/* * Copyright 2017 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Rafał Miłecki * Alex Deucher */ #include "amdgpu.h" #include "amdgpu_drv.h" #include "amdgpu_pm.h" #include "amdgpu_dpm.h" #include "atom.h" #include #include #include #include #include #include static const struct cg_flag_name clocks[] = { {AMD_CG_SUPPORT_GFX_FGCG, "Graphics Fine Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_MGCG, "Graphics Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_MGLS, "Graphics Medium Grain memory Light Sleep"}, {AMD_CG_SUPPORT_GFX_CGCG, "Graphics Coarse Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_CGLS, "Graphics Coarse Grain memory Light Sleep"}, {AMD_CG_SUPPORT_GFX_CGTS, "Graphics Coarse Grain Tree Shader Clock Gating"}, {AMD_CG_SUPPORT_GFX_CGTS_LS, "Graphics Coarse Grain Tree Shader Light Sleep"}, {AMD_CG_SUPPORT_GFX_CP_LS, "Graphics Command Processor Light Sleep"}, {AMD_CG_SUPPORT_GFX_RLC_LS, "Graphics Run List Controller Light Sleep"}, {AMD_CG_SUPPORT_GFX_3D_CGCG, "Graphics 3D Coarse Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_3D_CGLS, "Graphics 3D Coarse Grain memory Light Sleep"}, {AMD_CG_SUPPORT_MC_LS, "Memory Controller Light Sleep"}, {AMD_CG_SUPPORT_MC_MGCG, "Memory Controller Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_SDMA_LS, "System Direct Memory Access Light Sleep"}, {AMD_CG_SUPPORT_SDMA_MGCG, "System Direct Memory Access Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_BIF_MGCG, "Bus Interface Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_BIF_LS, "Bus Interface Light Sleep"}, {AMD_CG_SUPPORT_UVD_MGCG, "Unified Video Decoder Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_VCE_MGCG, "Video Compression Engine Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_HDP_LS, "Host Data Path Light Sleep"}, {AMD_CG_SUPPORT_HDP_MGCG, "Host Data Path Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_DRM_MGCG, "Digital Right Management Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_DRM_LS, "Digital Right Management Light Sleep"}, {AMD_CG_SUPPORT_ROM_MGCG, "Rom Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_DF_MGCG, "Data Fabric Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_VCN_MGCG, "VCN Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_HDP_DS, "Host Data Path Deep Sleep"}, {AMD_CG_SUPPORT_HDP_SD, "Host Data Path Shutdown"}, {AMD_CG_SUPPORT_IH_CG, "Interrupt Handler Clock Gating"}, {AMD_CG_SUPPORT_JPEG_MGCG, "JPEG Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_REPEATER_FGCG, "Repeater Fine Grain Clock Gating"}, {AMD_CG_SUPPORT_GFX_PERF_CLK, "Perfmon Clock Gating"}, {AMD_CG_SUPPORT_ATHUB_MGCG, "Address Translation Hub Medium Grain Clock Gating"}, {AMD_CG_SUPPORT_ATHUB_LS, "Address Translation Hub Light Sleep"}, {0, NULL}, }; static const struct hwmon_temp_label { enum PP_HWMON_TEMP channel; const char *label; } temp_label[] = { {PP_TEMP_EDGE, "edge"}, {PP_TEMP_JUNCTION, "junction"}, {PP_TEMP_MEM, "mem"}, }; const char * const amdgpu_pp_profile_name[] = { "BOOTUP_DEFAULT", "3D_FULL_SCREEN", "POWER_SAVING", "VIDEO", "VR", "COMPUTE", "CUSTOM", "WINDOW_3D", }; /** * DOC: power_dpm_state * * The power_dpm_state file is a legacy interface and is only provided for * backwards compatibility. The amdgpu driver provides a sysfs API for adjusting * certain power related parameters. The file power_dpm_state is used for this. * It accepts the following arguments: * * - battery * * - balanced * * - performance * * battery * * On older GPUs, the vbios provided a special power state for battery * operation. Selecting battery switched to this state. This is no * longer provided on newer GPUs so the option does nothing in that case. * * balanced * * On older GPUs, the vbios provided a special power state for balanced * operation. Selecting balanced switched to this state. This is no * longer provided on newer GPUs so the option does nothing in that case. * * performance * * On older GPUs, the vbios provided a special power state for performance * operation. Selecting performance switched to this state. This is no * longer provided on newer GPUs so the option does nothing in that case. * */ static ssize_t amdgpu_get_power_dpm_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amd_pm_state_type pm; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_dpm_get_current_power_state(adev, &pm); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return sysfs_emit(buf, "%s\n", (pm == POWER_STATE_TYPE_BATTERY) ? "battery" : (pm == POWER_STATE_TYPE_BALANCED) ? "balanced" : "performance"); } static ssize_t amdgpu_set_power_dpm_state(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amd_pm_state_type state; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (strncmp("battery", buf, strlen("battery")) == 0) state = POWER_STATE_TYPE_BATTERY; else if (strncmp("balanced", buf, strlen("balanced")) == 0) state = POWER_STATE_TYPE_BALANCED; else if (strncmp("performance", buf, strlen("performance")) == 0) state = POWER_STATE_TYPE_PERFORMANCE; else return -EINVAL; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_dpm_set_power_state(adev, state); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } /** * DOC: power_dpm_force_performance_level * * The amdgpu driver provides a sysfs API for adjusting certain power * related parameters. The file power_dpm_force_performance_level is * used for this. It accepts the following arguments: * * - auto * * - low * * - high * * - manual * * - profile_standard * * - profile_min_sclk * * - profile_min_mclk * * - profile_peak * * auto * * When auto is selected, the driver will attempt to dynamically select * the optimal power profile for current conditions in the driver. * * low * * When low is selected, the clocks are forced to the lowest power state. * * high * * When high is selected, the clocks are forced to the highest power state. * * manual * * When manual is selected, the user can manually adjust which power states * are enabled for each clock domain via the sysfs pp_dpm_mclk, pp_dpm_sclk, * and pp_dpm_pcie files and adjust the power state transition heuristics * via the pp_power_profile_mode sysfs file. * * profile_standard * profile_min_sclk * profile_min_mclk * profile_peak * * When the profiling modes are selected, clock and power gating are * disabled and the clocks are set for different profiling cases. This * mode is recommended for profiling specific work loads where you do * not want clock or power gating for clock fluctuation to interfere * with your results. profile_standard sets the clocks to a fixed clock * level which varies from asic to asic. profile_min_sclk forces the sclk * to the lowest level. profile_min_mclk forces the mclk to the lowest level. * profile_peak sets all clocks (mclk, sclk, pcie) to the highest levels. * */ static ssize_t amdgpu_get_power_dpm_force_performance_level(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amd_dpm_forced_level level = 0xff; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } level = amdgpu_dpm_get_performance_level(adev); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return sysfs_emit(buf, "%s\n", (level == AMD_DPM_FORCED_LEVEL_AUTO) ? "auto" : (level == AMD_DPM_FORCED_LEVEL_LOW) ? "low" : (level == AMD_DPM_FORCED_LEVEL_HIGH) ? "high" : (level == AMD_DPM_FORCED_LEVEL_MANUAL) ? "manual" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD) ? "profile_standard" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) ? "profile_min_sclk" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) ? "profile_min_mclk" : (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) ? "profile_peak" : (level == AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) ? "perf_determinism" : "unknown"); } static ssize_t amdgpu_set_power_dpm_force_performance_level(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amd_dpm_forced_level level; int ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (strncmp("low", buf, strlen("low")) == 0) { level = AMD_DPM_FORCED_LEVEL_LOW; } else if (strncmp("high", buf, strlen("high")) == 0) { level = AMD_DPM_FORCED_LEVEL_HIGH; } else if (strncmp("auto", buf, strlen("auto")) == 0) { level = AMD_DPM_FORCED_LEVEL_AUTO; } else if (strncmp("manual", buf, strlen("manual")) == 0) { level = AMD_DPM_FORCED_LEVEL_MANUAL; } else if (strncmp("profile_exit", buf, strlen("profile_exit")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_EXIT; } else if (strncmp("profile_standard", buf, strlen("profile_standard")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD; } else if (strncmp("profile_min_sclk", buf, strlen("profile_min_sclk")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK; } else if (strncmp("profile_min_mclk", buf, strlen("profile_min_mclk")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK; } else if (strncmp("profile_peak", buf, strlen("profile_peak")) == 0) { level = AMD_DPM_FORCED_LEVEL_PROFILE_PEAK; } else if (strncmp("perf_determinism", buf, strlen("perf_determinism")) == 0) { level = AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM; } else { return -EINVAL; } ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } mutex_lock(&adev->pm.stable_pstate_ctx_lock); if (amdgpu_dpm_force_performance_level(adev, level)) { pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); mutex_unlock(&adev->pm.stable_pstate_ctx_lock); return -EINVAL; } /* override whatever a user ctx may have set */ adev->pm.stable_pstate_ctx = NULL; mutex_unlock(&adev->pm.stable_pstate_ctx_lock); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } static ssize_t amdgpu_get_pp_num_states(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); struct pp_states_info data; uint32_t i; int buf_len, ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } if (amdgpu_dpm_get_pp_num_states(adev, &data)) memset(&data, 0, sizeof(data)); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); buf_len = sysfs_emit(buf, "states: %d\n", data.nums); for (i = 0; i < data.nums; i++) buf_len += sysfs_emit_at(buf, buf_len, "%d %s\n", i, (data.states[i] == POWER_STATE_TYPE_INTERNAL_BOOT) ? "boot" : (data.states[i] == POWER_STATE_TYPE_BATTERY) ? "battery" : (data.states[i] == POWER_STATE_TYPE_BALANCED) ? "balanced" : (data.states[i] == POWER_STATE_TYPE_PERFORMANCE) ? "performance" : "default"); return