263 lines
8.3 KiB
C
263 lines
8.3 KiB
C
|
// SPDX-License-Identifier: MIT
|
||
|
/*
|
||
|
* Copyright © 2020 Intel Corporation
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include "i915_drv.h"
|
||
|
#include "intel_de.h"
|
||
|
#include "intel_display_types.h"
|
||
|
#include "intel_vrr.h"
|
||
|
|
||
|
bool intel_vrr_is_capable(struct intel_connector *connector)
|
||
|
{
|
||
|
const struct drm_display_info *info = &connector->base.display_info;
|
||
|
struct drm_i915_private *i915 = to_i915(connector->base.dev);
|
||
|
struct intel_dp *intel_dp;
|
||
|
|
||
|
/*
|
||
|
* DP Sink is capable of VRR video timings if
|
||
|
* Ignore MSA bit is set in DPCD.
|
||
|
* EDID monitor range also should be atleast 10 for reasonable
|
||
|
* Adaptive Sync or Variable Refresh Rate end user experience.
|
||
|
*/
|
||
|
switch (connector->base.connector_type) {
|
||
|
case DRM_MODE_CONNECTOR_eDP:
|
||
|
if (!connector->panel.vbt.vrr)
|
||
|
return false;
|
||
|
fallthrough;
|
||
|
case DRM_MODE_CONNECTOR_DisplayPort:
|
||
|
intel_dp = intel_attached_dp(connector);
|
||
|
|
||
|
if (!drm_dp_sink_can_do_video_without_timing_msa(intel_dp->dpcd))
|
||
|
return false;
|
||
|
|
||
|
break;
|
||
|
default:
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return HAS_VRR(i915) &&
|
||
|
info->monitor_range.max_vfreq - info->monitor_range.min_vfreq > 10;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
intel_vrr_check_modeset(struct intel_atomic_state *state)
|
||
|
{
|
||
|
int i;
|
||
|
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
|
||
|
struct intel_crtc *crtc;
|
||
|
|
||
|
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
|
||
|
new_crtc_state, i) {
|
||
|
if (new_crtc_state->uapi.vrr_enabled !=
|
||
|
old_crtc_state->uapi.vrr_enabled)
|
||
|
new_crtc_state->uapi.mode_changed = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Without VRR registers get latched at:
|
||
|
* vblank_start
|
||
|
*
|
||
|
* With VRR the earliest registers can get latched is:
|
||
|
* intel_vrr_vmin_vblank_start(), which if we want to maintain
|
||
|
* the correct min vtotal is >=vblank_start+1
|
||
|
*
|
||
|
* The latest point registers can get latched is the vmax decision boundary:
|
||
|
* intel_vrr_vmax_vblank_start()
|
||
|
*
|
||
|
* Between those two points the vblank exit starts (and hence registers get
|
||
|
* latched) ASAP after a push is sent.
|
||
|
*
|
||
|
* framestart_delay is programmable 1-4.
