linuxdebug/drivers/infiniband/hw/mlx4/qp.c

4475 lines
123 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
/*
* Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/log2.h>
#include <linux/etherdevice.h>
#include <net/ip.h>
#include <linux/slab.h>
#include <linux/netdevice.h>
#include <rdma/ib_cache.h>
#include <rdma/ib_pack.h>
#include <rdma/ib_addr.h>
#include <rdma/ib_mad.h>
#include <rdma/uverbs_ioctl.h>
#include <linux/mlx4/driver.h>
#include <linux/mlx4/qp.h>
#include "mlx4_ib.h"
#include <rdma/mlx4-abi.h>
static void mlx4_ib_lock_cqs(struct mlx4_ib_cq *send_cq,
struct mlx4_ib_cq *recv_cq);
static void mlx4_ib_unlock_cqs(struct mlx4_ib_cq *send_cq,
struct mlx4_ib_cq *recv_cq);
static int _mlx4_ib_modify_wq(struct ib_wq *ibwq, enum ib_wq_state new_state,
struct ib_udata *udata);
enum {
MLX4_IB_ACK_REQ_FREQ = 8,
};
enum {
MLX4_IB_DEFAULT_SCHED_QUEUE = 0x83,
MLX4_IB_DEFAULT_QP0_SCHED_QUEUE = 0x3f,
MLX4_IB_LINK_TYPE_IB = 0,
MLX4_IB_LINK_TYPE_ETH = 1
};
enum {
MLX4_IB_MIN_SQ_STRIDE = 6,
MLX4_IB_CACHE_LINE_SIZE = 64,
};
enum {
MLX4_RAW_QP_MTU = 7,
MLX4_RAW_QP_MSGMAX = 31,
};
#ifndef ETH_ALEN
#define ETH_ALEN 6
#endif
static const __be32 mlx4_ib_opcode[] = {
[IB_WR_SEND] = cpu_to_be32(MLX4_OPCODE_SEND),
[IB_WR_LSO] = cpu_to_be32(MLX4_OPCODE_LSO),
[IB_WR_SEND_WITH_IMM] = cpu_to_be32(MLX4_OPCODE_SEND_IMM),
[IB_WR_RDMA_WRITE] = cpu_to_be32(MLX4_OPCODE_RDMA_WRITE),
[IB_WR_RDMA_WRITE_WITH_IMM] = cpu_to_be32(MLX4_OPCODE_RDMA_WRITE_IMM),
[IB_WR_RDMA_READ] = cpu_to_be32(MLX4_OPCODE_RDMA_READ),
[IB_WR_ATOMIC_CMP_AND_SWP] = cpu_to_be32(MLX4_OPCODE_ATOMIC_CS),
[IB_WR_ATOMIC_FETCH_AND_ADD] = cpu_to_be32(MLX4_OPCODE_ATOMIC_FA),
[IB_WR_SEND_WITH_INV] = cpu_to_be32(MLX4_OPCODE_SEND_INVAL),
[IB_WR_LOCAL_INV] = cpu_to_be32(MLX4_OPCODE_LOCAL_INVAL),
[IB_WR_REG_MR] = cpu_to_be32(MLX4_OPCODE_FMR),
[IB_WR_MASKED_ATOMIC_CMP_AND_SWP] = cpu_to_be32(MLX4_OPCODE_MASKED_ATOMIC_CS),
[IB_WR_MASKED_ATOMIC_FETCH_AND_ADD] = cpu_to_be32(MLX4_OPCODE_MASKED_ATOMIC_FA),
};
enum mlx4_ib_source_type {
MLX4_IB_QP_SRC = 0,
MLX4_IB_RWQ_SRC = 1,
};
static int is_tunnel_qp(struct mlx4_ib_dev *dev, struct mlx4_ib_qp *qp)
{
if (!mlx4_is_master(dev->dev))
return 0;
return qp->mqp.qpn >= dev->dev->phys_caps.base_tunnel_sqpn &&
qp->mqp.qpn < dev->dev->phys_caps.base_tunnel_sqpn +
8 * MLX4_MFUNC_MAX;
}
static int is_sqp(struct mlx4_ib_dev *dev, struct mlx4_ib_qp *qp)
{
int proxy_sqp = 0;
int real_sqp = 0;
int i;
/* PPF or Native -- real SQP */
real_sqp = ((mlx4_is_master(dev->dev) || !mlx4_is_mfunc(dev->dev)) &&
qp->mqp.qpn >= dev->dev->phys_caps.base_sqpn &&
qp->mqp.qpn <= dev->dev->phys_caps.base_sqpn + 3);
if (real_sqp)
return 1;
/* VF or PF -- proxy SQP */
if (mlx4_is_mfunc(dev->dev)) {
for (i = 0; i < dev->dev->caps.num_ports; i++) {
if (qp->mqp.qpn == dev->dev->caps.spec_qps[i].qp0_proxy ||
qp->mqp.qpn == dev->dev->caps.spec_qps[i].qp1_proxy) {
proxy_sqp = 1;
break;
}
}
}
if (proxy_sqp)