buf_len; } static ssize_t amdgpu_get_pp_cur_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); struct pp_states_info data = {0}; enum amd_pm_state_type pm = 0; int i = 0, ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_dpm_get_current_power_state(adev, &pm); ret = amdgpu_dpm_get_pp_num_states(adev, &data); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return ret; for (i = 0; i < data.nums; i++) { if (pm == data.states[i]) break; } if (i == data.nums) i = -EINVAL; return sysfs_emit(buf, "%d\n", i); } static ssize_t amdgpu_get_pp_force_state(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (adev->pm.pp_force_state_enabled) return amdgpu_get_pp_cur_state(dev, attr, buf); else return sysfs_emit(buf, "\n"); } static ssize_t amdgpu_set_pp_force_state(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amd_pm_state_type state = 0; struct pp_states_info data; unsigned long idx; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; adev->pm.pp_force_state_enabled = false; if (strlen(buf) == 1) return count; ret = kstrtoul(buf, 0, &idx); if (ret || idx >= ARRAY_SIZE(data.states)) return -EINVAL; idx = array_index_nospec(idx, ARRAY_SIZE(data.states)); ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_get_pp_num_states(adev, &data); if (ret) goto err_out; state = data.states[idx]; /* only set user selected power states */ if (state != POWER_STATE_TYPE_INTERNAL_BOOT && state != POWER_STATE_TYPE_DEFAULT) { ret = amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_ENABLE_USER_STATE, &state); if (ret) goto err_out; adev->pm.pp_force_state_enabled = true; } pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; err_out: pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return ret; } /** * DOC: pp_table * * The amdgpu driver provides a sysfs API for uploading new powerplay * tables. The file pp_table is used for this. Reading the file * will dump the current power play table. Writing to the file * will attempt to upload a new powerplay table and re-initialize * powerplay using that new table. * */ static ssize_t amdgpu_get_pp_table(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); char *table = NULL; int size, ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } size = amdgpu_dpm_get_pp_table(adev, &table); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (size <= 0) return size; if (size >= PAGE_SIZE) size = PAGE_SIZE - 1; memcpy(buf, table, size); return size; } static ssize_t amdgpu_set_pp_table(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_set_pp_table(adev, buf, count); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return ret; return count; } /** * DOC: pp_od_clk_voltage * * The amdgpu driver provides a sysfs API for adjusting the clocks and voltages * in each power level within a power state. The pp_od_clk_voltage is used for * this. * * Note that the actual memory controller clock rate are exposed, not * the effective memory clock of the DRAMs. To translate it, use the * following formula: * * Clock conversion (Mhz): * * HBM: effective_memory_clock = memory_controller_clock * 1 * * G5: effective_memory_clock = memory_controller_clock * 1 * * G6: effective_memory_clock = memory_controller_clock * 2 * * DRAM data rate (MT/s): * * HBM: effective_memory_clock * 2 = data_rate * * G5: effective_memory_clock * 4 = data_rate * * G6: effective_memory_clock * 8 = data_rate * * Bandwidth (MB/s): * * data_rate * vram_bit_width / 8 = memory_bandwidth * * Some examples: * * G5 on RX460: * * memory_controller_clock = 1750 Mhz * * effective_memory_clock = 1750 Mhz * 1 = 1750 Mhz * * data rate = 1750 * 4 = 7000 MT/s * * memory_bandwidth = 7000 * 128 bits / 8 = 112000 MB/s * * G6 on RX5700: * * memory_controller_clock = 875 Mhz * * effective_memory_clock = 875 Mhz * 2 = 1750 Mhz * * data rate = 1750 * 8 = 14000 MT/s * * memory_bandwidth = 14000 * 256 bits / 8 = 448000 MB/s * * < For Vega10 and previous ASICs > * * Reading the file will display: * * - a list of engine clock levels and voltages labeled OD_SCLK * * - a list of memory clock levels and voltages labeled OD_MCLK * * - a list of valid ranges for sclk, mclk, and voltage labeled OD_RANGE * * To manually adjust these settings, first select manual using * power_dpm_force_performance_level. Enter a new value for each * level by writing a string that contains "s/m level clock voltage" to * the file. E.g., "s 1 500 820" will update sclk level 1 to be 500 MHz * at 820 mV; "m 0 350 810" will update mclk level 0 to be 350 MHz at * 810 mV. When you have edited all of the states as needed, write * "c" (commit) to the file to commit your changes. If you want to reset to the * default power levels, write "r" (reset) to the file to reset them. * * * < For Vega20 and newer ASICs > * * Reading the file will display: * * - minimum and maximum engine clock labeled OD_SCLK * * - minimum(not available for Vega20 and Navi1x) and maximum memory * clock labeled OD_MCLK * * - three points labeled OD_VDDC_CURVE. * They can be used to calibrate the sclk voltage curve. * * - voltage offset(in mV) applied on target voltage calculation. * This is available for Sienna Cichlid, Navy Flounder and Dimgrey * Cavefish. For these ASICs, the target voltage calculation can be * illustrated by "voltage = voltage calculated from v/f curve + * overdrive vddgfx offset" * * - a list of valid ranges for sclk, mclk, and voltage curve points * labeled OD_RANGE * * < For APUs > * * Reading the file will display: * * - minimum and maximum engine clock labeled OD_SCLK * * - a list of valid ranges for sclk labeled OD_RANGE * * < For VanGogh > * * Reading the file will display: * * - minimum and maximum engine clock labeled OD_SCLK * - minimum and maximum core clocks labeled OD_CCLK * * - a list of valid ranges for sclk and cclk labeled OD_RANGE * * To manually adjust these settings: * * - First select manual using power_dpm_force_performance_level * * - For clock frequency setting, enter a new value by writing a * string that contains "s/m index clock" to the file. The index * should be 0 if to set minimum clock. And 1 if to set maximum * clock. E.g., "s 0 500" will update minimum sclk to be 500 MHz. * "m 1 800" will update maximum mclk to be 800Mhz. For core * clocks on VanGogh, the string contains "p core index clock". * E.g., "p 2 0 800" would set the minimum core clock on core * 2 to 800Mhz. * * For sclk voltage curve, enter the new values by writing a * string that contains "vc point clock voltage" to the file. The * points are indexed by 0, 1 and 2. E.g., "vc 0 300 600" will * update point1 with clock set as 300Mhz and voltage as * 600mV. "vc 2 1000 1000" will update point3 with clock set * as 1000Mhz and voltage 1000mV. * * To update the voltage offset applied for gfxclk/voltage calculation, * enter the new value by writing a string that contains "vo offset". * This is supported by Sienna Cichlid, Navy Flounder and Dimgrey Cavefish. * And the offset can be a positive or negative value. * * - When you have edited all of the states as needed, write "c" (commit) * to the file to commit your changes * * - If you want to reset to the default power levels, write "r" (reset) * to the file to reset them * */ static ssize_t amdgpu_set_pp_od_clk_voltage(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int ret; uint32_t parameter_size = 0; long parameter[64]; char buf_cpy[128]; char *tmp_str; char *sub_str; const char delimiter[3] = {' ', '\n', '\0'}; uint32_t type; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (count > 127) return -EINVAL; if (*buf == 's') type = PP_OD_EDIT_SCLK_VDDC_TABLE; else if (*buf == 'p') type = PP_OD_EDIT_CCLK_VDDC_TABLE; else if (*buf == 'm') type = PP_OD_EDIT_MCLK_VDDC_TABLE; else if(*buf == 'r') type = PP_OD_RESTORE_DEFAULT_TABLE; else if (*buf == 'c') type = PP_OD_COMMIT_DPM_TABLE; else if (!strncmp(buf, "vc", 2)) type = PP_OD_EDIT_VDDC_CURVE; else if (!strncmp(buf, "vo", 2)) type = PP_OD_EDIT_VDDGFX_OFFSET; else return -EINVAL; memcpy(buf_cpy, buf, count+1); tmp_str = buf_cpy; if ((type == PP_OD_EDIT_VDDC_CURVE) || (type == PP_OD_EDIT_VDDGFX_OFFSET)) tmp_str++; while (isspace(*++tmp_str)); while ((sub_str = strsep(&tmp_str, delimiter)) != NULL) { if (strlen(sub_str) == 0) continue; ret = kstrtol(sub_str, 0, ¶meter[parameter_size]); if (ret) return -EINVAL; parameter_size++; while (isspace(*tmp_str)) tmp_str++; } ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } if (amdgpu_dpm_set_fine_grain_clk_vol(adev, type, parameter, parameter_size)) goto err_out; if (amdgpu_dpm_odn_edit_dpm_table(adev, type, parameter, parameter_size)) goto err_out; if (type == PP_OD_COMMIT_DPM_TABLE) { if (amdgpu_dpm_dispatch_task(adev, AMD_PP_TASK_READJUST_POWER_STATE, NULL)) goto err_out; } pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; err_out: pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return -EINVAL; } static ssize_t amdgpu_get_pp_od_clk_voltage(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int size = 0; int ret; enum pp_clock_type od_clocks[6] = { OD_SCLK, OD_MCLK, OD_VDDC_CURVE, OD_RANGE, OD_VDDGFX_OFFSET, OD_CCLK, }; uint clk_index; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } for (clk_index = 0 ; clk_index < 6 ; clk_index++) { ret = amdgpu_dpm_emit_clock_levels(adev, od_clocks[clk_index], buf, &size); if (ret) break; } if (ret == -ENOENT) { size = amdgpu_dpm_print_clock_levels(adev, OD_SCLK, buf); size += amdgpu_dpm_print_clock_levels(adev, OD_MCLK, buf + size); size += amdgpu_dpm_print_clock_levels(adev, OD_VDDC_CURVE, buf + size); size += amdgpu_dpm_print_clock_levels(adev, OD_VDDGFX_OFFSET, buf + size); size += amdgpu_dpm_print_clock_levels(adev, OD_RANGE, buf + size); size += amdgpu_dpm_print_clock_levels(adev, OD_CCLK, buf + size); } if (size == 0) size = sysfs_emit(buf, "\n"); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } /** * DOC: pp_features * * The amdgpu driver provides a sysfs API for adjusting what powerplay * features to be enabled. The file pp_features is used