linuxdebug/drivers/gpu/drm/i915/gt/selftest_engine_pm.c

424 lines
9.8 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright © 2018 Intel Corporation
*/
#include <linux/sort.h>
#include "i915_selftest.h"
#include "intel_engine_regs.h"
#include "intel_gpu_commands.h"
#include "intel_gt_clock_utils.h"
#include "selftest_engine.h"
#include "selftest_engine_heartbeat.h"
#include "selftests/igt_atomic.h"
#include "selftests/igt_flush_test.h"
#include "selftests/igt_spinner.h"
#define COUNT 5
static int cmp_u64(const void *A, const void *B)
{
const u64 *a = A, *b = B;
return *a - *b;
}
static u64 trifilter(u64 *a)
{
sort(a, COUNT, sizeof(*a), cmp_u64, NULL);
return (a[1] + 2 * a[2] + a[3]) >> 2;
}
static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value)
{
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
op;
*cs++ = value;
*cs++ = offset;
*cs++ = 0;
return cs;
}
static u32 *emit_store(u32 *cs, u32 offset, u32 value)
{
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = offset;
*cs++ = 0;
*cs++ = value;
return cs;
}
static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset)
{
*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
*cs++ = i915_mmio_reg_offset(reg);
*cs++ = offset;
*cs++ = 0;
return cs;
}
static void write_semaphore(u32 *x, u32 value)
{
WRITE_ONCE(*x, value);
wmb();
}
static int __measure_timestamps(struct intel_context *ce,
u64 *dt, u64 *d_ring, u64 *d_ctx)
{
struct intel_engine_cs *engine = ce->engine;
u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5);
u32 offset = i915_ggtt_offset(engine->status_page.vma);
struct i915_request *rq;
u32 *cs;
rq = intel_context_create_request(ce);
if (IS_ERR(rq))
return PTR_ERR(rq);
cs = intel_ring_begin(rq, 28);
if (IS_ERR(cs)) {
i915_request_add(rq);
return PTR_ERR(cs);
}
/* Signal & wait for start */
cs = emit_store(cs, offset + 4008, 1);
cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1);
cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000);
cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004);
/* Busy wait */
cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1);
cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016);
cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012);
intel_ring_advance(rq, cs);
i915_request_get(rq);
i915_request_add(rq);
intel_engine_flush_submission(engine);
/* Wait for the request to start executing, that then waits for us */
while (READ_ONCE(sema[2]) == 0)
cpu_relax();
/* Run the request for a 100us, sampling timestamps before/after */
local_irq_disable();
write_semaphore(&sema[2], 0);
while (READ_ONCE(sema[1]) == 0) /* wait for the gpu to catch up */
cpu_relax();
*dt = local_clock();
udelay(100);
*dt = local_clock() - *dt;
write_semaphore(&sema[2], 1);
local_irq_enable();
if (i915_request_wait(rq, 0, HZ / 2) < 0) {
i915_request_put(rq);
return -ETIME;
}
i915_request_put(rq);
pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n",
engine->name, sema[1], sema[3], sema[0], sema[4]);
*d_ctx = sema[3] - sema[1];
*d_ring = sema[4] - sema[0];
return 0;
}
static int __live_engine_timestamps(struct intel_engine_cs *engine)
{
u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt;
struct intel_context *ce;
int i, err = 0;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
for (i = 0; i < COUNT; i++) {
err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]);
if (err)
break;
}
intel_context_put(ce);
if (err)
return err;
dt = trifilter(st);
d_ring = trifilter(s_ring);
d_ctx = trifilter(s_ctx);
pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n",
engine->name, dt,
intel_gt_clock_interval_to_ns(engine->gt, d_ctx),
intel_gt_clock_interval_to_ns(engine->gt, d_ring));
d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring);
if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) {
pr_err("%s Mismatch between ring timestamp and walltime!\n",
engine->name);
return -EINVAL;
}
d_ring = trifilter(s_ring);
d_ctx = trifilter(s_ctx);
d_ctx *= engine->gt->clock_frequency;
if (GRAPHICS_VER(engine->i915) == 11)
d_ring *= 12500000; /* Fixed 80ns for GEN11 ctx timestamp? */
else
d_ring *= engine->gt->clock_frequency;
if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) {
pr_err("%s Mismatch between ring and context timestamps!\n",
engine->name);
return -EINVAL;
}
return 0;
}
static int live_engine_timestamps(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
/*
* Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share
* the same CS clock.
*/
if (GRAPHICS_VER(gt->i915) < 8)
return 0;
for_each_engine(engine, gt, id) {
int err;
st_engine_heartbeat_disable(engine);
err = __live_engine_timestamps(engine);
st_engine_heartbeat_enable(engine);
if (err)
return err;
}
return 0;
}
static int __spin_until_busier(struct intel_engine_cs *engine, ktime_t busyness)
{
ktime_t start, unused, dt;
if (!intel_engine_uses_guc(engine))
return 0;
/*
* In GuC mode of submission, the busyness stats may get updated after
* the batch starts running. Poll for a change in busyness and timeout
* after 500 us.
