *span); void (*swap_deactivate)(struct file *file); int (*swap_rw)(struct kiocb *iocb, struct iov_iter *iter); }; extern const struct address_space_operations empty_aops; /** * struct address_space - Contents of a cacheable, mappable object. * @host: Owner, either the inode or the block_device. * @i_pages: Cached pages. * @invalidate_lock: Guards coherency between page cache contents and * file offset->disk block mappings in the filesystem during invalidates. * It is also used to block modification of page cache contents through * memory mappings. * @gfp_mask: Memory allocation flags to use for allocating pages. * @i_mmap_writable: Number of VM_SHARED mappings. * @nr_thps: Number of THPs in the pagecache (non-shmem only). * @i_mmap: Tree of private and shared mappings. * @i_mmap_rwsem: Protects @i_mmap and @i_mmap_writable. * @nrpages: Number of page entries, protected by the i_pages lock. * @writeback_index: Writeback starts here. * @a_ops: Methods. * @flags: Error bits and flags (AS_*). * @wb_err: The most recent error which has occurred. * @private_lock: For use by the owner of the address_space. * @private_list: For use by the owner of the address_space. * @private_data: For use by the owner of the address_space. */ struct address_space { struct inode *host; struct xarray i_pages; struct rw_semaphore invalidate_lock; gfp_t gfp_mask; atomic_t i_mmap_writable; #ifdef CONFIG_READ_ONLY_THP_FOR_FS /* number of thp, only for non-shmem files */ atomic_t nr_thps; #endif struct rb_root_cached i_mmap; struct rw_semaphore i_mmap_rwsem; unsigned long nrpages; pgoff_t writeback_index; const struct address_space_operations *a_ops; unsigned long flags; errseq_t wb_err; spinlock_t private_lock; struct list_head private_list; void *private_data; } __attribute__((aligned(sizeof(long)))) __randomize_layout; /* * On most architectures that alignment is already the case; but * must be enforced here for CRIS, to let the least significant bit * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. */ /* XArray tags, for tagging dirty and writeback pages in the pagecache. */ #define PAGECACHE_TAG_DIRTY XA_MARK_0 #define PAGECACHE_TAG_WRITEBACK XA_MARK_1 #define PAGECACHE_TAG_TOWRITE XA_MARK_2 /* * Returns true if any of the pages in the mapping are marked with the tag. */ static inline bool mapping_tagged(struct address_space *mapping, xa_mark_t tag) { return xa_marked(&mapping->i_pages, tag); } static inline void i_mmap_lock_write(struct address_space *mapping) { down_write(&mapping->i_mmap_rwsem); } static inline int i_mmap_trylock_write(struct address_space *mapping) { return down_write_trylock(&mapping->i_mmap_rwsem); } static inline void i_mmap_unlock_write(struct address_space *mapping) { up_write(&mapping->i_mmap_rwsem); } static inline int i_mmap_trylock_read(struct address_space *mapping) { return down_read_trylock(&mapping->i_mmap_rwsem); } static inline void i_mmap_lock_read(struct address_space *mapping) { down_read(&mapping->i_mmap_rwsem); } static inline void i_mmap_unlock_read(struct address_space *mapping) { up_read(&mapping->i_mmap_rwsem); } static inline void i_mmap_assert_locked(struct address_space *mapping) { lockdep_assert_held(&mapping->i_mmap_rwsem); } static inline void i_mmap_assert_write_locked(struct address_space *mapping) { lockdep_assert_held_write(&mapping->i_mmap_rwsem); } /* * Might pages of this file be mapped into userspace? */ static inline int mapping_mapped(struct address_space *mapping) { return !RB_EMPTY_ROOT(&mapping->i_mmap.rb_root); } /* * Might pages of this file have been modified in userspace? * Note that i_mmap_writable counts all VM_SHARED vmas: do_mmap * marks vma as VM_SHARED if it is shared, and the file was opened for * writing i.e. vma may be mprotected writable even if now readonly. * * If i_mmap_writable is negative, no new writable mappings are allowed. You * can only deny writable mappings, if none exists right now. */ static inline int mapping_writably_mapped(struct address_space *mapping) { return atomic_read(&mapping->i_mmap_writable) > 0; } static inline int mapping_map_writable(struct address_space *mapping) { return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 0 : -EPERM; } static inline void mapping_unmap_writable(struct address_space *mapping) { atomic_dec(&mapping->i_mmap_writable); } static inline int mapping_deny_writable(struct address_space *mapping) { return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 0 : -EBUSY; } static inline void mapping_allow_writable(struct address_space *mapping) { atomic_inc(&mapping->i_mmap_writable); } /* * Use sequence counter to get consistent i_size on 32-bit processors. */ #if BITS_PER_LONG==32 && defined(CONFIG_SMP) #include #define __NEED_I_SIZE_ORDERED #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) #else #define i_size_ordered_init(inode) do { } while (0) #endif struct posix_acl; #define ACL_NOT_CACHED ((void *)(-1)) /* * ACL_DONT_CACHE is for stacked filesystems, that rely on underlying fs to * cache the ACL. This also means that ->get_acl() can be called in RCU mode * with the LOOKUP_RCU flag. */ #define ACL_DONT_CACHE ((void *)(-3)) static inline struct posix_acl * uncached_acl_sentinel(struct task_struct *task) { return (void *)task + 1; } static inline bool is_uncached_acl(struct posix_acl *acl) { return (long)acl & 1; } #define IOP_FASTPERM 0x0001 #define IOP_LOOKUP 0x0002 #define IOP_NOFOLLOW 0x0004 #define IOP_XATTR 0x0008 #define IOP_DEFAULT_READLINK 0x0010 struct fsnotify_mark_connector; /* * Keep mostly read-only and often accessed (especially for * the RCU path lookup and 'stat' data) fields at the beginning * of the 'struct inode' */ struct inode { umode_t i_mode; unsigned short i_opflags; kuid_t i_uid; kgid_t i_gid; unsigned int i_flags; #ifdef CONFIG_FS_POSIX_ACL struct posix_acl *i_acl; struct posix_acl *i_default_acl; #endif const struct inode_operations *i_op; struct super_block *i_sb; struct address_space *i_mapping; #ifdef CONFIG_SECURITY void *i_security; #endif /* Stat data, not accessed from path walking */ unsigned long i_ino; /* * Filesystems may only read i_nlink directly. They shall use the * following functions for modification: * * (set|clear|inc|drop)_nlink * inode_(inc|dec)_link_count */ union { const unsigned int i_nlink; unsigned int __i_nlink; }; dev_t i_rdev; loff_t i_size; struct timespec64 i_atime; struct timespec64 i_mtime; struct timespec64 i_ctime; spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ unsigned short i_bytes; u8 i_blkbits; u8 i_write_hint; blkcnt_t i_blocks; #ifdef __NEED_I_SIZE_ORDERED seqcount_t i_size_seqcount; #endif /* Misc */ unsigned long i_state; struct rw_semaphore i_rwsem; unsigned long dirtied_when; /* jiffies of first dirtying */ unsigned long dirtied_time_when; struct hlist_node i_hash; struct list_head i_io_list; /* backing dev IO list */ #ifdef CONFIG_CGROUP_WRITEBACK struct bdi_writeback *i_wb; /* the associated cgroup wb */ /* foreign inode detection, see wbc_detach_inode() */ int i_wb_frn_winner; u16 i_wb_frn_avg_time; u16 i_wb_frn_history; #endif struct list_head i_lru; /* inode LRU list */ struct list_head i_sb_list; struct list_head i_wb_list; /* backing dev writeback list */ union { struct hlist_head i_dentry; struct rcu_head i_rcu; }; atomic64_t i_version; atomic64_t i_sequence; /* see futex */ atomic_t i_count; atomic_t i_dio_count; atomic_t i_writecount; #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) atomic_t i_readcount; /* struct files open RO */ #endif union { const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ void (*free_inode)(struct inode *); }; struct file_lock_context *i_flctx; struct address_space i_data; struct list_head i_devices; union { struct pipe_inode_info *i_pipe; struct cdev *i_cdev; char *i_link; unsigned i_dir_seq; }; __u32 i_generation; #ifdef CONFIG_FSNOTIFY __u32 i_fsnotify_mask; /* all events this inode cares about */ struct fsnotify_mark_connector __rcu *i_fsnotify_marks; #endif #ifdef CONFIG_FS_ENCRYPTION struct fscrypt_info *i_crypt_info; #endif #ifdef CONFIG_FS_VERITY struct fsverity_info *i_verity_info; #endif void *i_private; /* fs or device private pointer */ } __randomize_layout; struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode); static inline unsigned int i_blocksize(const struct inode *node) { return (1 << node->i_blkbits); } static inline int inode_unhashed(struct inode *inode) { return hlist_unhashed(&inode->i_hash); } /* * __mark_inode_dirty expects inodes to be hashed. Since we don't * want special inodes in the fileset inode space, we make them * appear hashed, but do not put on any lists. hlist_del() * will work fine and require no locking. */ static inline void inode_fake_hash(struct inode *inode) { hlist_add_fake(&inode->i_hash); } /* * inode->i_mutex nesting subclasses for the lock validator: * * 0: the object of the current VFS operation * 1: parent * 2: child/target * 3: xattr * 4: second non-directory * 5: second parent (when locking independent directories in rename) * * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two * non-directories at once. * * The locking order between these classes is * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory */ enum inode_i_mutex_lock_class { I_MUTEX_NORMAL, I_MUTEX_PARENT, I_MUTEX_CHILD, I_MUTEX_XATTR, I_MUTEX_NONDIR2, I_MUTEX_PARENT2, }; static inline void inode_lock(struct inode *inode) { down_write(&inode->i_rwsem); } static inline void inode_unlock(struct inode *inode) { up_write(&inode->i_rwsem); } static inline void inode_lock_shared(struct inode *inode) { down_read(&inode->i_rwsem); } static inline void inode_unlock_shared(struct inode *inode) { up_read(&inode->i_rwsem); } static inline int inode_trylock(struct inode *inode) { return down_write_trylock(&inode->i_rwsem); } static inline int inode_trylock_shared(struct inode *inode) { return down_read_trylock(&inode->i_rwsem); } static inline int inode_is_locked(struct inode *inode) { return rwsem_is_locked(&inode->i_rwsem); } static inline void inode_lock_nested(struct inode *inode, unsigned subclass) { down_write_nested(&inode->i_rwsem, subclass); } static inline void inode_lock_shared_nested(struct inode *inode, unsigned subclass) { down_read_nested(&inode->i_rwsem, subclass); } static inline void filemap_invalidate_lock(struct address_space *mapping) { down_write(&mapping->invalidate_lock); } static inline void filemap_invalidate_unlock(struct address_space *mapping) { up_write(&mapping->invalidate_lock); } static inline void filemap_invalidate_lock_shared(struct address_space *mapping) { down_read(&mapping->invalidate_lock); } static inline int filemap_invalidate_trylock_shared( struct address_space *mapping) { return down_read_trylock(&mapping->invalidate_lock); } static inline void filemap_invalidate_unlock_shared( struct address_space *mapping) { up_read(&mapping->invalidate_lock); } void lock_two_nondirectories(struct inode *, struct inode*); void unlock_two_nondirectories(struct inode *, struct inode*); void filemap_invalidate_lock_two(struct address_space *mapping1, struct address_space *mapping2); void filemap_invalidate_unlock_two(struct address_space *mapping1, struct address_space *mapping2); /* * NOTE: in a 32bit arch with a preemptable kernel and * an UP compile the i_size_read/write must be atomic * with respect to the local cpu (unlike with preempt disabled), * but they don't need to be atomic with respect to other cpus like in * true SMP (so they need either to either locally disable irq around * the read or for example on x86 they can be still implemented as a * cmpxchg8b without the need of the lock prefix). For SMP compiles * and 64bit archs it makes no difference if preempt is enabled or not. */ static inline loff_t i_size_read(const struct inode *inode) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) loff_t i_size; unsigned int seq; do { seq = read_seqcount_begin(&inode->i_size_seqcount); i_size = inode->i_size; } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); return i_size; #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) loff_t i_size; preempt_disable(); i_size = inode->i_size; preempt_enable(); return i_size; #else return inode->i_size; #endif } /* * NOTE: unlike i_size_read(), i_size_write() does need locking around it * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount * can be lost, resulting in subsequent i_size_read() calls spinning forever. */ static inline void i_size_write(struct inode *inode, loff_t i_size) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) preempt_disable(); write_seqcount_begin(&inode->i_size_seqcount); inode->i_size = i_size; write_seqcount_end(&inode->i_size_seqcount); preempt_enable(); #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPTION) preempt_disable(); inode->i_size = i_size; preempt_enable(); #else inode->i_size = i_size; #endif } static inline unsigned iminor(const struct inode *inode) { return MINOR(inode->i_rdev); } static inline unsigned imajor(const struct inode *inode) { return MAJOR(inode->i_rdev); } struct fown_struct { rwlock_t lock; /* protects pid, uid, euid fields */ struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ kuid_t uid, euid; /* uid/euid of process setting the owner */ int signum; /* posix.1b rt signal to be delivered on IO */ }; /** * struct file_ra_state - Track a file's readahead state. * @start: Where the most recent readahead started. * @size: Number of pages read in the most recent readahead. * @async_size: Numer of pages that were/are not needed immediately * and so were/are genuinely "ahead". Start next readahead when * the first of these pages is accessed. * @ra_pages: Maximum size of a readahead request, copied from the bdi. * @mmap_miss: How many mmap accesses missed in the page cache. * @prev_pos: The last byte in the most recent read request. * * When this structure is passed to ->readahead(), the "most recent" * readahead means the current readahead. */ struct file_ra_state { pgoff_t start; unsigned int size; unsigned int async_size; unsigned int ra_pages; unsigned int mmap_miss; loff_t prev_pos; }; /* * Check if @index falls in the readahead windows. */ static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) { return (index >= ra->start && index < ra->start + ra->size); } struct file { union { struct llist_node f_llist; struct rcu_head f_rcuhead; unsigned int f_iocb_flags; }; struct path f_path; struct inode *f_inode; /* cached value */ const struct file_operations *f_op; /* * Protects f_ep, f_flags. * Must not be taken from IRQ context. */ spinlock_t f_lock; atomic_long_t f_count; unsigned int f_flags; fmode_t f_mode; struct mutex f_pos_lock; loff_t f_pos; struct fown_struct f_owner; const struct cred *f_cred; struct file_ra_state f_ra; u64 f_version; #ifdef CONFIG_SECURITY void *f_security; #endif /* needed for tty driver, and maybe others */ void *private_data; #ifdef CONFIG_EPOLL /* Used by fs/eventpoll.c to link all the hooks to this file */ struct hlist_head *f_ep; #endif /* #ifdef CONFIG_EPOLL */ struct address_space *f_mapping; errseq_t f_wb_err; errseq_t f_sb_err; /* for syncfs */ } __randomize_layout __attribute__((aligned(4))); /* lest something weird decides that 2 is OK */ struct file_handle { __u32 handle_bytes; int handle_type; /* file identifier */ unsigned char f_handle[]; }; static inline struct file *get_file(struct file *f) { atomic_long_inc(&f->f_count); return f; } #define get_file_rcu(x) atomic_long_inc_not_zero(&(x)->f_count) #define file_count(x) atomic_long_read(&(x)->f_count) #define MAX_NON_LFS ((1UL<<31) - 1) /* Page cache limit. The filesystems should put that into their s_maxbytes limits, otherwise bad things can happen in VM. */ #if BITS_PER_LONG==32 #define MAX_LFS_FILESIZE ((loff_t)ULONG_MAX << PAGE_SHIFT) #elif BITS_PER_LONG==64 #define MAX_LFS_FILESIZE ((loff_t)LLONG_MAX) #endif #define FL_POSIX 1 #define FL_FLOCK 2 #define FL_DELEG 4 /* NFSv4 delegation */ #define FL_ACCESS 8 /* not trying to lock, just looking */ #define FL_EXISTS 16 /* when unlocking, test for existence */ #define FL_LEASE 32 /* lease held on this file */ #define FL_CLOSE 64 /* unlock on close */ #define FL_SLEEP 128 /* A blocking lock */ #define FL_DOWNGRADE_PENDING 256 /* Lease is being downgraded */ #define FL_UNLOCK_PENDING 512 /* Lease is being broken */ #define FL_OFDLCK 1024 /* lock is "owned" by struct file */ #define FL_LAYOUT 2048 /* outstanding pNFS layout */ #define FL_RECLAIM 4096 /* reclaiming from a reboot server */ #define FL_CLOSE_POSIX (FL_POSIX | FL_CLOSE) /* * Special return value from posix_lock_file() and vfs_lock_file() for * asynchronous locking. */ #define FILE_LOCK_DEFERRED 1 /* legacy typedef, should eventually be removed */ typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock *, struct file_lock *); void (*fl_release_private)(struct file_lock *); }; struct lock_manager_operations { void *lm_mod_owner; fl_owner_t (*lm_get_owner)(fl_owner_t); void (*lm_put_owner)(fl_owner_t); void (*lm_notify)(struct file_lock *); /* unblock callback */ int (*lm_grant)(struct file_lock *, int); bool (*lm_break)(struct file_lock *); int (*lm_change)(struct file_lock *, int, struct list_head *); void (*lm_setup)(struct file_lock *, void **); bool (*lm_breaker_owns_lease)(struct file_lock *); bool (*lm_lock_expirable)(struct file_lock *cfl); void (*lm_expire_lock)(void); }; struct lock_manager { struct list_head list; /* * NFSv4 and up also want opens blocked during the grace period; * NLM doesn't care: */ bool block_opens; }; struct net; void locks_start_grace(struct net *, struct lock_manager *); void locks_end_grace(struct lock_manager *); bool locks_in_grace(struct net *); bool opens_in_grace(struct net *); /* that will die - we need it for nfs_lock_info */ #include /* * struct file_lock represents a generic "file lock". It's used to represent * POSIX byte range locks, BSD (flock) locks, and leases. It's important to * note that the same struct is used to represent both a request for a lock and * the lock itself, but the same object is never used for both. * * FIXME: should we create a separate "struct lock_request" to help distinguish * these two uses? * * The varous i_flctx lists are ordered by: * * 1) lock owner * 2) lock range start * 3) lock range end * * Obviously, the last two criteria only matter for POSIX locks. */ struct file_lock { struct file_lock *fl_blocker; /* The lock, that is blocking us */ struct list_head fl_list; /* link into file_lock_context */ struct hlist_node fl_link; /* node in global lists */ struct list_head fl_blocked_requests; /* list of requests with * ->fl_blocker pointing here */ struct list_head fl_blocked_member; /* node in * ->fl_blocker->fl_blocked_requests */ fl_owner_t fl_owner; unsigned int fl_flags; unsigned char fl_type; unsigned int fl_pid; int fl_link_cpu; /* what cpu's list is this on? */ wait_queue_head_t fl_wait; struct file *fl_file; loff_t fl_start; loff_t fl_end; struct fasync_struct * fl_fasync; /* for lease break notifications */ /* for lease breaks: */ unsigned long fl_break_time; unsigned long fl_downgrade_time; const struct file_lock_operations *fl_ops; /* Callbacks for filesystems */ const struct lock_manager_operations *fl_lmops; /* Callbacks for lockmanagers */ union { struct nfs_lock_info nfs_fl; struct nfs4_lock_info nfs4_fl; struct { struct list_head link; /* link in AFS vnode's pending_locks list */ int state; /* state of grant or error if -ve */ unsigned int debug_id; } afs; } fl_u; } __randomize_layout; struct file_lock_context { spinlock_t flc_lock; struct list_head flc_flock; struct list_head flc_posix; struct list_head flc_lease; }; /* The following constant reflects the upper bound of the file/locking space */ #ifndef OFFSET_MAX #define INT_LIMIT(x) (~((x)1 << (sizeof(x)*8 - 1))) #define OFFSET_MAX INT_LIMIT(loff_t) #define OFFT_OFFSET_MAX INT_LIMIT(off_t) #endif extern void send_sigio(struct fown_struct *fown, int fd, int band); #define locks_inode(f) file_inode(f) #ifdef CONFIG_FILE_LOCKING extern int fcntl_getlk(struct file *, unsigned int, struct flock *); extern int fcntl_setlk(unsigned int, struct file *, unsigned int, struct flock *); #if BITS_PER_LONG == 32 extern int fcntl_getlk64(struct file *, unsigned int, struct flock64 *); extern int fcntl_setlk64(unsigned int, struct file *, unsigned int, struct flock64 *); #endif extern int fcntl_setlease(unsigned int fd, struct file *filp, long arg); extern int fcntl_getlease(struct file *filp); /* fs/locks.c */ void locks_free_lock_context(struct inode *inode); void locks_free_lock(struct file_lock *fl); extern void locks_init_lock(struct file_lock *); extern struct file_lock * locks_alloc_lock(void); extern void locks_copy_lock(struct file_lock *, struct file_lock *); extern void locks_copy_conflock(struct file_lock *, struct file_lock *); extern void locks_remove_posix(struct file *, fl_owner_t); extern void locks_remove_file(struct file *); extern void locks_release_private(struct file_lock *); extern void posix_test_lock(struct file *, struct file_lock *); extern int posix_lock_file(struct file *, struct file_lock *, struct file_lock *); extern int locks_delete_block(struct file_lock *); extern int vfs_test_lock(struct file *, struct file_lock *); extern int vfs_lock_file(struct file *, unsigned int, struct file_lock *, struct file_lock *); extern int vfs_cancel_lock(struct file *filp, struct file_lock *fl); bool vfs_inode_has_locks(struct inode *inode); extern int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl); extern int __break_lease(struct inode *inode, unsigned int flags, unsigned int type); extern void lease_get_mtime(struct inode *, struct timespec64 *time); extern int generic_setlease(struct file *, long, struct file_lock **, void **priv); extern int vfs_setlease(struct file *, long, struct file_lock **, void **); extern int lease_modify(struct file_lock *, int, struct list_head *); struct notifier_block; extern int lease_register_notifier(struct notifier_block *); extern void lease_unregister_notifier(struct notifier_block *); struct files_struct; extern void show_fd_locks(struct seq_file *f, struct file *filp, struct files_struct *files); extern bool locks_owner_has_blockers(struct file_lock_context *flctx, fl_owner_t owner); #else /* !CONFIG_FILE_LOCKING */ static inline int fcntl_getlk(struct file *file, unsigned int cmd, struct flock __user *user) { return -EINVAL; } static inline int fcntl_setlk(unsigned int fd, struct file *file, unsigned int cmd, struct flock __user *user) { return -EACCES; } #if BITS_PER_LONG == 32 static inline int fcntl_getlk64(struct file *file, unsigned int cmd, struct flock64 *user) { return -EINVAL; } static inline int fcntl_setlk64(unsigned int fd, struct file *file, unsigned int cmd, struct flock64 *user) { return -EACCES; } #endif static inline int fcntl_setlease(unsigned int fd, struct file *filp, long arg) { return -EINVAL; } static inline int fcntl_getlease(struct file *filp) { return F_UNLCK; } static inline void locks_free_lock_context(struct inode *inode) { } static inline void locks_init_lock(struct file_lock *fl) { return; } static inline void locks_copy_conflock(struct file_lock *new, struct file_lock *fl) { return; } static inline void locks_copy_lock(struct file_lock *new, struct file_lock *fl) { return; } static inline void locks_remove_posix(struct file *filp, fl_owner_t owner) { return; } static inline void locks_remove_file(struct file *filp) { return; } static inline void posix_test_lock(struct file *filp, struct file_lock *fl) { return; } static inline int posix_lock_file(struct file *filp, struct file_lock *fl, struct file_lock *conflock) { return -ENOLCK; } static inline int locks_delete_block(struct file_lock *waiter) { return -ENOENT; } static inline int vfs_test_lock(struct file *filp, struct file_lock *fl) { return 0; } static inline int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) { return -ENOLCK; } static inline int vfs_cancel_lock(struct file *filp, struct file_lock *fl) { return 0; } static inline bool vfs_inode_has_locks(struct inode *inode) { return false; } static inline int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl) { return -ENOLCK; } static inline int __break_lease(struct inode *inode, unsigned int mode, unsigned int type) { return 0; } static inline void lease_get_mtime(struct inode *inode, struct timespec64 *time) { return; } static inline int generic_setlease(struct file *filp, long arg, struct file_lock **flp, void **priv) { return -EINVAL; } static inline int vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv) { return -EINVAL; } static inline int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose) { return -EINVAL; } struct files_struct; static inline void show_fd_locks(struct seq_file *f, struct file *filp, struct files_struct *files) {} static inline bool locks_owner_has_blockers(struct file_lock_context *flctx, fl_owner_t owner) { return false; } #endif /* !CONFIG_FILE_LOCKING */ static inline struct inode *file_inode(const struct file *f) { return f->f_inode; } static inline struct dentry *file_dentry(const struct file *file) { return d_real(file->f_path.dentry, file_inode(file)); } static inline int locks_lock_file_wait(struct file *filp, struct file_lock *fl) { return locks_lock_inode_wait(locks_inode(filp), fl); } struct fasync_struct { rwlock_t fa_lock; int magic; int fa_fd; struct fasync_struct *fa_next; /* singly linked list */ struct file *fa_file; struct rcu_head fa_rcu; }; #define FASYNC_MAGIC 0x4601 /* SMP safe fasync helpers: */ extern int fasync_helper(int, struct file *, int, struct fasync_struct **); extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); extern int fasync_remove_entry(struct file *, struct fasync_struct **); extern struct fasync_struct *fasync_alloc(void); extern void fasync_free(struct fasync_struct *); /* can be called from interrupts */ extern void kill_fasync(struct fasync_struct **, int, int); extern void __f_setown(struct file *filp, struct pid *, enum pid_type, int force); extern int f_setown(struct file *filp, unsigned long arg, int force); extern void f_delown(struct file *filp); extern pid_t f_getown(struct file *filp); extern int send_sigurg(struct fown_struct *fown); /* * sb->s_flags. Note that these mirror the equivalent MS_* flags where * represented in both. */ #define SB_RDONLY BIT(0) /* Mount read-only */ #define SB_NOSUID BIT(1) /* Ignore suid and sgid bits */ #define SB_NODEV BIT(2) /* Disallow access to device special files */ #define SB_NOEXEC BIT(3) /* Disallow program execution */ #define SB_SYNCHRONOUS BIT(4) /* Writes are synced at once */ #define SB_MANDLOCK BIT(6) /* Allow mandatory locks on an FS */ #define SB_DIRSYNC BIT(7) /* Directory modifications are synchronous */ #define SB_NOATIME BIT(10) /* Do not update access times. */ #define SB_NODIRATIME BIT(11) /* Do not update directory access times */ #define SB_SILENT BIT(15) #define SB_POSIXACL BIT(16) /* VFS does not apply the umask */ #define SB_INLINECRYPT BIT(17) /* Use blk-crypto for encrypted files */ #define SB_KERNMOUNT BIT(22) /* this is a kern_mount call */ #define SB_I_VERSION BIT(23) /* Update inode I_version field */ #define SB_LAZYTIME BIT(25) /* Update the on-disk [acm]times lazily */ /* These sb flags are internal to the kernel */ #define SB_SUBMOUNT BIT(26) #define SB_FORCE BIT(27) #define SB_NOSEC BIT(28) #define SB_BORN BIT(29) #define SB_ACTIVE BIT(30) #define SB_NOUSER BIT(31) /* These flags relate to encoding and casefolding */ #define SB_ENC_STRICT_MODE_FL (1 << 0) #define sb_has_strict_encoding(sb) \ (sb->s_encoding_flags & SB_ENC_STRICT_MODE_FL) /* * Umount options */ #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ #define MNT_DETACH 0x00000002 /* Just detach from the tree */ #define MNT_EXPIRE 0x00000004 /* Mark for expiry */ #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ /* sb->s_iflags */ #define SB_I_CGROUPWB 0x00000001 /* cgroup-aware writeback enabled */ #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ #define SB_I_STABLE_WRITES 0x00000008 /* don't modify blks until WB is done */ /* sb->s_iflags to limit user namespace mounts */ #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ #define SB_I_IMA_UNVERIFIABLE_SIGNATURE 0x00000020 #define SB_I_UNTRUSTED_MOUNTER 0x00000040 #define SB_I_SKIP_SYNC 0x00000100 /* Skip superblock at global sync */ #define SB_I_PERSB_BDI 0x00000200 /* has a per-sb bdi */ #define SB_I_TS_EXPIRY_WARNED 0x00000400 /* warned about timestamp range expiry */ #define SB_I_RETIRED 0x00000800 /* superblock shouldn't be reused */ /* Possible states of 'frozen' field */ enum { SB_UNFROZEN = 0, /* FS is unfrozen */ SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop * internal threads if needed) */ SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ }; #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) struct sb_writers { int frozen; /* Is sb frozen? */ wait_queue_head_t wait_unfrozen; /* wait for thaw */ struct percpu_rw_semaphore rw_sem[SB_FREEZE_LEVELS]; }; struct super_block { struct list_head s_list; /* Keep this first */ dev_t s_dev; /* search index; _not_ kdev_t */ unsigned char s_blocksize_bits; unsigned long s_blocksize; loff_t s_maxbytes; /* Max file size */ struct file_system_type *s_type; const struct super_operations *s_op; const struct dquot_operations *dq_op; const struct quotactl_ops *s_qcop; const struct export_operations *s_export_op; unsigned long s_flags; unsigned long s_iflags; /* internal SB_I_* flags */ unsigned long s_magic; struct dentry *s_root; struct rw_semaphore s_umount; int s_count; atomic_t s_active; #ifdef CONFIG_SECURITY void *s_security; #endif const struct xattr_handler **s_xattr; #ifdef CONFIG_FS_ENCRYPTION const struct fscrypt_operations *s_cop; struct fscrypt_keyring *s_master_keys; /* master crypto keys in use */ #endif #ifdef CONFIG_FS_VERITY const struct fsverity_operations *s_vop; #endif #if IS_ENABLED(CONFIG_UNICODE) struct unicode_map *s_encoding; __u16 s_encoding_flags; #endif struct hlist_bl_head s_roots; /* alternate root dentries for NFS */ struct list_head s_mounts; /* list of mounts; _not_ for fs use */ struct block_device *s_bdev; struct backing_dev_info *s_bdi; struct mtd_info *s_mtd; struct hlist_node s_instances; unsigned int s_quota_types; /* Bitmask of supported quota types */ struct quota_info s_dquot; /* Diskquota specific options */ struct sb_writers s_writers; /* * Keep s_fs_info, s_time_gran, s_fsnotify_mask, and * s_fsnotify_marks together for cache efficiency. They are frequently * accessed and rarely modified. */ void *s_fs_info; /* Filesystem private info */ /* Granularity of c/m/atime in ns (cannot be worse than a second) */ u32 s_time_gran; /* Time limits for c/m/atime in seconds */ time64_t s_time_min; time64_t s_time_max; #ifdef CONFIG_FSNOTIFY __u32 s_fsnotify_mask; struct fsnotify_mark_connector __rcu *s_fsnotify_marks; #endif char s_id[32]; /* Informational name */ uuid_t s_uuid; /* UUID */ unsigned int s_max_links; fmode_t s_mode; /* * The next field is for VFS *only*. No filesystems have any business * even looking at it. You had been warned. */ struct mutex s_vfs_rename_mutex; /* Kludge */ /* * Filesystem subtype. If non-empty the filesystem type field * in /proc/mounts will be "type.subtype" */ const char *s_subtype; const struct dentry_operations *s_d_op; /* default d_op for dentries */ struct shrinker s_shrink; /* per-sb shrinker handle */ /* Number of inodes with nlink == 0 but still referenced */ atomic_long_t s_remove_count; /* * Number of inode/mount/sb objects that are being watched, note that * inodes objects are currently double-accounted. */ atomic_long_t s_fsnotify_connectors; /* Being remounted read-only */ int s_readonly_remount; /* per-sb errseq_t for reporting writeback errors via syncfs */ errseq_t s_wb_err; /* AIO completions deferred from interrupt context */ struct workqueue_struct *s_dio_done_wq; struct hlist_head s_pins; /* * Owning user namespace and default context in which to * interpret filesystem uids, gids, quotas, device nodes, * xattrs and security labels. */ struct user_namespace *s_user_ns; /* * The list_lru structure is essentially just a pointer to a table * of per-node lru lists, each of which has its own spinlock. * There is no need to put them into separate cachelines. */ struct list_lru s_dentry_lru; struct list_lru s_inode_lru; struct rcu_head rcu; struct work_struct destroy_work; struct mutex s_sync_lock; /* sync serialisation lock */ /* * Indicates how deep in a filesystem stack this SB is */ int s_stack_depth; /* s_inode_list_lock protects s_inodes */ spinlock_t s_inode_list_lock ____cacheline_aligned_in_smp; struct list_head s_inodes; /* all inodes */ spinlock_t s_inode_wblist_lock; struct list_head s_inodes_wb; /* writeback inodes */ } __randomize_layout; static inline struct user_namespace *i_user_ns(const struct inode *inode) { return inode->i_sb->s_user_ns; } /* Helper functions so that in most cases filesystems will * not need to deal directly with kuid_t and kgid_t and can * instead deal with the raw numeric values that are stored * in the filesystem. */ static inline uid_t i_uid_read(const struct inode *inode) { return from_kuid(i_user_ns(inode), inode->i_uid); } static inline gid_t i_gid_read(const struct inode *inode) { return from_kgid(i_user_ns(inode), inode->i_gid); } static inline void i_uid_write(struct inode *inode, uid_t uid) { inode->i_uid = make_kuid(i_user_ns(inode), uid); } static inline void i_gid_write(struct inode *inode, gid_t gid) { inode->i_gid = make_kgid(i_user_ns(inode), gid); } /** * i_uid_into_mnt - map an inode's i_uid down into a mnt_userns * @mnt_userns: user namespace of the mount the inode was found from * @inode: inode to map * * Note, this will eventually be removed completely in favor of the type-safe * i_uid_into_vfsuid(). * * Return: the inode's i_uid mapped down according to @mnt_userns. * If the inode's i_uid has no mapping INVALID_UID is returned. */ static inline kuid_t i_uid_into_mnt(struct user_namespace *mnt_userns, const struct inode *inode) { return AS_KUIDT(make_vfsuid(mnt_userns, i_user_ns(inode), inode->i_uid)); } /** * i_uid_into_vfsuid - map an inode's i_uid down into a mnt_userns * @mnt_userns: user namespace of the mount the inode was found from * @inode: inode to map * * Return: whe inode's i_uid mapped down according to @mnt_userns. * If the inode's i_uid has no mapping INVALID_VFSUID is returned. */ static inline vfsuid_t i_uid_into_vfsuid(struct user_namespace *mnt_userns, const struct inode *inode) { return make_vfsuid(mnt_userns, i_user_ns(inode), inode->i_uid); } /** * i_uid_needs_update - check whether inode's i_uid needs to be updated * @mnt_userns: user namespace of the mount the inode was found from * @attr: the new attributes of @inode * @inode: the inode to update * * Check whether the $inode's i_uid field needs to be updated taking idmapped * mounts into account if the filesystem supports it. * * Return: true if @inode's i_uid field needs to be updated, false if not. */ static inline bool i_uid_needs_update(struct user_namespace *mnt_userns, const struct iattr *attr, const struct inode *inode) { return ((attr->ia_valid & ATTR_UID) && !vfsuid_eq(attr->ia_vfsuid, i_uid_into_vfsuid(mnt_userns, inode))); } /** * i_uid_update - update @inode's i_uid field * @mnt_userns: user namespace of the mount the inode was found from * @attr: the new attributes of @inode * @inode: the inode to update * * Safely update @inode's i_uid field translating the vfsuid of any idmapped * mount into the filesystem kuid. */ static inline void i_uid_update(struct user_namespace *mnt_userns, const struct iattr *attr, struct inode *inode) { if (attr->ia_valid & ATTR_UID) inode->i_uid = from_vfsuid(mnt_userns, i_user_ns(inode), attr->ia_vfsuid); } /** * i_gid_into_mnt - map an inode's i_gid down into a mnt_userns * @mnt_userns: user namespace of the mount the inode was found from * @inode: inode to map * * Note, this will eventually be removed completely in favor of the type-safe * i_gid_into_vfsgid(). * * Return: the inode's i_gid mapped down according to @mnt_userns. * If the inode's i_gid has no mapping INVALID_GID is returned. */ static inline kgid_t i_gid_into_mnt(struct user_namespace *mnt_userns, const struct inode *inode) { return AS_KGIDT(make_vfsgid(mnt_userns, i_user_ns(inode), inode->i_gid)); } /** * i_gid_into_vfsgid - map an inode's i_gid down into a mnt_userns * @mnt_userns: user namespace of the mount the inode was found from * @inode: inode to map * * Return: the inode's i_gid mapped down according to @mnt_userns. * If the inode's i_gid has no mapping INVALID_VFSGID is returned. */ static inline vfsgid_t i_gid_into_vfsgid(struct user_namespace *mnt_userns, const struct inode *inode) { return make_vfsgid(mnt_userns, i_user_ns(inode), inode->i_gid); } /** * i_gid_needs_update - check whether inode's i_gid needs to be updated * @mnt_userns: user namespace of the mount the inode was found from * @attr: the new attributes of @inode * @inode: the inode to update * * Check whether the $inode's i_gid field needs to be updated taking idmapped * mounts into account if the filesystem supports it. * * Return: true if @inode's i_gid field needs to be updated, false if not. */ static inline bool i_gid_needs_update(struct user_namespace *mnt_userns, const struct iattr *attr, const struct inode *inode) { return ((attr->ia_valid & ATTR_GID) && !vfsgid_eq(attr->ia_vfsgid, i_gid_into_vfsgid(mnt_userns, inode))); } /** * i_gid_update - update @inode's i_gid field * @mnt_userns: user namespace of the mount the inode was found from * @attr: the new attributes of @inode * @inode: the inode to update * * Safely update @inode's i_gid field translating the vfsgid of any idmapped * mount into the filesystem kgid. */ static inline void i_gid_update(struct user_namespace *mnt_userns, const