linuxdebug/drivers/gpu/drm/arm/display/komeda/komeda_pipeline.h

566 lines
18 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
* Author: James.Qian.Wang <james.qian.wang@arm.com>
*
*/
#ifndef _KOMEDA_PIPELINE_H_
#define _KOMEDA_PIPELINE_H_
#include <linux/types.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include "malidp_utils.h"
#include "komeda_color_mgmt.h"
#define KOMEDA_MAX_PIPELINES 2
#define KOMEDA_PIPELINE_MAX_LAYERS 4
#define KOMEDA_PIPELINE_MAX_SCALERS 2
#define KOMEDA_COMPONENT_N_INPUTS 5
/* pipeline component IDs */
enum {
KOMEDA_COMPONENT_LAYER0 = 0,
KOMEDA_COMPONENT_LAYER1 = 1,
KOMEDA_COMPONENT_LAYER2 = 2,
KOMEDA_COMPONENT_LAYER3 = 3,
KOMEDA_COMPONENT_WB_LAYER = 7, /* write back layer */
KOMEDA_COMPONENT_SCALER0 = 8,
KOMEDA_COMPONENT_SCALER1 = 9,
KOMEDA_COMPONENT_SPLITTER = 12,
KOMEDA_COMPONENT_MERGER = 14,
KOMEDA_COMPONENT_COMPIZ0 = 16, /* compositor */
KOMEDA_COMPONENT_COMPIZ1 = 17,
KOMEDA_COMPONENT_IPS0 = 20, /* post image processor */
KOMEDA_COMPONENT_IPS1 = 21,
KOMEDA_COMPONENT_TIMING_CTRLR = 22, /* timing controller */
};
#define KOMEDA_PIPELINE_LAYERS (BIT(KOMEDA_COMPONENT_LAYER0) |\
BIT(KOMEDA_COMPONENT_LAYER1) |\
BIT(KOMEDA_COMPONENT_LAYER2) |\
BIT(KOMEDA_COMPONENT_LAYER3))
#define KOMEDA_PIPELINE_SCALERS (BIT(KOMEDA_COMPONENT_SCALER0) |\
BIT(KOMEDA_COMPONENT_SCALER1))
#define KOMEDA_PIPELINE_COMPIZS (BIT(KOMEDA_COMPONENT_COMPIZ0) |\
BIT(KOMEDA_COMPONENT_COMPIZ1))
#define KOMEDA_PIPELINE_IMPROCS (BIT(KOMEDA_COMPONENT_IPS0) |\
BIT(KOMEDA_COMPONENT_IPS1))
struct komeda_component;
struct komeda_component_state;
/** komeda_component_funcs - component control functions */
struct komeda_component_funcs {
/** @validate: optional,
* component may has special requirements or limitations, this function
* supply HW the ability to do the further HW specific check.
*/
int (*validate)(struct komeda_component *c,
struct komeda_component_state *state);
/** @update: update is a active update */
void (*update)(struct komeda_component *c,
struct komeda_component_state *state);
/** @disable: disable component */
void (*disable)(struct komeda_component *c);
/** @dump_register: Optional, dump registers to seq_file */
void (*dump_register)(struct komeda_component *c, struct seq_file *seq);
};
/**
* struct komeda_component
*
* struct komeda_component describe the data flow capabilities for how to link a
* component into the display pipeline.
* all specified components are subclass of this structure.
*/
struct komeda_component {
/** @obj: treat component as private obj */
struct drm_private_obj obj;
/** @pipeline: the komeda pipeline this component belongs to */
struct komeda_pipeline *pipeline;
/** @name: component name */
char name[32];
/**
* @reg:
* component register base,
* which is initialized by chip and used by chip only
*/
u32 __iomem *reg;
/** @id: component id */
u32 id;
/**
* @hw_id: component hw id,
* which is initialized by chip and used by chip only
*/
u32 hw_id;
/**
* @max_active_inputs:
* @max_active_outputs:
*
* maximum number of inputs/outputs that can be active at the same time
* Note:
* the number isn't the bit number of @supported_inputs or
* @supported_outputs, but may be less than it, since component may not
* support enabling all @supported_inputs/outputs at the same time.