for this. And * this is only available for Vega10 and later dGPUs. * * Reading back the file will show you the followings: * - Current ppfeature masks * - List of the all supported powerplay features with their naming, * bitmasks and enablement status('Y'/'N' means "enabled"/"disabled"). * * To manually enable or disable a specific feature, just set or clear * the corresponding bit from original ppfeature masks and input the * new ppfeature masks. */ static ssize_t amdgpu_set_pp_features(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint64_t featuremask; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = kstrtou64(buf, 0, &featuremask); if (ret) return -EINVAL; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_set_ppfeature_status(adev, featuremask); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return -EINVAL; return count; } static ssize_t amdgpu_get_pp_features(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); ssize_t size; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } size = amdgpu_dpm_get_ppfeature_status(adev, buf); if (size <= 0) size = sysfs_emit(buf, "\n"); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } /** * DOC: pp_dpm_sclk pp_dpm_mclk pp_dpm_socclk pp_dpm_fclk pp_dpm_dcefclk pp_dpm_pcie * * The amdgpu driver provides a sysfs API for adjusting what power levels * are enabled for a given power state. The files pp_dpm_sclk, pp_dpm_mclk, * pp_dpm_socclk, pp_dpm_fclk, pp_dpm_dcefclk and pp_dpm_pcie are used for * this. * * pp_dpm_socclk and pp_dpm_dcefclk interfaces are only available for * Vega10 and later ASICs. * pp_dpm_fclk interface is only available for Vega20 and later ASICs. * * Reading back the files will show you the available power levels within * the power state and the clock information for those levels. * * To manually adjust these states, first select manual using * power_dpm_force_performance_level. * Secondly, enter a new value for each level by inputing a string that * contains " echo xx xx xx > pp_dpm_sclk/mclk/pcie" * E.g., * * .. code-block:: bash * * echo "4 5 6" > pp_dpm_sclk * * will enable sclk levels 4, 5, and 6. * * NOTE: change to the dcefclk max dpm level is not supported now */ static ssize_t amdgpu_get_pp_dpm_clock(struct device *dev, enum pp_clock_type type, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int size = 0; int ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_emit_clock_levels(adev, type, buf, &size); if (ret == -ENOENT) size = amdgpu_dpm_print_clock_levels(adev, type, buf); if (size == 0) size = sysfs_emit(buf, "\n"); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } /* * Worst case: 32 bits individually specified, in octal at 12 characters * per line (+1 for \n). */ #define AMDGPU_MASK_BUF_MAX (32 * 13) static ssize_t amdgpu_read_mask(const char *buf, size_t count, uint32_t *mask) { int ret; unsigned long level; char *sub_str = NULL; char *tmp; char buf_cpy[AMDGPU_MASK_BUF_MAX + 1]; const char delimiter[3] = {' ', '\n', '\0'}; size_t bytes; *mask = 0; bytes = min(count, sizeof(buf_cpy) - 1); memcpy(buf_cpy, buf, bytes); buf_cpy[bytes] = '\0'; tmp = buf_cpy; while ((sub_str = strsep(&tmp, delimiter)) != NULL) { if (strlen(sub_str)) { ret = kstrtoul(sub_str, 0, &level); if (ret || level > 31) return -EINVAL; *mask |= 1 << level; } else break; } return 0; } static ssize_t amdgpu_set_pp_dpm_clock(struct device *dev, enum pp_clock_type type, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int ret; uint32_t mask = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = amdgpu_read_mask(buf, count, &mask); if (ret) return ret; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_force_clock_level(adev, type, mask); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (ret) return -EINVAL; return count; } static ssize_t amdgpu_get_pp_dpm_sclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_SCLK, buf); } static ssize_t amdgpu_set_pp_dpm_sclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_SCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_mclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_MCLK, buf); } static ssize_t amdgpu_set_pp_dpm_mclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_MCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_socclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_SOCCLK, buf); } static ssize_t amdgpu_set_pp_dpm_socclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_SOCCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_fclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_FCLK, buf); } static ssize_t amdgpu_set_pp_dpm_fclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_FCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_vclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_VCLK, buf); } static ssize_t amdgpu_set_pp_dpm_vclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_VCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_dclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_DCLK, buf); } static ssize_t amdgpu_set_pp_dpm_dclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_DCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_dcefclk(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_DCEFCLK, buf); } static ssize_t amdgpu_set_pp_dpm_dcefclk(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_DCEFCLK, buf, count); } static ssize_t amdgpu_get_pp_dpm_pcie(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_get_pp_dpm_clock(dev, PP_PCIE, buf); } static ssize_t amdgpu_set_pp_dpm_pcie(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return amdgpu_set_pp_dpm_clock(dev, PP_PCIE, buf, count); } static ssize_t amdgpu_get_pp_sclk_od(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint32_t value = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } value = amdgpu_dpm_get_sclk_od(adev); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return sysfs_emit(buf, "%d\n", value); } static ssize_t amdgpu_set_pp_sclk_od(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int ret; long int value; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = kstrtol(buf, 0, &value); if (ret) return -EINVAL; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_dpm_set_sclk_od(adev, (uint32_t)value); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } static ssize_t amdgpu_get_pp_mclk_od(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint32_t value = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } value = amdgpu_dpm_get_mclk_od(adev); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return sysfs_emit(buf, "%d\n", value); } static ssize_t amdgpu_set_pp_mclk_od(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int ret; long int value; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = kstrtol(buf, 0, &value); if (ret) return -EINVAL; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_dpm_set_mclk_od(adev, (uint32_t)value); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return count; } /** * DOC: pp_power_profile_mode * * The amdgpu driver provides a sysfs API for adjusting the heuristics * related to switching between power levels in a power state. The file * pp_power_profile_mode is used for this. * * Reading this file outputs a list of all of the predefined power profiles * and the relevant heuristics settings for that profile. * * To select a profile or create a custom profile, first select manual using * power_dpm_force_performance_level. Writing the number of a predefined * profile to pp_power_profile_mode will enable those heuristics. To * create a custom set of heuristics, write a string of numbers to the file * starting with the number of the custom profile along with a setting * for each heuristic parameter. Due to differences across asic families * the heuristic parameters vary from family to family. * */ static ssize_t amdgpu_get_pp_power_profile_mode(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); ssize_t size; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } size = amdgpu_dpm_get_power_profile_mode(adev, buf); if (size <= 0) size = sysfs_emit(buf, "\n"); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } static ssize_t amdgpu_set_pp_power_profile_mode(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint32_t parameter_size = 0; long parameter[64]; char *sub_str, buf_cpy[128]; char *tmp_str; uint32_t i = 0; char tmp[2]; long int profile_mode = 0; const char delimiter[3] = {' ', '\n', '\0'}; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; tmp[0] = *(buf); tmp[1] = '\0'; ret = kstrtol(tmp, 0, &profile_mode); if (ret) return -EINVAL; if (profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { if (count < 2 || count > 127) return -EINVAL; while (isspace(*++buf)) i++; memcpy(buf_cpy, buf, count-i); tmp_str = buf_cpy; while ((sub_str = strsep(&tmp_str, delimiter)) != NULL) { if (strlen(sub_str) == 0) continue; ret = kstrtol(sub_str, 0, ¶meter[parameter_size]); if (ret) return -EINVAL; parameter_size++; while (isspace(*tmp_str)) tmp_str++; } } parameter[parameter_size] = profile_mode; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } ret = amdgpu_dpm_set_power_profile_mode(adev, parameter, parameter_size); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (!ret) return count; return -EINVAL; } /** * DOC: gpu_busy_percent * * The amdgpu driver provides a sysfs API for reading how busy the GPU * is as a percentage. The file gpu_busy_percent is used for this. * The SMU firmware computes a percentage of load based on the * aggregate activity level in the IP cores. */ static ssize_t amdgpu_get_gpu_busy_percent(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int r, value, size = sizeof(value); if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(ddev->dev); return r; } /* read the IP busy sensor */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_LOAD, (void *)&value, &size); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (r) return r; return sysfs_emit(buf, "%d\n", value); } /** * DOC: mem_busy_percent * * The amdgpu driver provides a sysfs API for reading how busy the VRAM * is as a percentage. The file mem_busy_percent is used for this. * The SMU firmware computes