|
||
|
*/
|
||
|
static int intel_vrr_vblank_exit_length(const struct intel_crtc_state *crtc_state)
|
||
|
{
|
||
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
||
|
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
|
||
|
|
||
|
/* The hw imposes the extra scanline before frame start */
|
||
|
if (DISPLAY_VER(i915) >= 13)
|
||
|
return crtc_state->vrr.guardband + crtc_state->framestart_delay + 1;
|
||
|
else
|
||
|
return crtc_state->vrr.pipeline_full + crtc_state->framestart_delay + 1;
|
||
|
}
|
||
|
|
||
|
int intel_vrr_vmin_vblank_start(const struct intel_crtc_state *crtc_state)
|
||
|
{
|
||
|
/* Min vblank actually determined by flipline that is always >=vmin+1 */
|
||
|
return crtc_state->vrr.vmin + 1 - intel_vrr_vblank_exit_length(crtc_state);
|
||
|
}
|
||
|
|
||
|
int intel_vrr_vmax_vblank_start(const struct intel_crtc_state *crtc_state)
|
||
|
{
|
||
|
return crtc_state->vrr.vmax - intel_vrr_vblank_exit_length(crtc_state);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
intel_vrr_compute_config(struct intel_crtc_state *crtc_state,
|
||
|
struct drm_connector_state *conn_state)
|
||
|
{
|
||
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
||
|
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
|
||
|
struct intel_connector *connector =
|
||
|
to_intel_connector(conn_state->connector);
|
||
|
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
|
||
|
const struct drm_display_info *info = &connector->base.display_info;
|
||
|
int vmin, vmax;
|
||
|
|
||
|
if (!intel_vrr_is_capable(connector))
|
||
|
return;
|
||
|
|
||
|
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
|
||
|
return;
|
||
|
|
||
|
if (!crtc_state->uapi.vrr_enabled)
|
||
|
return;
|
||
|
|
||
|
vmin = DIV_ROUND_UP(adjusted_mode->crtc_clock * 1000,
|
||
|
adjusted_mode->crtc_htotal * info->monitor_range.max_vfreq);
|
||
|
vmax = adjusted_mode->crtc_clock * 1000 /
|
||
|
(adjusted_mode->crtc_htotal * info->monitor_range.min_vfreq);
|
||
|
|
||
|
vmin = max_t(int, vmin, adjusted_mode->crtc_vtotal);
|
||
|
vmax = max_t(int, vmax, adjusted_mode->crtc_vtotal);
|
||
|
|
||
|
if (vmin >= vmax)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* flipline determines the min vblank length the hardware will
|
||
|
* generate, and flipline>=vmin+1, hence we reduce vmin by one
|
||
|
* to make sure we can get the actual min vblank length.
|
||
|
*/
|
||
|
crtc_state->vrr.vmin = vmin - 1;
|
||
|
crtc_state->vrr.vmax = vmax;
|
||
|
crtc_state->vrr.enable = true;
|
||
|
|
||
|
crtc_state->vrr.flipline = crtc_state->vrr.vmin + 1;
|
||
|
|
||
|
/*
|
||
|
* For XE_LPD+, we use guardband and pipeline override
|
||
|
* is deprecated.
|
||
|
*/
|
||
|
if (DISPLAY_VER(i915) >= 13) {
|
||
|
/*
|
||
|
* FIXME: Subtract Window2 delay from below value.
|
||
|
*
|
||
|
* Window2 specifies time required to program DSB (Window2) in
|
||
|
* number of scan lines. Assuming 0 for no DSB.
|
||
|
*/
|
||
|
crtc_state->vrr.guardband =
|
||
|
crtc_state->vrr.vmin - adjusted_mode->crtc_vdisplay;
|
||
|
} else {
|
||
|
/*
|
||
|
* FIXME: s/4/framestart_delay/ to get consistent
|
||
|
* earliest/latest points for register latching regardless
|
||
|
* of the framestart_delay used?
|
||
|
*
|
||
|
* FIXME: this really needs the extra scanline to provide consistent
|
||
|
* behaviour for all framestart_delay values. Otherwise with
|
||
|
* framestart_delay==4 we will end up extending the min vblank by
|
||
|
* one extra line.