*/
start = ktime_get();
while (intel_engine_get_busy_time(engine, &unused) == busyness) {
dt = ktime_get() - start;
if (dt > 10000000) {
pr_err("active wait timed out %lld\n", dt);
ENGINE_TRACE(engine, "active wait time out %lld\n", dt);
return -ETIME;
}
}
return 0;
}
static int live_engine_busy_stats(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct igt_spinner spin;
int err = 0;
/*
* Check that if an engine supports busy-stats, they tell the truth.
*/
if (igt_spinner_init(&spin, gt))
return -ENOMEM;
GEM_BUG_ON(intel_gt_pm_is_awake(gt));
for_each_engine(engine, gt, id) {
struct i915_request *rq;
ktime_t busyness, dummy;
ktime_t de, dt;
ktime_t t[2];
if (!intel_engine_supports_stats(engine))
continue;
if (!intel_engine_can_store_dword(engine))
continue;
if (intel_gt_pm_wait_for_idle(gt)) {
err = -EBUSY;
break;
}
st_engine_heartbeat_disable(engine);
ENGINE_TRACE(engine, "measuring idle time\n");
preempt_disable();
de = intel_engine_get_busy_time(engine, &t[0]);
udelay(100);
de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
preempt_enable();
dt = ktime_sub(t[1], t[0]);
if (de < 0 || de > 10) {
pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n",
engine->name,
de, (int)div64_u64(100 * de, dt), dt);
GEM_TRACE_DUMP();
err = -EINVAL;
goto end;
}
/* 100% busy */
rq = igt_spinner_create_request(&spin,
engine->kernel_context,
MI_NOOP);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto end;
}
i915_request_add(rq);
busyness = intel_engine_get_busy_time(engine, &dummy);
if (!igt_wait_for_spinner(&spin, rq)) {
intel_gt_set_wedged(engine->gt);
err = -ETIME;
goto end;
}
err = __spin_until_busier(engine, busyness);
if (err) {
GEM_TRACE_DUMP();
goto end;
}
ENGINE_TRACE(engine, "measuring busy time\n");
preempt_disable();
de = intel_engine_get_busy_time(engine, &t[0]);
mdelay(10);
de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de);
preempt_enable();
dt = ktime_sub(t[1], t[0]);
if (100 * de < 95 * dt || 95 * de > 100 * dt) {
pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n",
engine->name,
de, (int)div64_u64(100 * de, dt), dt);
GEM_TRACE_DUMP();
err = -EINVAL;
goto end;
}
end:
st_engine_heartbeat_enable(engine);
igt_spinner_end(&spin);
if (igt_flush_test(gt->i915))
err = -EIO;
if (err)
break;
}
igt_spinner_fini(&spin);
if (igt_flush_test(gt->i915))
err = -EIO;
return err;
}
static int live_engine_pm(void *arg)
{
struct intel_gt *gt = arg;
struct intel_engine_cs *engine;
enum intel_engine_id id;
/*
* Check we can call intel_engine_pm_put from any context. No
* failures are reported directly, but if we mess up lockdep should
* tell us.
*/
if (intel_gt_pm_wait_for_idle(gt)) {
pr_err("Unable to flush GT pm before test\n");
return -EBUSY;
}
GEM_BUG_ON(intel_gt_pm_is_awake(gt));
for_each_engine(engine, gt, id) {
const typeof(*igt_atomic_phases) *p;
for (p = igt_atomic_phases; p->name; p++) {
/*
* Acquisition is always synchronous, except if we
* know that the engine is already awake, in which
* case we should use intel_engine_pm_get_if_awake()
* to atomically grab the wakeref.
*
* In practice,
* intel_engine_pm_get();
* intel_engine_pm_put();
* occurs in one thread, while simultaneously
* intel_engine_pm_get_if_awake();
* intel_engine_pm_put();
* occurs from atomic context in another.
*/
GEM_BUG_ON(intel_engine_pm_is_awake(engine));
intel_engine_pm_get(engine);
p->critical_section_begin();
if (!intel_engine_pm_get_if_awake(engine))
pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n",
engine->name, p->name);
else
intel_engine_pm_put_async(engine);
intel_engine_pm_put_async(engine);
p->critical_section_end();
intel_engine_pm_flush(engine);
if (intel_engine_pm_is_awake(engine)) {
pr_err("%s is still awake after flushing pm\n",
engine->name);
return -EINVAL;
}
/* gt wakeref is async (deferred to workqueue) */
if (intel_gt_pm_wait_for_idle(gt)) {
pr_err("GT failed to idle\n");
return -EINVAL;
}
}
}
return 0;
}
int live_engine_pm_selftests(struct intel_gt *gt)
{
static const struct i915_subtest tests[] = {
SUBTEST(live_engine_timestamps),
SUBTEST(live_engine_busy_stats),
SUBTEST(live_engine_pm),
};
return intel_gt_live_subtests(tests, gt);
}