a percentage of load based on the * aggregate activity level in the IP cores. */ static ssize_t amdgpu_get_mem_busy_percent(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int r, value, size = sizeof(value); if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(ddev->dev); return r; } /* read the IP busy sensor */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_LOAD, (void *)&value, &size); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); if (r) return r; return sysfs_emit(buf, "%d\n", value); } /** * DOC: pcie_bw * * The amdgpu driver provides a sysfs API for estimating how much data * has been received and sent by the GPU in the last second through PCIe. * The file pcie_bw is used for this. * The Perf counters count the number of received and sent messages and return * those values, as well as the maximum payload size of a PCIe packet (mps). * Note that it is not possible to easily and quickly obtain the size of each * packet transmitted, so we output the max payload size (mps) to allow for * quick estimation of the PCIe bandwidth usage */ static ssize_t amdgpu_get_pcie_bw(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint64_t count0 = 0, count1 = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (adev->flags & AMD_IS_APU) return -ENODATA; if (!adev->asic_funcs->get_pcie_usage) return -ENODATA; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } amdgpu_asic_get_pcie_usage(adev, &count0, &count1); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return sysfs_emit(buf, "%llu %llu %i\n", count0, count1, pcie_get_mps(adev->pdev)); } /** * DOC: unique_id * * The amdgpu driver provides a sysfs API for providing a unique ID for the GPU * The file unique_id is used for this. * This will provide a Unique ID that will persist from machine to machine * * NOTE: This will only work for GFX9 and newer. This file will be absent * on unsupported ASICs (GFX8 and older) */ static ssize_t amdgpu_get_unique_id(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (adev->unique_id) return sysfs_emit(buf, "%016llx\n", adev->unique_id); return 0; } /** * DOC: thermal_throttling_logging * * Thermal throttling pulls down the clock frequency and thus the performance. * It's an useful mechanism to protect the chip from overheating. Since it * impacts performance, the user controls whether it is enabled and if so, * the log frequency. * * Reading back the file shows you the status(enabled or disabled) and * the interval(in seconds) between each thermal logging. * * Writing an integer to the file, sets a new logging interval, in seconds. * The value should be between 1 and 3600. If the value is less than 1, * thermal logging is disabled. Values greater than 3600 are ignored. */ static ssize_t amdgpu_get_thermal_throttling_logging(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); return sysfs_emit(buf, "%s: thermal throttling logging %s, with interval %d seconds\n", adev_to_drm(adev)->unique, atomic_read(&adev->throttling_logging_enabled) ? "enabled" : "disabled", adev->throttling_logging_rs.interval / HZ + 1); } static ssize_t amdgpu_set_thermal_throttling_logging(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); long throttling_logging_interval; unsigned long flags; int ret = 0; ret = kstrtol(buf, 0, &throttling_logging_interval); if (ret) return ret; if (throttling_logging_interval > 3600) return -EINVAL; if (throttling_logging_interval > 0) { raw_spin_lock_irqsave(&adev->throttling_logging_rs.lock, flags); /* * Reset the ratelimit timer internals. * This can effectively restart the timer. */ adev->throttling_logging_rs.interval = (throttling_logging_interval - 1) * HZ; adev->throttling_logging_rs.begin = 0; adev->throttling_logging_rs.printed = 0; adev->throttling_logging_rs.missed = 0; raw_spin_unlock_irqrestore(&adev->throttling_logging_rs.lock, flags); atomic_set(&adev->throttling_logging_enabled, 1); } else { atomic_set(&adev->throttling_logging_enabled, 0); } return count; } /** * DOC: gpu_metrics * * The amdgpu driver provides a sysfs API for retrieving current gpu * metrics data. The file gpu_metrics is used for this. Reading the * file will dump all the current gpu metrics data. * * These data include temperature, frequency, engines utilization, * power consume, throttler status, fan speed and cpu core statistics( * available for APU only). That's it will give a snapshot of all sensors * at the same time. */ static ssize_t amdgpu_get_gpu_metrics(struct device *dev, struct device_attribute *attr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); void *gpu_metrics; ssize_t size = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(ddev->dev); if (ret < 0) { pm_runtime_put_autosuspend(ddev->dev); return ret; } size = amdgpu_dpm_get_gpu_metrics(adev, &gpu_metrics); if (size <= 0) goto out; if (size >= PAGE_SIZE) size = PAGE_SIZE - 1; memcpy(buf, gpu_metrics, size); out: pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return size; } static int amdgpu_device_read_powershift(struct amdgpu_device *adev, uint32_t *ss_power, bool dgpu_share) { struct drm_device *ddev = adev_to_drm(adev); uint32_t size; int r = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(ddev->dev); return r; } if (dgpu_share) r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_SS_DGPU_SHARE, (void *)ss_power, &size); else r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_SS_APU_SHARE, (void *)ss_power, &size); pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return r; } static int amdgpu_show_powershift_percent(struct device *dev, char *buf, bool dgpu_share) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); uint32_t ss_power; int r = 0, i; r = amdgpu_device_read_powershift(adev, &ss_power, dgpu_share); if (r == -EOPNOTSUPP) { /* sensor not available on dGPU, try to read from APU */ adev = NULL; mutex_lock(&mgpu_info.mutex); for (i = 0; i < mgpu_info.num_gpu; i++) { if (mgpu_info.gpu_ins[i].adev->flags & AMD_IS_APU) { adev = mgpu_info.gpu_ins[i].adev; break; } } mutex_unlock(&mgpu_info.mutex); if (adev) r = amdgpu_device_read_powershift(adev, &ss_power, dgpu_share); } if (!r) r = sysfs_emit(buf, "%u%%\n", ss_power); return r; } /** * DOC: smartshift_apu_power * * The amdgpu driver provides a sysfs API for reporting APU power * shift in percentage if platform supports smartshift. Value 0 means that * there is no powershift and values between [1-100] means that the power * is shifted to APU, the percentage of boost is with respect to APU power * limit on the platform. */ static ssize_t amdgpu_get_smartshift_apu_power(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_show_powershift_percent(dev, buf, false); } /** * DOC: smartshift_dgpu_power * * The amdgpu driver provides a sysfs API for reporting dGPU power * shift in percentage if platform supports smartshift. Value 0 means that * there is no powershift and values between [1-100] means that the power is * shifted to dGPU, the percentage of boost is with respect to dGPU power * limit on the platform. */ static ssize_t amdgpu_get_smartshift_dgpu_power(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_show_powershift_percent(dev, buf, true); } /** * DOC: smartshift_bias * * The amdgpu driver provides a sysfs API for reporting the * smartshift(SS2.0) bias level. The value ranges from -100 to 100 * and the default is 0. -100 sets maximum preference to APU * and 100 sets max perference to dGPU. */ static ssize_t amdgpu_get_smartshift_bias(struct device *dev, struct device_attribute *attr, char *buf) { int r = 0; r = sysfs_emit(buf, "%d\n", amdgpu_smartshift_bias); return r; } static ssize_t amdgpu_set_smartshift_bias(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); int r = 0; int bias = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(ddev->dev); if (r < 0) { pm_runtime_put_autosuspend(ddev->dev); return r; } r = kstrtoint(buf, 10, &bias); if (r) goto out; if (bias > AMDGPU_SMARTSHIFT_MAX_BIAS) bias = AMDGPU_SMARTSHIFT_MAX_BIAS; else if (bias < AMDGPU_SMARTSHIFT_MIN_BIAS) bias = AMDGPU_SMARTSHIFT_MIN_BIAS; amdgpu_smartshift_bias = bias; r = count; /* TODO: update bias level with SMU message */ out: pm_runtime_mark_last_busy(ddev->dev); pm_runtime_put_autosuspend(ddev->dev); return r; } static int ss_power_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, enum amdgpu_device_attr_states *states) { if (!amdgpu_device_supports_smart_shift(adev_to_drm(adev))) *states = ATTR_STATE_UNSUPPORTED; return 0; } static int ss_bias_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, enum amdgpu_device_attr_states *states) { uint32_t ss_power, size; if (!amdgpu_device_supports_smart_shift(adev_to_drm(adev))) *states = ATTR_STATE_UNSUPPORTED; else if (amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_SS_APU_SHARE, (void *)&ss_power, &size)) *states = ATTR_STATE_UNSUPPORTED; else if (amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_SS_DGPU_SHARE, (void *)&ss_power, &size)) *states = ATTR_STATE_UNSUPPORTED; return 0; } static struct amdgpu_device_attr amdgpu_device_attrs[] = { AMDGPU_DEVICE_ATTR_RW(power_dpm_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(power_dpm_force_performance_level, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(pp_num_states, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(pp_cur_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_force_state, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_table, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_sclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_mclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_socclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_fclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_vclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_dclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_dcefclk, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_dpm_pcie, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_sclk_od, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_mclk_od, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_power_profile_mode, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(pp_od_clk_voltage, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RO(gpu_busy_percent, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(mem_busy_percent, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(pcie_bw, ATTR_FLAG_BASIC), AMDGPU_DEVICE_ATTR_RW(pp_features, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(unique_id, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RW(thermal_throttling_logging, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(gpu_metrics, ATTR_FLAG_BASIC|ATTR_FLAG_ONEVF), AMDGPU_DEVICE_ATTR_RO(smartshift_apu_power, ATTR_FLAG_BASIC, .attr_update = ss_power_attr_update), AMDGPU_DEVICE_ATTR_RO(smartshift_dgpu_power, ATTR_FLAG_BASIC, .attr_update = ss_power_attr_update), AMDGPU_DEVICE_ATTR_RW(smartshift_bias, ATTR_FLAG_BASIC, .attr_update = ss_bias_attr_update), }; static int default_attr_update(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, enum amdgpu_device_attr_states *states) { struct device_attribute *dev_attr = &attr->dev_attr; uint32_t mp1_ver = adev->ip_versions[MP1_HWIP][0]; uint32_t gc_ver = adev->ip_versions[GC_HWIP][0]; const char *attr_name = dev_attr->attr.name; if (!