return 1;
return !!(qp->flags & MLX4_IB_ROCE_V2_GSI_QP);
}
/* used for INIT/CLOSE port logic */
static int is_qp0(struct mlx4_ib_dev *dev, struct mlx4_ib_qp *qp)
{
int proxy_qp0 = 0;
int real_qp0 = 0;
int i;
/* PPF or Native -- real QP0 */
real_qp0 = ((mlx4_is_master(dev->dev) || !mlx4_is_mfunc(dev->dev)) &&
qp->mqp.qpn >= dev->dev->phys_caps.base_sqpn &&
qp->mqp.qpn <= dev->dev->phys_caps.base_sqpn + 1);
if (real_qp0)
return 1;
/* VF or PF -- proxy QP0 */
if (mlx4_is_mfunc(dev->dev)) {
for (i = 0; i < dev->dev->caps.num_ports; i++) {
if (qp->mqp.qpn == dev->dev->caps.spec_qps[i].qp0_proxy) {
proxy_qp0 = 1;
break;
}
}
}
return proxy_qp0;
}
static void *get_wqe(struct mlx4_ib_qp *qp, int offset)
{
return mlx4_buf_offset(&qp->buf, offset);
}
static void *get_recv_wqe(struct mlx4_ib_qp *qp, int n)
{
return get_wqe(qp, qp->rq.offset + (n << qp->rq.wqe_shift));
}
static void *get_send_wqe(struct mlx4_ib_qp *qp, int n)
{
return get_wqe(qp, qp->sq.offset + (n << qp->sq.wqe_shift));
}
/*
* Stamp a SQ WQE so that it is invalid if prefetched by marking the
* first four bytes of every 64 byte chunk with 0xffffffff, except for
* the very first chunk of the WQE.
*/
static void stamp_send_wqe(struct mlx4_ib_qp *qp, int n)
{
__be32 *wqe;
int i;
int s;
void *buf;
struct mlx4_wqe_ctrl_seg *ctrl;
buf = get_send_wqe(qp, n & (qp->sq.wqe_cnt - 1));
ctrl = (struct mlx4_wqe_ctrl_seg *)buf;
s = (ctrl->qpn_vlan.fence_size & 0x3f) << 4;
for (i = 64; i < s; i += 64) {
wqe = buf + i;
*wqe = cpu_to_be32(0xffffffff);
}
}
static void mlx4_ib_qp_event(struct mlx4_qp *qp, enum mlx4_event type)
{
struct ib_event event;
struct ib_qp *ibqp = &to_mibqp(qp)->ibqp;
if (type == MLX4_EVENT_TYPE_PATH_MIG)
to_mibqp(qp)->port = to_mibqp(qp)->alt_port;
if (ibqp->event_handler) {
event.device = ibqp->device;
event.element.qp = ibqp;
switch (type) {
case MLX4_EVENT_TYPE_PATH_MIG:
event.event = IB_EVENT_PATH_MIG;
break;
case MLX4_EVENT_TYPE_COMM_EST:
event.event = IB_EVENT_COMM_EST;
break;
case MLX4_EVENT_TYPE_SQ_DRAINED:
event.event = IB_EVENT_SQ_DRAINED;
break;
case MLX4_EVENT_TYPE_SRQ_QP_LAST_WQE:
event.event = IB_EVENT_QP_LAST_WQE_REACHED;
break;
case MLX4_EVENT_TYPE_WQ_CATAS_ERROR:
event.event = IB_EVENT_QP_FATAL;
break;
case MLX4_EVENT_TYPE_PATH_MIG_FAILED:
event.event = IB_EVENT_PATH_MIG_ERR;
break;
case MLX4_EVENT_TYPE_WQ_INVAL_REQ_ERROR:
event.event = IB_EVENT_QP_REQ_ERR;
break;
case MLX4_EVENT_TYPE_WQ_ACCESS_ERROR:
event.event = IB_EVENT_QP_ACCESS_ERR;
break;
default:
pr_warn("Unexpected event type %d "
"on QP %06x\n", type, qp->qpn);
return;
}
ibqp->event_handler(&event, ibqp->qp_context);
}
}
static void mlx4_ib_wq_event(struct mlx4_qp *qp, enum mlx4_event type)
{
pr_warn_ratelimited("Unexpected event type %d on WQ 0x%06x. Events are not supported for WQs\n",
type, qp->qpn);
}
static int send_wqe_overhead(enum mlx4_ib_qp_type type, u32 flags)
{
/*
* UD WQEs must have a datagram segment.
