// SPDX-License-Identifier: GPL-2.0-only /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Implementation of the Transmission Control Protocol(TCP). * * Authors: Ross Biro * Fred N. van Kempen, * Mark Evans, * Corey Minyard * Florian La Roche, * Charles Hedrick, * Linus Torvalds, * Alan Cox, * Matthew Dillon, * Arnt Gulbrandsen, * Jorge Cwik, */ /* * Changes: Pedro Roque : Retransmit queue handled by TCP. * : Fragmentation on mtu decrease * : Segment collapse on retransmit * : AF independence * * Linus Torvalds : send_delayed_ack * David S. Miller : Charge memory using the right skb * during syn/ack processing. * David S. Miller : Output engine completely rewritten. * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. * Cacophonix Gaul : draft-minshall-nagle-01 * J Hadi Salim : ECN support * */ #define pr_fmt(fmt) "TCP: " fmt #include #include #include #include #include #include #include /* Refresh clocks of a TCP socket, * ensuring monotically increasing values. */ void tcp_mstamp_refresh(struct tcp_sock *tp) { u64 val = tcp_clock_ns(); tp->tcp_clock_cache = val; tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC); } static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, int push_one, gfp_t gfp); /* Account for new data that has been sent to the network. */ static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); unsigned int prior_packets = tp->packets_out; WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq); __skb_unlink(skb, &sk->sk_write_queue); tcp_rbtree_insert(&sk->tcp_rtx_queue, skb); if (tp->highest_sack == NULL) tp->highest_sack = skb; tp->packets_out += tcp_skb_pcount(skb); if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) tcp_rearm_rto(sk); NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT, tcp_skb_pcount(skb)); tcp_check_space(sk); } /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one * window scaling factor due to loss of precision. * If window has been shrunk, what should we make? It is not clear at all. * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( * Anything in between SND.UNA...SND.UNA+SND.WND also can be already * invalid. OK, let's make this for now: */ static inline __u32 tcp_acceptable_seq(const struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); if (!before(tcp_wnd_end(tp), tp->snd_nxt) || (tp->rx_opt.wscale_ok && ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale)))) return tp->snd_nxt; else return tcp_wnd_end(tp); } /* Calculate mss to advertise in SYN segment. * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: * * 1. It is independent of path mtu. * 2. Ideally, it is maximal possible segment size i.e. 65535-40. * 3. For IPv4 it is reasonable to calculate it from maximal MTU of * attached devices, because some buggy hosts are confused by * large MSS. * 4. We do not make 3, we advertise MSS, calculated from first * hop device mtu, but allow to raise it to ip_rt_min_advmss. * This may be overridden via information stored in routing table. * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, * probably even Jumbo". */ static __u16 tcp_advertise_mss(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); const struct dst_entry *dst = __sk_dst_get(sk); int mss = tp->advmss; if (dst) { unsigned int metric = dst_metric_advmss(dst); if (metric < mss) { mss = metric; tp->advmss = mss; } } return (__u16)mss; } /* RFC2861. Reset CWND after idle period longer RTO to "restart window". * This is the first part of cwnd validation mechanism. */ void tcp_cwnd_restart(struct sock *sk, s32 delta) { struct tcp_sock *tp = tcp_sk(sk); u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); u32 cwnd = tcp_snd_cwnd(tp); tcp_ca_event(sk, CA_EVENT_CWND_RESTART); tp->snd_ssthresh = tcp_current_ssthresh(sk); restart_cwnd = min(restart_cwnd, cwnd); while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) cwnd >>= 1; tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd)); tp->snd_cwnd_stamp = tcp_jiffies32; tp->snd_cwnd_used = 0; } /* Congestion state accounting after a packet has been sent. */ static void tcp_event_data_sent(struct tcp_sock *tp, struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); const u32 now = tcp_jiffies32; if (tcp_packets_in_flight(tp) == 0) tcp_ca_event(sk, CA_EVENT_TX_START); tp->lsndtime = now; /* If it is a reply for ato after last received * packet, enter pingpong mode. */ if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) inet_csk_enter_pingpong_mode(sk); } /* Account for an ACK we sent. */ static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts, u32 rcv_nxt) { struct tcp_sock *tp = tcp_sk(sk); if (unlikely(tp->compressed_ack)) { NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, tp->compressed_ack); tp->compressed_ack = 0; if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) __sock_put(sk); } if (unlikely(rcv_nxt != tp->rcv_nxt)) return; /* Special ACK sent by DCTCP to reflect ECN */ tcp_dec_quickack_mode(sk, pkts); inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); } /* Determine a window scaling and initial window to offer. * Based on the assumption that the given amount of space * will be offered. Store the results in the tp structure. * NOTE: for smooth operation initial space offering should * be a multiple of mss if possible. We assume here that mss >= 1. * This MUST be enforced by all callers. */ void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss, __u32 *rcv_wnd, __u32 *window_clamp, int wscale_ok, __u8 *rcv_wscale, __u32 init_rcv_wnd) { unsigned int space = (__space < 0 ? 0 : __space); /* If no clamp set the clamp to the max possible scaled window */ if (*window_clamp == 0) (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE); space = min(*window_clamp, space); /* Quantize space offering to a multiple of mss if possible. */ if (space > mss) space = rounddown(space, mss); /* NOTE: offering an initial window larger than 32767 * will break some buggy TCP stacks. If the admin tells us * it is likely we could be speaking with such a buggy stack * we will truncate our initial window offering to 32K-1 * unless the remote has sent us a window scaling option, * which we interpret as a sign the remote TCP is not * misinterpreting the window field as a signed quantity. */ if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) (*rcv_wnd) = min(space, MAX_TCP_WINDOW); else (*rcv_wnd) = min_t(u32, space, U16_MAX); if (init_rcv_wnd) *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss); *rcv_wscale = 0; if (wscale_ok) { /* Set window scaling on max possible window */ space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); space = max_t(u32, space, READ_ONCE(sysctl_rmem_max)); space = min_t(u32, space, *window_clamp); *rcv_wscale = clamp_t(int, ilog2(space) - 15, 0, TCP_MAX_WSCALE); } /* Set the clamp no higher than max representable value */ (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp); } EXPORT_SYMBOL(tcp_select_initial_window); /* Chose a new window to advertise, update state in tcp_sock for the * socket, and return result with RFC1323 scaling applied. The return * value can be stuffed directly into th->window for an outgoing * frame. */ static u16 tcp_select_window(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); u32 old_win = tp->rcv_wnd; u32 cur_win = tcp_receive_window(tp); u32 new_win = __tcp_select_window(sk); /* Never shrink the offered window */ if (new_win < cur_win) { /* Danger Will Robinson! * Don't update rcv_wup/rcv_wnd here or else * we will not be able to advertise a zero * window in time. --DaveM * * Relax Will Robinson. */ if (new_win == 0) NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWANTZEROWINDOWADV); new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale); } tp->rcv_wnd = new_win; tp->rcv_wup = tp->rcv_nxt; /* Make sure we do not exceed the maximum possible * scaled window. */ if (!tp->rx_opt.rcv_wscale && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)) new_win = min(new_win, MAX_TCP_WINDOW); else new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); /* RFC1323 scaling applied */ new_win >>= tp->rx_opt.rcv_wscale; /* If we advertise zero window, disable fast path. */ if (new_win == 0) { tp->pred_flags = 0; if (old_win) NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTOZEROWINDOWADV); } else if (old_win == 0) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV); } return new_win; } /* Packet ECN state for a SYN-ACK */ static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb) { const struct tcp_sock *tp = tcp_sk(sk); TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR; if (!(tp->ecn_flags & TCP_ECN_OK)) TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE; else if (tcp_ca_needs_ecn(sk) || tcp_bpf_ca_needs_ecn(sk)) INET_ECN_xmit(sk); } /* Packet ECN state for a SYN. */ static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb) { struct tcp_sock *tp = tcp_sk(sk); bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk); bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 || tcp_ca_needs_ecn(sk) || bpf_needs_ecn; if (!use_ecn) { const struct dst_entry *dst = __sk_dst_get(sk); if (dst && dst_feature(dst, RTAX_FEATURE_ECN)) use_ecn = true; } tp->ecn_flags = 0; if (use_ecn) { TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR; tp->ecn_flags = TCP_ECN_OK; if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn) INET_ECN_xmit(sk); } } static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb) { if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)) /* tp->ecn_flags are cleared at a later point in time when * SYN ACK is ultimatively being received. */ TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR); } static void tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th) { if (inet_rsk(req)->ecn_ok) th->ece = 1; } /* Set up ECN state for a packet on a ESTABLISHED socket that is about to * be sent. */ static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb, struct tcphdr *th, int tcp_header_len) { struct tcp_sock *tp = tcp_sk(sk); if (tp->ecn_flags & TCP_ECN_OK) { /* Not-retransmitted data segment: set ECT and inject CWR. */ if (skb->len != tcp_header_len && !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) { INET_ECN_xmit(sk); if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) { tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; th->cwr = 1; skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; } } else if (!tcp_ca_needs_ecn(sk)) { /* ACK or retransmitted segment: clear ECT|CE */ INET_ECN_dontxmit(sk); } if (tp->ecn_flags & TCP_ECN_DEMAND_CWR) th->ece = 1; } } /* Constructs common control bits of non-data skb. If SYN/FIN is present, * auto increment end seqno. */ static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags) { skb->ip_summed = CHECKSUM_PARTIAL; TCP_SKB_CB(skb)->tcp_flags = flags; tcp_skb_pcount_set(skb, 1); TCP_SKB_CB(skb)->seq = seq; if (flags & (TCPHDR_SYN | TCPHDR_FIN)) seq++; TCP_SKB_CB(skb)->end_seq = seq; } static inline bool tcp_urg_mode(const struct tcp_sock *tp) { return tp->snd_una != tp->snd_up; } #define OPTION_SACK_ADVERTISE BIT(0) #define OPTION_TS BIT(1) #define OPTION_MD5 BIT(2) #define OPTION_WSCALE BIT(3) #define OPTION_FAST_OPEN_COOKIE BIT(8) #define OPTION_SMC BIT(9) #define OPTION_MPTCP BIT(10) static void smc_options_write(__be32 *ptr, u16 *options) { #if IS_ENABLED(CONFIG_SMC) if (static_branch_unlikely(&tcp_have_smc)) { if (unlikely(OPTION_SMC & *options)) { *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | (TCPOPT_EXP << 8) | (TCPOLEN_EXP_SMC_BASE)); *ptr++ = htonl(TCPOPT_SMC_MAGIC); } } #endif } struct tcp_out_options { u16 options; /* bit field of OPTION_* */ u16 mss; /* 0 to disable */ u8 ws; /* window scale, 0 to disable */ u8 num_sack_blocks; /* number of SACK blocks to include */ u8 hash_size; /* bytes in hash_location */ u8 bpf_opt_len; /* length of BPF hdr option */ __u8 *hash_location; /* temporary pointer, overloaded */ __u32 tsval, tsecr; /* need to include OPTION_TS */ struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */ struct mptcp_out_options mptcp; }; static void mptcp_options_write(struct tcphdr *th, __be32 *ptr, struct tcp_sock *tp, struct tcp_out_options *opts) { #if IS_ENABLED(CONFIG_MPTCP) if (unlikely(OPTION_MPTCP & opts->options)) mptcp_write_options(th, ptr, tp, &opts->mptcp); #endif } #ifdef CONFIG_CGROUP_BPF static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb, enum tcp_synack_type synack_type) { if (unlikely(!skb)) return BPF_WRITE_HDR_TCP_CURRENT_MSS; if (unlikely(synack_type == TCP_SYNACK_COOKIE)) return BPF_WRITE_HDR_TCP_SYNACK_COOKIE; return 0; } /* req, syn_skb and synack_type are used when writing synack */ static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct sk_buff *syn_skb, enum tcp_synack_type synack_type, struct tcp_out_options *opts, unsigned int *remaining) { struct bpf_sock_ops_kern sock_ops; int err; if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) || !