(attr->flags & mask)) { *states = ATTR_STATE_UNSUPPORTED; return 0; } #define DEVICE_ATTR_IS(_name) (!strcmp(attr_name, #_name)) if (DEVICE_ATTR_IS(pp_dpm_socclk)) { if (gc_ver < IP_VERSION(9, 0, 0)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_dcefclk)) { if (gc_ver < IP_VERSION(9, 0, 0) || gc_ver == IP_VERSION(9, 4, 1) || gc_ver == IP_VERSION(9, 4, 2)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_fclk)) { if (mp1_ver < IP_VERSION(10, 0, 0)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_od_clk_voltage)) { *states = ATTR_STATE_UNSUPPORTED; if (amdgpu_dpm_is_overdrive_supported(adev)) *states = ATTR_STATE_SUPPORTED; } else if (DEVICE_ATTR_IS(mem_busy_percent)) { if (adev->flags & AMD_IS_APU || gc_ver == IP_VERSION(9, 0, 1)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pcie_bw)) { /* PCIe Perf counters won't work on APU nodes */ if (adev->flags & AMD_IS_APU) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(unique_id)) { switch (gc_ver) { case IP_VERSION(9, 0, 1): case IP_VERSION(9, 4, 0): case IP_VERSION(9, 4, 1): case IP_VERSION(9, 4, 2): case IP_VERSION(10, 3, 0): case IP_VERSION(11, 0, 0): case IP_VERSION(11, 0, 1): case IP_VERSION(11, 0, 2): *states = ATTR_STATE_SUPPORTED; break; default: *states = ATTR_STATE_UNSUPPORTED; } } else if (DEVICE_ATTR_IS(pp_features)) { if (adev->flags & AMD_IS_APU || gc_ver < IP_VERSION(9, 0, 0)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(gpu_metrics)) { if (gc_ver < IP_VERSION(9, 1, 0)) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_vclk)) { if (!(gc_ver == IP_VERSION(10, 3, 1) || gc_ver == IP_VERSION(10, 3, 0) || gc_ver == IP_VERSION(10, 1, 2) || gc_ver == IP_VERSION(11, 0, 0) || gc_ver == IP_VERSION(11, 0, 2) || gc_ver == IP_VERSION(11, 0, 3))) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_dpm_dclk)) { if (!(gc_ver == IP_VERSION(10, 3, 1) || gc_ver == IP_VERSION(10, 3, 0) || gc_ver == IP_VERSION(10, 1, 2) || gc_ver == IP_VERSION(11, 0, 0) || gc_ver == IP_VERSION(11, 0, 2) || gc_ver == IP_VERSION(11, 0, 3))) *states = ATTR_STATE_UNSUPPORTED; } else if (DEVICE_ATTR_IS(pp_power_profile_mode)) { if (amdgpu_dpm_get_power_profile_mode(adev, NULL) == -EOPNOTSUPP) *states = ATTR_STATE_UNSUPPORTED; else if (gc_ver == IP_VERSION(10, 3, 0) && amdgpu_sriov_vf(adev)) *states = ATTR_STATE_UNSUPPORTED; } switch (gc_ver) { case IP_VERSION(9, 4, 1): case IP_VERSION(9, 4, 2): /* the Mi series card does not support standalone mclk/socclk/fclk level setting */ if (DEVICE_ATTR_IS(pp_dpm_mclk) || DEVICE_ATTR_IS(pp_dpm_socclk) || DEVICE_ATTR_IS(pp_dpm_fclk)) { dev_attr->attr.mode &= ~S_IWUGO; dev_attr->store = NULL; } break; case IP_VERSION(10, 3, 0): if (DEVICE_ATTR_IS(power_dpm_force_performance_level) && amdgpu_sriov_vf(adev)) { dev_attr->attr.mode &= ~0222; dev_attr->store = NULL; } break; default: break; } if (DEVICE_ATTR_IS(pp_dpm_dcefclk)) { /* SMU MP1 does not support dcefclk level setting */ if (gc_ver >= IP_VERSION(10, 0, 0)) { dev_attr->attr.mode &= ~S_IWUGO; dev_attr->store = NULL; } } /* setting should not be allowed from VF if not in one VF mode */ if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev)) { dev_attr->attr.mode &= ~S_IWUGO; dev_attr->store = NULL; } #undef DEVICE_ATTR_IS return 0; } static int amdgpu_device_attr_create(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, struct list_head *attr_list) { int ret = 0; enum amdgpu_device_attr_states attr_states = ATTR_STATE_SUPPORTED; struct amdgpu_device_attr_entry *attr_entry; struct device_attribute *dev_attr; const char *name; int (*attr_update)(struct amdgpu_device *adev, struct amdgpu_device_attr *attr, uint32_t mask, enum amdgpu_device_attr_states *states) = default_attr_update; if (!attr) return -EINVAL; dev_attr = &attr->dev_attr; name = dev_attr->attr.name; attr_update = attr->attr_update ? attr->attr_update : default_attr_update; ret = attr_update(adev, attr, mask, &attr_states); if (ret) { dev_err(adev->dev, "failed to update device file %s, ret = %d\n", name, ret); return ret; } if (attr_states == ATTR_STATE_UNSUPPORTED) return 0; ret = device_create_file(adev->dev, dev_attr); if (ret) { dev_err(adev->dev, "failed to create device file %s, ret = %d\n", name, ret); } attr_entry = kmalloc(sizeof(*attr_entry), GFP_KERNEL); if (!attr_entry) return -ENOMEM; attr_entry->attr = attr; INIT_LIST_HEAD(&attr_entry->entry); list_add_tail(&attr_entry->entry, attr_list); return ret; } static void amdgpu_device_attr_remove(struct amdgpu_device *adev, struct amdgpu_device_attr *attr) { struct device_attribute *dev_attr = &attr->dev_attr; device_remove_file(adev->dev, dev_attr); } static void amdgpu_device_attr_remove_groups(struct amdgpu_device *adev, struct list_head *attr_list); static int amdgpu_device_attr_create_groups(struct amdgpu_device *adev, struct amdgpu_device_attr *attrs, uint32_t counts, uint32_t mask, struct list_head *attr_list) { int ret = 0; uint32_t i = 0; for (i = 0; i < counts; i++) { ret = amdgpu_device_attr_create(adev, &attrs[i], mask, attr_list); if (ret) goto failed; } return 0; failed: amdgpu_device_attr_remove_groups(adev, attr_list); return ret; } static void amdgpu_device_attr_remove_groups(struct amdgpu_device *adev, struct list_head *attr_list) { struct amdgpu_device_attr_entry *entry, *entry_tmp; if (list_empty(attr_list)) return ; list_for_each_entry_safe(entry, entry_tmp, attr_list, entry) { amdgpu_device_attr_remove(adev, entry->attr); list_del(&entry->entry); kfree(entry); } } static ssize_t amdgpu_hwmon_show_temp(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int channel = to_sensor_dev_attr(attr)->index; int r, temp = 0, size = sizeof(temp); if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (channel >= PP_TEMP_MAX) return -EINVAL; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } switch (channel) { case PP_TEMP_JUNCTION: /* get current junction temperature */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_HOTSPOT_TEMP, (void *)&temp, &size); break; case PP_TEMP_EDGE: /* get current edge temperature */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_EDGE_TEMP, (void *)&temp, &size); break; case PP_TEMP_MEM: /* get current memory temperature */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_TEMP, (void *)&temp, &size); break; default: r = -EINVAL; break; } pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (r) return r; return sysfs_emit(buf, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_temp_thresh(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int hyst = to_sensor_dev_attr(attr)->index; int temp; if (hyst) temp = adev->pm.dpm.thermal.min_temp; else temp = adev->pm.dpm.thermal.max_temp; return sysfs_emit(buf, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_hotspot_temp_thresh(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int hyst = to_sensor_dev_attr(attr)->index; int temp; if (hyst) temp = adev->pm.dpm.thermal.min_hotspot_temp; else temp = adev->pm.dpm.thermal.max_hotspot_crit_temp; return sysfs_emit(buf, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_mem_temp_thresh(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int hyst = to_sensor_dev_attr(attr)->index; int temp; if (hyst) temp = adev->pm.dpm.thermal.min_mem_temp; else temp = adev->pm.dpm.thermal.max_mem_crit_temp; return sysfs_emit(buf, "%d\n", temp); } static ssize_t amdgpu_hwmon_show_temp_label(struct device *dev, struct device_attribute *attr, char *buf) { int channel = to_sensor_dev_attr(attr)->index; if (channel >= PP_TEMP_MAX) return -EINVAL; return sysfs_emit(buf, "%s\n", temp_label[channel].label); } static ssize_t amdgpu_hwmon_show_temp_emergency(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int channel = to_sensor_dev_attr(attr)->index; int temp = 0; if (channel >= PP_TEMP_MAX) return -EINVAL; switch (channel) { case PP_TEMP_JUNCTION: temp = adev->pm.dpm.thermal.max_hotspot_emergency_temp; break; case PP_TEMP_EDGE: temp = adev->pm.dpm.thermal.max_edge_emergency_temp; break; case PP_TEMP_MEM: temp = adev->pm.dpm.thermal.max_mem_emergency_temp; break; } return sysfs_emit(buf, "%d\n", temp); } static ssize_t amdgpu_hwmon_get_pwm1_enable(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 pwm_mode = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (ret < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return ret; } ret = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (ret) return -EINVAL; return sysfs_emit(buf, "%u\n", pwm_mode); } static ssize_t amdgpu_hwmon_set_pwm1_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err, ret; int value; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = kstrtoint(buf, 10, &value); if (err) return err; ret = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (ret < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return ret; } ret = amdgpu_dpm_set_fan_control_mode(adev, value); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (ret) return -EINVAL; return count; } static ssize_t