|
||
|
*/
|
||
|
crtc_state->vrr.pipeline_full =
|
||
|
min(255, crtc_state->vrr.vmin - adjusted_mode->crtc_vdisplay - 4 - 1);
|
||
|
}
|
||
|
|
||
|
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
|
||
|
}
|
||
|
|
||
|
void intel_vrr_enable(struct intel_encoder *encoder,
|
||
|
const struct intel_crtc_state *crtc_state)
|
||
|
{
|
||
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
||
|
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
|
||
|
u32 trans_vrr_ctl;
|
||
|
|
||
|
if (!crtc_state->vrr.enable)
|
||
|
return;
|
||
|
|
||
|
if (DISPLAY_VER(dev_priv) >= 13)
|
||
|
trans_vrr_ctl = VRR_CTL_VRR_ENABLE |
|
||
|
VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
|
||
|
XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband);
|
||
|
else
|
||
|
trans_vrr_ctl = VRR_CTL_VRR_ENABLE |
|
||
|
VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
|
||
|
VRR_CTL_PIPELINE_FULL(crtc_state->vrr.pipeline_full) |
|
||
|
VRR_CTL_PIPELINE_FULL_OVERRIDE;
|
||
|
|
||
|
intel_de_write(dev_priv, TRANS_VRR_VMIN(cpu_transcoder), crtc_state->vrr.vmin - 1);
|
||
|
intel_de_write(dev_priv, TRANS_VRR_VMAX(cpu_transcoder), crtc_state->vrr.vmax - 1);
|
||
|
intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), trans_vrr_ctl);
|
||
|
intel_de_write(dev_priv, TRANS_VRR_FLIPLINE(cpu_transcoder), crtc_state->vrr.flipline - 1);
|
||
|
intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), TRANS_PUSH_EN);
|
||
|
}
|
||
|
|
||
|
void intel_vrr_send_push(const struct intel_crtc_state *crtc_state)
|
||
|
{
|
||
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
||
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
||
|
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
|
||
|
|
||
|
if (!crtc_state->vrr.enable)
|
||
|
return;
|
||
|
|
||
|
intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder),
|
||
|
TRANS_PUSH_EN | TRANS_PUSH_SEND);
|
||
|
}
|
||
|
|
||
|
bool intel_vrr_is_push_sent(const struct intel_crtc_state *crtc_state)
|
||
|
{
|
||
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
|
||
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
||
|
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
|
||
|
|
||
|
if (!crtc_state->vrr.enable)
|
||
|
return false;
|
||
|
|
||
|
return intel_de_read(dev_priv, TRANS_PUSH(cpu_transcoder)) & TRANS_PUSH_SEND;
|
||
|
}
|
||
|
|
||
|
void intel_vrr_disable(const struct intel_crtc_state *old_crtc_state)
|
||
|
{
|
||
|
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
|
||
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
||
|
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
|
||
|
|
||
|
if (!old_crtc_state->vrr.enable)
|
||
|
return;
|
||
|
|
||
|
intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), 0);
|
||
|
intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), 0);
|
||
|
}
|
||
|
|
||
|
void intel_vrr_get_config(struct intel_crtc *crtc,
|
||
|
struct intel_crtc_state *crtc_state)
|
||
|
{
|
||
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
||
|
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
|
||
|
u32 trans_vrr_ctl;
|
||
|
|
||
|
trans_vrr_ctl = intel_de_read(dev_priv, TRANS_VRR_CTL(cpu_transcoder));
|
||
|
crtc_state->vrr.enable = trans_vrr_ctl & VRR_CTL_VRR_ENABLE;
|
||
|
if (!crtc_state->vrr.enable)
|
||
|
return;
|
||
|
|
||
|
if (DISPLAY_VER(dev_priv) >= 13)
|
||
|
crtc_state->vrr.guardband =
|
||
|
REG_FIELD_GET(XELPD_VRR_CTL_VRR_GUARDBAND_MASK, trans_vrr_ctl);
|
||
|
else
|
||
|
if (trans_vrr_ctl & VRR_CTL_PIPELINE_FULL_OVERRIDE)
|
||
|
crtc_state->vrr.pipeline_full =
|
||
|
REG_FIELD_GET(VRR_CTL_PIPELINE_FULL_MASK, trans_vrr_ctl);
|
||
|
if (trans_vrr_ctl & VRR_CTL_FLIP_LINE_EN)
|
||
|
crtc_state->vrr.flipline = intel_de_read(dev_priv, TRANS_VRR_FLIPLINE(cpu_transcoder)) + 1;
|
||
|
crtc_state->vrr.vmax = intel_de_read(dev_priv, TRANS_VRR_VMAX(cpu_transcoder)) + 1;
|
||
|
crtc_state->vrr.vmin = intel_de_read(dev_priv, TRANS_VRR_VMIN(cpu_transcoder)) + 1;
|
||
|
|
||
|
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
|
||
|
}
|