* RC and UC WQEs might have a remote address segment.
* MLX WQEs need two extra inline data segments (for the UD
* header and space for the ICRC).
*/
switch (type) {
case MLX4_IB_QPT_UD:
return sizeof (struct mlx4_wqe_ctrl_seg) +
sizeof (struct mlx4_wqe_datagram_seg) +
((flags & MLX4_IB_QP_LSO) ? MLX4_IB_LSO_HEADER_SPARE : 0);
case MLX4_IB_QPT_PROXY_SMI_OWNER:
case MLX4_IB_QPT_PROXY_SMI:
case MLX4_IB_QPT_PROXY_GSI:
return sizeof (struct mlx4_wqe_ctrl_seg) +
sizeof (struct mlx4_wqe_datagram_seg) + 64;
case MLX4_IB_QPT_TUN_SMI_OWNER:
case MLX4_IB_QPT_TUN_GSI:
return sizeof (struct mlx4_wqe_ctrl_seg) +
sizeof (struct mlx4_wqe_datagram_seg);
case MLX4_IB_QPT_UC:
return sizeof (struct mlx4_wqe_ctrl_seg) +
sizeof (struct mlx4_wqe_raddr_seg);
case MLX4_IB_QPT_RC:
return sizeof (struct mlx4_wqe_ctrl_seg) +
sizeof (struct mlx4_wqe_masked_atomic_seg) +
sizeof (struct mlx4_wqe_raddr_seg);
case MLX4_IB_QPT_SMI:
case MLX4_IB_QPT_GSI:
return sizeof (struct mlx4_wqe_ctrl_seg) +
ALIGN(MLX4_IB_UD_HEADER_SIZE +
DIV_ROUND_UP(MLX4_IB_UD_HEADER_SIZE,
MLX4_INLINE_ALIGN) *
sizeof (struct mlx4_wqe_inline_seg),
sizeof (struct mlx4_wqe_data_seg)) +
ALIGN(4 +
sizeof (struct mlx4_wqe_inline_seg),
sizeof (struct mlx4_wqe_data_seg));
default:
return sizeof (struct mlx4_wqe_ctrl_seg);
}
}
static int set_rq_size(struct mlx4_ib_dev *dev, struct ib_qp_cap *cap,
bool is_user, bool has_rq, struct mlx4_ib_qp *qp,
u32 inl_recv_sz)
{
/* Sanity check RQ size before proceeding */
if (cap->max_recv_wr > dev->dev->caps.max_wqes - MLX4_IB_SQ_MAX_SPARE ||
cap->max_recv_sge > min(dev->dev->caps.max_sq_sg, dev->dev->caps.max_rq_sg))
return -EINVAL;
if (!has_rq) {
if (cap->max_recv_wr || inl_recv_sz)
return -EINVAL;
qp->rq.wqe_cnt = qp->rq.max_gs = 0;
} else {
u32 max_inl_recv_sz = dev->dev->caps.max_rq_sg *
sizeof(struct mlx4_wqe_data_seg);
u32 wqe_size;
/* HW requires >= 1 RQ entry with >= 1 gather entry */