amdgpu_hwmon_get_pwm1_min(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%i\n", 0); } static ssize_t amdgpu_hwmon_get_pwm1_max(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%i\n", 255); } static ssize_t amdgpu_hwmon_set_pwm1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 value; u32 pwm_mode; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = kstrtou32(buf, 10, &value); if (err) return err; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode); if (err) goto out; if (pwm_mode != AMD_FAN_CTRL_MANUAL) { pr_info("manual fan speed control should be enabled first\n"); err = -EINVAL; goto out; } err = amdgpu_dpm_set_fan_speed_pwm(adev, value); out: pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return count; } static ssize_t amdgpu_hwmon_get_pwm1(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 speed = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_get_fan_speed_pwm(adev, &speed); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return sysfs_emit(buf, "%i\n", speed); } static ssize_t amdgpu_hwmon_get_fan1_input(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 speed = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_get_fan_speed_rpm(adev, &speed); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return sysfs_emit(buf, "%i\n", speed); } static ssize_t amdgpu_hwmon_get_fan1_min(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 min_rpm = 0; u32 size = sizeof(min_rpm); int r; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MIN_FAN_RPM, (void *)&min_rpm, &size); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (r) return r; return sysfs_emit(buf, "%d\n", min_rpm); } static ssize_t amdgpu_hwmon_get_fan1_max(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 max_rpm = 0; u32 size = sizeof(max_rpm); int r; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MAX_FAN_RPM, (void *)&max_rpm, &size); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (r) return r; return sysfs_emit(buf, "%d\n", max_rpm); } static ssize_t amdgpu_hwmon_get_fan1_target(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 rpm = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_get_fan_speed_rpm(adev, &rpm); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return sysfs_emit(buf, "%i\n", rpm); } static ssize_t amdgpu_hwmon_set_fan1_target(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; u32 value; u32 pwm_mode; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = kstrtou32(buf, 10, &value); if (err) return err; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode); if (err) goto out; if (pwm_mode != AMD_FAN_CTRL_MANUAL) { err = -ENODATA; goto out; } err = amdgpu_dpm_set_fan_speed_rpm(adev, value); out: pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return count; } static ssize_t amdgpu_hwmon_get_fan1_enable(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 pwm_mode = 0; int ret; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (ret < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return ret; } ret = amdgpu_dpm_get_fan_control_mode(adev, &pwm_mode); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (ret) return -EINVAL; return sysfs_emit(buf, "%i\n", pwm_mode == AMD_FAN_CTRL_AUTO ? 0 : 1); } static ssize_t amdgpu_hwmon_set_fan1_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int err; int value; u32 pwm_mode; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; err = kstrtoint(buf, 10, &value); if (err) return err; if (value == 0) pwm_mode = AMD_FAN_CTRL_AUTO; else if (value == 1) pwm_mode = AMD_FAN_CTRL_MANUAL; else return -EINVAL; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_set_fan_control_mode(adev, pwm_mode); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return -EINVAL; return count; } static ssize_t amdgpu_hwmon_show_vddgfx(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 vddgfx; int r, size = sizeof(vddgfx); if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } /* get the voltage */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDGFX, (void *)&vddgfx, &size); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (r) return r; return sysfs_emit(buf, "%d\n", vddgfx); } static ssize_t amdgpu_hwmon_show_vddgfx_label(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "vddgfx\n"); } static ssize_t amdgpu_hwmon_show_vddnb(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 vddnb; int r, size = sizeof(vddnb); if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; /* only APUs have vddnb */ if (!(adev->flags & AMD_IS_APU)) return -EINVAL; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } /* get the voltage */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDNB, (void *)&vddnb, &size); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (r) return r; return sysfs_emit(buf, "%d\n", vddnb); } static ssize_t amdgpu_hwmon_show_vddnb_label(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "vddnb\n"); } static ssize_t amdgpu_hwmon_show_power_avg(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); u32 query = 0; int r, size = sizeof(u32); unsigned uw; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } /* get the voltage */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_POWER, (void *)&query, &size); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (r) return r; /* convert to microwatts */ uw = (query >> 8) * 1000000 + (query & 0xff) * 1000; return sysfs_emit(buf, "%u\n", uw); } static ssize_t amdgpu_hwmon_show_power_cap_min(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%i\n", 0); } static ssize_t amdgpu_hwmon_show_power_cap_generic(struct device *dev, struct device_attribute *attr, char *buf, enum pp_power_limit_level pp_limit_level) { struct amdgpu_device *adev = dev_get_drvdata(dev); enum pp_power_type power_type = to_sensor_dev_attr(attr)->index; uint32_t limit; ssize_t size; int r; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } r = amdgpu_dpm_get_power_limit(adev, &limit, pp_limit_level, power_type); if (!r) size = sysfs_emit(buf, "%u\n", limit * 1000000); else size = sysfs_emit(buf, "\n"); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return size; } static ssize_t amdgpu_hwmon_show_power_cap_max(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_MAX); } static ssize_t amdgpu_hwmon_show_power_cap(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_CURRENT); } static ssize_t amdgpu_hwmon_show_power_cap_default(struct device *dev, struct device_attribute *attr, char *buf) { return amdgpu_hwmon_show_power_cap_generic(dev, attr, buf, PP_PWR_LIMIT_DEFAULT); } static ssize_t amdgpu_hwmon_show_power_label(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); uint32_t gc_ver = adev->ip_versions[GC_HWIP][0]; if (gc_ver == IP_VERSION(10, 3, 1)) return sysfs_emit(buf, "%s\n", to_sensor_dev_attr(attr)->index == PP_PWR_TYPE_FAST ? "fastPPT" : "slowPPT"); else return sysfs_emit(buf, "PPT\n"); } static ssize_t amdgpu_hwmon_set_power_cap(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct amdgpu_device *adev = dev_get_drvdata(dev); int limit_type = to_sensor_dev_attr(attr)->index; int err; u32 value; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; if (amdgpu_sriov_vf(adev)) return -EINVAL; err = kstrtou32(buf, 10, &value); if (err) return err; value = value / 1000000; /* convert to Watt */ value |= limit_type << 24; err = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (err < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return err; } err = amdgpu_dpm_set_power_limit(adev, value); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (err) return err; return count; } static ssize_t amdgpu_hwmon_show_sclk(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); uint32_t sclk; int r, size = sizeof(sclk); if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } /* get the sclk */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_SCLK, (void *)&sclk, &size); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (r) return r; return sysfs_emit(buf, "%u\n", sclk * 10 * 1000); } static ssize_t amdgpu_hwmon_show_sclk_label(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "sclk\n"); } static ssize_t amdgpu_hwmon_show_mclk(struct device *dev, struct device_attribute *attr, char *buf) { struct amdgpu_device *adev = dev_get_drvdata(dev); uint32_t mclk; int r, size = sizeof(mclk); if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(adev_to_drm(adev)->dev); if (r < 0) { pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); return r; } /* get the sclk */ r = amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_MCLK, (void *)&mclk, &size); pm_runtime_mark_last_busy(adev_to_drm(adev)->dev); pm_runtime_put_autosuspend(adev_to_drm(adev)->dev); if (r) return r; return sysfs_emit(buf, "%u\n", mclk * 10 * 1000); } static ssize_t amdgpu_hwmon_show_mclk_label(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "mclk\n"); } /** * DOC: hwmon * * The amdgpu driver exposes the following sensor interfaces: * * - GPU temperature (via the on-die sensor) * * - GPU voltage * * - Northbridge voltage (APUs only) * * - GPU power * * - GPU fan * * - GPU gfx/compute engine clock * * - GPU memory clock (dGPU only) * * hwmon interfaces for GPU temperature: * * - temp[1-3]_input: the on die GPU temperature in millidegrees Celsius * - temp2_input and temp3_input are supported on SOC15 dGPUs only * * - temp[1-3]_label: temperature channel label * - temp2_label and temp3_label are supported on SOC15 dGPUs only * * - temp[1-3]_crit: temperature critical max value in millidegrees Celsius * - temp2_crit and temp3_crit are supported on SOC15 dGPUs only * * - temp[1-3]_crit_hyst: temperature hysteresis for critical limit in millidegrees Celsius * - temp2_crit_hyst and temp3_crit_hyst are supported on SOC15 dGPUs only * * - temp[1-3]_emergency: temperature emergency max value(asic shutdown) in millidegrees Celsius * - these are supported on SOC15 dGPUs only * * hwmon interfaces for GPU voltage: * * - in0_input: the voltage on the GPU in millivolts * * - in1_input: the voltage on the Northbridge in millivolts * * hwmon interfaces for GPU power: * * - power1_average: average power used by the GPU in microWatts * * - power1_cap_min: minimum cap supported in microWatts * * - power1_cap_max: maximum cap supported in microWatts * * - power1_cap: selected power cap in microWatts * * hwmon interfaces for GPU fan: * * - pwm1: pulse width modulation fan level (0-255) * * - pwm1_enable: pulse width modulation fan control method (0: no fan speed control, 1: manual fan speed control using pwm interface, 2: automatic fan speed control) * * - pwm1_min: pulse width modulation fan control minimum level (0) * * - pwm1_max: pulse width modulation fan control maximum level (255) * * - fan1_min: a minimum value Unit: revolution/min (RPM) * * - fan1_max: a maximum value Unit: revolution/max (RPM) * * - fan1_input: fan speed in RPM * * - fan[1-\*]_target: Desired fan speed Unit: revolution/min (RPM) * * - fan[1-\*]_enable: Enable or disable the sensors.1: Enable 0: Disable * * NOTE: DO NOT set the fan speed via "pwm1" and "fan[1-\*]_target" interfaces at the same time. * That will get the former one overridden. * * hwmon interfaces for GPU clocks: * * - freq1_input: the gfx/compute clock in hertz * * - freq2_input: the memory clock in hertz * * You can use hwmon tools like sensors to view this information on your system. * */ static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_EDGE); static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 0); static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IRUGO, amdgpu_hwmon_show_temp_thresh, NULL, 1); static SENSOR_DEVICE_ATTR(temp1_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_EDGE); static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_JUNCTION); static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO, amdgpu_hwmon_show_hotspot_temp_thresh, NULL, 0); static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, amdgpu_hwmon_show_hotspot_temp_thresh, NULL, 1); static SENSOR_DEVICE_ATTR(temp2_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_JUNCTION); static SENSOR_DEVICE_ATTR(temp3_input, S_IRUGO, amdgpu_hwmon_show_temp, NULL, PP_TEMP_MEM); static SENSOR_DEVICE_ATTR(temp3_crit, S_IRUGO, amdgpu_hwmon_show_mem_temp_thresh, NULL, 0); static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, amdgpu_hwmon_show_mem_temp_thresh, NULL, 1); static SENSOR_DEVICE_ATTR(temp3_emergency, S_IRUGO, amdgpu_hwmon_show_temp_emergency, NULL, PP_TEMP_MEM); static SENSOR_DEVICE_ATTR(temp1_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_EDGE); static SENSOR_DEVICE_ATTR(temp2_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_JUNCTION); static SENSOR_DEVICE_ATTR(temp3_label, S_IRUGO, amdgpu_hwmon_show_temp_label, NULL, PP_TEMP_MEM); static SENSOR_DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1, amdgpu_hwmon_set_pwm1, 0); static SENSOR_DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_pwm1_enable, amdgpu_hwmon_set_pwm1_enable, 0); static SENSOR_DEVICE_ATTR(pwm1_min, S_IRUGO, amdgpu_hwmon_get_pwm1_min, NULL, 0); static SENSOR_DEVICE_ATTR(pwm1_max, S_IRUGO, amdgpu_hwmon_get_pwm1_max, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, amdgpu_hwmon_get_fan1_input, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_min, S_IRUGO, amdgpu_hwmon_get_fan1_min, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_max, S_IRUGO, amdgpu_hwmon_get_fan1_max, NULL, 0); static SENSOR_DEVICE_ATTR(fan1_target, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_fan1_target, amdgpu_hwmon_set_fan1_target, 0); static SENSOR_DEVICE_ATTR(fan1_enable, S_IRUGO | S_IWUSR, amdgpu_hwmon_get_fan1_enable, amdgpu_hwmon_set_fan1_enable, 0); static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, amdgpu_hwmon_show_vddgfx, NULL, 0); static SENSOR_DEVICE_ATTR(in0_label, S_IRUGO, amdgpu_hwmon_show_vddgfx_label, NULL, 0); static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, amdgpu_hwmon_show_vddnb, NULL, 0); static SENSOR_DEVICE_ATTR(in1_label, S_IRUGO, amdgpu_hwmon_show_vddnb_label, NULL, 0); static SENSOR_DEVICE_ATTR(power1_average, S_IRUGO, amdgpu_hwmon_show_power_avg, NULL, 0); static SENSOR_DEVICE_ATTR(power1_cap_max, S_IRUGO, amdgpu_hwmon_show_power_cap_max, NULL, 0); static SENSOR_DEVICE_ATTR(power1_cap_min, S_IRUGO, amdgpu_hwmon_show_power_cap_min, NULL, 0); static SENSOR_DEVICE_ATTR(power1_cap, S_IRUGO | S_IWUSR, amdgpu_hwmon_show_power_cap, amdgpu_hwmon_set_power_cap, 0); static SENSOR_DEVICE_ATTR(power1_cap_default, S_IRUGO, amdgpu_hwmon_show_power_cap_default, NULL, 0); static SENSOR_DEVICE_ATTR(power1_label, S_IRUGO, amdgpu_hwmon_show_power_label, NULL, 0); static SENSOR_DEVICE_ATTR(power2_average, S_IRUGO, amdgpu_hwmon_show_power_avg, NULL, 1); static SENSOR_DEVICE_ATTR(power2_cap_max, S_IRUGO, amdgpu_hwmon_show_power_cap_max, NULL, 1); static SENSOR_DEVICE_ATTR(power2_cap_min, S_IRUGO, amdgpu_hwmon_show_power_cap_min, NULL, 1); static SENSOR_DEVICE_ATTR(power2_cap, S_IRUGO | S_IWUSR, amdgpu_hwmon_show_power_cap, amdgpu_hwmon_set_power_cap, 1); static SENSOR_DEVICE_ATTR(power2_cap_default, S_IRUGO, amdgpu_hwmon_show_power_cap_default, NULL, 1); static SENSOR_DEVICE_ATTR(power2_label, S_IRUGO, amdgpu_hwmon_show_power_label, NULL, 1); static SENSOR_DEVICE_ATTR(freq1_input, S_IRUGO, amdgpu_hwmon_show_sclk, NULL, 0); static SENSOR_DEVICE_ATTR(freq1_label, S_IRUGO, amdgpu_hwmon_show_sclk_label, NULL, 0); static SENSOR_DEVICE_ATTR(freq2_input, S_IRUGO, amdgpu_hwmon_show_mclk, NULL, 0); static SENSOR_DEVICE_ATTR(freq2_label, S_IRUGO, amdgpu_hwmon_show_mclk_label, NULL, 0); static struct attribute *hwmon_attributes[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_crit.dev_attr.attr, &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_crit.dev_attr.attr, &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp1_emergency.dev_attr.attr, &sensor_dev_attr_temp2_emergency.dev_attr.attr, &sensor_dev_attr_temp3_emergency.dev_attr.attr, &sensor_dev_attr_temp1_label.dev_attr.attr, &sensor_dev_attr_temp2_label.dev_attr.attr, &sensor_dev_attr_temp3_label.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm1_min.dev_attr.attr, &sensor_dev_attr_pwm1_max.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan1_max.dev_attr.attr, &sensor_dev_attr_fan1_target.dev_attr.attr, &sensor_dev_attr_fan1_enable.dev_attr.attr, &sensor_dev_attr_in0_input.dev_attr.attr, &sensor_dev_attr_in0_label.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in1_label.dev_attr.attr, &sensor_dev_attr_power1_average.dev_attr.attr, &sensor_dev_attr_power1_cap_max.dev_attr.attr, &sensor_dev_attr_power1_cap_min.dev_attr.attr, &sensor_dev_attr_power1_cap.dev_attr.attr, &sensor_dev_attr_power1_cap_default.dev_attr.attr, &sensor_dev_attr_power1_label.dev_attr.attr, &sensor_dev_attr_power2_average.dev_attr.attr, &sensor_dev_attr_power2_cap_max.dev_attr.attr, &sensor_dev_attr_power2_cap_min.dev_attr.attr, &sensor_dev_attr_power2_cap.dev_attr.attr, &sensor_dev_attr_power2_cap_default.dev_attr.attr, &sensor_dev_attr_power2_label.dev_attr.attr, &sensor_dev_attr_freq1_input.dev_attr.attr, &sensor_dev_attr_freq1_label.dev_attr.attr, &sensor_dev_attr_freq2_input.dev_attr.attr, &sensor_dev_attr_freq2_label.dev_attr.attr, NULL }; static umode_t hwmon_attributes_visible(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = kobj_to_dev(kobj); struct amdgpu_device *adev = dev_get_drvdata(dev); umode_t effective_mode = attr->mode; uint32_t gc_ver = adev->ip_versions[GC_HWIP][0]; /* under multi-vf mode, the hwmon attributes are all not supported */ if (amdgpu_sriov_vf(adev) && !amdgpu_sriov_is_pp_one_vf(adev)) return 0; /* under pp one vf mode manage of hwmon attributes is not supported */ if (amdgpu_sriov_is_pp_one_vf(adev)) effective_mode &= ~S_IWUSR; /* Skip fan attributes if fan is not present */ if (adev->pm.no_fan && (attr == &sensor_dev_attr_pwm1.dev_attr.attr || attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_input.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_target.dev_attr.attr || attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) return 0; /* Skip fan attributes on APU */ if ((adev->flags & AMD_IS_APU) && (attr == &sensor_dev_attr_pwm1.dev_attr.attr || attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_input.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_target.dev_attr.attr || attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) return 0; /* Skip crit temp on APU */ if ((adev->flags & AMD_IS_APU) && (adev->family >= AMDGPU_FAMILY_CZ) && (attr == &sensor_dev_attr_temp1_crit.dev_attr.attr || attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr)) return 0; /* Skip limit attributes if DPM is not enabled */ if (!adev->pm.dpm_enabled && (attr == &sensor_dev_attr_temp1_crit.dev_attr.attr || attr == &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr || attr == &sensor_dev_attr_pwm1.dev_attr.attr || attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr || attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_input.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr || attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_target.dev_attr.attr || attr == &sensor_dev_attr_fan1_enable.dev_attr.attr)) return 0; /* mask fan attributes if we have no bindings for this asic to expose */ if (((amdgpu_dpm_get_fan_speed_pwm(adev, NULL) == -EOPNOTSUPP) && attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't query fan */ ((amdgpu_dpm_get_fan_control_mode(adev, NULL) == -EOPNOTSUPP) && attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't query state */ effective_mode &= ~S_IRUGO; if (((amdgpu_dpm_set_fan_speed_pwm(adev, U32_MAX) == -EOPNOTSUPP) && attr == &sensor_dev_attr_pwm1.dev_attr.attr) || /* can't manage fan */ ((amdgpu_dpm_set_fan_control_mode(adev, U32_MAX) == -EOPNOTSUPP) && attr == &sensor_dev_attr_pwm1_enable.dev_attr.attr)) /* can't manage state */ effective_mode &= ~S_IWUSR; /* not implemented yet for GC 10.3.1 APUs */ if (((adev->family == AMDGPU_FAMILY_SI) || ((adev->flags & AMD_IS_APU) && (gc_ver != IP_VERSION(10, 3, 1)))) && (attr == &sensor_dev_attr_power1_cap_max.dev_attr.attr || attr == &sensor_dev_attr_power1_cap_min.dev_attr.attr || attr == &sensor_dev_attr_power1_cap.dev_attr.attr || attr == &sensor_dev_attr_power1_cap_default.dev_attr.attr)) return 0; /* not implemented yet for APUs having <= GC 9.3.0 */ if (((adev->family == AMDGPU_FAMILY_SI) || ((adev->flags & AMD_IS_APU) && (gc_ver < IP_VERSION(9, 3, 0)))) && (attr == &sensor_dev_attr_power1_average.dev_attr.attr)) return 0; /* hide max/min values if we can't both query and manage the fan */ if (((amdgpu_dpm_set_fan_speed_pwm(adev, U32_MAX) == -EOPNOTSUPP) && (amdgpu_dpm_get_fan_speed_pwm(adev, NULL) == -EOPNOTSUPP) && (amdgpu_dpm_set_fan_speed_rpm(adev, U32_MAX) == -EOPNOTSUPP) && (amdgpu_dpm_get_fan_speed_rpm(adev, NULL) == -EOPNOTSUPP)) && (attr == &sensor_dev_attr_pwm1_max.dev_attr.attr || attr == &sensor_dev_attr_pwm1_min.dev_attr.attr)) return 0; if ((amdgpu_dpm_set_fan_speed_rpm(adev, U32_MAX) == -EOPNOTSUPP) && (amdgpu_dpm_get_fan_speed_rpm(adev, NULL) == -EOPNOTSUPP) && (attr == &sensor_dev_attr_fan1_max.dev_attr.attr || attr == &sensor_dev_attr_fan1_min.dev_attr.attr)) return 0; if ((adev->family == AMDGPU_FAMILY_SI || /* not implemented yet */ adev->family == AMDGPU_FAMILY_KV) && /* not implemented yet */ (attr == &sensor_dev_attr_in0_input.dev_attr.attr || attr == &sensor_dev_attr_in0_label.dev_attr.attr)) return 0; /* only APUs have vddnb */ if (!