*remaining) return; /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */ /* init sock_ops */ memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB; if (req) { /* The listen "sk" cannot be passed here because * it is not locked. It would not make too much * sense to do bpf_setsockopt(listen_sk) based * on individual connection request also. * * Thus, "req" is passed here and the cgroup-bpf-progs * of the listen "sk" will be run. * * "req" is also used here for fastopen even the "sk" here is * a fullsock "child" sk. It is to keep the behavior * consistent between fastopen and non-fastopen on * the bpf programming side. */ sock_ops.sk = (struct sock *)req; sock_ops.syn_skb = syn_skb; } else { sock_owned_by_me(sk); sock_ops.is_fullsock = 1; sock_ops.sk = sk; } sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); sock_ops.remaining_opt_len = *remaining; /* tcp_current_mss() does not pass a skb */ if (skb) bpf_skops_init_skb(&sock_ops, skb, 0); err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); if (err || sock_ops.remaining_opt_len == *remaining) return; opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len; /* round up to 4 bytes */ opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3; *remaining -= opts->bpf_opt_len; } static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct sk_buff *syn_skb, enum tcp_synack_type synack_type, struct tcp_out_options *opts) { u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len; struct bpf_sock_ops_kern sock_ops; int err; if (likely(!max_opt_len)) return; memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB; if (req) { sock_ops.sk = (struct sock *)req; sock_ops.syn_skb = syn_skb; } else { sock_owned_by_me(sk); sock_ops.is_fullsock = 1; sock_ops.sk = sk; } sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type); sock_ops.remaining_opt_len = max_opt_len; first_opt_off = tcp_hdrlen(skb) - max_opt_len; bpf_skops_init_skb(&sock_ops, skb, first_opt_off); err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk); if (err) nr_written = 0; else nr_written = max_opt_len - sock_ops.remaining_opt_len; if (nr_written < max_opt_len) memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP, max_opt_len - nr_written); } #else static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct sk_buff *syn_skb, enum tcp_synack_type synack_type, struct tcp_out_options *opts, unsigned int *remaining) { } static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb, struct request_sock *req, struct sk_buff *syn_skb, enum tcp_synack_type synack_type, struct tcp_out_options *opts) { } #endif /* Write previously computed TCP options to the packet. * * Beware: Something in the Internet is very sensitive to the ordering of * TCP options, we learned this through the hard way, so be careful here. * Luckily we can at least blame others for their non-compliance but from * inter-operability perspective it seems that we're somewhat stuck with * the ordering which we have been using if we want to keep working with * those broken things (not that it currently hurts anybody as there isn't * particular reason why the ordering would need to be changed). * * At least SACK_PERM as the first option is known to lead to a disaster * (but it may well be that other scenarios fail similarly). */ static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp, struct tcp_out_options *opts) { __be32 *ptr = (__be32 *)(th + 1); u16 options = opts->options; /* mungable copy */ if (unlikely(OPTION_MD5 & options)) { *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG); /* overload cookie hash location */ opts->hash_location = (__u8 *)ptr; ptr += 4; } if (unlikely(opts->mss)) { *ptr++ = htonl((TCPOPT_MSS << 24) | (TCPOLEN_MSS << 16) | opts->mss); } if (likely(OPTION_TS & options)) { if (unlikely(OPTION_SACK_ADVERTISE & options)) { *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | (TCPOLEN_SACK_PERM << 16) | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP); options &= ~OPTION_SACK_ADVERTISE; } else { *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP); } *ptr++ = htonl(opts->tsval); *ptr++ = htonl(opts->tsecr); } if (unlikely(OPTION_SACK_ADVERTISE & options)) { *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | (TCPOPT_SACK_PERM << 8) | TCPOLEN_SACK_PERM); } if (unlikely(OPTION_WSCALE & options)) { *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_WINDOW << 16) | (TCPOLEN_WINDOW << 8) | opts->ws); } if (unlikely(opts->num_sack_blocks)) { struct tcp_sack_block *sp = tp->rx_opt.dsack ? tp->duplicate_sack : tp->selective_acks; int this_sack; *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | (TCPOPT_SACK << 8) | (TCPOLEN_SACK_BASE + (opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK))); for (this_sack = 0; this_sack < opts->num_sack_blocks; ++this_sack) { *ptr++ = htonl(sp[this_sack].start_seq); *ptr++ = htonl(sp[this_sack].end_seq); } tp->rx_opt.dsack = 0; } if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) { struct tcp_fastopen_cookie *foc = opts->fastopen_cookie; u8 *p = (u8 *)ptr; u32 len; /* Fast Open option length */ if (foc->exp) { len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len; *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) | TCPOPT_FASTOPEN_MAGIC); p += TCPOLEN_EXP_FASTOPEN_BASE; } else { len = TCPOLEN_FASTOPEN_BASE + foc->len; *p++ = TCPOPT_FASTOPEN; *p++ = len; } memcpy(p, foc->val, foc->len); if ((len & 3) == 2) { p[foc->len] = TCPOPT_NOP; p[foc->len + 1] = TCPOPT_NOP; } ptr += (len + 3) >> 2; } smc_options_write(ptr, &options); mptcp_options_write(th, ptr, tp, opts); } static void smc_set_option(const struct tcp_sock *tp, struct tcp_out_options *opts, unsigned int *remaining) { #if IS_ENABLED(CONFIG_SMC) if (static_branch_unlikely(&tcp_have_smc)) { if (tp->syn_smc) { if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { opts->options |= OPTION_SMC; *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; } } } #endif } static void smc_set_option_cond(const struct tcp_sock *tp, const struct inet_request_sock *ireq, struct tcp_out_options *opts, unsigned int *remaining) { #if IS_ENABLED(CONFIG_SMC) if (static_branch_unlikely(&tcp_have_smc)) { if (tp->syn_smc && ireq->smc_ok) { if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) { opts->options |= OPTION_SMC; *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED; } } } #endif } static void mptcp_set_option_cond(const struct request_sock *req, struct tcp_out_options *opts, unsigned int *remaining) { if (rsk_is_mptcp(req)) { unsigned int size; if (mptcp_synack_options(req, &size, &opts->mptcp)) { if (*remaining >= size) { opts->options |= OPTION_MPTCP; *remaining -= size; } } } } /* Compute TCP options for SYN packets. This is not the final * network wire format yet. */ static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb, struct tcp_out_options *opts, struct tcp_md5sig_key **md5) { struct tcp_sock *tp = tcp_sk(sk); unsigned int remaining = MAX_TCP_OPTION_SPACE; struct tcp_fastopen_request *fastopen = tp->fastopen_req; *md5 = NULL; #ifdef CONFIG_TCP_MD5SIG if (static_branch_unlikely(&tcp_md5_needed) && rcu_access_pointer(tp->md5sig_info)) { *md5 = tp->af_specific->md5_lookup(sk, sk); if (*md5) { opts->options |= OPTION_MD5; remaining -= TCPOLEN_MD5SIG_ALIGNED; } } #endif /* We always get an MSS option. The option bytes which will be seen in * normal data packets should timestamps be used, must be in the MSS * advertised. But we subtract them from tp->mss_cache so that * calculations in tcp_sendmsg are simpler etc. So account for this * fact here if necessary. If we don't do this correctly, as a * receiver we won't recognize data packets as being full sized when we * should, and thus we won't abide by the delayed ACK rules correctly. * SACKs don't matter, we never delay an ACK when we have any of those * going out. */ opts->mss = tcp_advertise_mss(sk); remaining -= TCPOLEN_MSS_ALIGNED; if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) { opts->options |= OPTION_TS; opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset; opts->tsecr = tp->rx_opt.ts_recent; remaining -= TCPOLEN_TSTAMP_ALIGNED; } if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) { opts->ws = tp->rx_opt.rcv_wscale; opts->options |= OPTION_WSCALE; remaining -= TCPOLEN_WSCALE_ALIGNED; } if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) { opts->options |= OPTION_SACK_ADVERTISE; if (unlikely(!(OPTION_TS & opts->options))) remaining -= TCPOLEN_SACKPERM_ALIGNED; } if (fastopen && fastopen->cookie.len >= 0) { u32 need = fastopen->cookie.len; need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE : TCPOLEN_FASTOPEN_BASE; need = (need + 3) & ~3U; /* Align to 32 bits */ if (remaining >= need) { opts->options |= OPTION_FAST_OPEN_COOKIE; opts->fastopen_cookie = &fastopen->cookie; remaining -= need; tp->syn_fastopen = 1; tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0; } } smc_set_option(tp, opts, &remaining); if (sk_is_mptcp(sk)) { unsigned int size; if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) { opts->options |= OPTION_MPTCP; remaining -= size; } } bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); return MAX_TCP_OPTION_SPACE - remaining; } /* Set up TCP options for SYN-ACKs. */ static unsigned int tcp_synack_options(const struct sock *sk, struct request_sock *req, unsigned int mss, struct sk_buff *skb, struct tcp_out_options *opts, const struct tcp_md5sig_key *md5, struct tcp_fastopen_cookie *foc, enum tcp_synack_type synack_type, struct sk_buff *syn_skb) { struct inet_request_sock *ireq = inet_rsk(req); unsigned int remaining = MAX_TCP_OPTION_SPACE; #ifdef CONFIG_TCP_MD5SIG if (md5) { opts->options |= OPTION_MD5; remaining -= TCPOLEN_MD5SIG_ALIGNED; /* We can't fit any SACK blocks in a packet with MD5 + TS * options. There was discussion about disabling SACK * rather than TS in order to fit in better with old, * buggy kernels, but that was deemed to be unnecessary. */ if (synack_type != TCP_SYNACK_COOKIE) ireq->tstamp_ok &= !ireq->sack_ok; } #endif /* We always send an MSS option. */ opts->mss = mss; remaining -= TCPOLEN_MSS_ALIGNED; if (likely(ireq->wscale_ok)) { opts->ws = ireq->rcv_wscale; opts->options |= OPTION_WSCALE; remaining -= TCPOLEN_WSCALE_ALIGNED; } if (likely(ireq->tstamp_ok)) { opts->options |= OPTION_TS; opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off; opts->tsecr = READ_ONCE(req->ts_recent); remaining -= TCPOLEN_TSTAMP_ALIGNED; } if (likely(ireq->sack_ok)) { opts->options |= OPTION_SACK_ADVERTISE; if (unlikely(!ireq->tstamp_ok)) remaining -= TCPOLEN_SACKPERM_ALIGNED; } if (foc != NULL && foc->len >= 0) { u32 need = foc->len; need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE : TCPOLEN_FASTOPEN_BASE; need = (need + 3) & ~3U; /* Align to 32 bits */ if (remaining >= need) { opts->options |= OPTION_FAST_OPEN_COOKIE; opts->fastopen_cookie = foc; remaining -= need; } } mptcp_set_option_cond(req, opts, &remaining); smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining); bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb, synack_type, opts, &remaining); return MAX_TCP_OPTION_SPACE - remaining; } /* Compute TCP options for ESTABLISHED sockets. This is not the * final wire format yet. */ static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb, struct tcp_out_options *opts, struct tcp_md5sig_key **md5) { struct tcp_sock *tp = tcp_sk(sk); unsigned int size = 0; unsigned int eff_sacks; opts->options = 0; *md5 = NULL; #ifdef CONFIG_TCP_MD5SIG if (static_branch_unlikely(&tcp_md5_needed) && rcu_access_pointer(tp->md5sig_info)) { *md5 = tp->af_specific->md5_lookup(sk, sk); if (*md5) { opts->options |= OPTION_MD5; size += TCPOLEN_MD5SIG_ALIGNED; } } #endif if (likely(tp->rx_opt.tstamp_ok)) { opts->options |= OPTION_TS; opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0; opts->tsecr = tp->rx_opt.ts_recent; size += TCPOLEN_TSTAMP_ALIGNED; } /* MPTCP options have precedence over SACK for the limited TCP * option space because a MPTCP connection would be forced to * fall back to regular TCP if a required multipath option is * missing. SACK still gets a chance to use whatever space is * left. */ if (sk_is_mptcp(sk)) { unsigned int remaining = MAX_TCP_OPTION_SPACE - size; unsigned int opt_size = 0; if (mptcp_established_options(sk, skb, &opt_size, remaining, &opts->mptcp)) { opts->options |= OPTION_MPTCP; size += opt_size; } } eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack; if (unlikely(eff_sacks)) { const unsigned int remaining = MAX_TCP_OPTION_SPACE - size; if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED + TCPOLEN_SACK_PERBLOCK)) return size; opts->num_sack_blocks = min_t(unsigned int, eff_sacks, (remaining - TCPOLEN_SACK_BASE_ALIGNED) / TCPOLEN_SACK_PERBLOCK); size += TCPOLEN_SACK_BASE_ALIGNED + opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK; } if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) { unsigned int remaining = MAX_TCP_OPTION_SPACE - size; bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining); size = MAX_TCP_OPTION_SPACE - remaining; } return size; } /* TCP SMALL QUEUES (TSQ) * * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev) * to reduce RTT and bufferbloat. * We do this using a special skb destructor (tcp_wfree). * * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb * needs to be reallocated in a driver. * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc * * Since transmit from skb destructor is forbidden, we use a tasklet * to process all sockets that eventually need to send more skbs. * We use one tasklet per cpu, with its own queue of sockets. */ struct tsq_tasklet { struct tasklet_struct tasklet; struct list_head head; /* queue of tcp sockets */ }; static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet); static void tcp_tsq_write(struct sock *sk) { if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) { struct tcp_sock *tp = tcp_sk(sk); if (tp->lost_out > tp->retrans_out && tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) { tcp_mstamp_refresh(tp); tcp_xmit_retransmit_queue(sk); } tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle, 0, GFP_ATOMIC); } } static void tcp_tsq_handler(struct sock *sk) { bh_lock_sock(sk); if (!sock_owned_by_user(sk)) tcp_tsq_write(sk); else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags)) sock_hold(sk); bh_unlock_sock(sk); } /* * One tasklet per cpu tries to send more skbs. * We run in tasklet context but need to disable irqs when * transferring tsq->head because tcp_wfree() might * interrupt us (non NAPI drivers) */ static void tcp_tasklet_func(struct tasklet_struct *t) { struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet); LIST_HEAD(list); unsigned long flags; struct list_head *q, *n; struct tcp_sock *tp; struct sock *sk; local_irq_save(flags); list_splice_init(&tsq->head, &list); local_irq_restore(flags); list_for_each_safe(q, n, &list) { tp = list_entry(q, struct tcp_sock, tsq_node); list_del(&tp->tsq_node); sk = (struct sock *)tp; smp_mb__before_atomic(); clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags); tcp_tsq_handler(sk); sk_free(sk); } } #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \ TCPF_WRITE_TIMER_DEFERRED | \ TCPF_DELACK_TIMER_DEFERRED | \ TCPF_MTU_REDUCED_DEFERRED) /** * tcp_release_cb - tcp release_sock() callback * @sk: socket * * called from release_sock() to perform protocol dependent * actions before socket release. */ void tcp_release_cb(struct sock *sk) { unsigned long flags, nflags; /* perform an atomic operation only if at least one flag is set */ do { flags = sk->sk_tsq_flags; if (!