if (is_user && (!cap->max_recv_wr || !cap->max_recv_sge ||
inl_recv_sz > max_inl_recv_sz))
return -EINVAL;
qp->rq.wqe_cnt = roundup_pow_of_two(max(1U, cap->max_recv_wr));
qp->rq.max_gs = roundup_pow_of_two(max(1U, cap->max_recv_sge));
wqe_size = qp->rq.max_gs * sizeof(struct mlx4_wqe_data_seg);
qp->rq.wqe_shift = ilog2(max_t(u32, wqe_size, inl_recv_sz));
}
/* leave userspace return values as they were, so as not to break ABI */
if (is_user) {
cap->max_recv_wr = qp->rq.max_post = qp->rq.wqe_cnt;
cap->max_recv_sge = qp->rq.max_gs;
} else {
cap->max_recv_wr = qp->rq.max_post =
min(dev->dev->caps.max_wqes - MLX4_IB_SQ_MAX_SPARE, qp->rq.wqe_cnt);
cap->max_recv_sge = min(qp->rq.max_gs,
min(dev->dev->caps.max_sq_sg,
dev->dev->caps.max_rq_sg));
}
return 0;
}
static int set_kernel_sq_size(struct mlx4_ib_dev *dev, struct ib_qp_cap *cap,
enum mlx4_ib_qp_type type, struct mlx4_ib_qp *qp)
{
int s;
/* Sanity check SQ size before proceeding */
if (cap->max_send_wr > (dev->dev->caps.max_wqes - MLX4_IB_SQ_MAX_SPARE) ||
cap->max_send_sge > min(dev->dev->caps.max_sq_sg, dev->dev->caps.max_rq_sg) ||
cap->max_inline_data + send_wqe_overhead(type, qp->flags) +
sizeof (struct mlx4_wqe_inline_seg) > dev->dev->caps.max_sq_desc_sz)
return -EINVAL;
/*
* For MLX transport we need 2 extra S/G entries:
* one for the header and one for the checksum at the end
*/
if ((type == MLX4_IB_QPT_SMI || type == MLX4_IB_QPT_GSI ||
type & (MLX4_IB_QPT_PROXY_SMI_OWNER | MLX4_IB_QPT_TUN_SMI_OWNER)) &&
cap->max_send_sge + 2 > dev->dev->caps.max_sq_sg)
return -EINVAL;
s = max(cap->max_send_sge * sizeof (struct mlx4_wqe_data_seg),
cap->max_inline_data + sizeof (struct mlx4_wqe_inline_seg)) +
send_wqe_overhead(type, qp->flags);
if (s > dev->dev->caps.max_sq_desc_sz)
return -EINVAL;
qp->sq.wqe_shift = ilog2(roundup_pow_of_two(s));
/*
* We need to leave 2 KB + 1 WR of headroom in the SQ to
* allow HW to prefetch.