*/
u8 max_active_inputs;
/** @max_active_outputs: maximum number of outputs */
u8 max_active_outputs;
/**
* @supported_inputs:
* @supported_outputs:
*
* bitmask of BIT(component->id) for the supported inputs/outputs,
* describes the possibilities of how a component is linked into a
* pipeline.
*/
u32 supported_inputs;
/** @supported_outputs: bitmask of supported output componenet ids */
u32 supported_outputs;
/**
* @funcs: chip functions to access HW
*/
const struct komeda_component_funcs *funcs;
};
/**
* struct komeda_component_output
*
* a component has multiple outputs, if want to know where the data
* comes from, only know the component is not enough, we still need to know
* its output port
*/
struct komeda_component_output {
/** @component: indicate which component the data comes from */
struct komeda_component *component;
/**
* @output_port:
* the output port of the &komeda_component_output.component
*/
u8 output_port;
};
/**
* struct komeda_component_state
*
* component_state is the data flow configuration of the component, and it's
* the superclass of all specific component_state like @komeda_layer_state,
* @komeda_scaler_state
*/
struct komeda_component_state {
/** @obj: tracking component_state by drm_atomic_state */
struct drm_private_state obj;
/** @component: backpointer to the component */
struct komeda_component *component;
/**
* @binding_user:
* currently bound user, the user can be @crtc, @plane or @wb_conn,
* which is valid decided by @component and @inputs
*
* - Layer: its user always is plane.
* - compiz/improc/timing_ctrlr: the user is crtc.
* - wb_layer: wb_conn;
* - scaler: plane when input is layer, wb_conn if input is compiz.
*/
union {
/** @crtc: backpointer for user crtc */
struct drm_crtc *crtc;
/** @plane: backpointer for user plane */
struct drm_plane *plane;
/** @wb_conn: backpointer for user wb_connector */
struct drm_connector *wb_conn;
void *binding_user;
};
/**
* @active_inputs:
*
* active_inputs is bitmask of @inputs index
*
* - active_inputs = changed_active_inputs | unchanged_active_inputs
* - affected_inputs = old->active_inputs | new->active_inputs;
* - disabling_inputs = affected_inputs ^ active_inputs;
* - changed_inputs = disabling_inputs | changed_active_inputs;
*
* NOTE:
* changed_inputs doesn't include all active_input but only
* @changed_active_inputs, and this bitmask can be used in chip
* level for dirty update.
*/
u16 active_inputs;
/** @changed_active_inputs: bitmask of the changed @active_inputs */
u16 changed_active_inputs;
/** @affected_inputs: bitmask for affected @inputs */
u16 affected_inputs;
/**
* @inputs:
*
* the specific inputs[i] only valid on BIT(i) has been set in
* @active_inputs, if not the inputs[i] is undefined.
*/
struct komeda_component_output inputs[KOMEDA_COMPONENT_N_INPUTS];
};
static inline u16 component_disabling_inputs(struct komeda_component_state *st)
{
return st->affected_inputs ^ st->active_inputs;
}
static inline u16 component_changed_inputs(struct komeda_component_state *st)
{
return component_disabling_inputs(st) | st->changed_active_inputs;
}
#define for_each_changed_input(st, i) \
for ((i) = 0; (i) < (st)->component->max_active_inputs; (i)++) \
if (has_bit((i), component_changed_inputs(st)))
#define to_comp(__c) (((__c) == NULL) ? NULL : &((__c)->base))
#define to_cpos(__c) ((struct komeda_component **)&(__c))
struct komeda_layer {
struct komeda_component base;
/* accepted h/v input range before rotation */
struct malidp_range hsize_in, vsize_in;
u32 layer_type; /* RICH, SIMPLE or WB */
u32 line_sz;
u32 yuv_line_sz; /* maximum line size for YUV422 and YUV420 */
u32 supported_rots;
/* komeda supports layer split which splits a whole image to two parts
* left and right and handle them by two individual layer processors
* Note: left/right are always according to the final display rect,
* not the source buffer.