(flags & TCP_DEFERRED_ALL)) return; nflags = flags & ~TCP_DEFERRED_ALL; } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags); if (flags & TCPF_TSQ_DEFERRED) { tcp_tsq_write(sk); __sock_put(sk); } /* Here begins the tricky part : * We are called from release_sock() with : * 1) BH disabled * 2) sk_lock.slock spinlock held * 3) socket owned by us (sk->sk_lock.owned == 1) * * But following code is meant to be called from BH handlers, * so we should keep BH disabled, but early release socket ownership */ sock_release_ownership(sk); if (flags & TCPF_WRITE_TIMER_DEFERRED) { tcp_write_timer_handler(sk); __sock_put(sk); } if (flags & TCPF_DELACK_TIMER_DEFERRED) { tcp_delack_timer_handler(sk); __sock_put(sk); } if (flags & TCPF_MTU_REDUCED_DEFERRED) { inet_csk(sk)->icsk_af_ops->mtu_reduced(sk); __sock_put(sk); } } EXPORT_SYMBOL(tcp_release_cb); void __init tcp_tasklet_init(void) { int i; for_each_possible_cpu(i) { struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i); INIT_LIST_HEAD(&tsq->head); tasklet_setup(&tsq->tasklet, tcp_tasklet_func); } } /* * Write buffer destructor automatically called from kfree_skb. * We can't xmit new skbs from this context, as we might already * hold qdisc lock. */ void tcp_wfree(struct sk_buff *skb) { struct sock *sk = skb->sk; struct tcp_sock *tp = tcp_sk(sk); unsigned long flags, nval, oval; /* Keep one reference on sk_wmem_alloc. * Will be released by sk_free() from here or tcp_tasklet_func() */ WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc)); /* If this softirq is serviced by ksoftirqd, we are likely under stress. * Wait until our queues (qdisc + devices) are drained. * This gives : * - less callbacks to tcp_write_xmit(), reducing stress (batches) * - chance for incoming ACK (processed by another cpu maybe) * to migrate this flow (skb->ooo_okay will be eventually set) */ if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current) goto out; for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) { struct tsq_tasklet *tsq; bool empty; if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED)) goto out; nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED; nval = cmpxchg(&sk->sk_tsq_flags, oval, nval); if (nval != oval) continue; /* queue this socket to tasklet queue */ local_irq_save(flags); tsq = this_cpu_ptr(&tsq_tasklet); empty = list_empty(&tsq->head); list_add(&tp->tsq_node, &tsq->head); if (empty) tasklet_schedule(&tsq->tasklet); local_irq_restore(flags); return; } out: sk_free(sk); } /* Note: Called under soft irq. * We can call TCP stack right away, unless socket is owned by user. */ enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer) { struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer); struct sock *sk = (struct sock *)tp; tcp_tsq_handler(sk); sock_put(sk); return HRTIMER_NORESTART; } static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb, u64 prior_wstamp) { struct tcp_sock *tp = tcp_sk(sk); if (sk->sk_pacing_status != SK_PACING_NONE) { unsigned long rate = sk->sk_pacing_rate; /* Original sch_fq does not pace first 10 MSS * Note that tp->data_segs_out overflows after 2^32 packets, * this is a minor annoyance. */ if (rate != ~0UL && rate && tp->data_segs_out >= 10) { u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate); u64 credit = tp->tcp_wstamp_ns - prior_wstamp; /* take into account OS jitter */ len_ns -= min_t(u64, len_ns / 2, credit); tp->tcp_wstamp_ns += len_ns; } } list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); } INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)); INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)); /* This routine actually transmits TCP packets queued in by * tcp_do_sendmsg(). This is used by both the initial * transmission and possible later retransmissions. * All SKB's seen here are completely headerless. It is our * job to build the TCP header, and pass the packet down to * IP so it can do the same plus pass the packet off to the * device. * * We are working here with either a clone of the original * SKB, or a fresh unique copy made by the retransmit engine. */ static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, gfp_t gfp_mask, u32 rcv_nxt) { const struct inet_connection_sock *icsk = inet_csk(sk); struct inet_sock *inet; struct tcp_sock *tp; struct tcp_skb_cb *tcb; struct tcp_out_options opts; unsigned int tcp_options_size, tcp_header_size; struct sk_buff *oskb = NULL; struct tcp_md5sig_key *md5; struct tcphdr *th; u64 prior_wstamp; int err; BUG_ON(!skb || !tcp_skb_pcount(skb)); tp = tcp_sk(sk); prior_wstamp = tp->tcp_wstamp_ns; tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache); skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); if (clone_it) { oskb = skb; tcp_skb_tsorted_save(oskb) { if (unlikely(skb_cloned(oskb))) skb = pskb_copy(oskb, gfp_mask); else skb = skb_clone(oskb, gfp_mask); } tcp_skb_tsorted_restore(oskb); if (unlikely(!skb)) return -ENOBUFS; /* retransmit skbs might have a non zero value in skb->dev * because skb->dev is aliased with skb->rbnode.rb_left */ skb->dev = NULL; } inet = inet_sk(sk); tcb = TCP_SKB_CB(skb); memset(&opts, 0, sizeof(opts)); if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) { tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5); } else { tcp_options_size = tcp_established_options(sk, skb, &opts, &md5); /* Force a PSH flag on all (GSO) packets to expedite GRO flush * at receiver : This slightly improve GRO performance. * Note that we do not force the PSH flag for non GSO packets, * because they might be sent under high congestion events, * and in this case it is better to delay the delivery of 1-MSS * packets and thus the corresponding ACK packet that would * release the following packet. */ if (tcp_skb_pcount(skb) > 1) tcb->tcp_flags |= TCPHDR_PSH; } tcp_header_size = tcp_options_size + sizeof(struct tcphdr); /* if no packet is in qdisc/device queue, then allow XPS to select * another queue. We can be called from tcp_tsq_handler() * which holds one reference to sk. * * TODO: Ideally, in-flight pure ACK packets should not matter here. * One way to get this would be to set skb->truesize = 2 on them. */ skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1); /* If we had to use memory reserve to allocate this skb, * this might cause drops if packet is looped back : * Other socket might not have SOCK_MEMALLOC. * Packets not looped back do not care about pfmemalloc. */ skb->pfmemalloc = 0; skb_push(skb, tcp_header_size); skb_reset_transport_header(skb); skb_orphan(skb); skb->sk = sk; skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree; refcount_add(skb->truesize, &sk->sk_wmem_alloc); skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm); /* Build TCP header and checksum it. */ th = (struct tcphdr *)skb->data; th->source = inet->inet_sport; th->dest = inet->inet_dport; th->seq = htonl(tcb->seq); th->ack_seq = htonl(rcv_nxt); *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | tcb->tcp_flags); th->check = 0; th->urg_ptr = 0; /* The urg_mode check is necessary during a below snd_una win probe */ if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) { if (before(tp->snd_up, tcb->seq + 0x10000)) { th->urg_ptr = htons(tp->snd_up - tcb->seq); th->urg = 1; } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) { th->urg_ptr = htons(0xFFFF); th->urg = 1; } } skb_shinfo(skb)->gso_type = sk->sk_gso_type; if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) { th->window = htons(tcp_select_window(sk)); tcp_ecn_send(sk, skb, th, tcp_header_size); } else { /* RFC1323: The window in SYN & SYN/ACK segments * is never scaled. */ th->window = htons(min(tp->rcv_wnd, 65535U)); } tcp_options_write(th, tp, &opts); #ifdef CONFIG_TCP_MD5SIG /* Calculate the MD5 hash, as we have all we need now */ if (md5) { sk_gso_disable(sk); tp->af_specific->calc_md5_hash(opts.hash_location, md5, sk, skb); } #endif /* BPF prog is the last one writing header option */ bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts); INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check, tcp_v6_send_check, tcp_v4_send_check, sk, skb); if (likely(tcb->tcp_flags & TCPHDR_ACK)) tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt); if (skb->len != tcp_header_size) { tcp_event_data_sent(tp, sk); tp->data_segs_out += tcp_skb_pcount(skb); tp->bytes_sent += skb->len - tcp_header_size; } if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb)); tp->segs_out += tcp_skb_pcount(skb); skb_set_hash_from_sk(skb, sk); /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */ skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb); skb_shinfo(skb)->gso_size = tcp_skb_mss(skb); /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */ /* Cleanup our debris for IP stacks */ memset(skb->cb, 0, max(sizeof(struct inet_skb_parm), sizeof(struct inet6_skb_parm))); tcp_add_tx_delay(skb, tp); err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit, inet6_csk_xmit, ip_queue_xmit, sk, skb, &inet->cork.fl); if (unlikely(err > 0)) { tcp_enter_cwr(sk); err = net_xmit_eval(err); } if (!err && oskb) { tcp_update_skb_after_send(sk, oskb, prior_wstamp); tcp_rate_skb_sent(sk, oskb); } return err; } static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, gfp_t gfp_mask) { return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask, tcp_sk(sk)->rcv_nxt); } /* This routine just queues the buffer for sending. * * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, * otherwise socket can stall. */ static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) { struct tcp_sock *tp = tcp_sk(sk); /* Advance write_seq and place onto the write_queue. */ WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq); __skb_header_release(skb); tcp_add_write_queue_tail(sk, skb); sk_wmem_queued_add(sk, skb->truesize); sk_mem_charge(sk, skb->truesize); } /* Initialize TSO segments for a packet. */ static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now) { if (skb->len <= mss_now) { /* Avoid the costly divide in the normal * non-TSO case. */ tcp_skb_pcount_set(skb, 1); TCP_SKB_CB(skb)->tcp_gso_size = 0; } else { tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now)); TCP_SKB_CB(skb)->tcp_gso_size = mss_now; } } /* Pcount in the middle of the write queue got changed, we need to do various * tweaks to fix counters */ static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr) { struct tcp_sock *tp = tcp_sk(sk); tp->packets_out -= decr; if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) tp->sacked_out -= decr; if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) tp->retrans_out -= decr; if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) tp->lost_out -= decr; /* Reno case is special. Sigh... */ if (tcp_is_reno(tp) && decr > 0) tp->sacked_out -= min_t(u32, tp->sacked_out, decr); if (tp->lost_skb_hint && before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) tp->lost_cnt_hint -= decr; tcp_verify_left_out(tp); } static bool tcp_has_tx_tstamp(const struct sk_buff *skb) { return TCP_SKB_CB(skb)->txstamp_ack || (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP); } static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2) { struct skb_shared_info *shinfo = skb_shinfo(skb); if (unlikely(tcp_has_tx_tstamp(skb)) && !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) { struct skb_shared_info *shinfo2 = skb_shinfo(skb2); u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP; shinfo->tx_flags &= ~tsflags; shinfo2->tx_flags |= tsflags; swap(shinfo->tskey, shinfo2->tskey); TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack; TCP_SKB_CB(skb)->txstamp_ack = 0; } } static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2) { TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor; TCP_SKB_CB(skb)->eor = 0; } /* Insert buff after skb on the write or rtx queue of sk. */ static void tcp_insert_write_queue_after(struct sk_buff *skb, struct sk_buff *buff, struct sock *sk, enum tcp_queue tcp_queue) { if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE) __skb_queue_after(&sk->sk_write_queue, skb, buff); else tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); } /* Function to create two new TCP segments. Shrinks the given segment * to the specified size and appends a new segment with the rest of the * packet to the list. This won't be called frequently, I hope. * Remember, these are still headerless SKBs at this point. */ int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue, struct sk_buff *skb, u32 len, unsigned int mss_now, gfp_t gfp) { struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *buff; int nsize, old_factor; long limit; int nlen; u8 flags; if (WARN_ON(len > skb->len)) return -EINVAL; nsize = skb_headlen(skb) - len; if (nsize < 0) nsize = 0; /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb. * We need some allowance to not penalize applications setting small * SO_SNDBUF values. * Also allow first and last skb in retransmit queue to be split. */ limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE); if (unlikely((sk->sk_wmem_queued >> 1) > limit && tcp_queue != TCP_FRAG_IN_WRITE_QUEUE && skb != tcp_rtx_queue_head(sk) && skb != tcp_rtx_queue_tail(sk))) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG); return -ENOMEM; } if (skb_unclone_keeptruesize(skb, gfp)) return -ENOMEM; /* Get a new skb... force flag on. */ buff = tcp_stream_alloc_skb(sk, nsize, gfp, true); if (!buff) return -ENOMEM; /* We'll just try again later. */ skb_copy_decrypted(buff, skb); mptcp_skb_ext_copy(buff, skb); sk_wmem_queued_add(sk, buff->truesize); sk_mem_charge(sk, buff->truesize); nlen = skb->len - len - nsize; buff->truesize += nlen; skb->truesize -= nlen; /* Correct the sequence numbers. */ TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; /* PSH and FIN should only be set in the second packet. */ flags = TCP_SKB_CB(skb)->tcp_flags; TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); TCP_SKB_CB(buff)->tcp_flags = flags; TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; tcp_skb_fragment_eor(skb, buff); skb_split(skb, buff, len); skb_set_delivery_time(buff, skb->tstamp, true); tcp_fragment_tstamp(skb, buff); old_factor = tcp_skb_pcount(skb); /* Fix up tso_factor for both original and new SKB. */ tcp_set_skb_tso_segs(skb, mss_now); tcp_set_skb_tso_segs(buff, mss_now); /* Update delivered info for the new segment */ TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx; /* If this packet has been sent out already, we must * adjust the various packet counters. */ if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { int diff = old_factor - tcp_skb_pcount(skb) - tcp_skb_pcount(buff); if (diff) tcp_adjust_pcount(sk, skb, diff); } /* Link BUFF into the send queue. */ __skb_header_release(buff); tcp_insert_write_queue_after(skb, buff, sk, tcp_queue); if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE) list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor); return 0; } /* This is similar to __pskb_pull_tail(). The difference is that pulled * data is not copied, but immediately discarded. */ static int __pskb_trim_head(struct sk_buff *skb, int len) { struct skb_shared_info *shinfo; int i, k, eat; eat = min_t(int, len, skb_headlen(skb)); if (eat) { __skb_pull(skb, eat); len -= eat; if (!len) return 0; } eat = len; k = 0; shinfo = skb_shinfo(skb); for (i = 0; i < shinfo->nr_frags; i++) { int size = skb_frag_size(&shinfo->frags[i]); if (size <= eat) { skb_frag_unref(skb, i); eat -= size; } else { shinfo->frags[k] = shinfo->frags[i]; if (eat) { skb_frag_off_add(&shinfo->frags[k], eat); skb_frag_size_sub(&shinfo->frags[k], eat); eat = 0; } k++; } } shinfo->nr_frags = k; skb->data_len -= len; skb->len = skb->data_len; return len; } /* Remove acked data from a packet in the transmit queue. */ int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) { u32 delta_truesize; if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) return -ENOMEM; delta_truesize = __pskb_trim_head(skb, len); TCP_SKB_CB(skb)->seq += len; if (delta_truesize) { skb->truesize -= delta_truesize; sk_wmem_queued_add(sk, -delta_truesize); if (!skb_zcopy_pure(skb)) sk_mem_uncharge(sk, delta_truesize); } /* Any change of skb->len requires recalculation of tso factor. */ if (tcp_skb_pcount(skb) > 1) tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); return 0; } /* Calculate MSS not accounting any TCP options. */ static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu) { const struct tcp_sock *tp = tcp_sk(sk); const struct inet_connection_sock *icsk = inet_csk(sk); int mss_now; /* Calculate base mss without TCP options: It is MMS_S - sizeof(tcphdr) of rfc1122 */ mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ if (icsk->icsk_af_ops->net_frag_header_len) { const struct dst_entry *dst = __sk_dst_get(sk); if (dst && dst_allfrag(dst)) mss_now -= icsk->icsk_af_ops->net_frag_header_len; } /* Clamp it (mss_clamp does not include tcp options) */ if (mss_now > tp->rx_opt.mss_clamp) mss_now = tp->rx_opt.mss_clamp; /* Now subtract optional transport overhead */ mss_now -= icsk->icsk_ext_hdr_len; /* Then reserve room for full set of TCP options and 8 bytes of data */ mss_now = max(mss_now, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss)); return mss_now; } /* Calculate MSS. Not accounting for SACKs here. */ int tcp_mtu_to_mss(struct sock *sk, int pmtu) { /* Subtract TCP options size, not including SACKs */ return __tcp_mtu_to_mss(sk, pmtu) - (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr)); } EXPORT_SYMBOL(tcp_mtu_to_mss); /* Inverse of above */ int tcp_mss_to_mtu(struct sock *sk, int mss) { const struct tcp_sock *tp = tcp_sk(sk); const struct inet_connection_sock *icsk = inet_csk(sk); int mtu; mtu = mss + tp->tcp_header_len + icsk->icsk_ext_hdr_len + icsk->icsk_af_ops->net_header_len; /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */ if (icsk->icsk_af_ops->net_frag_header_len) { const struct dst_entry *dst = __sk_dst_get(sk); if (dst && dst_allfrag(dst)) mtu += icsk->icsk_af_ops->net_frag_header_len; } return mtu; } EXPORT_SYMBOL(tcp_mss_to_mtu); /* MTU probing init per socket */ void tcp_mtup_init(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); struct inet_connection_sock *icsk = inet_csk(sk); struct net *net = sock_net(sk); icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1; icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + icsk->icsk_af_ops->net_header_len; icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss)); icsk->icsk_mtup.probe_size = 0; if (icsk->icsk_mtup.enabled) icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; } EXPORT_SYMBOL(tcp_mtup_init); /* This function synchronize snd mss to current pmtu/exthdr set. tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts for TCP options, but includes only bare TCP header. tp->rx_opt.mss_clamp is mss negotiated at connection setup. It is minimum of user_mss and mss received with SYN. It also does not include TCP options. inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. tp->mss_cache is current effective sending mss, including all tcp options except for SACKs. It is evaluated, taking into account current pmtu, but never exceeds tp->rx_opt.mss_clamp. NOTE1. rfc1122 clearly states that advertised MSS DOES NOT include either tcp or ip options. NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache are READ ONLY outside this function. --ANK (980731) */ unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) { struct tcp_sock *tp = tcp_sk(sk); struct inet_connection_sock *icsk = inet_csk(sk); int mss_now; if (icsk->icsk_mtup.search_high > pmtu) icsk->icsk_mtup.search_high = pmtu; mss_now = tcp_mtu_to_mss(sk, pmtu); mss_now = tcp_bound_to_half_wnd(tp, mss_now); /* And store cached results */ icsk->icsk_pmtu_cookie = pmtu; if (icsk->icsk_mtup.enabled) mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); tp->mss_cache = mss_now; return mss_now; } EXPORT_SYMBOL(tcp_sync_mss); /* Compute the current effective MSS, taking SACKs and IP options, * and even PMTU discovery events into account. */ unsigned int tcp_current_mss(struct sock *sk) { const struct tcp_sock *tp = tcp_sk(sk); const struct dst_entry *dst = __sk_dst_get(sk); u32 mss_now; unsigned int header_len; struct tcp_out_options opts; struct tcp_md5sig_key *md5; mss_now = tp->mss_cache; if (dst) { u32 mtu = dst_mtu(dst); if (mtu != inet_csk(sk)->icsk_pmtu_cookie) mss_now = tcp_sync_mss(sk, mtu); } header_len = tcp_established_options(sk, NULL, &opts, &md5) + sizeof(struct tcphdr); /* The mss_cache is sized based on tp->tcp_header_len, which assumes * some common options. If this is an odd packet (because we have SACK * blocks etc) then our calculated header_len will be different, and * we have to adjust mss_now correspondingly */ if (header_len != tp->tcp_header_len) { int delta = (int) header_len - tp->tcp_header_len; mss_now -= delta; } return mss_now; } /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. * As additional protections, we do not touch cwnd in retransmission phases, * and if application hit its sndbuf limit recently. */ static void tcp_cwnd_application_limited(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { /* Limited by application or receiver window. */ u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); u32 win_used = max(tp->snd_cwnd_used, init_win); if (win_used < tcp_snd_cwnd(tp)) { tp->snd_ssthresh = tcp_current_ssthresh(sk); tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1); } tp->snd_cwnd_used = 0; } tp->snd_cwnd_stamp = tcp_jiffies32; } static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited) { const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; struct tcp_sock *tp = tcp_sk(sk); /* Track the strongest available signal of the degree to which the cwnd * is fully utilized. If cwnd-limited then remember that fact for the * current window. If not cwnd-limited then track the maximum number of * outstanding packets in the current window. (If cwnd-limited then we * chose to not update tp->max_packets_out to avoid an extra else * clause with no functional impact.) */ if (!before(tp->snd_una, tp->cwnd_usage_seq) || is_cwnd_limited || (!tp->is_cwnd_limited && tp->packets_out > tp->max_packets_out)) { tp->is_cwnd_limited = is_cwnd_limited; tp->max_packets_out = tp->packets_out; tp->cwnd_usage_seq = tp->snd_nxt; } if (tcp_is_cwnd_limited(sk)) { /* Network is feed fully. */ tp->snd_cwnd_used = 0; tp->snd_cwnd_stamp = tcp_jiffies32; } else { /* Network starves. */ if (tp->packets_out > tp->snd_cwnd_used) tp->snd_cwnd_used = tp->packets_out; if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) && (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto && !ca_ops->cong_control) tcp_cwnd_application_limited(sk); /* The following conditions together indicate the starvation * is caused by insufficient sender buffer: * 1) just sent some data (see tcp_write_xmit) * 2) not cwnd limited (this else condition) * 3) no more data to send (tcp_write_queue_empty()) * 4) application is hitting buffer limit (SOCK_NOSPACE) */ if (tcp_write_queue_empty(sk) && sk->sk_socket && test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) && (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED); } } /* Minshall's variant of the Nagle send check. */ static bool tcp_minshall_check(const struct tcp_sock *tp) { return after(tp->snd_sml, tp->snd_una) && !after(tp->snd_sml, tp->snd_nxt); } /* Update snd_sml if this skb is under mss * Note that a TSO packet might end with a sub-mss segment * The test is really : * if ((skb->len % mss) != 0) * tp->snd_sml = TCP_SKB_CB(skb)->end_seq; * But we can avoid doing the divide again given we already have * skb_pcount = skb->len / mss_now */ static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now, const struct sk_buff *skb) { if (skb->len < tcp_skb_pcount(skb) * mss_now) tp->snd_sml = TCP_SKB_CB(skb)->end_seq; } /* Return false, if packet can be sent now without violation Nagle's rules: * 1. It is full sized. (provided by caller in %partial bool) * 2. Or it contains FIN. (already checked by caller) * 3. Or TCP_CORK is not set, and TCP_NODELAY is set. * 4. Or TCP_CORK is not set, and all sent packets are ACKed. * With Minshall's modification: all sent small packets are ACKed. */ static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp, int nonagle) { return partial && ((nonagle & TCP_NAGLE_CORK) || (!nonagle && tp->packets_out && tcp_minshall_check(tp))); } /* Return how many segs we'd like on a TSO packet, * depending on current pacing rate, and how close the peer is. * * Rationale is: * - For close peers, we rather send bigger packets to reduce * cpu costs, because occasional losses will be repaired fast. * - For long distance/rtt flows, we would like to get ACK clocking * with 1 ACK per ms. * * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting * in bigger TSO bursts. We we cut the RTT-based allowance in half * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance * is below 1500 bytes after 6 * ~500 usec = 3ms. */ static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now, int min_tso_segs) { unsigned long bytes; u32 r; bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift); r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log); if (r < BITS_PER_TYPE(sk->sk_gso_max_size)) bytes += sk->sk_gso_max_size >> r; bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size); return max_t(u32, bytes / mss_now, min_tso_segs); } /* Return the number of segments we want in the skb we are transmitting. * See if congestion control module wants to decide; otherwise, autosize. */ static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now) { const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; u32 min_tso, tso_segs; min_tso = ca_ops->min_tso_segs ? ca_ops->min_tso_segs(sk) : READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs); tso_segs = tcp_tso_autosize(sk, mss_now, min_tso); return min_t(u32, tso_segs, sk->sk_gso_max_segs); } /* Returns the portion of skb which can be sent right away */ static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb, unsigned int mss_now, unsigned int max_segs, int nonagle) { const struct tcp_sock *tp = tcp_sk(sk); u32 partial, needed, window, max_len; window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; max_len = mss_now * max_segs; if (likely(max_len <= window && skb != tcp_write_queue_tail(sk))) return max_len; needed = min(skb->len, window); if (max_len <= needed) return max_len; partial = needed % mss_now; /* If last segment is not a full MSS, check if Nagle rules allow us * to include this last segment in this skb. * Otherwise, we'll split the skb at last MSS boundary */ if (tcp_nagle_check(partial != 0, tp, nonagle)) return needed - partial; return needed; } /* Can at least one segment of SKB be sent right now, according to the * congestion window rules? If so, return how many segments are allowed. */ static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp, const struct sk_buff *skb) { u32 in_flight, cwnd, halfcwnd; /* Don't be strict about the congestion window for the final FIN. */ if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) && tcp_skb_pcount(skb) == 1) return 1; in_flight = tcp_packets_in_flight(tp); cwnd = tcp_snd_cwnd(tp); if (in_flight >= cwnd) return 0; /* For better scheduling, ensure we have at least * 2 GSO packets in flight. */ halfcwnd = max(cwnd >> 1, 1U); return min(halfcwnd, cwnd - in_flight); } /* Initialize TSO state of a skb. * This must be invoked the first time we consider transmitting * SKB onto the wire. */ static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now) { int tso_segs = tcp_skb_pcount(skb); if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) { tcp_set_skb_tso_segs(skb, mss_now); tso_segs = tcp_skb_pcount(skb); } return tso_segs; } /* Return true if the Nagle test allows this packet to be * sent now. */ static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb, unsigned int cur_mss, int nonagle) { /* Nagle rule does not apply to frames, which sit in the middle