struct iattr *attr, struct inode *inode) { if (attr->ia_valid & ATTR_GID) inode->i_gid = from_vfsgid(mnt_userns, i_user_ns(inode), attr->ia_vfsgid); } /** * inode_fsuid_set - initialize inode's i_uid field with callers fsuid * @inode: inode to initialize * @mnt_userns: user namespace of the mount the inode was found from * * Initialize the i_uid field of @inode. If the inode was found/created via * an idmapped mount map the caller's fsuid according to @mnt_users. */ static inline void inode_fsuid_set(struct inode *inode, struct user_namespace *mnt_userns) { inode->i_uid = mapped_fsuid(mnt_userns, i_user_ns(inode)); } /** * inode_fsgid_set - initialize inode's i_gid field with callers fsgid * @inode: inode to initialize * @mnt_userns: user namespace of the mount the inode was found from * * Initialize the i_gid field of @inode. If the inode was found/created via * an idmapped mount map the caller's fsgid according to @mnt_users. */ static inline void inode_fsgid_set(struct inode *inode, struct user_namespace *mnt_userns) { inode->i_gid = mapped_fsgid(mnt_userns, i_user_ns(inode)); } /** * fsuidgid_has_mapping() - check whether caller's fsuid/fsgid is mapped * @sb: the superblock we want a mapping in * @mnt_userns: user namespace of the relevant mount * * Check whether the caller's fsuid and fsgid have a valid mapping in the * s_user_ns of the superblock @sb. If the caller is on an idmapped mount map * the caller's fsuid and fsgid according to the @mnt_userns first. * * Return: true if fsuid and fsgid is mapped, false if not. */ static inline bool fsuidgid_has_mapping(struct super_block *sb, struct user_namespace *mnt_userns) { struct user_namespace *fs_userns = sb->s_user_ns; kuid_t kuid; kgid_t kgid; kuid = mapped_fsuid(mnt_userns, fs_userns); if (!uid_valid(kuid)) return false; kgid = mapped_fsgid(mnt_userns, fs_userns); if (!gid_valid(kgid)) return false; return kuid_has_mapping(fs_userns, kuid) && kgid_has_mapping(fs_userns, kgid); } extern struct timespec64 current_time(struct inode *inode); /* * Snapshotting support. */ /* * These are internal functions, please use sb_start_{write,pagefault,intwrite} * instead. */ static inline void __sb_end_write(struct super_block *sb, int level) { percpu_up_read(sb->s_writers.rw_sem + level-1); } static inline void __sb_start_write(struct super_block *sb, int level) { percpu_down_read(sb->s_writers.rw_sem + level - 1); } static inline bool __sb_start_write_trylock(struct super_block *sb, int level) { return percpu_down_read_trylock(sb->s_writers.rw_sem + level - 1); } #define __sb_writers_acquired(sb, lev) \ percpu_rwsem_acquire(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) #define __sb_writers_release(sb, lev) \ percpu_rwsem_release(&(sb)->s_writers.rw_sem[(lev)-1], 1, _THIS_IP_) static inline bool sb_write_started(const struct super_block *sb) { return lockdep_is_held_type(sb->s_writers.rw_sem + SB_FREEZE_WRITE - 1, 1); } /** * sb_end_write - drop write access to a superblock * @sb: the super we wrote to * * Decrement number of writers to the filesystem. Wake up possible waiters * wanting to freeze the filesystem. */ static inline void sb_end_write(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_WRITE); } /** * sb_end_pagefault - drop write access to a superblock from a page fault * @sb: the super we wrote to * * Decrement number of processes handling write page fault to the filesystem. * Wake up possible waiters wanting to freeze the filesystem. */ static inline void sb_end_pagefault(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_PAGEFAULT); } /** * sb_end_intwrite - drop write access to a superblock for internal fs purposes * @sb: the super we wrote to * * Decrement fs-internal number of writers to the filesystem. Wake up possible * waiters wanting to freeze the filesystem. */ static inline void sb_end_intwrite(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_FS); } /** * sb_start_write - get write access to a superblock * @sb: the super we write to * * When a process wants to write data or metadata to a file system (i.e. dirty * a page or an inode), it should embed the operation in a sb_start_write() - * sb_end_write() pair to get exclusion against file system freezing. This * function increments number of writers preventing freezing. If the file * system is already frozen, the function waits until the file system is * thawed. * * Since freeze protection behaves as a lock, users have to preserve * ordering of freeze protection and other filesystem locks. Generally, * freeze protection should be the outermost lock. In particular, we have: * * sb_start_write * -> i_mutex (write path, truncate, directory ops, ...) * -> s_umount (freeze_super, thaw_super) */ static inline void sb_start_write(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_WRITE); } static inline bool sb_start_write_trylock(struct super_block *sb) { return __sb_start_write_trylock(sb, SB_FREEZE_WRITE); } /** * sb_start_pagefault - get write access to a superblock from a page fault * @sb: the super we write to * * When a process starts handling write page fault, it should embed the * operation into sb_start_pagefault() - sb_end_pagefault() pair to get * exclusion against file system freezing. This is needed since the page fault * is going to dirty a page. This function increments number of running page * faults preventing freezing. If the file system is already frozen, the * function waits until the file system is thawed. * * Since page fault freeze protection behaves as a lock, users have to preserve * ordering of freeze protection and other filesystem locks. It is advised to * put sb_start_pagefault() close to mmap_lock in lock ordering. Page fault * handling code implies lock dependency: * * mmap_lock * -> sb_start_pagefault */ static inline void sb_start_pagefault(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_PAGEFAULT); } /** * sb_start_intwrite - get write access to a superblock for internal fs purposes * @sb: the super we write to * * This is the third level of protection against filesystem freezing. It is * free for use by a filesystem. The only requirement is that it must rank * below sb_start_pagefault. * * For example filesystem can call sb_start_intwrite() when starting a * transaction which somewhat eases handling of freezing for internal sources * of filesystem changes (internal fs threads, discarding preallocation on file * close, etc.). */ static inline void sb_start_intwrite(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_FS); } static inline bool sb_start_intwrite_trylock(struct super_block *sb) { return __sb_start_write_trylock(sb, SB_FREEZE_FS); } bool inode_owner_or_capable(struct user_namespace *mnt_userns, const struct inode *inode); /* * VFS helper functions.. */ int vfs_create(struct user_namespace *, struct inode *, struct dentry *, umode_t, bool); int vfs_mkdir(struct user_namespace *, struct inode *, struct dentry *, umode_t); int vfs_mknod(struct user_namespace *, struct inode *, struct dentry *, umode_t, dev_t); int vfs_symlink(struct user_namespace *, struct inode *, struct dentry *, const char *); int vfs_link(struct dentry *, struct user_namespace *, struct inode *, struct dentry *, struct inode **); int vfs_rmdir(struct user_namespace *, struct inode *, struct dentry *); int vfs_unlink(struct user_namespace *, struct inode *, struct dentry *, struct inode **); /** * struct renamedata - contains all information required for renaming * @old_mnt_userns: old user namespace of the mount the inode was found from * @old_dir: parent of source * @old_dentry: source * @new_mnt_userns: new user namespace of the mount the inode was found from * @new_dir: parent of destination * @new_dentry: destination * @delegated_inode: returns an inode needing a delegation break * @flags: rename flags */ struct renamedata { struct user_namespace *old_mnt_userns; struct inode *old_dir; struct dentry *old_dentry; struct user_namespace *new_mnt_userns; struct inode *new_dir; struct dentry *new_dentry; struct inode **delegated_inode; unsigned int flags; } __randomize_layout; int vfs_rename(struct renamedata *); static inline int vfs_whiteout(struct user_namespace *mnt_userns, struct inode *dir, struct dentry *dentry) { return vfs_mknod(mnt_userns, dir, dentry, S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); } struct file *vfs_tmpfile_open(struct user_namespace *mnt_userns, const struct path *parentpath, umode_t mode, int open_flag, const struct cred *cred); int vfs_mkobj(struct dentry *, umode_t, int (*f)(struct dentry *, umode_t, void *), void *); int vfs_fchown(struct file *file, uid_t user, gid_t group); int vfs_fchmod(struct file *file, umode_t mode); int vfs_utimes(const struct path *path, struct timespec64 *times); extern long vfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #ifdef CONFIG_COMPAT extern long compat_ptr_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #else #define compat_ptr_ioctl NULL #endif /* * VFS file helper functions. */ void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode, const struct inode *dir, umode_t mode); extern bool may_open_dev(const struct path *path); umode_t mode_strip_sgid(struct user_namespace *mnt_userns, const struct inode *dir, umode_t mode); /* * This is the "filldir" function type, used by readdir() to let * the kernel specify what kind of dirent layout it wants to have. * This allows the kernel to read directories into kernel space or * to have different dirent layouts depending on the binary type. * Return 'true' to keep going and 'false' if there are no more entries. */ struct dir_context; typedef bool (*filldir_t)(struct dir_context *, const char *, int, loff_t, u64, unsigned); struct dir_context { filldir_t actor; loff_t pos; }; /* * These flags let !MMU mmap() govern direct device mapping vs immediate * copying more easily for MAP_PRIVATE, especially for ROM filesystems. * * NOMMU_MAP_COPY: Copy can be mapped (MAP_PRIVATE) * NOMMU_MAP_DIRECT: Can be mapped directly (MAP_SHARED) * NOMMU_MAP_READ: Can be mapped for reading * NOMMU_MAP_WRITE: Can be mapped for writing * NOMMU_MAP_EXEC: Can be mapped for execution */ #define NOMMU_MAP_COPY 0x00000001 #define NOMMU_MAP_DIRECT 0x00000008 #define NOMMU_MAP_READ VM_MAYREAD #define NOMMU_MAP_WRITE VM_MAYWRITE #define NOMMU_MAP_EXEC VM_MAYEXEC #define NOMMU_VMFLAGS \ (NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC) /* * These flags control the behavior of the remap_file_range function pointer. * If it is called with len == 0 that means "remap to end of source file". * See Documentation/filesystems/vfs.rst for more details about this call. * * REMAP_FILE_DEDUP: only remap if contents identical (i.e. deduplicate) * REMAP_FILE_CAN_SHORTEN: caller can handle a shortened request */ #define REMAP_FILE_DEDUP (1 << 0) #define REMAP_FILE_CAN_SHORTEN (1 << 1) /* * These flags signal that the caller is ok with altering various aspects of * the behavior of the remap operation. The changes must be made by the * implementation; the vfs remap helper functions can take advantage of them. * Flags in this category exist to preserve the quirky behavior of the hoisted * btrfs clone/dedupe ioctls. */ #define REMAP_FILE_ADVISORY (REMAP_FILE_CAN_SHORTEN) /* * These flags control the behavior of vfs_copy_file_range(). * They are not available to the user via syscall. * * COPY_FILE_SPLICE: call splice direct instead of fs clone/copy ops */ #define COPY_FILE_SPLICE (1 << 0) struct iov_iter; struct io_uring_cmd; struct file_operations { struct module *owner; loff_t (*llseek) (struct file *, loff_t, int); ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); int (*iopoll)(struct kiocb *kiocb, struct io_comp_batch *, unsigned int flags); int (*iterate) (struct file *, struct dir_context *); int (*iterate_shared) (struct file *, struct dir_context *); __poll_t (*poll) (struct file *, struct poll_table_struct *); long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); long (*compat_ioctl) (struct file *, unsigned int, unsigned long); int (*mmap) (struct file *, struct vm_area_struct *); unsigned long mmap_supported_flags; int (*open) (struct inode *, struct file *); int (*flush) (struct file *, fl_owner_t id); int (*release) (struct inode *, struct file *); int (*fsync) (struct file *, loff_t, loff_t, int datasync); int (*fasync) (int, struct file *, int); int (*lock) (struct file *, int, struct file_lock *); ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int); unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); int (*check_flags)(int); int (*flock) (struct file *, int, struct file_lock *); ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); int (*setlease)(struct file *, long, struct file_lock **, void **); long (*fallocate)(struct file *file, int mode, loff_t offset, loff_t len); void (*show_fdinfo)(struct seq_file *m, struct file *f); #ifndef CONFIG_MMU unsigned (*mmap_capabilities)(struct file *); #endif ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, loff_t, size_t, unsigned int); loff_t (*remap_file_range)(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags); int (*fadvise)(struct file *, loff_t, loff_t, int); int (*uring_cmd)(struct io_uring_cmd *ioucmd, unsigned int issue_flags); int (*uring_cmd_iopoll)(struct io_uring_cmd *, struct io_comp_batch *, unsigned int poll_flags); } __randomize_layout; struct inode_operations { struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); const char * (*get_link) (struct dentry *, struct inode *, struct delayed_call *); int (*permission) (struct user_namespace *, struct inode *, int); struct posix_acl * (*get_acl)(struct inode *, int, bool); int (*readlink) (struct dentry *, char __user *,int); int (*create) (struct user_namespace *, struct inode *,struct dentry *, umode_t, bool); int (*link) (struct dentry *,struct inode *,struct dentry *); int (*unlink) (struct inode *,struct dentry *); int (*symlink) (struct user_namespace *, struct inode *,struct dentry *, const char *); int (*mkdir) (struct user_namespace *, struct inode *,struct dentry *, umode_t); int (*rmdir) (struct inode *,struct dentry *); int (*mknod) (struct user_namespace *, struct inode *,struct dentry *, umode_t,dev_t); int (*rename) (struct user_namespace *, struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); int (*setattr) (struct user_namespace *, struct dentry *, struct iattr *); int (*getattr) (struct user_namespace *, const struct path *, struct kstat *, u32, unsigned int); ssize_t (*listxattr) (struct dentry *, char *, size_t); int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, u64 len); int (*update_time)(struct inode *, struct timespec64 *, int); int (*atomic_open)(struct inode *, struct dentry *, struct file *, unsigned open_flag, umode_t create_mode); int (*tmpfile) (struct user_namespace *, struct inode *, struct file *, umode_t); int (*set_acl)(struct user_namespace *, struct inode *, struct posix_acl *, int); int (*fileattr_set)(struct user_namespace *mnt_userns, struct dentry *dentry, struct fileattr *fa); int (*fileattr_get)(struct dentry *dentry, struct fileattr *fa); } ____cacheline_aligned; static inline ssize_t call_read_iter(struct file *file, struct kiocb *kio, struct iov_iter *iter) { return file->f_op->read_iter(kio, iter); } static inline ssize_t call_write_iter(struct file *file, struct kiocb *kio, struct iov_iter *iter) { return file->f_op->write_iter(kio, iter); } static inline int call_mmap(struct file *file, struct vm_area_struct *vma) { return file->f_op->mmap(file, vma); } extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, loff_t, size_t, unsigned int); extern ssize_t generic_copy_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, size_t len, unsigned int flags); int __generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t *len, unsigned int remap_flags, const struct iomap_ops *dax_read_ops); int generic_remap_file_range_prep(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t *count, unsigned int remap_flags); extern loff_t do_clone_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags); extern loff_t vfs_clone_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, loff_t len, unsigned int remap_flags); extern int vfs_dedupe_file_range(struct file *file, struct file_dedupe_range *same); extern loff_t vfs_dedupe_file_range_one(struct file *src_file, loff_t src_pos, struct file *dst_file, loff_t dst_pos, loff_t len, unsigned int remap_flags); struct super_operations { struct inode *(*alloc_inode)(struct super_block *sb); void (*destroy_inode)(struct inode *); void (*free_inode)(struct inode *); void (*dirty_inode) (struct inode *, int flags); int (*write_inode) (struct inode *, struct writeback_control *wbc); int (*drop_inode) (struct inode *); void (*evict_inode) (struct inode *); void (*put_super) (struct super_block *); int (*sync_fs)(struct super_block *sb, int wait); int (*freeze_super) (struct super_block *); int (*freeze_fs) (struct super_block *); int (*thaw_super) (struct super_block *); int (*unfreeze_fs) (struct super_block *); int (*statfs) (struct dentry *, struct kstatfs *); int (*remount_fs) (struct super_block *, int *, char *); void (*umount_begin) (struct super_block *); int (*show_options)(struct seq_file *, struct dentry *); int (*show_devname)(struct seq_file *, struct dentry *); int (*show_path)(struct seq_file *, struct dentry *); int (*show_stats)(struct seq_file *, struct dentry *); #ifdef CONFIG_QUOTA ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); struct dquot **(*get_dquots)(struct inode *); #endif long (*nr_cached_objects)(struct super_block *, struct shrink_control *); long (*free_cached_objects)(struct super_block *, struct shrink_control *); }; /* * Inode flags - they have no relation to superblock flags now */ #define S_SYNC (1 << 0) /* Writes are synced at once */ #define S_NOATIME (1 << 1) /* Do not update access times */ #define S_APPEND (1 << 2) /* Append-only file */ #define S_IMMUTABLE (1 << 3) /* Immutable file */ #define S_DEAD (1 << 4) /* removed, but still open directory */ #define S_NOQUOTA (1 << 5) /* Inode is not counted to quota */ #define S_DIRSYNC (1 << 6) /* Directory modifications are synchronous */ #define S_NOCMTIME (1 << 7) /* Do not update file c/mtime */ #define S_SWAPFILE (1 << 8) /* Do not truncate: swapon got its bmaps */ #define S_PRIVATE (1 << 9) /* Inode is fs-internal */ #define S_IMA (1 << 10) /* Inode has an associated IMA struct */ #define S_AUTOMOUNT (1 << 11) /* Automount/referral quasi-directory */ #define S_NOSEC (1 << 12) /* no suid or xattr security attributes */ #ifdef CONFIG_FS_DAX #define S_DAX (1 << 13) /* Direct Access, avoiding the page cache */ #else #define S_DAX 0 /* Make all the DAX code disappear */ #endif #define S_ENCRYPTED (1 << 14) /* Encrypted file (using fs/crypto/) */ #define S_CASEFOLD (1 << 15) /* Casefolded file */ #define S_VERITY (1 << 16) /* Verity file (using fs/verity/) */ #define S_KERNEL_FILE (1 << 17) /* File is in use by the kernel (eg. fs/cachefiles) */ /* * Note that nosuid etc flags are inode-specific: setting some file-system * flags just means all the inodes inherit those flags by default. It might be * possible to override it selectively if you really wanted to with some * ioctl() that is not currently implemented. * * Exception: SB_RDONLY is always applied to the entire file system. * * Unfortunately, it is possible to change a filesystems flags with it mounted * with files in use. This means that all of the inodes will not have their * i_flags updated. Hence, i_flags no longer inherit the superblock mount * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org */ #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) static inline bool sb_rdonly(const struct super_block *sb) { return sb->s_flags & SB_RDONLY; } #define IS_RDONLY(inode) sb_rdonly((inode)->i_sb) #define IS_SYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS) || \ ((inode)->i_flags & S_SYNC)) #define IS_DIRSYNC(inode) (__IS_FLG(inode, SB_SYNCHRONOUS|SB_DIRSYNC) || \ ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) #define IS_MANDLOCK(inode) __IS_FLG(inode, SB_MANDLOCK) #define IS_NOATIME(inode) __IS_FLG(inode, SB_RDONLY|SB_NOATIME) #define IS_I_VERSION(inode) __IS_FLG(inode, SB_I_VERSION) #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) #define IS_POSIXACL(inode) __IS_FLG(inode, SB_POSIXACL) #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) #define IS_IMA(inode) ((inode)->i_flags & S_IMA) #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) #define IS_DAX(inode) ((inode)->i_flags & S_DAX) #define IS_ENCRYPTED(inode) ((inode)->i_flags & S_ENCRYPTED) #define IS_CASEFOLDED(inode) ((inode)->i_flags & S_CASEFOLD) #define IS_VERITY(inode) ((inode)->i_flags & S_VERITY) #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ (inode)->i_rdev == WHITEOUT_DEV) static inline bool HAS_UNMAPPED_ID(struct user_namespace *mnt_userns, struct inode *inode) { return !vfsuid_valid(i_uid_into_vfsuid(mnt_userns, inode)) || !vfsgid_valid(i_gid_into_vfsgid(mnt_userns, inode)); } static inline void init_sync_kiocb(struct kiocb *kiocb, struct file *filp) { *kiocb = (struct kiocb) { .ki_filp = filp, .ki_flags = filp->f_iocb_flags, .ki_ioprio = get_current_ioprio(), }; } static inline void kiocb_clone(struct kiocb *kiocb, struct kiocb *kiocb_src, struct file *filp) { *kiocb = (struct kiocb) { .ki_filp = filp, .ki_flags = kiocb_src->ki_flags, .ki_ioprio = kiocb_src->ki_ioprio, .ki_pos = kiocb_src->ki_pos, }; } /* * Inode state bits. Protected by inode->i_lock * * Four bits determine the dirty state of the inode: I_DIRTY_SYNC, * I_DIRTY_DATASYNC, I_DIRTY_PAGES, and I_DIRTY_TIME. * * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at * various stages of removing an inode. * * Two bits are used for locking and completion notification, I_NEW and I_SYNC. * * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on * fdatasync() (unless I_DIRTY_DATASYNC is also set). * Timestamp updates are the usual cause. * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of * these changes separately from I_DIRTY_SYNC so that we * don't have to write inode on fdatasync() when only * e.g. the timestamps have changed. * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. * I_DIRTY_TIME The inode itself has dirty timestamps, and the * lazytime mount option is enabled. We keep track of this * separately from I_DIRTY_SYNC in order to implement * lazytime. This gets cleared if I_DIRTY_INODE * (I_DIRTY_SYNC and/or I_DIRTY_DATASYNC) gets set. But * I_DIRTY_TIME can still be set if I_DIRTY_SYNC is already * in place because writeback might already be in progress * and we don't want to lose the time update * I_NEW Serves as both a mutex and completion notification. * New inodes set I_NEW. If two processes both create * the same inode, one of them will release its inode and * wait for I_NEW to be released before returning. * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can * also cause waiting on I_NEW, without I_NEW actually * being set. find_inode() uses this to prevent returning * nearly-dead inodes. * I_WILL_FREE Must be set when calling write_inode_now() if i_count * is zero. I_FREEING must be set when I_WILL_FREE is * cleared. * I_FREEING Set when inode is about to be freed but still has dirty * pages or buffers attached or the inode itself is still * dirty. * I_CLEAR Added by clear_inode(). In this state the inode is * clean and can be destroyed. Inode keeps I_FREEING. * * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are * prohibited for many purposes. iget() must wait for * the inode to be completely released, then create it * anew. Other functions will just ignore such inodes, * if appropriate. I_NEW is used for waiting. * * I_SYNC Writeback of inode is running. The bit is set during * data writeback, and cleared with a wakeup on the bit * address once it is done. The bit is also used to pin * the inode in memory for flusher thread. * * I_REFERENCED Marks the inode as recently references on the LRU list. * * I_DIO_WAKEUP Never set. Only used as a key for wait_on_bit(). * * I_WB_SWITCH Cgroup bdi_writeback switching in progress. Used to * synchronize competing switching instances and to tell * wb stat updates to grab the i_pages lock. See * inode_switch_wbs_work_fn() for details. * * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper * and work dirs among overlayfs mounts. * * I_CREATING New object's inode in the middle of setting up. * * I_DONTCACHE Evict inode as soon as it is not used anymore. * * I_SYNC_QUEUED Inode is queued in b_io or b_more_io writeback lists. * Used to detect that mark_inode_dirty() should not move * inode between dirty lists. * * I_PINNING_FSCACHE_WB Inode is pinning an fscache object for writeback. * * Q: What is the difference between I_WILL_FREE and I_FREEING? */ #define I_DIRTY_SYNC (1 << 0) #define I_DIRTY_DATASYNC (1 << 1) #define I_DIRTY_PAGES (1 << 2) #define __I_NEW 3 #define I_NEW (1 << __I_NEW) #define I_WILL_FREE (1 << 4) #define I_FREEING (1 << 5) #define I_CLEAR (1 << 6) #define __I_SYNC 7 #define I_SYNC (1 << __I_SYNC) #define I_REFERENCED (1 << 8) #define __I_DIO_WAKEUP 9 #define I_DIO_WAKEUP (1 << __I_DIO_WAKEUP) #define I_LINKABLE (1 << 10) #define