*/
struct komeda_layer *right;
};
struct komeda_layer_state {
struct komeda_component_state base;
/* layer specific configuration state */
u16 hsize, vsize;
u32 rot;
u16 afbc_crop_l;
u16 afbc_crop_r;
u16 afbc_crop_t;
u16 afbc_crop_b;
dma_addr_t addr[3];
};
struct komeda_scaler {
struct komeda_component base;
struct malidp_range hsize, vsize;
u32 max_upscaling;
u32 max_downscaling;
u8 scaling_split_overlap; /* split overlap for scaling */
u8 enh_split_overlap; /* split overlap for image enhancement */
};
struct komeda_scaler_state {
struct komeda_component_state base;
u16 hsize_in, vsize_in;
u16 hsize_out, vsize_out;
u16 total_hsize_in, total_vsize_in;
u16 total_hsize_out; /* total_xxxx are size before split */
u16 left_crop, right_crop;
u8 en_scaling : 1,
en_alpha : 1, /* enable alpha processing */
en_img_enhancement : 1,
en_split : 1,
right_part : 1; /* right part of split image */
};
struct komeda_compiz {
struct komeda_component base;
struct malidp_range hsize, vsize;
};
struct komeda_compiz_input_cfg {
u16 hsize, vsize;
u16 hoffset, voffset;
u8 pixel_blend_mode, layer_alpha;
};
struct komeda_compiz_state {
struct komeda_component_state base;
/* composition size */
u16 hsize, vsize;
struct komeda_compiz_input_cfg cins[KOMEDA_COMPONENT_N_INPUTS];
};
struct komeda_merger {
struct komeda_component base;
struct malidp_range hsize_merged;
struct malidp_range vsize_merged;
};
struct komeda_merger_state {
struct komeda_component_state base;
u16 hsize_merged;
u16 vsize_merged;
};
struct komeda_splitter {
struct komeda_component base;
struct malidp_range hsize, vsize;
};
struct komeda_splitter_state {
struct komeda_component_state base;
u16 hsize, vsize;
u16 overlap;
};
struct komeda_improc {
struct komeda_component base;
u32 supported_color_formats; /* DRM_RGB/YUV444/YUV420*/
u32 supported_color_depths; /* BIT(8) | BIT(10)*/
u8 supports_degamma : 1;
u8 supports_csc : 1;
u8 supports_gamma : 1;
};
struct komeda_improc_state {
struct komeda_component_state base;
u8 color_format, color_depth;
u16 hsize, vsize;
u32 fgamma_coeffs[KOMEDA_N_GAMMA_COEFFS];
u32 ctm_coeffs[KOMEDA_N_CTM_COEFFS];
};
/* display timing controller */
struct komeda_timing_ctrlr {
struct komeda_component base;
u8 supports_dual_link : 1;
};
struct komeda_timing_ctrlr_state {
struct komeda_component_state base;
};
/* Why define A separated structure but not use plane_state directly ?
* 1. Komeda supports layer_split which means a plane_state can be split and
* handled by two layers, one layer only handle half of plane image.