of the * write_queue (they have no chances to get new data). * * This is implemented in the callers, where they modify the 'nonagle' * argument based upon the location of SKB in the send queue. */ if (nonagle & TCP_NAGLE_PUSH) return true; /* Don't use the nagle rule for urgent data (or for the final FIN). */ if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) return true; if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle)) return true; return false; } /* Does at least the first segment of SKB fit into the send window? */ static bool tcp_snd_wnd_test(const struct tcp_sock *tp, const struct sk_buff *skb, unsigned int cur_mss) { u32 end_seq = TCP_SKB_CB(skb)->end_seq; if (skb->len > cur_mss) end_seq = TCP_SKB_CB(skb)->seq + cur_mss; return !after(end_seq, tcp_wnd_end(tp)); } /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet * which is put after SKB on the list. It is very much like * tcp_fragment() except that it may make several kinds of assumptions * in order to speed up the splitting operation. In particular, we * know that all the data is in scatter-gather pages, and that the * packet has never been sent out before (and thus is not cloned). */ static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, unsigned int mss_now, gfp_t gfp) { int nlen = skb->len - len; struct sk_buff *buff; u8 flags; /* All of a TSO frame must be composed of paged data. */ if (skb->len != skb->data_len) return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, skb, len, mss_now, gfp); buff = tcp_stream_alloc_skb(sk, 0, gfp, true); if (unlikely(!buff)) return -ENOMEM; skb_copy_decrypted(buff, skb); mptcp_skb_ext_copy(buff, skb); sk_wmem_queued_add(sk, buff->truesize); sk_mem_charge(sk, buff->truesize); buff->truesize += nlen; skb->truesize -= nlen; /* Correct the sequence numbers. */ TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; /* PSH and FIN should only be set in the second packet. */ flags = TCP_SKB_CB(skb)->tcp_flags; TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH); TCP_SKB_CB(buff)->tcp_flags = flags; tcp_skb_fragment_eor(skb, buff); skb_split(skb, buff, len); tcp_fragment_tstamp(skb, buff); /* Fix up tso_factor for both original and new SKB. */ tcp_set_skb_tso_segs(skb, mss_now); tcp_set_skb_tso_segs(buff, mss_now); /* Link BUFF into the send queue. */ __skb_header_release(buff); tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE); return 0; } /* Try to defer sending, if possible, in order to minimize the amount * of TSO splitting we do. View it as a kind of TSO Nagle test. * * This algorithm is from John Heffner. */ static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb, bool *is_cwnd_limited, bool *is_rwnd_limited, u32 max_segs) { const struct inet_connection_sock *icsk = inet_csk(sk); u32 send_win, cong_win, limit, in_flight; struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *head; int win_divisor; s64 delta; if (icsk->icsk_ca_state >= TCP_CA_Recovery) goto send_now; /* Avoid bursty behavior by allowing defer * only if the last write was recent (1 ms). * Note that tp->tcp_wstamp_ns can be in the future if we have * packets waiting in a qdisc or device for EDT delivery. */ delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC; if (delta > 0) goto send_now; in_flight = tcp_packets_in_flight(tp); BUG_ON(tcp_skb_pcount(skb) <= 1); BUG_ON(tcp_snd_cwnd(tp) <= in_flight); send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; /* From in_flight test above, we know that cwnd > in_flight. */ cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache; limit = min(send_win, cong_win); /* If a full-sized TSO skb can be sent, do it. */ if (limit >= max_segs * tp->mss_cache) goto send_now; /* Middle in queue won't get any more data, full sendable already? */ if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len)) goto send_now; win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor); if (win_divisor) { u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache); /* If at least some fraction of a window is available, * just use it. */ chunk /= win_divisor; if (limit >= chunk) goto send_now; } else { /* Different approach, try not to defer past a single * ACK. Receiver should ACK every other full sized * frame, so if we have space for more than 3 frames * then send now. */ if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache) goto send_now; } /* TODO : use tsorted_sent_queue ? */ head = tcp_rtx_queue_head(sk); if (!head) goto send_now; delta = tp->tcp_clock_cache - head->tstamp; /* If next ACK is likely to come too late (half srtt), do not defer */ if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0) goto send_now; /* Ok, it looks like it is advisable to defer. * Three cases are tracked : * 1) We are cwnd-limited * 2) We are rwnd-limited * 3) We are application limited. */ if (cong_win < send_win) { if (cong_win <= skb->len) { *is_cwnd_limited = true; return true; } } else { if (send_win <= skb->len) { *is_rwnd_limited = true; return true; } } /* If this packet won't get more data, do not wait. */ if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) || TCP_SKB_CB(skb)->eor) goto send_now; return true; send_now: return false; } static inline void tcp_mtu_check_reprobe(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); struct net *net = sock_net(sk); u32 interval; s32 delta; interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval); delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp; if (unlikely(delta >= interval * HZ)) { int mss = tcp_current_mss(sk); /* Update current search range */ icsk->icsk_mtup.probe_size = 0; icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + icsk->icsk_af_ops->net_header_len; icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss); /* Update probe time stamp */ icsk->icsk_mtup.probe_timestamp = tcp_jiffies32; } } static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len) { struct sk_buff *skb, *next; skb = tcp_send_head(sk); tcp_for_write_queue_from_safe(skb, next, sk) { if (len <= skb->len) break; if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb) || !skb_pure_zcopy_same(skb, next)) return false; len -= skb->len; } return true; } /* Create a new MTU probe if we are ready. * MTU probe is regularly attempting to increase the path MTU by * deliberately sending larger packets. This discovers routing * changes resulting in larger path MTUs. * * Returns 0 if we should wait to probe (no cwnd available), * 1 if a probe was sent, * -1 otherwise */ static int tcp_mtu_probe(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *skb, *nskb, *next; struct net *net = sock_net(sk); int probe_size; int size_needed; int copy, len; int mss_now; int interval; /* Not currently probing/verifying, * not in recovery, * have enough cwnd, and * not SACKing (the variable headers throw things off) */ if (likely(!icsk->icsk_mtup.enabled || icsk->icsk_mtup.probe_size || inet_csk(sk)->icsk_ca_state != TCP_CA_Open || tcp_snd_cwnd(tp) < 11 || tp->rx_opt.num_sacks || tp->rx_opt.dsack)) return -1; /* Use binary search for probe_size between tcp_mss_base, * and current mss_clamp. if (search_high - search_low) * smaller than a threshold, backoff from probing. */ mss_now = tcp_current_mss(sk); probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high + icsk->icsk_mtup.search_low) >> 1); size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache; interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low; /* When misfortune happens, we are reprobing actively, * and then reprobe timer has expired. We stick with current * probing process by not resetting search range to its orignal. */ if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) || interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) { /* Check whether enough time has elaplased for * another round of probing. */ tcp_mtu_check_reprobe(sk); return -1; } /* Have enough data in the send queue to probe? */ if (tp->write_seq - tp->snd_nxt < size_needed) return -1; if (tp->snd_wnd < size_needed) return -1; if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp))) return 0; /* Do we need to wait to drain cwnd? With none in flight, don't stall */ if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) { if (!tcp_packets_in_flight(tp)) return -1; else return 0; } if (!tcp_can_coalesce_send_queue_head(sk, probe_size)) return -1; /* We're allowed to probe. Build it now. */ nskb = tcp_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false); if (!nskb) return -1; sk_wmem_queued_add(sk, nskb->truesize); sk_mem_charge(sk, nskb->truesize); skb = tcp_send_head(sk); skb_copy_decrypted(nskb, skb); mptcp_skb_ext_copy(nskb, skb); TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK; tcp_insert_write_queue_before(nskb, skb, sk); tcp_highest_sack_replace(sk, skb, nskb); len = 0; tcp_for_write_queue_from_safe(skb, next, sk) { copy = min_t(int, skb->len, probe_size - len); skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); if (skb->len <= copy) { /* We've eaten all the data from this skb. * Throw it away. */ TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; /* If this is the last SKB we copy and eor is set * we need to propagate it to the new skb. */ TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor; tcp_skb_collapse_tstamp(nskb, skb); tcp_unlink_write_queue(skb, sk); tcp_wmem_free_skb(sk, skb); } else { TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags & ~(TCPHDR_FIN|TCPHDR_PSH); if (!skb_shinfo(skb)->nr_frags) { skb_pull(skb, copy); } else { __pskb_trim_head(skb, copy); tcp_set_skb_tso_segs(skb, mss_now); } TCP_SKB_CB(skb)->seq += copy; } len += copy; if (len >= probe_size) break; } tcp_init_tso_segs(nskb, nskb->len); /* We're ready to send. If this fails, the probe will * be resegmented into mss-sized pieces by tcp_write_xmit(). */ if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { /* Decrement cwnd here because we are sending * effectively two packets. */ tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1); tcp_event_new_data_sent(sk, nskb); icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; return 1; } return -1; } static bool tcp_pacing_check(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); if (!tcp_needs_internal_pacing(sk)) return false; if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache) return false; if (!hrtimer_is_queued(&tp->pacing_timer)) { hrtimer_start(&tp->pacing_timer, ns_to_ktime(tp->tcp_wstamp_ns), HRTIMER_MODE_ABS_PINNED_SOFT); sock_hold(sk); } return true; } /* TCP Small Queues : * Control number of packets in qdisc/devices to two packets / or ~1 ms. * (These limits are doubled for retransmits) * This allows for : * - better RTT estimation and ACK scheduling * - faster recovery * - high rates * Alas, some drivers / subsystems require a fair amount * of queued bytes to ensure line rate. * One example is wifi aggregation (802.11 AMPDU) */ static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb, unsigned int factor) { unsigned long limit; limit = max_t(unsigned long, 2 * skb->truesize, sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift)); if (sk->sk_pacing_status == SK_PACING_NONE) limit = min_t(unsigned long, limit, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes)); limit <<= factor; if (static_branch_unlikely(&tcp_tx_delay_enabled) && tcp_sk(sk)->tcp_tx_delay) { u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay; /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we * approximate our needs assuming an ~100% skb->truesize overhead. * USEC_PER_SEC is approximated by 2^20. * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift. */ extra_bytes >>= (20 - 1); limit += extra_bytes; } if (refcount_read(&sk->sk_wmem_alloc) > limit) { /* Always send skb if rtx queue is empty. * No need to wait for TX completion to call us back, * after softirq/tasklet schedule. * This helps when TX completions are delayed too much. */ if (tcp_rtx_queue_empty(sk)) return false; set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); /* It is possible TX completion already happened * before we set TSQ_THROTTLED, so we must * test again the condition. */ smp_mb__after_atomic(); if (refcount_read(&sk->sk_wmem_alloc) > limit) return true; } return false; } static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new) { const u32 now = tcp_jiffies32; enum tcp_chrono old = tp->chrono_type; if (old > TCP_CHRONO_UNSPEC) tp->chrono_stat[old - 1] += now - tp->chrono_start; tp->chrono_start = now; tp->chrono_type = new; } void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type) { struct tcp_sock *tp = tcp_sk(sk); /* If there are multiple conditions worthy of tracking in a * chronograph then the highest priority enum takes precedence * over the other conditions. So that if something "more interesting" * starts happening, stop the previous chrono and start a new one. */ if (type > tp->chrono_type) tcp_chrono_set(tp, type); } void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type) { struct tcp_sock *tp = tcp_sk(sk); /* There are multiple conditions worthy of tracking in a * chronograph, so that the highest priority enum takes * precedence over the other conditions (see tcp_chrono_start). * If a condition stops, we only stop chrono tracking if * it's the "most interesting" or current chrono we are * tracking and starts busy chrono if we have pending data. */ if (tcp_rtx_and_write_queues_empty(sk)) tcp_chrono_set(tp, TCP_CHRONO_UNSPEC); else if (type == tp->chrono_type) tcp_chrono_set(tp, TCP_CHRONO_BUSY); } /* This routine writes packets to the network. It advances the * send_head. This happens as incoming acks open up the remote * window for us. * * LARGESEND note: !tcp_urg_mode is overkill, only frames between * snd_up-64k-mss .. snd_up cannot be large. However, taking into * account rare use of URG, this is not a big flaw. * * Send at most one packet when push_one > 0. Temporarily ignore * cwnd limit to force at most one packet out when push_one == 2. * Returns true, if no segments are in flight and we have queued segments, * but cannot send anything now because of SWS or another problem. */ static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle, int push_one, gfp_t gfp) { struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *skb; unsigned int tso_segs, sent_pkts; int cwnd_quota; int result; bool is_cwnd_limited = false, is_rwnd_limited = false; u32 max_segs; sent_pkts = 0; tcp_mstamp_refresh(tp); if (!push_one) { /* Do MTU probing. */ result = tcp_mtu_probe(sk); if (!result) { return false; } else if (result > 0) { sent_pkts = 1; } } max_segs = tcp_tso_segs(sk, mss_now); while ((skb = tcp_send_head(sk))) { unsigned int limit; if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) { /* "skb_mstamp_ns" is used as a start point for the retransmit timer */ tp->tcp_wstamp_ns = tp->tcp_clock_cache; skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true); list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue); tcp_init_tso_segs(skb, mss_now); goto repair; /* Skip network transmission */ } if (tcp_pacing_check(sk)) break; tso_segs = tcp_init_tso_segs(skb, mss_now); BUG_ON(!tso_segs); cwnd_quota = tcp_cwnd_test(tp, skb); if (!cwnd_quota) { if (push_one == 2) /* Force out a loss probe pkt. */ cwnd_quota = 1; else break; } if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) { is_rwnd_limited = true; break; } if (tso_segs == 1) { if (unlikely(!tcp_nagle_test(tp, skb, mss_now, (tcp_skb_is_last(sk, skb) ? nonagle : TCP_NAGLE_PUSH)))) break; } else { if (!push_one && tcp_tso_should_defer(sk, skb, &is_cwnd_limited, &is_rwnd_limited, max_segs)) break; } limit = mss_now; if (tso_segs > 1 && !tcp_urg_mode(tp)) limit = tcp_mss_split_point(sk, skb, mss_now, min_t(unsigned int, cwnd_quota, max_segs), nonagle); if (skb->len > limit && unlikely(tso_fragment(sk, skb, limit, mss_now, gfp))) break; if (tcp_small_queue_check(sk, skb, 0)) break; /* Argh, we hit an empty skb(), presumably a thread * is sleeping in sendmsg()/sk_stream_wait_memory(). * We do not want to send a pure-ack packet and have * a strange looking rtx queue with empty packet(s). */ if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) break; if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp))) break; repair: /* Advance the send_head. This one is sent out. * This call will increment packets_out. */ tcp_event_new_data_sent(sk, skb); tcp_minshall_update(tp, mss_now, skb); sent_pkts += tcp_skb_pcount(skb); if (push_one) break; } if (is_rwnd_limited) tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED); else tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED); is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)); if (likely(sent_pkts || is_cwnd_limited)) tcp_cwnd_validate(sk, is_cwnd_limited); if (likely(sent_pkts)) { if (tcp_in_cwnd_reduction(sk)) tp->prr_out += sent_pkts; /* Send one loss probe per tail loss episode. */ if (push_one != 2) tcp_schedule_loss_probe(sk, false); return false; } return !tp->packets_out && !tcp_write_queue_empty(sk); } bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); u32 timeout, rto_delta_us; int early_retrans; /* Don't do any loss probe on a Fast Open connection before 3WHS * finishes. */ if (rcu_access_pointer(tp->fastopen_rsk)) return false; early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans); /* Schedule a loss probe in 2*RTT for SACK capable connections * not in loss recovery, that are either limited by cwnd or application. */ if ((early_retrans != 3 && early_retrans != 4) || !tp->packets_out || !tcp_is_sack(tp) || (icsk->icsk_ca_state != TCP_CA_Open && icsk->icsk_ca_state != TCP_CA_CWR)) return false; /* Probe timeout is 2*rtt. Add minimum RTO to account * for delayed ack when there's one outstanding packet. If no RTT * sample is available then probe after TCP_TIMEOUT_INIT. */ if (tp->srtt_us) { timeout = usecs_to_jiffies(tp->srtt_us >> 2); if (tp->packets_out == 1) timeout += TCP_RTO_MIN; else timeout += TCP_TIMEOUT_MIN; } else { timeout = TCP_TIMEOUT_INIT; } /* If the RTO formula yields an earlier time, then use that time. */ rto_delta_us = advancing_rto ? jiffies_to_usecs(inet_csk(sk)->icsk_rto) : tcp_rto_delta_us(sk); /* How far in future is RTO? */ if (rto_delta_us > 0) timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us)); tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX); return true; } /* Thanks to skb fast clones, we can detect if a prior transmit of * a packet is still in a qdisc or driver queue. * In this case, there is very little point doing a retransmit ! */ static bool skb_still_in_host_queue(struct sock *sk, const struct sk_buff *skb) { if (unlikely(skb_fclone_busy(sk, skb))) { set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); smp_mb__after_atomic(); if (skb_fclone_busy(sk, skb)) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES); return true; } } return false; } /* When probe timeout (PTO) fires, try send a new segment if possible, else * retransmit the last segment. */ void tcp_send_loss_probe(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *skb; int pcount; int mss = tcp_current_mss(sk); /* At most one outstanding TLP */ if (tp->tlp_high_seq) goto rearm_timer; tp->tlp_retrans = 0; skb = tcp_send_head(sk); if (skb && tcp_snd_wnd_test(tp, skb, mss)) { pcount = tp->packets_out; tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC); if (tp->packets_out > pcount) goto probe_sent; goto rearm_timer; } skb = skb_rb_last(&sk->tcp_rtx_queue); if (unlikely(!skb)) { WARN_ONCE(tp->packets_out, "invalid inflight: %u state %u cwnd %u mss %d\n", tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss); inet_csk(sk)->icsk_pending = 0; return; } if (skb_still_in_host_queue(sk, skb)) goto rearm_timer; pcount = tcp_skb_pcount(skb); if (WARN_ON(!pcount)) goto rearm_timer; if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) { if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, (pcount - 1) * mss, mss, GFP_ATOMIC))) goto rearm_timer; skb = skb_rb_next(skb); } if (WARN_ON(!skb || !tcp_skb_pcount(skb))) goto rearm_timer; if (__tcp_retransmit_skb(sk, skb, 1)) goto rearm_timer; tp->tlp_retrans = 1; probe_sent: /* Record snd_nxt for loss detection. */ tp->tlp_high_seq = tp->snd_nxt; NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES); /* Reset s.t. tcp_rearm_rto will restart timer from now */ inet_csk(sk)->icsk_pending = 0; rearm_timer: tcp_rearm_rto(sk); } /* Push out any pending frames which were held back due to * TCP_CORK or attempt at coalescing tiny packets. * The socket must be locked by the caller. */ void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss, int nonagle) { /* If we are closed, the bytes will have to remain here. * In time closedown will finish, we empty the write queue and * all will be happy. */ if (unlikely(sk->sk_state == TCP_CLOSE)) return; if (tcp_write_xmit(sk, cur_mss, nonagle, 0, sk_gfp_mask(sk, GFP_ATOMIC))) tcp_check_probe_timer(sk); } /* Send _single_ skb sitting at the send head. This function requires * true push pending frames to setup probe timer etc. */ void tcp_push_one(struct sock *sk, unsigned int mss_now) { struct sk_buff *skb = tcp_send_head(sk); BUG_ON(!skb || skb->len < mss_now); tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation); } /* This function returns the amount that we can raise the * usable window based on the following constraints * * 1. The window can never be shrunk once it is offered (RFC 793) * 2. We limit memory per socket * * RFC 1122: * "the suggested [SWS] avoidance algorithm for the receiver is to keep * RECV.NEXT + RCV.WIN fixed until: * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" * * i.e. don't raise the right edge of the window until you can raise * it at least MSS bytes. * * Unfortunately, the recommended algorithm breaks header prediction, * since header prediction assumes th->window stays fixed. * * Strictly speaking, keeping th->window fixed violates the receiver * side SWS prevention criteria. The problem is that under this rule * a stream of single byte packets will cause the right side of the * window to always advance by a single byte. * * Of course, if the sender implements sender side SWS prevention * then this will not be a problem. * * BSD seems to make the following compromise: * * If the free space is less than the 1/4 of the maximum * space available and the free space is less than 1/2 mss, * then set the window to 0. * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] * Otherwise, just prevent the window from shrinking * and from being larger than the largest representable value. * * This prevents incremental opening of the window in the regime * where TCP is limited by the speed of the reader side taking * data out of the TCP receive queue. It does nothing about * those cases where the window is constrained on the sender side * because the pipeline is full. * * BSD also seems to "accidentally" limit itself to windows that are a * multiple of MSS, at least until the free space gets quite small. * This would appear to be a side effect of the mbuf implementation. * Combining these two algorithms results in the observed behavior * of having a fixed window size at almost all times. * * Below we obtain similar behavior by forcing the offered window to * a multiple of the mss when it is feasible to do so. * * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. * Regular options like TIMESTAMP are taken into account. */ u32 __tcp_select_window(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); /* MSS for the peer's data. Previous versions used mss_clamp * here. I don't know if the value based on our guesses * of peer's MSS is better for the performance. It's more correct * but may be worse for the performance because of rcv_mss * fluctuations. --SAW 1998/11/1 */ int mss = icsk->icsk_ack.rcv_mss; int free_space = tcp_space(sk); int allowed_space = tcp_full_space(sk); int full_space, window; if (sk_is_mptcp(sk)) mptcp_space(sk, &free_space, &allowed_space); full_space = min_t(int, tp->window_clamp, allowed_space); if (unlikely(mss > full_space)) { mss = full_space; if (mss <= 0) return 0; } if (free_space < (full_space >> 1)) { icsk->icsk_ack.quick = 0; if (tcp_under_memory_pressure(sk)) tcp_adjust_rcv_ssthresh(sk); /* free_space might become our new window, make sure we don't * increase it due to wscale. */ free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale); /* if free space is less than mss estimate, or is below 1/16th * of the maximum allowed, try to move to zero-window, else * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and * new incoming data is dropped due to memory limits. * With large window, mss test triggers way too late in order * to announce zero window in time before rmem limit kicks in. */ if (free_space < (allowed_space >> 4) || free_space < mss) return 0; } if (free_space > tp->rcv_ssthresh) free_space = tp->rcv_ssthresh; /* Don't do rounding if we are using window scaling, since the * scaled window will not line up with the MSS boundary anyway. */ if (tp->rx_opt.rcv_wscale) { window = free_space; /* Advertise enough space so that it won't get scaled away. * Import case: prevent zero window announcement if * 1< mss. */ window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale)); } else { window = tp->rcv_wnd; /* Get the largest window that is a nice multiple of mss. * Window clamp already applied above. * If our current window offering is within 1 mss of the * free space we just keep it. This prevents the divide * and multiply from happening most of the time. * We also don't do any window rounding when the free space * is too small. */ if (window <= free_space - mss || window > free_space) window = rounddown(free_space, mss); else if (mss == full_space && free_space > window + (full_space >> 1)) window = free_space; } return window; } void tcp_skb_collapse_tstamp(struct sk_buff *skb, const struct sk_buff *next_skb) { if (unlikely(tcp_has_tx_tstamp(next_skb))) { const struct skb_shared_info *next_shinfo = skb_shinfo(next_skb); struct skb_shared_info *shinfo = skb_shinfo(skb); shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP; shinfo->tskey = next_shinfo->tskey; TCP_SKB_CB(skb)->txstamp_ack |= TCP_SKB_CB(next_skb)->txstamp_ack; } } /* Collapses two adjacent SKB's during retransmission. */ static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb) { struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *next_skb = skb_rb_next(skb); int next_skb_size; next_skb_size = next_skb->len; BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1); if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size)) return false; tcp_highest_sack_replace(sk, next_skb, skb); /* Update sequence range on original skb. */ TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; /* Merge over control information. This moves PSH/FIN etc. over */ TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags; /* All done, get rid of second SKB and account for it so * packet counting does not break. */ TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS; TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor; /* changed transmit queue under us so clear hints */ tcp_clear_retrans_hints_partial(tp); if (next_skb == tp->retransmit_skb_hint) tp->retransmit_skb_hint = skb; tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb)); tcp_skb_collapse_tstamp(skb, next_skb); tcp_rtx_queue_unlink_and_free(next_skb, sk); return true; } /* Check if coalescing SKBs is legal. */ static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb) { if (tcp_skb_pcount(skb) > 1) return false; if (skb_cloned(skb)) return false; /* Some heuristics for collapsing over SACK'd could be invented */ if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) return false; return true; } /* Collapse packets in the retransmit queue to make to create * less packets on the wire. This is only done on retransmission. */ static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to, int space) { struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *skb = to, *tmp; bool first = true; if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)) return; if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) return; skb_rbtree_walk_from_safe(skb, tmp) { if (!tcp_can_collapse(sk, skb)) break; if (!tcp_skb_can_collapse(to, skb)) break; space -= skb->len; if (first) { first = false; continue; } if (space < 0) break; if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp))) break; if (!tcp_collapse_retrans(sk, to)) break; } } /* This retransmits one SKB. Policy decisions and retransmit queue * state updates are done by the caller. Returns non-zero if an * error occurred which prevented the send. */ int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); unsigned int cur_mss; int diff, len, err; int avail_wnd; /* Inconclusive MTU probe */ if (icsk->icsk_mtup.probe_size) icsk->icsk_mtup.probe_size = 0; if (skb_still_in_host_queue(sk, skb)) return -EBUSY; if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) { WARN_ON_ONCE(1); return -EINVAL; } if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) return -ENOMEM; } if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) return -EHOSTUNREACH; /* Routing failure or similar. */ cur_mss = tcp_current_mss(sk); avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; /* If receiver has shrunk his window, and skb is out of * new window, do not retransmit it. The exception is the * case, when window is shrunk to zero. In this case * our retransmit of one segment serves as a zero window probe. */ if (avail_wnd <= 0) { if (TCP_SKB_CB(skb)->seq != tp->snd_una) return -EAGAIN; avail_wnd = cur_mss; } len = cur_mss * segs; if (len > avail_wnd) { len = rounddown(avail_wnd, cur_mss); if (!len) len = avail_wnd; } if (skb->len > len) { if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len, cur_mss, GFP_ATOMIC)) return -ENOMEM; /* We'll try again later. */ } else { if (skb_unclone_keeptruesize(skb, GFP_ATOMIC)) return -ENOMEM; diff = tcp_skb_pcount(skb); tcp_set_skb_tso_segs(skb, cur_mss); diff -= tcp_skb_pcount(skb); if (diff) tcp_adjust_pcount(sk, skb, diff); avail_wnd = min_t(int, avail_wnd, cur_mss); if (skb->len < avail_wnd) tcp_retrans_try_collapse(sk, skb, avail_wnd); } /* RFC3168, section 6.1.1.1. ECN fallback */ if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN) tcp_ecn_clear_syn(sk, skb); /* Update global and local TCP statistics. */ segs = tcp_skb_pcount(skb); TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs); if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN) __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); tp->total_retrans += segs; tp->bytes_retrans += skb->len; /* make sure skb->data is aligned on arches that require it * and check if ack-trimming & collapsing extended the headroom * beyond what csum_start can cover. */ if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) || skb_headroom(skb) >= 0xFFFF)) { struct sk_buff *nskb; tcp_skb_tsorted_save(skb) { nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC); if (nskb) { nskb->dev = NULL; err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC); } else { err = -ENOBUFS; } } tcp_skb_tsorted_restore(skb); if (!err) { tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns); tcp_rate_skb_sent(sk, skb); } } else { err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); } /* To avoid taking spuriously low RTT samples based on a timestamp * for a transmit that never happened, always mark EVER_RETRANS */ TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS; if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG)) tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB, TCP_SKB_CB(skb)->seq, segs, err); if (likely(!err)) { trace_tcp_retransmit_skb(sk, skb); } else if (err != -EBUSY) { NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs); } return err; } int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs) { struct tcp_sock *tp = tcp_sk(sk); int err = __tcp_retransmit_skb(sk, skb, segs); if (err == 0) { #if FASTRETRANS_DEBUG > 0 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { net_dbg_ratelimited("retrans_out leaked\n"); } #endif TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; tp->retrans_out += tcp_skb_pcount(skb); } /* Save stamp of the first (attempted) retransmit. */ if (!tp->retrans_stamp) tp->retrans_stamp = tcp_skb_timestamp(skb); if (tp->undo_retrans < 0) tp->undo_retrans = 0; tp->undo_retrans += tcp_skb_pcount(skb); return err; } /* This gets called after a retransmit timeout, and the initially * retransmitted data is acknowledged. It tries to continue * resending the rest of the retransmit queue, until either * we've sent it all or the congestion window limit is reached. */ void tcp_xmit_retransmit_queue(struct sock *sk) { const struct inet_connection_sock *icsk = inet_csk(sk); struct sk_buff *skb, *rtx_head, *hole = NULL; struct tcp_sock *tp = tcp_sk(sk); bool rearm_timer = false; u32 max_segs; int mib_idx; if (!tp->packets_out) return; rtx_head = tcp_rtx_queue_head(sk); skb = tp->retransmit_skb_hint ?: rtx_head; max_segs = tcp_tso_segs(sk, tcp_current_mss(sk)); skb_rbtree_walk_from(skb) { __u8 sacked; int segs; if (tcp_pacing_check(sk)) break; /* we could do better than to assign each time */ if (!hole) tp->retransmit_skb_hint = skb; segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp); if (segs <= 0) break; sacked = TCP_SKB_CB(skb)->sacked; /* In case tcp_shift_skb_data() have aggregated large skbs, * we need to make sure not sending too bigs TSO packets */ segs = min_t(int, segs, max_segs); if (tp->retrans_out >= tp->lost_out) { break; } else if (!(sacked & TCPCB_LOST)) { if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED))) hole = skb; continue; } else { if (icsk->icsk_ca_state != TCP_CA_Loss) mib_idx = LINUX_MIB_TCPFASTRETRANS; else mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS; } if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS)) continue; if (tcp_small_queue_check(sk, skb, 1)) break; if (tcp_retransmit_skb(sk, skb, segs)) break; NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb)); if (tcp_in_cwnd_reduction(sk)) tp->prr_out += tcp_skb_pcount(skb); if (skb == rtx_head && icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT) rearm_timer = true; } if (rearm_timer) tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX); } /* We allow to exceed memory limits for FIN packets to expedite * connection tear down and (memory) recovery. * Otherwise tcp_send_fin() could be tempted to either delay FIN * or even be forced to close flow without any FIN. * In general, we want to allow one skb per socket to avoid hangs * with edge trigger epoll() */ void sk_forced_mem_schedule(struct sock *sk, int size) { int delta, amt; delta = size - sk->sk_forward_alloc; if (delta <= 0) return; amt = sk_mem_pages(delta); sk_forward_alloc_add(sk, amt << PAGE_SHIFT); sk_memory_allocated_add(sk, amt); if (mem_cgroup_sockets_enabled && sk->sk_memcg) mem_cgroup_charge_skmem(sk->sk_memcg, amt, gfp_memcg_charge() | __GFP_NOFAIL); } /* Send a FIN. The caller locks the socket for us. * We should try to send a FIN packet really hard, but eventually give up. */ void tcp_send_fin(struct sock *sk) { struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk); struct tcp_sock *tp = tcp_sk(sk); /* Optimization, tack on the FIN if we have one skb in write queue and * this skb was not yet sent, or we are under memory pressure. * Note: in the latter case, FIN packet will be sent after a timeout, * as TCP stack thinks it has already been transmitted. */ tskb = tail; if (!tskb && tcp_under_memory_pressure(sk)) tskb = skb_rb_last(&sk->tcp_rtx_queue); if (tskb) { TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN; TCP_SKB_CB(tskb)->end_seq++; tp->write_seq++; if (!tail) { /* This means tskb was already sent. * Pretend we included the FIN on previous transmit. * We need to set tp->snd_nxt to the value it would have * if FIN had been sent. This is because retransmit path * does not change tp->snd_nxt. */ WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1); return; } } else { skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation); if (unlikely(!skb)) return; INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); skb_reserve(skb, MAX_TCP_HEADER); sk_forced_mem_schedule(sk, skb->truesize); /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ tcp_init_nondata_skb(skb, tp->write_seq, TCPHDR_ACK | TCPHDR_FIN); tcp_queue_skb(sk, skb); } __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF); } /* We get here when a process closes a file descriptor (either due to * an explicit close() or as a byproduct of exit()'ing) and there * was unread data in the receive queue. This behavior is recommended * by RFC 2525, section 2.17. -DaveM */ void tcp_send_active_reset(struct sock *sk, gfp_t priority) { struct sk_buff *skb; TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS); /* NOTE: No TCP options attached and we never retransmit this. */ skb = alloc_skb(MAX_TCP_HEADER, priority); if (!skb) { NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); return; } /* Reserve space for headers and prepare control bits. */ skb_reserve(skb, MAX_TCP_HEADER); tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk), TCPHDR_ACK | TCPHDR_RST); tcp_mstamp_refresh(tcp_sk(sk)); /* Send it off. */ if (tcp_transmit_skb(sk, skb, 0, priority)) NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED); /* skb of trace_tcp_send_reset() keeps the skb that caused RST, * skb here is different to the troublesome skb, so use NULL */ trace_tcp_send_reset(sk, NULL); } /* Send a crossed SYN-ACK during socket establishment. * WARNING: This routine must only be called when we have already sent * a SYN packet that crossed the incoming SYN that caused this routine * to get called. If this assumption fails then the initial rcv_wnd * and rcv_wscale values will not be correct. */ int tcp_send_synack(struct sock *sk) { struct sk_buff *skb; skb = tcp_rtx_queue_head(sk); if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { pr_err("%s: wrong queue state\n", __func__); return -EFAULT; } if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) { if (skb_cloned(skb)) { struct sk_buff *nskb; tcp_skb_tsorted_save(skb) { nskb = skb_copy(skb, GFP_ATOMIC); } tcp_skb_tsorted_restore(skb); if (!nskb) return -ENOMEM; INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor); tcp_highest_sack_replace(sk, skb, nskb); tcp_rtx_queue_unlink_and_free(skb, sk); __skb_header_release(nskb); tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb); sk_wmem_queued_add(sk, nskb->truesize); sk_mem_charge(sk, nskb->truesize); skb = nskb; } TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK; tcp_ecn_send_synack(sk, skb); } return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); } /** * tcp_make_synack - Allocate one skb and build a SYNACK packet. * @sk: listener socket * @dst: dst entry attached to the SYNACK. It is consumed and caller * should not use it again. * @req: request_sock pointer * @foc: cookie for tcp fast open * @synack_type: Type of synack to prepare * @syn_skb: SYN packet just received. It could be NULL for rtx case. */ struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst, struct request_sock *req, struct tcp_fastopen_cookie *foc, enum tcp_synack_type synack_type, struct sk_buff *syn_skb) { struct inet_request_sock *ireq = inet_rsk(req); const struct tcp_sock *tp = tcp_sk(sk); struct tcp_md5sig_key *md5 = NULL; struct tcp_out_options opts; struct sk_buff *skb; int tcp_header_size; struct tcphdr *th; int mss; u64 now; skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); if (unlikely(!skb)) { dst_release(dst); return NULL; } /* Reserve space for headers. */ skb_reserve(skb, MAX_TCP_HEADER); switch (synack_type) { case TCP_SYNACK_NORMAL: skb_set_owner_w(skb, req_to_sk(req)); break; case TCP_SYNACK_COOKIE: /* Under synflood, we do not attach skb to a socket, * to avoid false sharing. */ break; case TCP_SYNACK_FASTOPEN: /* sk is a const pointer, because we want to express multiple * cpu might call us concurrently. * sk->sk_wmem_alloc in an atomic, we can promote to rw. */ skb_set_owner_w(skb, (struct sock *)sk); break; } skb_dst_set(skb, dst); mss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); memset(&opts, 0, sizeof(opts)); now = tcp_clock_ns(); #ifdef CONFIG_SYN_COOKIES if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok)) skb_set_delivery_time(skb, cookie_init_timestamp(req, now), true); else #endif { skb_set_delivery_time(skb, now, true); if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */ tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb); } #ifdef CONFIG_TCP_MD5SIG rcu_read_lock(); md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req)); #endif skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4); /* bpf program will be interested in the tcp_flags */ TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK; tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5, foc, synack_type, syn_skb) + sizeof(*th); skb_push(skb, tcp_header_size); skb_reset_transport_header(skb); th = (struct tcphdr *)skb->data; memset(th, 0, sizeof(struct tcphdr)); th->syn = 1; th->ack = 1; tcp_ecn_make_synack(req, th); th->source = htons(ireq->ir_num); th->dest = ireq->ir_rmt_port; skb->mark = ireq->ir_mark; skb->ip_summed = CHECKSUM_PARTIAL; th->seq = htonl(tcp_rsk(req)->snt_isn); /* XXX data is queued and acked as is. No buffer/window check */ th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt); /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ th->window = htons(min(req->rsk_rcv_wnd, 65535U)); tcp_options_write(th, NULL, &opts); th->doff = (tcp_header_size >> 2); TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS); #ifdef CONFIG_TCP_MD5SIG /* Okay, we have all we need - do the md5 hash if needed */ if (md5) tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location, md5, req_to_sk(req), skb); rcu_read_unlock(); #endif bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb, synack_type, &opts); skb_set_delivery_time(skb, now, true); tcp_add_tx_delay(skb, tp); return skb; } EXPORT_SYMBOL(tcp_make_synack); static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst) { struct inet_connection_sock *icsk = inet_csk(sk); const struct tcp_congestion_ops *ca; u32 ca_key = dst_metric(dst, RTAX_CC_ALGO); if (ca_key == TCP_CA_UNSPEC) return; rcu_read_lock(); ca = tcp_ca_find_key(ca_key); if (likely(ca && bpf_try_module_get(ca, ca->owner))) { bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner); icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst); icsk->icsk_ca_ops = ca; } rcu_read_unlock(); } /* Do all connect socket setups that can be done AF independent. */ static void tcp_connect_init(struct sock *sk) { const struct dst_entry *dst = __sk_dst_get(sk); struct tcp_sock *tp = tcp_sk(sk); __u8 rcv_wscale; u32 rcv_wnd; /* We'll fix this up when we get a response from the other end. * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. */ tp->tcp_header_len = sizeof(struct tcphdr); if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps)) tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED; #ifdef CONFIG_TCP_MD5SIG if (tp->af_specific->md5_lookup(sk, sk)) tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; #endif /* If user gave his TCP_MAXSEG, record it to clamp */ if (tp->rx_opt.user_mss) tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; tp->max_window = 0; tcp_mtup_init(sk); tcp_sync_mss(sk, dst_mtu(dst)); tcp_ca_dst_init(sk, dst); if (!tp->window_clamp) tp->window_clamp = dst_metric(dst, RTAX_WINDOW); tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst)); tcp_initialize_rcv_mss(sk); /* limit the window selection if the user enforce a smaller rx buffer */ if (sk->sk_userlocks & SOCK_RCVBUF_LOCK && (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0)) tp->window_clamp = tcp_full_space(sk); rcv_wnd = tcp_rwnd_init_bpf(sk); if (rcv_wnd == 0) rcv_wnd = dst_metric(dst, RTAX_INITRWND); tcp_select_initial_window(sk, tcp_full_space(sk), tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), &tp->rcv_wnd, &tp->window_clamp, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling), &rcv_wscale, rcv_wnd); tp->rx_opt.rcv_wscale = rcv_wscale; tp->rcv_ssthresh = tp->rcv_wnd; sk->sk_err = 0; sock_reset_flag(sk, SOCK_DONE); tp->snd_wnd = 0; tcp_init_wl(tp, 0); tcp_write_queue_purge(sk); tp->snd_una = tp->write_seq; tp->snd_sml = tp->write_seq; tp->snd_up = tp->write_seq; WRITE_ONCE(tp->snd_nxt, tp->write_seq); if (likely(!tp->repair)) tp->rcv_nxt = 0; else tp->rcv_tstamp = tcp_jiffies32; tp->rcv_wup = tp->rcv_nxt; WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); inet_csk(sk)->icsk_rto = tcp_timeout_init(sk); inet_csk(sk)->icsk_retransmits = 0; tcp_clear_retrans(tp); } static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb) { struct tcp_sock *tp = tcp_sk(sk); struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); tcb->end_seq += skb->len; __skb_header_release(skb); sk_wmem_queued_add(sk, skb->truesize); sk_mem_charge(sk, skb->truesize); WRITE_ONCE(tp->write_seq, tcb->end_seq); tp->packets_out += tcp_skb_pcount(skb); } /* Build and send a SYN with data and (cached) Fast Open cookie. However, * queue a data-only packet after the regular SYN, such that regular SYNs * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges * only the SYN sequence, the data are retransmitted in the first ACK. * If cookie is not cached or other error occurs, falls back to send a * regular SYN with Fast Open cookie request option. */ static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); struct tcp_fastopen_request *fo = tp->fastopen_req; int space, err = 0; struct sk_buff *syn_data; tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */ if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie)) goto fallback; /* MSS for SYN-data is based on cached MSS and bounded by PMTU and * user-MSS. Reserve maximum option space for middleboxes that add * private TCP options. The cost is reduced data space in SYN :( */ tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp); /* Sync mss_cache after updating the mss_clamp */ tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) - MAX_TCP_OPTION_SPACE; space = min_t(size_t, space, fo->size); /* limit to order-0 allocations */ space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER)); syn_data = tcp_stream_alloc_skb(sk, space, sk->sk_allocation, false); if (!syn_data) goto fallback; memcpy(syn_data->cb, syn->cb, sizeof(syn->cb)); if (space) { int copied = copy_from_iter(skb_put(syn_data, space), space, &fo->data->msg_iter); if (unlikely(!copied)) { tcp_skb_tsorted_anchor_cleanup(syn_data); kfree_skb(syn_data); goto fallback; } if (copied != space) { skb_trim(syn_data, copied); space = copied; } skb_zcopy_set(syn_data, fo->uarg, NULL); } /* No more data pending in inet_wait_for_connect() */ if (space == fo->size) fo->data = NULL; fo->copied = space; tcp_connect_queue_skb(sk, syn_data); if (syn_data->len) tcp_chrono_start(sk, TCP_CHRONO_BUSY); err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation); skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true); /* Now full SYN+DATA was cloned and sent (or not), * remove the SYN from the original skb (syn_data) * we keep in write queue in case of a retransmit, as we * also have the SYN packet (with no data) in the same queue. */ TCP_SKB_CB(syn_data)->seq++; TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH; if (!err) { tp->syn_data = (fo->copied > 0); tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data); NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT); goto done; } /* data was not sent, put it in write_queue */ __skb_queue_tail(&sk->sk_write_queue, syn_data); tp->packets_out -= tcp_skb_pcount(syn_data); fallback: /* Send a regular SYN with Fast Open cookie request option */ if (fo->cookie.len > 0) fo->cookie.len = 0; err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation); if (err) tp->syn_fastopen = 0; done: fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */ return err; } /* Build a SYN and send it off. */ int tcp_connect(struct sock *sk) { struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *buff; int err; tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL); if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) return -EHOSTUNREACH; /* Routing failure or similar. */ tcp_connect_init(sk); if (unlikely(tp->repair)) { tcp_finish_connect(sk, NULL); return 0; } buff = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, true); if (unlikely(!buff)) return -ENOBUFS; tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN); tcp_mstamp_refresh(tp); tp->retrans_stamp = tcp_time_stamp(tp); tcp_connect_queue_skb(sk, buff); tcp_ecn_send_syn(sk, buff); tcp_rbtree_insert(&sk->tcp_rtx_queue, buff); /* Send off SYN; include data in Fast Open. */ err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) : tcp_transmit_skb(sk, buff, 1, sk->sk_allocation); if (err == -ECONNREFUSED) return err; /* We change tp->snd_nxt after the tcp_transmit_skb() call * in order to make this packet get counted in tcpOutSegs. */ WRITE_ONCE(tp->snd_nxt, tp->write_seq); tp->pushed_seq = tp->write_seq; buff = tcp_send_head(sk); if (unlikely(buff)) { WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq); tp->pushed_seq = TCP_SKB_CB(buff)->seq; } TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS); /* Timer for repeating the SYN until an answer. */ inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX); return 0; } EXPORT_SYMBOL(tcp_connect); /* Send out a delayed ack, the caller does the policy checking * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() * for details. */ void tcp_send_delayed_ack(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); int ato = icsk->icsk_ack.ato; unsigned long timeout; if (ato > TCP_DELACK_MIN) { const struct tcp_sock *tp = tcp_sk(sk); int max_ato = HZ / 2; if (inet_csk_in_pingpong_mode(sk) || (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) max_ato = TCP_DELACK_MAX; /* Slow path, intersegment interval is "high". */ /* If some rtt estimate is known, use it to bound delayed ack. * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements * directly. */ if (tp->srtt_us) { int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3), TCP_DELACK_MIN); if (rtt < max_ato) max_ato = rtt; } ato = min(ato, max_ato); } ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max); /* Stay within the limit we were given */ timeout = jiffies + ato; /* Use new timeout only if there wasn't a older one earlier. */ if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { /* If delack timer is about to expire, send ACK now. */ if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { tcp_send_ack(sk); return; } if (!time_before(timeout, icsk->icsk_ack.timeout)) timeout = icsk->icsk_ack.timeout; } icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; icsk->icsk_ack.timeout = timeout; sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); } /* This routine sends an ack and also updates the window. */ void __tcp_send_ack(struct sock *sk, u32 rcv_nxt) { struct sk_buff *buff; /* If we have been reset, we may not send again. */ if (sk->sk_state == TCP_CLOSE) return; /* We are not putting this on the write queue, so * tcp_transmit_skb() will set the ownership to this * sock. */ buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); if (unlikely(!buff)) { struct inet_connection_sock *icsk = inet_csk(sk); unsigned long delay; delay = TCP_DELACK_MAX << icsk->icsk_ack.retry; if (delay < TCP_RTO_MAX) icsk->icsk_ack.retry++; inet_csk_schedule_ack(sk); icsk->icsk_ack.ato = TCP_ATO_MIN; inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX); return; } /* Reserve space for headers and prepare control bits. */ skb_reserve(buff, MAX_TCP_HEADER); tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK); /* We do not want pure acks influencing TCP Small Queues or fq/pacing * too much. * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784 */ skb_set_tcp_pure_ack(buff); /* Send it off, this clears delayed acks for us. */ __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt); } EXPORT_SYMBOL_GPL(__tcp_send_ack); void tcp_send_ack(struct sock *sk) { __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt); } /* This routine sends a packet with an out of date sequence * number. It assumes the other end will try to ack it. * * Question: what should we make while urgent mode? * 4.4BSD forces sending single byte of data. We cannot send * out of window data, because we have SND.NXT==SND.MAX... * * Current solution: to send TWO zero-length segments in urgent mode: * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is * out-of-date with SND.UNA-1 to probe window. */ static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib) { struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *skb; /* We don't queue it, tcp_transmit_skb() sets ownership. */ skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN)); if (!skb) return -1; /* Reserve space for headers and set control bits. */ skb_reserve(skb, MAX_TCP_HEADER); /* Use a previous sequence. This should cause the other * end to send an ack. Don't queue or clone SKB, just * send it. */ tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK); NET_INC_STATS(sock_net(sk), mib); return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0); } /* Called from setsockopt( ... TCP_REPAIR ) */ void tcp_send_window_probe(struct sock *sk) { if (sk->sk_state == TCP_ESTABLISHED) { tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1; tcp_mstamp_refresh(tcp_sk(sk)); tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE); } } /* Initiate keepalive or window probe from timer. */ int tcp_write_wakeup(struct sock *sk, int mib) { struct tcp_sock *tp = tcp_sk(sk); struct sk_buff *skb; if (sk->sk_state == TCP_CLOSE) return -1; skb = tcp_send_head(sk); if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) { int err; unsigned int mss = tcp_current_mss(sk); unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq; if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; /* We are probing the opening of a window * but the window size is != 0 * must have been a result SWS avoidance ( sender ) */ if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || skb->len > mss) { seg_size = min(seg_size, mss); TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE, skb, seg_size, mss, GFP_ATOMIC)) return -1; } else if (!tcp_skb_pcount(skb)) tcp_set_skb_tso_segs(skb, mss); TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); if (!err) tcp_event_new_data_sent(sk, skb); return err; } else { if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF)) tcp_xmit_probe_skb(sk, 1, mib); return tcp_xmit_probe_skb(sk, 0, mib); } } /* A window probe timeout has occurred. If window is not closed send * a partial packet else a zero probe. */ void tcp_send_probe0(struct sock *sk) { struct inet_connection_sock *icsk = inet_csk(sk); struct tcp_sock *tp = tcp_sk(sk); struct net *net = sock_net(sk); unsigned long timeout; int err; err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE); if (tp->packets_out || tcp_write_queue_empty(sk)) { /* Cancel probe timer, if it is not required. */ icsk->icsk_probes_out = 0; icsk->icsk_backoff = 0; icsk->icsk_probes_tstamp = 0; return; } icsk->icsk_probes_out++; if (err <= 0) { if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2)) icsk->icsk_backoff++; timeout = tcp_probe0_when(sk, TCP_RTO_MAX); } else { /* If packet was not sent due to local congestion, * Let senders fight for local resources conservatively. */ timeout = TCP_RESOURCE_PROBE_INTERVAL; } timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout); tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX); } int tcp_rtx_synack(const struct sock *sk, struct request_sock *req) { const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific; struct flowi fl; int res; /* Paired with WRITE_ONCE() in sock_setsockopt() */ if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED) WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash()); res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL, NULL); if (!res) { TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS); NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS); if (unlikely(tcp_passive_fastopen(sk))) tcp_sk(sk)->total_retrans++; trace_tcp_retransmit_synack(sk, req); } return res; } EXPORT_SYMBOL(tcp_rtx_synack);