I_DIRTY_TIME (1 << 11) #define I_WB_SWITCH (1 << 13) #define I_OVL_INUSE (1 << 14) #define I_CREATING (1 << 15) #define I_DONTCACHE (1 << 16) #define I_SYNC_QUEUED (1 << 17) #define I_PINNING_FSCACHE_WB (1 << 18) #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) #define I_DIRTY (I_DIRTY_INODE | I_DIRTY_PAGES) #define I_DIRTY_ALL (I_DIRTY | I_DIRTY_TIME) extern void __mark_inode_dirty(struct inode *, int); static inline void mark_inode_dirty(struct inode *inode) { __mark_inode_dirty(inode, I_DIRTY); } static inline void mark_inode_dirty_sync(struct inode *inode) { __mark_inode_dirty(inode, I_DIRTY_SYNC); } /* * Returns true if the given inode itself only has dirty timestamps (its pages * may still be dirty) and isn't currently being allocated or freed. * Filesystems should call this if when writing an inode when lazytime is * enabled, they want to opportunistically write the timestamps of other inodes * located very nearby on-disk, e.g. in the same inode block. This returns true * if the given inode is in need of such an opportunistic update. Requires * i_lock, or at least later re-checking under i_lock. */ static inline bool inode_is_dirtytime_only(struct inode *inode) { return (inode->i_state & (I_DIRTY_TIME | I_NEW | I_FREEING | I_WILL_FREE)) == I_DIRTY_TIME; } extern void inc_nlink(struct inode *inode); extern void drop_nlink(struct inode *inode); extern void clear_nlink(struct inode *inode); extern void set_nlink(struct inode *inode, unsigned int nlink); static inline void inode_inc_link_count(struct inode *inode) { inc_nlink(inode); mark_inode_dirty(inode); } static inline void inode_dec_link_count(struct inode *inode) { drop_nlink(inode); mark_inode_dirty(inode); } enum file_time_flags { S_ATIME = 1, S_MTIME = 2, S_CTIME = 4, S_VERSION = 8, }; extern bool atime_needs_update(const struct path *, struct inode *); extern void touch_atime(const struct path *); int inode_update_time(struct inode *inode, struct timespec64 *time, int flags); static inline void file_accessed(struct file *file) { if (!(file->f_flags & O_NOATIME)) touch_atime(&file->f_path); } extern int file_modified(struct file *file); int kiocb_modified(struct kiocb *iocb); int sync_inode_metadata(struct inode *inode, int wait); struct file_system_type { const char *name; int fs_flags; #define FS_REQUIRES_DEV 1 #define FS_BINARY_MOUNTDATA 2 #define FS_HAS_SUBTYPE 4 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ #define FS_DISALLOW_NOTIFY_PERM 16 /* Disable fanotify permission events */ #define FS_ALLOW_IDMAP 32 /* FS has been updated to handle vfs idmappings. */ #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ int (*init_fs_context)(struct fs_context *); const struct fs_parameter_spec *parameters; struct dentry *(*mount) (struct file_system_type *, int, const char *, void *); void (*kill_sb) (struct super_block *); struct module *owner; struct file_system_type * next; struct hlist_head fs_supers; struct lock_class_key s_lock_key; struct lock_class_key s_umount_key; struct lock_class_key s_vfs_rename_key; struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; struct lock_class_key i_lock_key; struct lock_class_key i_mutex_key; struct lock_class_key invalidate_lock_key; struct lock_class_key i_mutex_dir_key; }; #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) extern struct dentry *mount_bdev(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_single(struct file_system_type *fs_type, int flags, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_nodev(struct file_system_type *fs_type, int flags, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); void retire_super(struct super_block *sb); void generic_shutdown_super(struct super_block *sb); void kill_block_super(struct super_block *sb); void kill_anon_super(struct super_block *sb); void kill_litter_super(struct super_block *sb); void deactivate_super(struct super_block *sb); void deactivate_locked_super(struct super_block *sb); int set_anon_super(struct super_block *s, void *data); int set_anon_super_fc(struct super_block *s, struct fs_context *fc); int get_anon_bdev(dev_t *); void free_anon_bdev(dev_t); struct super_block *sget_fc(struct fs_context *fc, int (*test)(struct super_block *, struct fs_context *), int (*set)(struct super_block *, struct fs_context *)); struct super_block *sget(struct file_system_type *type, int (*test)(struct super_block *,void *), int (*set)(struct super_block *,void *), int flags, void *data); /* Alas, no aliases. Too much hassle with bringing module.h everywhere */ #define fops_get(fops) \ (((fops) && try_module_get((fops)->owner) ? (fops) : NULL)) #define fops_put(fops) \ do { if (fops) module_put((fops)->owner); } while(0) /* * This one is to be used *ONLY* from ->open() instances. * fops must be non-NULL, pinned down *and* module dependencies * should be sufficient to pin the caller down as well. */ #define replace_fops(f, fops) \ do { \ struct file *__file = (f); \ fops_put(__file->f_op); \ BUG_ON(!(__file->f_op = (fops))); \ } while(0) extern int register_filesystem(struct file_system_type *); extern int unregister_filesystem(struct file_system_type *); extern int vfs_statfs(const struct path *, struct kstatfs *); extern int user_statfs(const char __user *, struct kstatfs *); extern int fd_statfs(int, struct kstatfs *); extern int freeze_super(struct super_block *super); extern int thaw_super(struct super_block *super); extern __printf(2, 3) int super_setup_bdi_name(struct super_block *sb, char *fmt, ...); extern int super_setup_bdi(struct super_block *sb); extern int current_umask(void); extern void ihold(struct inode * inode); extern void iput(struct inode *); extern int generic_update_time(struct inode *, struct timespec64 *, int); /* /sys/fs */ extern struct kobject *fs_kobj; #define MAX_RW_COUNT (INT_MAX & PAGE_MASK) #ifdef CONFIG_FILE_LOCKING static inline int break_lease(struct inode *inode, unsigned int mode) { /* * Since this check is lockless, we must ensure that any refcounts * taken are done before checking i_flctx->flc_lease. Otherwise, we * could end up racing with tasks trying to set a new lease on this * file. */ smp_mb(); if (inode->i_flctx && !list_empty_careful(&inode->i_flctx->flc_lease)) return __break_lease(inode, mode, FL_LEASE); return 0; } static inline int break_deleg(struct inode *inode, unsigned int mode) { /* * Since this check is lockless, we must ensure that any refcounts * taken are done before checking i_flctx->flc_lease. Otherwise, we * could end up racing with tasks trying to set a new lease on this * file. */ smp_mb(); if (inode->i_flctx && !list_empty_careful(&inode->i_flctx->flc_lease)) return __break_lease(inode, mode, FL_DELEG); return 0; } static inline int try_break_deleg(struct inode *inode, struct inode **delegated_inode) { int ret; ret = break_deleg(inode, O_WRONLY|O_NONBLOCK); if (ret == -EWOULDBLOCK && delegated_inode) { *delegated_inode = inode; ihold(inode); } return ret; } static inline int break_deleg_wait(struct inode **delegated_inode) { int ret; ret = break_deleg(*delegated_inode, O_WRONLY); iput(*delegated_inode); *delegated_inode = NULL; return ret; } static inline int break_layout(struct inode *inode, bool wait) { smp_mb(); if (inode->i_flctx && !list_empty_careful(&inode->i_flctx->flc_lease)) return __break_lease(inode, wait ? O_WRONLY : O_WRONLY | O_NONBLOCK, FL_LAYOUT); return 0; } #else /* !CONFIG_FILE_LOCKING */ static inline int break_lease(struct inode *inode, unsigned int mode) { return 0; } static inline int break_deleg(struct inode *inode, unsigned int mode) { return 0; } static inline int try_break_deleg(struct inode *inode, struct inode **delegated_inode) { return 0; } static inline int break_deleg_wait(struct inode **delegated_inode) { BUG(); return 0; } static inline int break_layout(struct inode *inode, bool wait) { return 0; } #endif /* CONFIG_FILE_LOCKING */ /* fs/open.c */ struct audit_names; struct filename { const char *name; /* pointer to actual string */ const __user char *uptr; /* original userland pointer */ int refcnt; struct audit_names *aname; const char iname[]; }; static_assert(offsetof(struct filename, iname) % sizeof(long) == 0); static inline struct user_namespace *file_mnt_user_ns(struct file *file) { return mnt_user_ns(file->f_path.mnt); } /** * is_idmapped_mnt - check whether a mount is mapped * @mnt: the mount to check * * If @mnt has an idmapping attached different from the * filesystem's idmapping then @mnt is mapped. * * Return: true if mount is mapped, false if not. */ static inline bool is_idmapped_mnt(const struct vfsmount *mnt) { return mnt_user_ns(mnt) != mnt->mnt_sb->s_user_ns; } extern long vfs_truncate(const struct path *, loff_t); int do_truncate(struct user_namespace *, struct dentry *, loff_t start, unsigned int time_attrs, struct file *filp); extern int vfs_fallocate(struct file *file, int mode, loff_t offset, loff_t len); extern long do_sys_open(int dfd, const char __user *filename, int flags, umode_t mode); extern struct file *file_open_name(struct filename *, int, umode_t); extern struct file *filp_open(const char *, int, umode_t); extern struct file *file_open_root(const struct path *, const char *, int, umode_t); static inline struct file *file_open_root_mnt(struct vfsmount *mnt, const char *name, int flags, umode_t mode) { return file_open_root(&(struct path){.mnt = mnt, .dentry = mnt->mnt_root}, name, flags, mode); } extern struct file * dentry_open(const struct path *, int, const struct cred *); extern struct file *dentry_create(const struct path *path, int flags, umode_t mode, const struct cred *cred); extern struct file * open_with_fake_path(const struct path *, int, struct inode*, const struct cred *); static inline struct file *file_clone_open(struct file *file) { return dentry_open(&file->f_path, file->f_flags, file->f_cred); } extern int filp_close(struct file *, fl_owner_t id); extern struct filename *getname_flags(const char __user *, int, int *); extern struct filename *getname_uflags(const char __user *, int); extern struct filename *getname(const char __user *); extern struct filename *getname_kernel(const char *); extern void putname(struct filename *name); extern int finish_open(struct file *file, struct dentry *dentry, int (*open)(struct inode *, struct file *)); extern int finish_no_open(struct file *file, struct dentry *dentry); /* Helper for the simple case when original dentry is used */ static inline int finish_open_simple(struct file *file, int error) { if (error) return error; return finish_open(file, file->f_path.dentry, NULL); } /* fs/dcache.c */ extern void __init vfs_caches_init_early(void); extern void __init vfs_caches_init(void); extern struct kmem_cache *names_cachep; #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) #define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) extern struct super_block *blockdev_superblock; static inline bool sb_is_blkdev_sb(struct super_block *sb) { return IS_ENABLED(CONFIG_BLOCK) && sb == blockdev_superblock; } void emergency_thaw_all(void); extern int sync_filesystem(struct super_block *); extern const struct file_operations def_blk_fops; extern const struct file_operations def_chr_fops; /* fs/char_dev.c */ #define CHRDEV_MAJOR_MAX 512 /* Marks the bottom of the first segment of free char majors */ #define CHRDEV_MAJOR_DYN_END 234 /* Marks the top and bottom of the second segment of free char majors */ #define CHRDEV_MAJOR_DYN_EXT_START 511 #define CHRDEV_MAJOR_DYN_EXT_END 384 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); extern int register_chrdev_region(dev_t, unsigned, const char *); extern int __register_chrdev(unsigned int major, unsigned int baseminor, unsigned int count, const char *name, const struct file_operations *fops); extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, unsigned int count, const char *name); extern void unregister_chrdev_region(dev_t, unsigned); extern void chrdev_show(struct seq_file *,off_t); static inline int register_chrdev(unsigned int major, const char *name, const struct file_operations *fops) { return __register_chrdev(major, 0, 256, name, fops); } static inline void unregister_chrdev(unsigned int major, const char *name) { __unregister_chrdev(major, 0, 256, name); } extern void init_special_inode(struct inode *, umode_t, dev_t); /* Invalid inode operations -- fs/bad_inode.c */ extern void make_bad_inode(struct inode *); extern bool is_bad_inode(struct inode *); extern int __must_check file_fdatawait_range(struct file *file, loff_t lstart, loff_t lend); extern int __must_check file_check_and_advance_wb_err(struct file *file); extern int __must_check file_write_and_wait_range(struct file *file, loff_t start, loff_t end); static inline int file_write_and_wait(struct file *file) { return file_write_and_wait_range(file, 0, LLONG_MAX); } extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync); extern int vfs_fsync(struct file *file, int datasync); extern int sync_file_range(struct file *file, loff_t offset, loff_t nbytes, unsigned int flags); static inline bool iocb_is_dsync(const struct kiocb *iocb) { return (iocb->ki_flags & IOCB_DSYNC) || IS_SYNC(iocb->ki_filp->f_mapping->host); } /* * Sync the bytes written if this was a synchronous write. Expect ki_pos * to already be updated for the write, and will return either the amount * of bytes passed in, or an error if syncing the file failed. */ static inline ssize_t generic_write_sync(struct kiocb *iocb, ssize_t count) { if (iocb_is_dsync(iocb)) { int ret = vfs_fsync_range(iocb->ki_filp, iocb->ki_pos - count, iocb->ki_pos - 1, (iocb->ki_flags & IOCB_SYNC) ? 