* 2. Fix up the user properties according to HW's capabilities, like user
* set rotation to R180, but HW only supports REFLECT_X+Y. the rot here is
* after drm_rotation_simplify()
*/
struct komeda_data_flow_cfg {
struct komeda_component_output input;
u16 in_x, in_y, in_w, in_h;
u32 out_x, out_y, out_w, out_h;
u16 total_in_h, total_in_w;
u16 total_out_w;
u16 left_crop, right_crop, overlap;
u32 rot;
int blending_zorder;
u8 pixel_blend_mode, layer_alpha;
u8 en_scaling : 1,
en_img_enhancement : 1,
en_split : 1,
is_yuv : 1,
right_part : 1; /* right part of display image if split enabled */
};
struct komeda_pipeline_funcs {
/* check if the aclk (main engine clock) can satisfy the clock
* requirements of the downscaling that specified by dflow
*/
int (*downscaling_clk_check)(struct komeda_pipeline *pipe,
struct drm_display_mode *mode,
unsigned long aclk_rate,
struct komeda_data_flow_cfg *dflow);
/* dump_register: Optional, dump registers to seq_file */
void (*dump_register)(struct komeda_pipeline *pipe,
struct seq_file *sf);
};
/**
* struct komeda_pipeline
*
* Represent a complete display pipeline and hold all functional components.
*/
struct komeda_pipeline {
/** @obj: link pipeline as private obj of drm_atomic_state */
struct drm_private_obj obj;
/** @mdev: the parent komeda_dev */
struct komeda_dev *mdev;
/** @pxlclk: pixel clock */
struct clk *pxlclk;
/** @id: pipeline id */
int id;
/** @avail_comps: available components mask of pipeline */
u32 avail_comps;
/**
* @standalone_disabled_comps:
*
* When disable the pipeline, some components can not be disabled
* together with others, but need a sparated and standalone disable.
* The standalone_disabled_comps are the components which need to be
* disabled standalone, and this concept also introduce concept of
* two phase.
* phase 1: for disabling the common components.
* phase 2: for disabling the standalong_disabled_comps.
*/
u32 standalone_disabled_comps;
/** @n_layers: the number of layer on @layers */
int n_layers;
/** @layers: the pipeline layers */
struct komeda_layer *layers[KOMEDA_PIPELINE_MAX_LAYERS];
/** @n_scalers: the number of scaler on @scalers */
int n_scalers;
/** @scalers: the pipeline scalers */
struct komeda_scaler *scalers[KOMEDA_PIPELINE_MAX_SCALERS];
/** @compiz: compositor */
struct komeda_compiz *compiz;
/** @splitter: for split the compiz output to two half data flows */
struct komeda_splitter *splitter;
/** @merger: merger */
struct komeda_merger *merger;
/** @wb_layer: writeback layer */
struct komeda_layer *wb_layer;
/** @improc: post image processor */
struct komeda_improc *improc;
/** @ctrlr: timing controller */
struct komeda_timing_ctrlr *ctrlr;
/** @funcs: chip private pipeline functions */
const struct komeda_pipeline_funcs *funcs;
/** @of_node: pipeline dt node */
struct device_node *of_node;
/** @of_output_port: pipeline output port */
struct device_node *of_output_port;
/** @of_output_links: output connector device nodes */
struct device_node *of_output_links[2];
/** @dual_link: true if of_output_links[0] and [1] are both valid */
bool dual_link;
};
/**
* struct komeda_pipeline_state
*
* NOTE:
* Unlike the pipeline, pipeline_state doesnt gather any component_state
* into it. It because all component will be managed by drm_atomic_state.