*/
qp->sq_spare_wqes = MLX4_IB_SQ_HEADROOM(qp->sq.wqe_shift);
qp->sq.wqe_cnt = roundup_pow_of_two(cap->max_send_wr +
qp->sq_spare_wqes);
qp->sq.max_gs =
(min(dev->dev->caps.max_sq_desc_sz,
(1 << qp->sq.wqe_shift)) -
send_wqe_overhead(type, qp->flags)) /
sizeof (struct mlx4_wqe_data_seg);
qp->buf_size = (qp->rq.wqe_cnt << qp->rq.wqe_shift) +
(qp->sq.wqe_cnt << qp->sq.wqe_shift);
if (qp->rq.wqe_shift > qp->sq.wqe_shift) {
qp->rq.offset = 0;
qp->sq.offset = qp->rq.wqe_cnt << qp->rq.wqe_shift;
} else {
qp->rq.offset = qp->sq.wqe_cnt << qp->sq.wqe_shift;
qp->sq.offset = 0;
}
cap->max_send_wr = qp->sq.max_post =
qp->sq.wqe_cnt - qp->sq_spare_wqes;
cap->max_send_sge = min(qp->sq.max_gs,
min(dev->dev->caps.max_sq_sg,
dev->dev->caps.max_rq_sg));
/* We don't support inline sends for kernel QPs (yet) */
cap->max_inline_data = 0;
return 0;
}
static int set_user_sq_size(struct mlx4_ib_dev *dev,
struct mlx4_ib_qp *qp,
struct mlx4_ib_create_qp *ucmd)
{
u32 cnt;
/* Sanity check SQ size before proceeding */
if (check_shl_overflow(1, ucmd->log_sq_bb_count, &cnt) ||
cnt > dev->dev->caps.max_wqes)
return -EINVAL;
if (ucmd->log_sq_stride >
ilog2(roundup_pow_of_two(dev->dev->caps.max_sq_desc_sz)) ||
ucmd->log_sq_stride < MLX4_IB_MIN_SQ_STRIDE)
return -EINVAL;
qp->sq.wqe_cnt = 1 << ucmd->log_sq_bb_count;
qp->sq.wqe_shift = ucmd->log_sq_stride;
qp->buf_size = (qp->rq.wqe_cnt << qp->rq.wqe_shift) +
(qp->sq.wqe_cnt << qp->sq.wqe_shift);
return 0;
}
static int alloc_proxy_bufs(struct ib_device *dev, struct mlx4_ib_qp *qp)
{
int i;
qp->sqp_proxy_rcv =
kmalloc_array(qp->rq.wqe_cnt, sizeof(struct mlx4_ib_buf),
GFP_KERNEL);
if (!qp->sqp_proxy_rcv)
return -ENOMEM;
for (i = 0; i < qp->rq.wqe_cnt; i++) {
qp->sqp_proxy_rcv[i].addr =
kmalloc(sizeof (struct mlx4_ib_proxy_sqp_hdr),
GFP_KERNEL);
if (!qp->sqp_proxy_rcv[i].addr)
goto err;
qp->sqp_proxy_rcv[i].map =
ib_dma_map_single(dev, qp->sqp_proxy_rcv[i].addr,
sizeof (struct mlx4_ib_proxy_sqp_hdr),
DMA_FROM_DEVICE);
if (ib_dma_mapping_error(dev, qp->sqp_proxy_rcv[i].map)) {
kfree(qp->sqp_proxy_rcv[i].addr);
goto err;
}
}
return 0;
err:
while (i > 0) {
--i;
ib_dma_unmap_single(dev, qp->sqp_proxy_rcv[i].map,
sizeof (struct mlx4_ib_proxy_sqp_hdr),
DMA_FROM_DEVICE);
kfree(qp->sqp_proxy_rcv[i].addr);
}
kfree(qp->sqp_proxy_rcv);
qp->sqp_proxy_rcv = NULL;
return -ENOMEM;
}
static void free_proxy_bufs(struct ib_device *dev, struct mlx4_ib_qp *qp)
{
int i;
for (i = 0; i < qp->rq.wqe_cnt; i++) {
ib_dma_unmap_single(dev, qp->sqp_proxy_rcv[i].map,
sizeof (struct mlx4_ib_proxy_sqp_hdr),
DMA_FROM_DEVICE);
kfree(qp->sqp_proxy_rcv[i].addr);
}
kfree(qp->sqp_proxy_rcv);
}
static bool qp_has_rq(struct ib_qp_init_attr *attr)
{
if (attr->qp_type == IB_QPT_XRC_INI || attr->qp_type == IB_QPT_XRC_TGT)
return false;
return !attr->srq;
}
static int qp0_enabled_vf(struct mlx4_dev *dev, int qpn)
{
int i;
for (i = 0; i < dev->caps.num_ports; i++) {
if (qpn == dev->caps.spec_qps[i].qp0_proxy)
return !!dev->caps.spec_qps[i].qp0_qkey;
}
return 0;
}
static void mlx4_ib_free_qp_counter(struct mlx4_ib_dev *dev,
struct mlx4_ib_qp *qp)
{
mutex_lock(&dev->counters_table[qp->port - 1].mutex);
mlx4_counter_free(dev->dev, qp->counter_index->index);
list_del(&qp->counter_index->list);
