// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved. * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved. * Copyright (C) 2013 Red Hat * Author: Rob Clark */ #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dpu_kms.h" #include "dpu_hw_lm.h" #include "dpu_hw_ctl.h" #include "dpu_hw_dspp.h" #include "dpu_crtc.h" #include "dpu_plane.h" #include "dpu_encoder.h" #include "dpu_vbif.h" #include "dpu_core_perf.h" #include "dpu_trace.h" /* layer mixer index on dpu_crtc */ #define LEFT_MIXER 0 #define RIGHT_MIXER 1 /* timeout in ms waiting for frame done */ #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60 #define CONVERT_S3_15(val) \ (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0)) static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc) { struct msm_drm_private *priv = crtc->dev->dev_private; return to_dpu_kms(priv->kms); } static void dpu_crtc_destroy(struct drm_crtc *crtc) { struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); if (!crtc) return; drm_crtc_cleanup(crtc); kfree(dpu_crtc); } static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc) { struct drm_device *dev = crtc->dev; struct drm_encoder *encoder; drm_for_each_encoder(encoder, dev) if (encoder->crtc == crtc) return encoder; return NULL; } static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name) { if (!src_name || !strcmp(src_name, "none")) return DPU_CRTC_CRC_SOURCE_NONE; if (!strcmp(src_name, "auto") || !strcmp(src_name, "lm")) return DPU_CRTC_CRC_SOURCE_LAYER_MIXER; if (!strcmp(src_name, "encoder")) return DPU_CRTC_CRC_SOURCE_ENCODER; return DPU_CRTC_CRC_SOURCE_INVALID; } static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc, const char *src_name, size_t *values_cnt) { enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name); struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state); if (source < 0) { DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index); return -EINVAL; } if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) { *values_cnt = crtc_state->num_mixers; } else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) { struct drm_encoder *drm_enc; *values_cnt = 0; drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) *values_cnt += dpu_encoder_get_crc_values_cnt(drm_enc); } return 0; } static void dpu_crtc_setup_lm_misr(struct dpu_crtc_state *crtc_state) { struct dpu_crtc_mixer *m; int i; for (i = 0; i < crtc_state->num_mixers; ++i) { m = &crtc_state->mixers[i]; if (!m->hw_lm || !m->hw_lm->ops.setup_misr) continue; /* Calculate MISR over 1 frame */ m->hw_lm->ops.setup_misr(m->hw_lm, true, 1); } } static void dpu_crtc_setup_encoder_misr(struct drm_crtc *crtc) { struct drm_encoder *drm_enc; drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) dpu_encoder_setup_misr(drm_enc); } static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name) { enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name); enum dpu_crtc_crc_source current_source; struct dpu_crtc_state *crtc_state; struct drm_device *drm_dev = crtc->dev; bool was_enabled; bool enable = false; int ret = 0; if (source < 0) { DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index); return -EINVAL; } ret = drm_modeset_lock(&crtc->mutex, NULL); if (ret) return ret; enable = (source != DPU_CRTC_CRC_SOURCE_NONE); crtc_state = to_dpu_crtc_state(crtc->state); spin_lock_irq(&drm_dev->event_lock); current_source = crtc_state->crc_source; spin_unlock_irq(&drm_dev->event_lock); was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE); if (!was_enabled && enable) { ret = drm_crtc_vblank_get(crtc); if (ret) goto cleanup; } else if (was_enabled && !enable) { drm_crtc_vblank_put(crtc); } spin_lock_irq(&drm_dev->event_lock); crtc_state->crc_source = source; spin_unlock_irq(&drm_dev->event_lock); crtc_state->crc_frame_skip_count = 0; if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) dpu_crtc_setup_lm_misr(crtc_state); else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) dpu_crtc_setup_encoder_misr(crtc); else ret = -EINVAL; cleanup: drm_modeset_unlock(&crtc->mutex); return ret; } static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc) { struct drm_encoder *encoder = get_encoder_from_crtc(crtc); if (!encoder) { DRM_ERROR("no encoder found for crtc %d\n", crtc->index); return 0; } return dpu_encoder_get_vsync_count(encoder); } static int dpu_crtc_get_lm_crc(struct drm_crtc *crtc, struct dpu_crtc_state *crtc_state) { struct dpu_crtc_mixer *m; u32 crcs[CRTC_DUAL_MIXERS]; int rc = 0; int i; BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers)); for (i = 0; i < crtc_state->num_mixers; ++i) { m = &crtc_state->mixers[i]; if (!m->hw_lm || !m->hw_lm->ops.collect_misr) continue; rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]); if (rc) { if (rc != -ENODATA) DRM_DEBUG_DRIVER("MISR read failed\n"); return rc; } } return drm_crtc_add_crc_entry(crtc, true, drm_crtc_accurate_vblank_count(crtc), crcs); } static int dpu_crtc_get_encoder_crc(struct drm_crtc *crtc) { struct drm_encoder *drm_enc; int rc, pos = 0; u32 crcs[INTF_MAX]; drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) { rc = dpu_encoder_get_crc(drm_enc, crcs, pos); if (rc < 0) { if (rc != -ENODATA) DRM_DEBUG_DRIVER("MISR read failed\n"); return rc; } pos += rc; } return drm_crtc_add_crc_entry(crtc, true, drm_crtc_accurate_vblank_count(crtc), crcs); } static int dpu_crtc_get_crc(struct drm_crtc *crtc) { struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state); /* Skip first 2 frames in case of "uncooked" CRCs */ if (crtc_state->crc_frame_skip_count < 2) { crtc_state->crc_frame_skip_count++; return 0; } if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) return dpu_crtc_get_lm_crc(crtc, crtc_state); else if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_ENCODER) return dpu_crtc_get_encoder_crc(crtc); return -EINVAL; } static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc, bool in_vblank_irq, int *vpos, int *hpos, ktime_t *stime, ktime_t *etime, const struct drm_display_mode *mode) { unsigned int pipe = crtc->index; struct drm_encoder *encoder; int line, vsw, vbp, vactive_start, vactive_end, vfp_end; encoder = get_encoder_from_crtc(crtc); if (!encoder) { DRM_ERROR("no encoder found for crtc %d\n", pipe); return false; } vsw = mode->crtc_vsync_end - mode->crtc_vsync_start; vbp = mode->crtc_vtotal - mode->crtc_vsync_end; /* * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at * the end of VFP. Translate the porch values relative to the line * counter positions. */ vactive_start = vsw + vbp + 1; vactive_end = vactive_start + mode->crtc_vdisplay; /* last scan line before VSYNC */ vfp_end = mode->crtc_vtotal; if (stime) *stime = ktime_get(); line = dpu_encoder_get_linecount(encoder); if (line < vactive_start) line -= vactive_start; else if (line > vactive_end) line = line - vfp_end - vactive_start; else line -= vactive_start; *vpos = line; *hpos = 0; if (etime) *etime = ktime_get(); return true; } static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer, struct dpu_plane_state *pstate, struct dpu_format *format) { struct dpu_hw_mixer *lm = mixer->hw_lm; uint32_t blend_op; uint32_t fg_alpha, bg_alpha; fg_alpha = pstate->base.alpha >> 8; bg_alpha = 0xff - fg_alpha; /* default to opaque blending */ if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE || !format->alpha_enable) { blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | DPU_BLEND_BG_ALPHA_BG_CONST; } else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) { blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | DPU_BLEND_BG_ALPHA_FG_PIXEL; if (fg_alpha != 0xff) { bg_alpha = fg_alpha; blend_op |= DPU_BLEND_BG_MOD_ALPHA | DPU_BLEND_BG_INV_MOD_ALPHA; } else { blend_op |= DPU_BLEND_BG_INV_ALPHA; } } else { /* coverage blending */ blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL | DPU_BLEND_BG_ALPHA_FG_PIXEL; if (fg_alpha != 0xff) { bg_alpha = fg_alpha; blend_op |= DPU_BLEND_FG_MOD_ALPHA | DPU_BLEND_FG_INV_MOD_ALPHA | DPU_BLEND_BG_MOD_ALPHA | DPU_BLEND_BG_INV_MOD_ALPHA; } else { blend_op |= DPU_BLEND_BG_INV_ALPHA; } } lm->ops.setup_blend_config(lm, pstate->stage, fg_alpha, bg_alpha, blend_op); DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n", &format->base.pixel_format, format->alpha_enable, blend_op); } static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc) { struct dpu_crtc_state *crtc_state; int lm_idx, lm_horiz_position; crtc_state = to_dpu_crtc_state(crtc->state); lm_horiz_position = 0; for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) { const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx]; struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm; struct dpu_hw_mixer_cfg cfg; if (!lm_roi || !drm_rect_visible(lm_roi)) continue; cfg.out_width = drm_rect_width(lm_roi); cfg.out_height = drm_rect_height(lm_roi); cfg.right_mixer = lm_horiz_position++; cfg.flags = 0; hw_lm->ops.setup_mixer_out(hw_lm, &cfg); } } static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc, struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer, struct dpu_hw_stage_cfg *stage_cfg) { struct drm_plane *plane; struct drm_framebuffer *fb; struct drm_plane_state *state; struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); struct dpu_plane_state *pstate = NULL; struct dpu_format *format; struct dpu_hw_ctl *ctl = mixer->lm_ctl; uint32_t stage_idx, lm_idx; int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 }; bool bg_alpha_enable = false; DECLARE_BITMAP(fetch_active, SSPP_MAX); memset(fetch_active, 0, sizeof(fetch_active)); drm_atomic_crtc_for_each_plane(plane, crtc) { enum dpu_sspp sspp_idx; state = plane->state; if (!state) continue; if (!state->visible) continue; pstate = to_dpu_plane_state(state); fb = state->fb; sspp_idx = dpu_plane_pipe(plane); set_bit(sspp_idx, fetch_active); DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d\n", crtc->base.id, pstate->stage, plane->base.id, sspp_idx - SSPP_VIG0, state->fb ? state->fb->base.id : -1); format = to_dpu_format(msm_framebuffer_format(pstate->base.fb)); if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable) bg_alpha_enable = true; stage_idx = zpos_cnt[pstate->stage]++; stage_cfg->stage[pstate->stage][stage_idx] = sspp_idx; stage_cfg->multirect_index[pstate->stage][stage_idx] = pstate->multirect_index; trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane), state, pstate, stage_idx, sspp_idx - SSPP_VIG0, format->base.pixel_format, fb ? fb->modifier : 0); /* blend config update */ for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) { _dpu_crtc_setup_blend_cfg(mixer + lm_idx, pstate, format); mixer[lm_idx].lm_ctl->ops.update_pending_flush_sspp(mixer[lm_idx].lm_ctl, sspp_idx); if (bg_alpha_enable && !format->alpha_enable) mixer[lm_idx].mixer_op_mode = 0; else mixer[lm_idx].mixer_op_mode |= 1 << pstate->stage; } } if (ctl->ops.set_active_pipes) ctl->ops.set_active_pipes(ctl, fetch_active); _dpu_crtc_program_lm_output_roi(crtc); } /** * _dpu_crtc_blend_setup - configure crtc mixers * @crtc: Pointer to drm crtc structure */ static void _dpu_crtc_blend_setup(struct drm_crtc *crtc) { struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); struct dpu_crtc_mixer *mixer = cstate->mixers; struct dpu_hw_ctl *ctl; struct dpu_hw_mixer *lm; struct dpu_hw_stage_cfg stage_cfg; int i; DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name); for (i = 0; i < cstate->num_mixers; i++) { mixer[i].mixer_op_mode = 0; if (mixer[i].lm_ctl->ops.clear_all_blendstages) mixer[i].lm_ctl->ops.clear_all_blendstages( mixer[i].lm_ctl); } /* initialize stage cfg */ memset(&stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg)); _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer, &stage_cfg); for (i = 0; i < cstate->num_mixers; i++) { ctl = mixer[i].lm_ctl; lm = mixer[i].hw_lm; lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode); /* stage config flush mask */ ctl->ops.update_pending_flush_mixer(ctl, mixer[i].hw_lm->idx); DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d\n", mixer[i].hw_lm->idx - LM_0, mixer[i].mixer_op_mode, ctl->idx - CTL_0); ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx, &stage_cfg); } } /** * _dpu_crtc_complete_flip - signal pending page_flip events * Any pending vblank events are added to the vblank_event_list * so that the next vblank interrupt shall signal them. * However PAGE_FLIP events are not handled through the vblank_event_list. * This API signals any pending PAGE_FLIP events requested through * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event. * @crtc: Pointer to drm crtc structure */ static void _dpu_crtc_complete_flip(struct drm_crtc *crtc) { struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); struct drm_device *dev = crtc->dev; unsigned long flags; spin_lock_irqsave(&dev->event_lock, flags); if (dpu_crtc->event) { DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name, dpu_crtc->event); trace_dpu_crtc_complete_flip(DRMID(crtc)); drm_crtc_send_vblank_event(crtc, dpu_crtc->event); dpu_crtc->event = NULL; } spin_unlock_irqrestore(&dev->event_lock, flags); } enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc) { struct drm_encoder *encoder; /* * TODO: This function is called from dpu debugfs and as part of atomic * check. When called from debugfs, the crtc->mutex must be held to * read crtc->state. However reading crtc->state from atomic check isn't * allowed (unless you have a good reason, a big comment, and a deep * understanding of how the atomic/modeset locks work (<- and this is * probably not possible)). So we'll keep the WARN_ON here for now, but * really we need to figure out a better way to track our operating mode */ WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); /* TODO: Returns the first INTF_MODE, could there be multiple values? */ drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) return dpu_encoder_get_intf_mode(encoder); return INTF_MODE_NONE; } void dpu_crtc_vblank_callback(struct drm_crtc *crtc) { struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); /* keep statistics on vblank callback - with auto reset via debugfs */ if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0) dpu_crtc->vblank_cb_time = ktime_get(); else dpu_crtc->vblank_cb_count++; dpu_crtc_get_crc(crtc); drm_crtc_handle_vblank(crtc); trace_dpu_crtc_vblank_cb(DRMID(crtc)); } static void dpu_crtc_frame_event_work(struct kthread_work *work) { struct dpu_crtc_frame_event *fevent = container_of(work, struct dpu_crtc_frame_event, work); struct drm_crtc *crtc = fevent->crtc; struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); unsigned long flags; bool frame_done = false; DPU_ATRACE_BEGIN("crtc_frame_event"); DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event, ktime_to_ns(fevent->ts)); if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE | DPU_ENCODER_FRAME_EVENT_ERROR | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { if (atomic_read(&dpu_crtc->frame_pending) < 1) { /* ignore vblank when not pending */ } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) { /* release bandwidth and other resources */ trace_dpu_crtc_frame_event_done(DRMID(crtc), fevent->event); dpu_core_perf_crtc_release_bw(crtc); } else { trace_dpu_crtc_frame_event_more_pending(DRMID(crtc), fevent->event); } if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE | DPU_ENCODER_FRAME_EVENT_ERROR)) frame_done = true; } if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD) DPU_ERROR("crtc%d ts:%lld received panel dead