*/
struct komeda_pipeline_state {
/** @obj: tracking pipeline_state by drm_atomic_state */
struct drm_private_state obj;
/** @pipe: backpointer to the pipeline */
struct komeda_pipeline *pipe;
/** @crtc: currently bound crtc */
struct drm_crtc *crtc;
/**
* @active_comps:
*
* bitmask - BIT(component->id) of active components
*/
u32 active_comps;
};
#define to_layer(c) container_of(c, struct komeda_layer, base)
#define to_compiz(c) container_of(c, struct komeda_compiz, base)
#define to_scaler(c) container_of(c, struct komeda_scaler, base)
#define to_splitter(c) container_of(c, struct komeda_splitter, base)
#define to_merger(c) container_of(c, struct komeda_merger, base)
#define to_improc(c) container_of(c, struct komeda_improc, base)
#define to_ctrlr(c) container_of(c, struct komeda_timing_ctrlr, base)
#define to_layer_st(c) container_of(c, struct komeda_layer_state, base)
#define to_compiz_st(c) container_of(c, struct komeda_compiz_state, base)
#define to_scaler_st(c) container_of(c, struct komeda_scaler_state, base)
#define to_splitter_st(c) container_of(c, struct komeda_splitter_state, base)
#define to_merger_st(c) container_of(c, struct komeda_merger_state, base)
#define to_improc_st(c) container_of(c, struct komeda_improc_state, base)
#define to_ctrlr_st(c) container_of(c, struct komeda_timing_ctrlr_state, base)
#define priv_to_comp_st(o) container_of(o, struct komeda_component_state, obj)
#define priv_to_pipe_st(o) container_of(o, struct komeda_pipeline_state, obj)
/* pipeline APIs */
struct komeda_pipeline *
komeda_pipeline_add(struct komeda_dev *mdev, size_t size,
const struct komeda_pipeline_funcs *funcs);
void komeda_pipeline_destroy(struct komeda_dev *mdev,
struct komeda_pipeline *pipe);
struct komeda_pipeline *
komeda_pipeline_get_slave(struct komeda_pipeline *master);
int komeda_assemble_pipelines(struct komeda_dev *mdev);
struct komeda_component *
komeda_pipeline_get_component(struct komeda_pipeline *pipe, int id);
struct komeda_component *
komeda_pipeline_get_first_component(struct komeda_pipeline *pipe,
u32 comp_mask);
void komeda_pipeline_dump_register(struct komeda_pipeline *pipe,
struct seq_file *sf);
/* component APIs */
extern __printf(10, 11)
struct komeda_component *
komeda_component_add(struct komeda_pipeline *pipe,
size_t comp_sz, u32 id, u32 hw_id,
const struct komeda_component_funcs *funcs,
u8 max_active_inputs, u32 supported_inputs,
u8 max_active_outputs, u32 __iomem *reg,
const char *name_fmt, ...);
void komeda_component_destroy(struct komeda_dev *mdev,
struct komeda_component *c);
static inline struct komeda_component *
komeda_component_pickup_output(struct komeda_component *c, u32 avail_comps)
{
u32 avail_inputs = c->supported_outputs & (avail_comps);
return komeda_pipeline_get_first_component(c->pipeline, avail_inputs);
}
struct komeda_plane_state;
struct komeda_crtc_state;
struct komeda_crtc;
void pipeline_composition_size(struct komeda_crtc_state *kcrtc_st,
u16 *hsize, u16 *vsize);
int komeda_build_layer_data_flow(struct komeda_layer *layer,
struct komeda_plane_state *kplane_st,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow);
int komeda_build_wb_data_flow(struct komeda_layer *wb_layer,
struct drm_connector_state *conn_st,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow);
int komeda_build_display_data_flow(struct komeda_crtc *kcrtc,
struct komeda_crtc_state *kcrtc_st);
int komeda_build_layer_split_data_flow(struct komeda_layer *left,
struct komeda_plane_state *kplane_st,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow);
int komeda_build_wb_split_data_flow(struct komeda_layer *wb_layer,
struct drm_connector_state *conn_st,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow);
int komeda_release_unclaimed_resources(struct komeda_pipeline *pipe,
struct komeda_crtc_state *kcrtc_st);
struct komeda_pipeline_state *
komeda_pipeline_get_old_state(struct komeda_pipeline *pipe,
struct drm_atomic_state *state);
bool komeda_pipeline_disable(struct komeda_pipeline *pipe,
struct drm_atomic_state *old_state);
void komeda_pipeline_update(struct komeda_pipeline *pipe,
struct drm_atomic_state *old_state);
void komeda_complete_data_flow_cfg(struct komeda_layer *layer,
struct komeda_data_flow_cfg *dflow,
struct drm_framebuffer *fb);
#endif /* _KOMEDA_PIPELINE_H_*/