0 : 1); if (ret) return ret; } return count; } extern void emergency_sync(void); extern void emergency_remount(void); #ifdef CONFIG_BLOCK extern int bmap(struct inode *inode, sector_t *block); #else static inline int bmap(struct inode *inode, sector_t *block) { return -EINVAL; } #endif int notify_change(struct user_namespace *, struct dentry *, struct iattr *, struct inode **); int inode_permission(struct user_namespace *, struct inode *, int); int generic_permission(struct user_namespace *, struct inode *, int); static inline int file_permission(struct file *file, int mask) { return inode_permission(file_mnt_user_ns(file), file_inode(file), mask); } static inline int path_permission(const struct path *path, int mask) { return inode_permission(mnt_user_ns(path->mnt), d_inode(path->dentry), mask); } int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir, struct inode *inode); static inline bool execute_ok(struct inode *inode) { return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); } static inline bool inode_wrong_type(const struct inode *inode, umode_t mode) { return (inode->i_mode ^ mode) & S_IFMT; } static inline void file_start_write(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return; sb_start_write(file_inode(file)->i_sb); } static inline bool file_start_write_trylock(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return true; return sb_start_write_trylock(file_inode(file)->i_sb); } static inline void file_end_write(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return; __sb_end_write(file_inode(file)->i_sb, SB_FREEZE_WRITE); } /* * This is used for regular files where some users -- especially the * currently executed binary in a process, previously handled via * VM_DENYWRITE -- cannot handle concurrent write (and maybe mmap * read-write shared) accesses. * * get_write_access() gets write permission for a file. * put_write_access() releases this write permission. * deny_write_access() denies write access to a file. * allow_write_access() re-enables write access to a file. * * The i_writecount field of an inode can have the following values: * 0: no write access, no denied write access * < 0: (-i_writecount) users that denied write access to the file. * > 0: (i_writecount) users that have write access to the file. * * Normally we operate on that counter with atomic_{inc,dec} and it's safe * except for the cases where we don't hold i_writecount yet. Then we need to * use {get,deny}_write_access() - these functions check the sign and refuse * to do the change if sign is wrong. */ static inline int get_write_access(struct inode *inode) { return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; } static inline int deny_write_access(struct file *file) { struct inode *inode = file_inode(file); return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; } static inline void put_write_access(struct inode * inode) { atomic_dec(&inode->i_writecount); } static inline void allow_write_access(struct file *file) { if (file) atomic_inc(&file_inode(file)->i_writecount); } static inline bool inode_is_open_for_write(const struct inode *inode) { return atomic_read(&inode->i_writecount) > 0; } #if defined(CONFIG_IMA) || defined(CONFIG_FILE_LOCKING) static inline void i_readcount_dec(struct inode *inode) { BUG_ON(!atomic_read(&inode->i_readcount)); atomic_dec(&inode->i_readcount); } static inline void i_readcount_inc(struct inode *inode) { atomic_inc(&inode->i_readcount); } #else static inline void i_readcount_dec(struct inode *inode) { return; } static inline void i_readcount_inc(struct inode *inode) { return; } #endif extern int do_pipe_flags(int *, int); extern ssize_t kernel_read(struct file *, void *, size_t, loff_t *); ssize_t __kernel_read(struct file *file, void *buf, size_t count, loff_t *pos); extern ssize_t kernel_write(struct file *, const void *, size_t, loff_t *); extern ssize_t __kernel_write(struct file *, const void *, size_t, loff_t *); extern struct file * open_exec(const char *); /* fs/dcache.c -- generic fs support functions */ extern bool is_subdir(struct dentry *, struct dentry *); extern bool path_is_under(const struct path *, const struct path *); extern char *file_path(struct file *, char *, int); #include /* needed for stackable file system support */ extern loff_t default_llseek(struct file *file, loff_t offset, int whence); extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); extern int inode_init_always(struct super_block *, struct inode *); extern void inode_init_once(struct inode *); extern void address_space_init_once(struct address_space *mapping); extern struct inode * igrab(struct inode *); extern ino_t iunique(struct super_block *, ino_t); extern int inode_needs_sync(struct inode *inode); extern int generic_delete_inode(struct inode *inode); static inline int generic_drop_inode(struct inode *inode) { return !inode->i_nlink || inode_unhashed(inode); } extern void d_mark_dontcache(struct inode *inode); extern struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data); extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data); extern struct inode *ilookup(struct super_block *sb, unsigned long ino); extern struct inode *inode_insert5(struct inode *inode, unsigned long hashval, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data); extern struct inode * iget5_locked(struct super_block *, unsigned long, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *); extern struct inode * iget_locked(struct super_block *, unsigned long); extern struct inode *find_inode_nowait(struct super_block *, unsigned long, int (*match)(struct inode *, unsigned long, void *), void *data); extern struct inode *find_inode_rcu(struct super_block *, unsigned long, int (*)(struct inode *, void *), void *); extern struct inode *find_inode_by_ino_rcu(struct super_block *, unsigned long); extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); extern int insert_inode_locked(struct inode *); #ifdef CONFIG_DEBUG_LOCK_ALLOC extern void lockdep_annotate_inode_mutex_key(struct inode *inode); #else static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; #endif extern void unlock_new_inode(struct inode *); extern void discard_new_inode(struct inode *); extern unsigned int get_next_ino(void); extern void evict_inodes(struct super_block *sb); void dump_mapping(const struct address_space *); /* * Userspace may rely on the the inode number being non-zero. For example, glibc * simply ignores files with zero i_ino in unlink() and other places. * * As an additional complication, if userspace was compiled with * _FILE_OFFSET_BITS=32 on a 64-bit kernel we'll only end up reading out the * lower 32 bits, so we need to check that those aren't zero explicitly. With * _FILE_OFFSET_BITS=64, this may cause some harmless false-negatives, but * better safe than sorry. */ static inline bool is_zero_ino(ino_t ino) { return (u32)ino == 0; } extern void __iget(struct inode * inode); extern void iget_failed(struct inode *); extern void clear_inode(struct inode *); extern void __destroy_inode(struct inode *); extern struct inode *new_inode_pseudo(struct super_block *sb); extern struct inode *new_inode(struct super_block *sb); extern void free_inode_nonrcu(struct inode *inode); extern int setattr_should_drop_suidgid(struct user_namespace *, struct inode *); extern int file_remove_privs(struct file *); int setattr_should_drop_sgid(struct user_namespace *mnt_userns, const struct inode *inode); /* * This must be used for allocating filesystems specific inodes to set * up the inode reclaim context correctly. */ static inline void * alloc_inode_sb(struct super_block *sb, struct kmem_cache *cache, gfp_t gfp) { return kmem_cache_alloc_lru(cache, &sb->s_inode_lru, gfp); } extern void __insert_inode_hash(struct inode *, unsigned long hashval); static inline void insert_inode_hash(struct inode *inode) { __insert_inode_hash(inode, inode->i_ino); } extern void __remove_inode_hash(struct inode *); static inline void remove_inode_hash(struct inode *inode) { if (!inode_unhashed(inode) && !hlist_fake(&inode->i_hash)) __remove_inode_hash(inode); } extern void inode_sb_list_add(struct inode *inode); extern void inode_add_lru(struct inode *inode); extern int sb_set_blocksize(struct super_block *, int); extern int sb_min_blocksize(struct super_block *, int); extern int generic_file_mmap(struct file *, struct vm_area_struct *); extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); extern ssize_t generic_write_checks(struct kiocb *, struct iov_iter *); int generic_write_checks_count(struct kiocb *iocb, loff_t *count); extern int generic_write_check_limits(struct file *file, loff_t pos, loff_t *count); extern int generic_file_rw_checks(struct file *file_in, struct file *file_out); ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *to, ssize_t already_read); extern ssize_t generic_file_read_iter(struct kiocb *, struct iov_iter *); extern ssize_t __generic_file_write_iter(struct kiocb *, struct iov_iter *); extern ssize_t generic_file_write_iter(struct kiocb *, struct iov_iter *); extern ssize_t generic_file_direct_write(struct kiocb *, struct iov_iter *); ssize_t generic_perform_write(struct kiocb *, struct iov_iter *); ssize_t vfs_iter_read(struct file *file, struct iov_iter *iter, loff_t *ppos, rwf_t flags); ssize_t vfs_iter_write(struct file *file, struct iov_iter *iter, loff_t *ppos, rwf_t flags); ssize_t vfs_iocb_iter_read(struct file *file, struct kiocb *iocb, struct iov_iter *iter); ssize_t vfs_iocb_iter_write(struct file *file, struct kiocb *iocb, struct iov_iter *iter); /* fs/splice.c */ extern ssize_t generic_file_splice_read(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); extern ssize_t iter_file_splice_write(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); extern ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, loff_t *, size_t len, unsigned int flags); extern long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, loff_t *opos, size_t len, unsigned int flags); extern void file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); #define no_llseek NULL extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, int whence, loff_t maxsize, loff_t eof); extern loff_t fixed_size_llseek(struct file *file, loff_t offset, int whence, loff_t size); extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); extern loff_t no_seek_end_llseek(struct file *, loff_t, int); int rw_verify_area(int, struct file *, const loff_t *, size_t); extern int generic_file_open(struct inode * inode, struct file * filp); extern int nonseekable_open(struct inode * inode, struct file * filp); extern int stream_open(struct inode * inode, struct file * filp); #ifdef CONFIG_BLOCK typedef void (dio_submit_t)(struct bio *bio, struct inode *inode, loff_t file_offset); enum { /* need locking between buffered and direct access */ DIO_LOCKING = 0x01, /* filesystem does not support filling holes */ DIO_SKIP_HOLES = 0x02, }; ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, struct block_device *bdev, struct iov_iter *iter, get_block_t get_block, dio_iodone_t end_io, dio_submit_t submit_io, int flags); static inline ssize_t blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, struct iov_iter *iter, get_block_t get_block) { return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter, get_block, NULL, NULL, DIO_LOCKING | DIO_SKIP_HOLES); } #endif void inode_dio_wait(struct inode *inode); /** * inode_dio_begin - signal start of a direct I/O requests * @inode: inode the direct I/O happens on * * This is called once we've finished processing a direct I/O request, * and is used to wake up callers waiting for direct I/O