(adev->flags & AMD_IS_APU) && (attr == &sensor_dev_attr_in1_input.dev_attr.attr || attr == &sensor_dev_attr_in1_label.dev_attr.attr)) return 0; /* no mclk on APUs */ if ((adev->flags & AMD_IS_APU) && (attr == &sensor_dev_attr_freq2_input.dev_attr.attr || attr == &sensor_dev_attr_freq2_label.dev_attr.attr)) return 0; /* only SOC15 dGPUs support hotspot and mem temperatures */ if (((adev->flags & AMD_IS_APU) || gc_ver < IP_VERSION(9, 0, 0)) && (attr == &sensor_dev_attr_temp2_crit.dev_attr.attr || attr == &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr || attr == &sensor_dev_attr_temp3_crit.dev_attr.attr || attr == &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr || attr == &sensor_dev_attr_temp1_emergency.dev_attr.attr || attr == &sensor_dev_attr_temp2_emergency.dev_attr.attr || attr == &sensor_dev_attr_temp3_emergency.dev_attr.attr || attr == &sensor_dev_attr_temp2_input.dev_attr.attr || attr == &sensor_dev_attr_temp3_input.dev_attr.attr || attr == &sensor_dev_attr_temp2_label.dev_attr.attr || attr == &sensor_dev_attr_temp3_label.dev_attr.attr)) return 0; /* only Vangogh has fast PPT limit and power labels */ if (!(gc_ver == IP_VERSION(10, 3, 1)) && (attr == &sensor_dev_attr_power2_average.dev_attr.attr || attr == &sensor_dev_attr_power2_cap_max.dev_attr.attr || attr == &sensor_dev_attr_power2_cap_min.dev_attr.attr || attr == &sensor_dev_attr_power2_cap.dev_attr.attr || attr == &sensor_dev_attr_power2_cap_default.dev_attr.attr || attr == &sensor_dev_attr_power2_label.dev_attr.attr)) return 0; return effective_mode; } static const struct attribute_group hwmon_attrgroup = { .attrs = hwmon_attributes, .is_visible = hwmon_attributes_visible, }; static const struct attribute_group *hwmon_groups[] = { &hwmon_attrgroup, NULL }; int amdgpu_pm_sysfs_init(struct amdgpu_device *adev) { int ret; uint32_t mask = 0; if (adev->pm.sysfs_initialized) return 0; INIT_LIST_HEAD(&adev->pm.pm_attr_list); if (adev->pm.dpm_enabled == 0) return 0; adev->pm.int_hwmon_dev = hwmon_device_register_with_groups(adev->dev, DRIVER_NAME, adev, hwmon_groups); if (IS_ERR(adev->pm.int_hwmon_dev)) { ret = PTR_ERR(adev->pm.int_hwmon_dev); dev_err(adev->dev, "Unable to register hwmon device: %d\n", ret); return ret; } switch (amdgpu_virt_get_sriov_vf_mode(adev)) { case SRIOV_VF_MODE_ONE_VF: mask = ATTR_FLAG_ONEVF; break; case SRIOV_VF_MODE_MULTI_VF: mask = 0; break; case SRIOV_VF_MODE_BARE_METAL: default: mask = ATTR_FLAG_MASK_ALL; break; } ret = amdgpu_device_attr_create_groups(adev, amdgpu_device_attrs, ARRAY_SIZE(amdgpu_device_attrs), mask, &adev->pm.pm_attr_list); if (ret) return ret; adev->pm.sysfs_initialized = true; return 0; } void amdgpu_pm_sysfs_fini(struct amdgpu_device *adev) { if (adev->pm.int_hwmon_dev) hwmon_device_unregister(adev->pm.int_hwmon_dev); amdgpu_device_attr_remove_groups(adev, &adev->pm.pm_attr_list); } /* * Debugfs info */ #if defined(CONFIG_DEBUG_FS) static void amdgpu_debugfs_prints_cpu_info(struct seq_file *m, struct amdgpu_device *adev) { uint16_t *p_val; uint32_t size; int i; uint32_t num_cpu_cores = amdgpu_dpm_get_num_cpu_cores(adev); if (amdgpu_dpm_is_cclk_dpm_supported(adev)) { p_val = kcalloc(num_cpu_cores, sizeof(uint16_t), GFP_KERNEL); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_CPU_CLK, (void *)p_val, &size)) { for (i = 0; i < num_cpu_cores; i++) seq_printf(m, "\t%u MHz (CPU%d)\n", *(p_val + i), i); } kfree(p_val); } } static int amdgpu_debugfs_pm_info_pp(struct seq_file *m, struct amdgpu_device *adev) { uint32_t mp1_ver = adev->ip_versions[MP1_HWIP][0]; uint32_t gc_ver = adev->ip_versions[GC_HWIP][0]; uint32_t value; uint64_t value64 = 0; uint32_t query = 0; int size; /* GPU Clocks */ size = sizeof(value); seq_printf(m, "GFX Clocks and Power:\n"); amdgpu_debugfs_prints_cpu_info(m, adev); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_MCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (MCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GFX_SCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (SCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (PSTATE_SCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (PSTATE_MCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDGFX, (void *)&value, &size)) seq_printf(m, "\t%u mV (VDDGFX)\n", value); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VDDNB, (void *)&value, &size)) seq_printf(m, "\t%u mV (VDDNB)\n", value); size = sizeof(uint32_t); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_POWER, (void *)&query, &size)) seq_printf(m, "\t%u.%u W (average GPU)\n", query >> 8, query & 0xff); size = sizeof(value); seq_printf(m, "\n"); /* GPU Temp */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_TEMP, (void *)&value, &size)) seq_printf(m, "GPU Temperature: %u C\n", value/1000); /* GPU Load */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_GPU_LOAD, (void *)&value, &size)) seq_printf(m, "GPU Load: %u %%\n", value); /* MEM Load */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_MEM_LOAD, (void *)&value, &size)) seq_printf(m, "MEM Load: %u %%\n", value); seq_printf(m, "\n"); /* SMC feature mask */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK, (void *)&value64, &size)) seq_printf(m, "SMC Feature Mask: 0x%016llx\n", value64); /* ASICs greater than CHIP_VEGA20 supports these sensors */ if (gc_ver != IP_VERSION(9, 4, 0) && mp1_ver > IP_VERSION(9, 0, 0)) { /* VCN clocks */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCN_POWER_STATE, (void *)&value, &size)) { if (!value) { seq_printf(m, "VCN: Disabled\n"); } else { seq_printf(m, "VCN: Enabled\n"); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (DCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (VCLK)\n", value/100); } } seq_printf(m, "\n"); } else { /* UVD clocks */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_POWER, (void *)&value, &size)) { if (!value) { seq_printf(m, "UVD: Disabled\n"); } else { seq_printf(m, "UVD: Enabled\n"); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_DCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (DCLK)\n", value/100); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_UVD_VCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (VCLK)\n", value/100); } } seq_printf(m, "\n"); /* VCE clocks */ if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_POWER, (void *)&value, &size)) { if (!value) { seq_printf(m, "VCE: Disabled\n"); } else { seq_printf(m, "VCE: Enabled\n"); if (!amdgpu_dpm_read_sensor(adev, AMDGPU_PP_SENSOR_VCE_ECCLK, (void *)&value, &size)) seq_printf(m, "\t%u MHz (ECCLK)\n", value/100); } } } return 0; } static void amdgpu_parse_cg_state(struct seq_file *m, u64 flags) { int i; for (i = 0; clocks[i].flag; i++) seq_printf(m, "\t%s: %s\n", clocks[i].name, (flags & clocks[i].flag) ? "On" : "Off"); } static int amdgpu_debugfs_pm_info_show(struct seq_file *m, void *unused) { struct amdgpu_device *adev = (struct amdgpu_device *)m->private; struct drm_device *dev = adev_to_drm(adev); u64 flags = 0; int r; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; r = pm_runtime_get_sync(dev->dev); if (r < 0) { pm_runtime_put_autosuspend(dev->dev); return r; } if (amdgpu_dpm_debugfs_print_current_performance_level(adev, m)) { r = amdgpu_debugfs_pm_info_pp(m, adev); if (r) goto out; } amdgpu_device_ip_get_clockgating_state(adev, &flags); seq_printf(m, "Clock Gating Flags Mask: 0x%llx\n", flags); amdgpu_parse_cg_state(m, flags); seq_printf(m, "\n"); out: pm_runtime_mark_last_busy(dev->dev); pm_runtime_put_autosuspend(dev->dev); return r; } DEFINE_SHOW_ATTRIBUTE(amdgpu_debugfs_pm_info); /* * amdgpu_pm_priv_buffer_read - Read memory region allocated to FW * * Reads debug memory region allocated to PMFW */ static ssize_t amdgpu_pm_prv_buffer_read(struct file *f, char __user *buf, size_t size, loff_t *pos) { struct amdgpu_device *adev = file_inode(f)->i_private; size_t smu_prv_buf_size; void *smu_prv_buf; int ret = 0; if (amdgpu_in_reset(adev)) return -EPERM; if (adev->in_suspend && !adev->in_runpm) return -EPERM; ret = amdgpu_dpm_get_smu_prv_buf_details(adev, &smu_prv_buf, &smu_prv_buf_size); if (ret) return ret; if (!smu_prv_buf || !smu_prv_buf_size) return -EINVAL; return simple_read_from_buffer(buf, size, pos, smu_prv_buf, smu_prv_buf_size); } static const struct file_operations amdgpu_debugfs_pm_prv_buffer_fops = { .owner = THIS_MODULE, .open = simple_open, .read = amdgpu_pm_prv_buffer_read, .llseek = default_llseek, }; #endif void amdgpu_debugfs_pm_init(struct amdgpu_device *adev) { #if defined(CONFIG_DEBUG_FS) struct drm_minor *minor = adev_to_drm(adev)->primary; struct dentry *root = minor->debugfs_root; if (!adev->pm.dpm_enabled) return; debugfs_create_file("amdgpu_pm_info", 0444, root, adev, &amdgpu_debugfs_pm_info_fops); if (adev->pm.smu_prv_buffer_size > 0) debugfs_create_file_size("amdgpu_pm_prv_buffer", 0444, root, adev, &amdgpu_debugfs_pm_prv_buffer_fops, adev->pm.smu_prv_buffer_size); amdgpu_dpm_stb_debug_fs_init(adev); #endif }