event\n", crtc->base.id, ktime_to_ns(fevent->ts)); if (frame_done) complete_all(&dpu_crtc->frame_done_comp); spin_lock_irqsave(&dpu_crtc->spin_lock, flags); list_add_tail(&fevent->list, &dpu_crtc->frame_event_list); spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); DPU_ATRACE_END("crtc_frame_event"); } /* * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module * registers this API to encoder for all frame event callbacks like * frame_error, frame_done, idle_timeout, etc. Encoder may call different events * from different context - IRQ, user thread, commit_thread, etc. Each event * should be carefully reviewed and should be processed in proper task context * to avoid schedulin delay or properly manage the irq context's bottom half * processing. */ static void dpu_crtc_frame_event_cb(void *data, u32 event) { struct drm_crtc *crtc = (struct drm_crtc *)data; struct dpu_crtc *dpu_crtc; struct msm_drm_private *priv; struct dpu_crtc_frame_event *fevent; unsigned long flags; u32 crtc_id; /* Nothing to do on idle event */ if (event & DPU_ENCODER_FRAME_EVENT_IDLE) return; dpu_crtc = to_dpu_crtc(crtc); priv = crtc->dev->dev_private; crtc_id = drm_crtc_index(crtc); trace_dpu_crtc_frame_event_cb(DRMID(crtc), event); spin_lock_irqsave(&dpu_crtc->spin_lock, flags); fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list, struct dpu_crtc_frame_event, list); if (fevent) list_del_init(&fevent->list); spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); if (!fevent) { DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event); return; } fevent->event = event; fevent->crtc = crtc; fevent->ts = ktime_get(); kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work); } void dpu_crtc_complete_commit(struct drm_crtc *crtc) { trace_dpu_crtc_complete_commit(DRMID(crtc)); dpu_core_perf_crtc_update(crtc, 0, false); _dpu_crtc_complete_flip(crtc); } static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); struct drm_display_mode *adj_mode = &state->adjusted_mode; u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers; int i; for (i = 0; i < cstate->num_mixers; i++) { struct drm_rect *r = &cstate->lm_bounds[i]; r->x1 = crtc_split_width * i; r->y1 = 0; r->x2 = r->x1 + crtc_split_width; r->y2 = adj_mode->vdisplay; trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r); } } static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state, struct dpu_hw_pcc_cfg *cfg) { struct drm_color_ctm *ctm; memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg)); ctm = (struct drm_color_ctm *)state->ctm->data; if (!ctm) return; cfg->r.r = CONVERT_S3_15(ctm->matrix[0]); cfg->g.r = CONVERT_S3_15(ctm->matrix[1]); cfg->b.r = CONVERT_S3_15(ctm->matrix[2]); cfg->r.g = CONVERT_S3_15(ctm->matrix[3]); cfg->g.g = CONVERT_S3_15(ctm->matrix[4]); cfg->b.g = CONVERT_S3_15(ctm->matrix[5]); cfg->r.b = CONVERT_S3_15(ctm->matrix[6]); cfg->g.b = CONVERT_S3_15(ctm->matrix[7]); cfg->b.b = CONVERT_S3_15(ctm->matrix[8]); } static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc) { struct drm_crtc_state *state = crtc->state; struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); struct dpu_crtc_mixer *mixer = cstate->mixers; struct dpu_hw_pcc_cfg cfg; struct dpu_hw_ctl *ctl; struct dpu_hw_dspp *dspp; int i; if (!state->color_mgmt_changed) return; for (i = 0; i < cstate->num_mixers; i++) { ctl = mixer[i].lm_ctl; dspp = mixer[i].hw_dspp; if (!dspp || !dspp->ops.setup_pcc) continue; if (!state->ctm) { dspp->ops.setup_pcc(dspp, NULL); } else { _dpu_crtc_get_pcc_coeff(state, &cfg); dspp->ops.setup_pcc(dspp, &cfg); } /* stage config flush mask */ ctl->ops.update_pending_flush_dspp(ctl, mixer[i].hw_dspp->idx); } } static void dpu_crtc_atomic_begin(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); struct drm_encoder *encoder; if (!crtc->state->enable) { DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n", crtc->base.id, crtc->state->enable); return; } DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); _dpu_crtc_setup_lm_bounds(crtc, crtc->state); /* encoder will trigger pending mask now */ drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) dpu_encoder_trigger_kickoff_pending(encoder); /* * If no mixers have been allocated in dpu_crtc_atomic_check(), * it means we are trying to flush a CRTC whose state is disabled: * nothing else needs to be done. */ if (unlikely(!cstate->num_mixers)) return; _dpu_crtc_blend_setup(crtc); _dpu_crtc_setup_cp_blocks(crtc); /* * PP_DONE irq is only used by command mode for now. * It is better to request pending before FLUSH and START trigger * to make sure no pp_done irq missed. * This is safe because no pp_done will happen before SW trigger * in command mode. */ } static void dpu_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct dpu_crtc *dpu_crtc; struct drm_device *dev; struct drm_plane *plane; struct msm_drm_private *priv; unsigned long flags; struct dpu_crtc_state *cstate; if (!crtc->state->enable) { DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n", crtc->base.id, crtc->state->enable); return; } DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); dpu_crtc = to_dpu_crtc(crtc); cstate = to_dpu_crtc_state(crtc->state); dev = crtc->dev; priv = dev->dev_private; if (crtc->index >= ARRAY_SIZE(priv->event_thread)) { DPU_ERROR("invalid crtc index[%d]\n", crtc->index); return; } WARN_ON(dpu_crtc->event); spin_lock_irqsave(&dev->event_lock, flags); dpu_crtc->event = crtc->state->event; crtc->state->event = NULL; spin_unlock_irqrestore(&dev->event_lock, flags); /* * If no mixers has been allocated in dpu_crtc_atomic_check(), * it means we are trying to flush a CRTC whose state is disabled: * nothing else needs to be done. */ if (unlikely(!cstate->num_mixers)) return; /* update performance setting before crtc kickoff */ dpu_core_perf_crtc_update(crtc, 1, false); /* * Final plane updates: Give each plane a chance to complete all * required writes/flushing before crtc's "flush * everything" call below. */ drm_atomic_crtc_for_each_plane(plane, crtc) { if (dpu_crtc->smmu_state.transition_error) dpu_plane_set_error(plane, true); dpu_plane_flush(plane); } /* Kickoff will be scheduled by outer layer */ } /** * dpu_crtc_destroy_state - state destroy hook * @crtc: drm CRTC * @state: CRTC state object to release */ static void dpu_crtc_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *state) { struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); __drm_atomic_helper_crtc_destroy_state(state); kfree(cstate); } static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc) { struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); int ret, rc = 0; if (!atomic_read(&dpu_crtc->frame_pending)) { DRM_DEBUG_ATOMIC("no frames pending\n"); return 0; } DPU_ATRACE_BEGIN("frame done completion wait"); ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp, msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS)); if (!ret) { DRM_ERROR("frame done wait timed out, ret:%d\n", ret); rc = -ETIMEDOUT; } DPU_ATRACE_END("frame done completion wait"); return rc; } void dpu_crtc_commit_kickoff(struct drm_crtc *crtc) { struct drm_encoder *encoder; struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc); struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); /* * If no mixers has been allocated in dpu_crtc_atomic_check(), * it means we are trying to start a CRTC whose state is disabled: * nothing else needs to be done. */ if (unlikely(!cstate->num_mixers)) return; DPU_ATRACE_BEGIN("crtc_commit"); drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { if (!dpu_encoder_is_valid_for_commit(encoder)) { DRM_DEBUG_ATOMIC("invalid FB not kicking off crtc\n"); goto end; } } /* * Encoder will flush/start now, unless it has a tx pending. If so, it * may delay and flush at an irq event (e.g. ppdone) */ drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) dpu_encoder_prepare_for_kickoff(encoder); if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) { /* acquire bandwidth and other resources */ DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id); } else DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id); dpu_crtc->play_count++; dpu_vbif_clear_errors(dpu_kms); drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) dpu_encoder_kickoff(encoder); reinit_completion(&dpu_crtc->frame_done_comp); end: DPU_ATRACE_END("crtc_commit"); } static void dpu_crtc_reset(struct drm_crtc *crtc) { struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL); if (crtc->state) dpu_crtc_destroy_state(crtc, crtc->state); if (cstate) __drm_atomic_helper_crtc_reset(crtc, &cstate->base); else __drm_atomic_helper_crtc_reset(crtc, NULL); } /** * dpu_crtc_duplicate_state - state duplicate hook * @crtc: Pointer to drm crtc structure */ static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc) { struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state); cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL); if (!cstate) { DPU_ERROR("failed to allocate state\n"); return NULL; } /* duplicate base helper */ __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base); return &cstate->base; } static void dpu_crtc_atomic_print_state(struct drm_printer *p, const struct drm_crtc_state *state) { const struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); int i; for (i = 0; i < cstate->num_mixers; i++) { drm_printf(p, "\tlm[%d]=%d\n", i, cstate->mixers[i].hw_lm->idx - LM_0); drm_printf(p, "\tctl[%d]=%d\n", i, cstate->mixers[i].lm_ctl->idx - CTL_0); if (cstate->mixers[i].hw_dspp) drm_printf(p, "\tdspp[%d]=%d\n", i, cstate->mixers[i].hw_dspp->idx - DSPP_0); } } static void dpu_crtc_disable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc); struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); struct drm_encoder *encoder; unsigned long flags; bool release_bandwidth = false; DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); /* Disable/save vblank irq handling */ drm_crtc_vblank_off(crtc); drm_for_each_encoder_mask(encoder, crtc->dev, old_crtc_state->encoder_mask) { /* in video mode, we hold an extra bandwidth reference * as we cannot drop bandwidth at frame-done if any * crtc is being used in video mode. */ if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) release_bandwidth = true; dpu_encoder_assign_crtc(encoder, NULL); } /* wait for frame_event_done completion */ if (_dpu_crtc_wait_for_frame_done(crtc)) DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n", crtc->base.id, atomic_read(&dpu_crtc->frame_pending)); trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc); dpu_crtc->enabled = false; if (atomic_read(&dpu_crtc->frame_pending)) { trace_dpu_crtc_disable_frame_pending(DRMID(crtc), atomic_read(&dpu_crtc->frame_pending)); if (release_bandwidth) dpu_core_perf_crtc_release_bw(crtc); atomic_set(&dpu_crtc->frame_pending, 0); } dpu_core_perf_crtc_update(crtc, 0, true); drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) dpu_encoder_register_frame_event_callback(encoder, NULL, NULL); memset(cstate->mixers, 0, sizeof(cstate->mixers)); cstate->num_mixers = 0; /* disable clk & bw control until clk & bw properties are set */ cstate->bw_control = false; cstate->bw_split_vote = false; if (crtc->state->event && !crtc->state->active) { spin_lock_irqsave(&crtc->dev->event_lock, flags); drm_crtc_send_vblank_event(crtc, crtc->state->event); crtc->state->event = NULL; spin_unlock_irqrestore(&crtc->dev->event_lock, flags); } pm_runtime_put_sync(crtc->dev->dev); } static void dpu_crtc_enable(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); struct drm_encoder *encoder; bool request_bandwidth = false; pm_runtime_get_sync(crtc->dev->dev); DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { /* in video mode, we hold an extra bandwidth reference * as we cannot drop bandwidth at frame-done if any * crtc is being used in video mode. */ if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) request_bandwidth = true; dpu_encoder_register_frame_event_callback(encoder, dpu_crtc_frame_event_cb, (void *)crtc); } if (request_bandwidth) atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc); dpu_crtc->enabled = true; drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) dpu_encoder_assign_crtc(encoder, crtc); /* Enable/restore vblank irq handling */ drm_crtc_vblank_on(crtc); } struct plane_state { struct dpu_plane_state *dpu_pstate; const struct drm_plane_state *drm_pstate; int stage; u32 pipe_id; }; static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate) { struct drm_crtc *crtc = cstate->crtc; struct drm_encoder *encoder; drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) { if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) { return true; } } return false; } static int dpu_crtc_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state) { struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc); struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state); struct plane_state *pstates; const struct drm_plane_state *pstate; struct drm_plane *plane; struct drm_display_mode *mode; int cnt = 0, rc = 0, mixer_width = 0, i, z_pos; struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2]; int multirect_count = 0; const struct drm_plane_state *pipe_staged[SSPP_MAX]; int left_zpos_cnt = 0, right_zpos_cnt = 0; struct drm_rect crtc_rect = { 0 }; bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state); pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL); if (!pstates) return -ENOMEM; if (!crtc_state->enable || !crtc_state->active) { DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n", crtc->base.id, crtc_state->enable, crtc_state->active); memset(&cstate->new_perf, 0, sizeof(cstate->new_perf)); goto end; } mode = &crtc_state->adjusted_mode; DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name); /* force a full mode set if active state changed */ if (crtc_state->active_changed) crtc_state->mode_changed = true; memset(pipe_staged, 0, sizeof(pipe_staged)); if (cstate->num_mixers) { mixer_width = mode->hdisplay / cstate->num_mixers; _dpu_crtc_setup_lm_bounds(crtc, crtc_state); } crtc_rect.x2 = mode->hdisplay; crtc_rect.y2 = mode->vdisplay; /* get plane state for all drm planes associated with crtc state */ drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate); struct drm_rect dst, clip = crtc_rect; if (IS_ERR_OR_NULL(pstate)) { rc = PTR_ERR(pstate); DPU_ERROR("%s: failed to get plane%d state, %d\n", dpu_crtc->name, plane->base.id, rc); goto end; } if (cnt >= DPU_STAGE_MAX * 4) continue; if (!pstate->visible) continue; pstates[cnt].dpu_pstate = dpu_pstate; pstates[cnt].drm_pstate = pstate; pstates[cnt].stage = pstate->normalized_zpos; pstates[cnt].pipe_id = dpu_plane_pipe(plane); dpu_pstate->needs_dirtyfb = needs_dirtyfb; if (pipe_staged[pstates[cnt].pipe_id]) { multirect_plane[multirect_count].r0 = pipe_staged[pstates[cnt].pipe_id]; multirect_plane[multirect_count].r1 = pstate; multirect_count++; pipe_staged[pstates[cnt].pipe_id] = NULL; } else { pipe_staged[pstates[cnt].pipe_id] = pstate; } cnt++; dst = drm_plane_state_dest(pstate); if (!drm_rect_intersect(&clip, &dst)) { DPU_ERROR("invalid vertical/horizontal destination\n"); DPU_ERROR("display: " DRM_RECT_FMT " plane: " DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect), DRM_RECT_ARG(&dst)); rc = -E2BIG; goto end; } } for (i = 1; i < SSPP_MAX; i++) { if (pipe_staged[i]) dpu_plane_clear_multirect(pipe_staged[i]); } z_pos = -1; for (i = 0; i < cnt; i++) { /* reset counts at every new blend stage */ if (pstates[i].stage != z_pos) { left_zpos_cnt = 0; right_zpos_cnt = 0; z_pos = pstates[i].stage; } /* verify z_pos setting before using it */ if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) { DPU_ERROR("> %d plane stages assigned\n", DPU_STAGE_MAX - DPU_STAGE_0); rc = -EINVAL; goto end; } else if (pstates[i].drm_pstate->crtc_x < mixer_width) { if (left_zpos_cnt == 2) { DPU_ERROR("> 2 planes @ stage %d on left\n", z_pos); rc = -EINVAL; goto end; } left_zpos_cnt++; } else { if (right_zpos_cnt == 2) { DPU_ERROR("> 2 planes @ stage %d on right\n", z_pos); rc = -EINVAL; goto end; } right_zpos_cnt++; } pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0; DRM_DEBUG_ATOMIC("%s: zpos %d\n", dpu_crtc->name, z_pos); } for (i = 0; i < multirect_count; i++) { if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) { DPU_ERROR( "multirect validation failed for planes (%d - %d)\n", multirect_plane[i].r0->plane->base.id, multirect_plane[i].r1->plane->base.id); rc = -EINVAL; goto end; } } atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); rc = dpu_core_perf_crtc_check(crtc, crtc_state); if (rc) { DPU_ERROR("crtc%d failed performance check %d\n", crtc->base.id, rc); goto end; } /* validate source split: * use pstates sorted by stage to check planes on same stage * we assume that all pipes are in source split so its valid to compare * without taking into account left/right mixer placement */ for (i = 1; i < cnt; i++) { struct plane_state *prv_pstate, *cur_pstate; struct drm_rect left_rect, right_rect; int32_t left_pid, right_pid; int32_t stage; prv_pstate = &pstates[i - 1]; cur_pstate = &pstates[i]; if (prv_pstate->stage != cur_pstate->stage) continue; stage = cur_pstate->stage; left_pid = prv_pstate->dpu_pstate->base.plane->base.id; left_rect = drm_plane_state_dest(prv_pstate->drm_pstate); right_pid = cur_pstate->dpu_pstate->base.plane->base.id; right_rect = drm_plane_state_dest(cur_pstate->drm_pstate); if (right_rect.x1 < left_rect.x1) { swap(left_pid, right_pid); swap(left_rect, right_rect); } /** * - planes are enumerated in pipe-priority order such that * planes with lower drm_id must be left-most in a shared * blend-stage when using source split. * - planes in source split must be contiguous in width * - planes in source split must have same dest yoff and height */ if (right_pid < left_pid) { DPU_ERROR( "invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n", stage, left_pid, right_pid); rc = -EINVAL; goto end; } else if (right_rect.x1 != drm_rect_width(&left_rect)) { DPU_ERROR("non-contiguous coordinates for src split. " "stage: %d left: " DRM_RECT_FMT " right: " DRM_RECT_FMT "\n", stage, DRM_RECT_ARG(&left_rect), DRM_RECT_ARG(&right_rect)); rc = -EINVAL; goto end; } else if (left_rect.y1 != right_rect.y1 || drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) { DPU_ERROR("source split at stage: %d. invalid " "yoff/height: left: " DRM_RECT_FMT " right: " DRM_RECT_FMT "\n", stage, DRM_RECT_ARG(&left_rect), DRM_RECT_ARG(&right_rect)); rc = -EINVAL; goto end; } } end: kfree(pstates); return rc; } int dpu_crtc_vblank(struct drm_crtc *crtc, bool en) { struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); struct drm_encoder *enc; trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc); /* * Normally we would iterate through encoder_mask in crtc state to find * attached encoders. In this case, we might be disabling vblank _after_ * encoder_mask has been cleared. * * Instead, we "assign" a crtc to the encoder in enable and clear it in * disable (which is also after encoder_mask is cleared). So instead of * using encoder mask, we'll ask the encoder to toggle itself iff it's * currently assigned to our crtc. * * Note also that this function cannot be called while crtc is disabled * since we use drm_crtc_vblank_on/off. So we don't need to worry * about the assigned crtcs being inconsistent with the current state * (which means no need to worry about modeset locks). */ list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) { trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en, dpu_crtc); dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en); } return 0; } #ifdef CONFIG_DEBUG_FS static int _dpu_debugfs_status_show(struct seq_file *s, void *data) { struct dpu_crtc *dpu_crtc; struct dpu_plane_state *pstate = NULL; struct dpu_crtc_mixer *m; struct drm_crtc *crtc; struct drm_plane *plane; struct drm_display_mode *mode; struct drm_framebuffer *fb; struct drm_plane_state *state; struct dpu_crtc_state *cstate; int i, out_width; dpu_crtc = s->private; crtc = &dpu_crtc->base; drm_modeset_lock_all(crtc->dev); cstate = to_dpu_crtc_state(crtc->state); mode = &crtc->state->adjusted_mode; out_width = mode->hdisplay / cstate->num_mixers; seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id, mode->hdisplay, mode->vdisplay); seq_puts(s, "\n"); for (i = 0; i < cstate->num_mixers; ++i) { m = &cstate->mixers[i]; seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n", m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0, out_width, mode->vdisplay); } seq_puts(s, "\n"); drm_atomic_crtc_for_each_plane(plane, crtc) { pstate = to_dpu_plane_state(plane->state); state = plane->state; if (!pstate || !state) continue; seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id, pstate->stage); if (plane->state->fb) { fb = plane->state->fb; seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ", fb->base.id, (char *) &fb->format->format, fb->width, fb->height); for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i) seq_printf(s, "cpp[%d]:%u ", i, fb->format->cpp[i]); seq_puts(s, "\n\t"); seq_printf(s, "modifier:%8llu ", fb->modifier); seq_puts(s, "\n"); seq_puts(s, "\t"); for (i = 0; i < ARRAY_SIZE(fb->pitches); i++) seq_printf(s, "pitches[%d]:%8u ", i, fb->pitches[i]); seq_puts(s, "\n"); seq_puts(s, "\t"); for (i = 0; i < ARRAY_SIZE(fb->offsets); i++) seq_printf(s, "offsets[%d]:%8u ", i, fb->offsets[i]); seq_puts(s, "\n"); } seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n", state->src_x, state->src_y, state->src_w, state->src_h); seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n", state->crtc_x, state->crtc_y, state->crtc_w, state->crtc_h); seq_printf(s, "\tmultirect: mode: %d index: %d\n", pstate->multirect_mode, pstate->multirect_index); seq_puts(s, "\n"); } if (dpu_crtc->vblank_cb_count) { ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time); s64 diff_ms = ktime_to_ms(diff); s64 fps = diff_ms ? div_s64( dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0; seq_printf(s, "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n", fps, dpu_crtc->vblank_cb_count, ktime_to_ms(diff), dpu_crtc->play_count); /* reset time & count for next measurement */ dpu_crtc->vblank_cb_count = 0; dpu_crtc->vblank_cb_time = ktime_set(0, 0); } drm_modeset_unlock_all(crtc->dev); return 0; } DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status); static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v) { struct drm_crtc *crtc = (struct drm_crtc *) s->private; struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc)); seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc)); seq_printf(s, "core_clk_rate: %llu\n", dpu_crtc->cur_perf.core_clk_rate); seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl); seq_printf(s, "max_per_pipe_ib: %llu\n", dpu_crtc->cur_perf.max_per_pipe_ib); return 0; } DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state); static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) { struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); struct dentry *debugfs_root; debugfs_root = debugfs_create_dir(dpu_crtc->name, crtc->dev->primary->debugfs_root); debugfs_create_file("status", 0400, debugfs_root, dpu_crtc, &_dpu_debugfs_status_fops); debugfs_create_file("state", 0600, debugfs_root, &dpu_crtc->base, &dpu_crtc_debugfs_state_fops); return 0; } #else static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) { return 0; } #endif /* CONFIG_DEBUG_FS */ static int dpu_crtc_late_register(struct drm_crtc *crtc) { return _dpu_crtc_init_debugfs(crtc); } static const struct drm_crtc_funcs dpu_crtc_funcs = { .set_config = drm_atomic_helper_set_config, .destroy = dpu_crtc_destroy, .page_flip = drm_atomic_helper_page_flip, .reset = dpu_crtc_reset, .atomic_duplicate_state = dpu_crtc_duplicate_state, .atomic_destroy_state = dpu_crtc_destroy_state, .atomic_print_state = dpu_crtc_atomic_print_state, .late_register = dpu_crtc_late_register, .verify_crc_source = dpu_crtc_verify_crc_source, .set_crc_source = dpu_crtc_set_crc_source, .enable_vblank = msm_crtc_enable_vblank, .disable_vblank = msm_crtc_disable_vblank, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, .get_vblank_counter = dpu_crtc_get_vblank_counter, }; static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = { .atomic_disable = dpu_crtc_disable, .atomic_enable = dpu_crtc_enable, .atomic_check = dpu_crtc_atomic_check, .atomic_begin = dpu_crtc_atomic_begin, .atomic_flush = dpu_crtc_atomic_flush, .get_scanout_position = dpu_crtc_get_scanout_position, }; /* initialize crtc */ struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane, struct drm_plane *cursor) { struct msm_drm_private *priv = dev->dev_private; struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); struct drm_crtc *crtc = NULL; struct dpu_crtc *dpu_crtc = NULL; int i; dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL); if (!dpu_crtc) return ERR_PTR(-ENOMEM); crtc = &dpu_crtc->base; crtc->dev = dev; spin_lock_init(&dpu_crtc->spin_lock); atomic_set(&dpu_crtc->frame_pending, 0); init_completion(&dpu_crtc->frame_done_comp); INIT_LIST_HEAD(&dpu_crtc->frame_event_list); for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) { INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list); list_add(&dpu_crtc->frame_events[i].list, &dpu_crtc->frame_event_list); kthread_init_work(&dpu_crtc->frame_events[i].work, dpu_crtc_frame_event_work); } drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs, NULL); drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs); if (dpu_kms->catalog->dspp_count) drm_crtc_enable_color_mgmt(crtc, 0, true, 0); /* save user friendly CRTC name for later */ snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id); /* initialize event handling */ spin_lock_init(&dpu_crtc->event_lock); DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name); return crtc; }