to be quiesced. */ static inline void inode_dio_begin(struct inode *inode) { atomic_inc(&inode->i_dio_count); } /** * inode_dio_end - signal finish of a direct I/O requests * @inode: inode the direct I/O happens on * * This is called once we've finished processing a direct I/O request, * and is used to wake up callers waiting for direct I/O to be quiesced. */ static inline void inode_dio_end(struct inode *inode) { if (atomic_dec_and_test(&inode->i_dio_count)) wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); } /* * Warn about a page cache invalidation failure diring a direct I/O write. */ void dio_warn_stale_pagecache(struct file *filp); extern void inode_set_flags(struct inode *inode, unsigned int flags, unsigned int mask); extern const struct file_operations generic_ro_fops; #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) extern int readlink_copy(char __user *, int, const char *); extern int page_readlink(struct dentry *, char __user *, int); extern const char *page_get_link(struct dentry *, struct inode *, struct delayed_call *); extern void page_put_link(void *); extern int page_symlink(struct inode *inode, const char *symname, int len); extern const struct inode_operations page_symlink_inode_operations; extern void kfree_link(void *); void generic_fillattr(struct user_namespace *, struct inode *, struct kstat *); void generic_fill_statx_attr(struct inode *inode, struct kstat *stat); extern int vfs_getattr_nosec(const struct path *, struct kstat *, u32, unsigned int); extern int vfs_getattr(const struct path *, struct kstat *, u32, unsigned int); void __inode_add_bytes(struct inode *inode, loff_t bytes); void inode_add_bytes(struct inode *inode, loff_t bytes); void __inode_sub_bytes(struct inode *inode, loff_t bytes); void inode_sub_bytes(struct inode *inode, loff_t bytes); static inline loff_t __inode_get_bytes(struct inode *inode) { return (((loff_t)inode->i_blocks) << 9) + inode->i_bytes; } loff_t inode_get_bytes(struct inode *inode); void inode_set_bytes(struct inode *inode, loff_t bytes); const char *simple_get_link(struct dentry *, struct inode *, struct delayed_call *); extern const struct inode_operations simple_symlink_inode_operations; extern int iterate_dir(struct file *, struct dir_context *); int vfs_fstatat(int dfd, const char __user *filename, struct kstat *stat, int flags); int vfs_fstat(int fd, struct kstat *stat); static inline int vfs_stat(const char __user *filename, struct kstat *stat) { return vfs_fstatat(AT_FDCWD, filename, stat, 0); } static inline int vfs_lstat(const char __user *name, struct kstat *stat) { return vfs_fstatat(AT_FDCWD, name, stat, AT_SYMLINK_NOFOLLOW); } extern const char *vfs_get_link(struct dentry *, struct delayed_call *); extern int vfs_readlink(struct dentry *, char __user *, int); extern struct file_system_type *get_filesystem(struct file_system_type *fs); extern void put_filesystem(struct file_system_type *fs); extern struct file_system_type *get_fs_type(const char *name); extern struct super_block *get_super(struct block_device *); extern struct super_block *get_active_super(struct block_device *bdev); extern void drop_super(struct super_block *sb); extern void drop_super_exclusive(struct super_block *sb); extern void iterate_supers(void (*)(struct super_block *, void *), void *); extern void iterate_supers_type(struct file_system_type *, void (*)(struct super_block *, void *), void *); extern int dcache_dir_open(struct inode *, struct file *); extern int dcache_dir_close(struct inode *, struct file *); extern loff_t dcache_dir_lseek(struct file *, loff_t, int); extern int dcache_readdir(struct file *, struct dir_context *); extern int simple_setattr(struct user_namespace *, struct dentry *, struct iattr *); extern int simple_getattr(struct user_namespace *, const struct path *, struct kstat *, u32, unsigned int); extern int simple_statfs(struct dentry *, struct kstatfs *); extern int simple_open(struct inode *inode, struct file *file); extern int simple_link(struct dentry *, struct inode *, struct dentry *); extern int simple_unlink(struct inode *, struct dentry *); extern int simple_rmdir(struct inode *, struct dentry *); extern int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry); extern int simple_rename(struct user_namespace *, struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); extern void simple_recursive_removal(struct dentry *, void (*callback)(struct dentry *)); extern int noop_fsync(struct file *, loff_t, loff_t, int); extern ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter); extern int simple_empty(struct dentry *); extern int simple_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, struct page **pagep, void **fsdata); extern const struct address_space_operations ram_aops; extern int always_delete_dentry(const struct dentry *); extern struct inode *alloc_anon_inode(struct super_block *); extern int simple_nosetlease(struct file *, long, struct file_lock **, void **); extern const struct dentry_operations simple_dentry_operations; extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); extern const struct file_operations simple_dir_operations; extern const struct inode_operations simple_dir_inode_operations; extern void make_empty_dir_inode(struct inode *inode); extern bool is_empty_dir_inode(struct inode *inode); struct tree_descr { const char *name; const struct file_operations *ops; int mode; }; struct dentry *d_alloc_name(struct dentry *, const char *); extern int simple_fill_super(struct super_block *, unsigned long, const struct tree_descr *); extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); extern void simple_release_fs(struct vfsmount **mount, int *count); extern ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, const void *from, size_t available); extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, const void __user *from, size_t count); extern int __generic_file_fsync(struct file *, loff_t, loff_t, int); extern int generic_file_fsync(struct file *, loff_t, loff_t, int); extern int generic_check_addressable(unsigned, u64); extern void generic_set_encrypted_ci_d_ops(struct dentry *dentry); int may_setattr(struct user_namespace *mnt_userns, struct inode *inode, unsigned int ia_valid); int setattr_prepare(struct user_namespace *, struct dentry *, struct iattr *); extern int inode_newsize_ok(const struct inode *, loff_t offset); void setattr_copy(struct user_namespace *, struct inode *inode, const struct iattr *attr); extern int file_update_time(struct file *file); static inline bool vma_is_dax(const struct vm_area_struct *vma) { return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); } static inline bool vma_is_fsdax(struct vm_area_struct *vma) { struct inode *inode; if (!IS_ENABLED(CONFIG_FS_DAX) || !vma->vm_file) return false; if (!vma_is_dax(vma)) return false; inode = file_inode(vma->vm_file); if (S_ISCHR(inode->i_mode)) return false; /* device-dax */ return true; } static inline int iocb_flags(struct file *file) { int res = 0; if (file->f_flags & O_APPEND) res |= IOCB_APPEND; if (file->f_flags & O_DIRECT) res |= IOCB_DIRECT; if (file->f_flags & O_DSYNC) res |= IOCB_DSYNC; if (file->f_flags & __O_SYNC) res |= IOCB_SYNC; return res; } static inline int kiocb_set_rw_flags(struct kiocb *ki, rwf_t flags) { int kiocb_flags = 0; /* make sure there's no overlap between RWF and private IOCB flags */ BUILD_BUG_ON((__force int) RWF_SUPPORTED & IOCB_EVENTFD); if (!flags) return 0; if (unlikely(flags & ~RWF_SUPPORTED)) return -EOPNOTSUPP; if (flags & RWF_NOWAIT) { if (!(ki->ki_filp->f_mode & FMODE_NOWAIT)) return -EOPNOTSUPP; kiocb_flags |= IOCB_NOIO; } kiocb_flags |= (__force int) (flags & RWF_SUPPORTED); if (flags & RWF_SYNC) kiocb_flags |= IOCB_DSYNC; ki->ki_flags |= kiocb_flags; return 0; } static inline ino_t parent_ino(struct dentry *dentry) { ino_t res; /* * Don't strictly need d_lock here? If the parent ino could change * then surely we'd have a deeper race in the caller? */ spin_lock(&dentry->d_lock); res = dentry->d_parent->d_inode->i_ino; spin_unlock(&dentry->d_lock); return res; } /* Transaction based IO helpers */ /* * An argresp is stored in an allocated page and holds the * size of the argument or response, along with its content */ struct simple_transaction_argresp { ssize_t size; char data[]; }; #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) char *simple_transaction_get(struct file *file, const char __user *buf, size_t size); ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos); int simple_transaction_release(struct inode *inode, struct file *file); void simple_transaction_set(struct file *file, size_t n); /* * simple attribute files * * These attributes behave similar to those in sysfs: * * Writing to an attribute immediately sets a value, an open file can be * written to multiple times. * * Reading from an attribute creates a buffer from the value that might get * read with multiple read calls. When the attribute has been read * completely, no further read calls are possible until the file is opened * again. * * All attributes contain a text representation of a numeric value * that are accessed with the get() and set() functions. */ #define DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, __is_signed) \ static int __fops ## _open(struct inode *inode, struct file *file) \ { \ __simple_attr_check_format(__fmt, 0ull); \ return simple_attr_open(inode, file, __get, __set, __fmt); \ } \ static const struct file_operations __fops = { \ .owner = THIS_MODULE, \ .open = __fops ## _open, \ .release = simple_attr_release, \ .read = simple_attr_read, \ .write = (__is_signed) ? simple_attr_write_signed : simple_attr_write, \ .llseek = generic_file_llseek, \ } #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, false) #define DEFINE_SIMPLE_ATTRIBUTE_SIGNED(__fops, __get, __set, __fmt) \ DEFINE_SIMPLE_ATTRIBUTE_XSIGNED(__fops, __get, __set, __fmt, true) static inline __printf(1, 2) void __simple_attr_check_format(const char *fmt, ...) { /* don't do anything, just let the compiler check the arguments; */ } int simple_attr_open(struct inode *inode, struct file *file, int (*get)(void *, u64 *), int (*set)(void *, u64), const char *fmt); int simple_attr_release(struct inode *inode, struct file *file); ssize_t simple_attr_read(struct file *file, char __user *buf, size_t len, loff_t *ppos); ssize_t simple_attr_write(struct file *file, const char __user *buf, size_t len, loff_t *ppos); ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, size_t len, loff_t *ppos); struct ctl_table; int __init list_bdev_fs_names(char *buf, size_t size); #define __FMODE_EXEC ((__force int) FMODE_EXEC) #define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY) #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \ (flag & __FMODE_NONOTIFY))) static inline bool is_sxid(umode_t mode) { return mode & (S_ISUID | S_ISGID); } static inline int check_sticky(struct user_namespace *mnt_userns, struct inode *dir, struct inode *inode) { if (!(dir->i_mode & S_ISVTX)) return 0; return __check_sticky(mnt_userns, dir, inode); } static inline void inode_has_no_xattr(struct inode *inode) { if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & SB_NOSEC)) inode->i_flags |= S_NOSEC; } static inline bool is_root_inode(struct inode *inode) { return inode == inode->i_sb->s_root->d_inode; } static inline bool dir_emit(struct dir_context *ctx, const char *name, int namelen, u64 ino, unsigned type) { return ctx->actor(ctx, name, namelen, ctx->pos, ino, type); } static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) { return ctx->actor(ctx, ".", 1, ctx->pos, file->f_path.dentry->d_inode->i_ino, DT_DIR); } static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) { return ctx->actor(ctx, "..", 2, ctx->pos, parent_ino(file->f_path.dentry), DT_DIR); } static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) { if (ctx->pos == 0) { if (!dir_emit_dot(file, ctx)) return false; ctx->pos = 1; } if (ctx->pos == 1) { if (!dir_emit_dotdot(file, ctx)) return false; ctx->pos = 2; } return true; } static inline bool dir_relax(struct inode *inode) { inode_unlock(inode); inode_lock(inode); return !IS_DEADDIR(inode); } static inline bool dir_relax_shared(struct inode *inode) { inode_unlock_shared(inode); inode_lock_shared(inode); return !IS_DEADDIR(inode); } extern bool path_noexec(const struct path *path); extern void inode_nohighmem(struct inode *inode); /* mm/fadvise.c */ extern int vfs_fadvise(struct file *file, loff_t offset, loff_t len, int advice); extern int generic_fadvise(struct file *file, loff_t offset, loff_t len, int advice); #endif /* _LINUX_FS_H */