mutex_unlock(&dev->counters_table[qp->port - 1].mutex);
kfree(qp->counter_index);
qp->counter_index = NULL;
}
static int set_qp_rss(struct mlx4_ib_dev *dev, struct mlx4_ib_rss *rss_ctx,
struct ib_qp_init_attr *init_attr,
struct mlx4_ib_create_qp_rss *ucmd)
{
rss_ctx->base_qpn_tbl_sz = init_attr->rwq_ind_tbl->ind_tbl[0]->wq_num |
(init_attr->rwq_ind_tbl->log_ind_tbl_size << 24);
if ((ucmd->rx_hash_function == MLX4_IB_RX_HASH_FUNC_TOEPLITZ) &&
(dev->dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_RSS_TOP)) {
memcpy(rss_ctx->rss_key, ucmd->rx_hash_key,
MLX4_EN_RSS_KEY_SIZE);
} else {
pr_debug("RX Hash function is not supported\n");
return (-EOPNOTSUPP);
}
if (ucmd->rx_hash_fields_mask & ~(u64)(MLX4_IB_RX_HASH_SRC_IPV4 |
MLX4_IB_RX_HASH_DST_IPV4 |
MLX4_IB_RX_HASH_SRC_IPV6 |
MLX4_IB_RX_HASH_DST_IPV6 |
MLX4_IB_RX_HASH_SRC_PORT_TCP |
MLX4_IB_RX_HASH_DST_PORT_TCP |
MLX4_IB_RX_HASH_SRC_PORT_UDP |
MLX4_IB_RX_HASH_DST_PORT_UDP |
MLX4_IB_RX_HASH_INNER)) {
pr_debug("RX Hash fields_mask has unsupported mask (0x%llx)\n",
ucmd->rx_hash_fields_mask);
return (-EOPNOTSUPP);
}
if ((ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_SRC_IPV4) &&
(ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_DST_IPV4)) {
rss_ctx->flags = MLX4_RSS_IPV4;
} else if ((ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_SRC_IPV4) ||
(ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_DST_IPV4)) {
pr_debug("RX Hash fields_mask is not supported - both IPv4 SRC and DST must be set\n");
return (-EOPNOTSUPP);
}
if ((ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_SRC_IPV6) &&
(ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_DST_IPV6)) {
rss_ctx->flags |= MLX4_RSS_IPV6;
} else if ((ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_SRC_IPV6) ||
(ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_DST_IPV6)) {
pr_debug("RX Hash fields_mask is not supported - both IPv6 SRC and DST must be set\n");
return (-EOPNOTSUPP);
}
if ((ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_SRC_PORT_UDP) &&
(ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_DST_PORT_UDP)) {
if (!(dev->dev->caps.flags & MLX4_DEV_CAP_FLAG_UDP_RSS)) {
pr_debug("RX Hash fields_mask for UDP is not supported\n");
return (-EOPNOTSUPP);
}
if (rss_ctx->flags & MLX4_RSS_IPV4)
rss_ctx->flags |= MLX4_RSS_UDP_IPV4;
if (rss_ctx->flags & MLX4_RSS_IPV6)
rss_ctx->flags |= MLX4_RSS_UDP_IPV6;
if (!(rss_ctx->flags & (MLX4_RSS_IPV6 | MLX4_RSS_IPV4))) {
pr_debug("RX Hash fields_mask is not supported - UDP must be set with IPv4 or IPv6\n");
return (-EOPNOTSUPP);
}
} else if ((ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_SRC_PORT_UDP) ||
(ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_DST_PORT_UDP)) {
pr_debug("RX Hash fields_mask is not supported - both UDP SRC and DST must be set\n");
return (-EOPNOTSUPP);
}
if ((ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_SRC_PORT_TCP) &&
(ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_DST_PORT_TCP)) {
if (rss_ctx->flags & MLX4_RSS_IPV4)
rss_ctx->flags |= MLX4_RSS_TCP_IPV4;
if (rss_ctx->flags & MLX4_RSS_IPV6)
rss_ctx->flags |= MLX4_RSS_TCP_IPV6;
if (!(rss_ctx->flags & (MLX4_RSS_IPV6 | MLX4_RSS_IPV4))) {
pr_debug("RX Hash fields_mask is not supported - TCP must be set with IPv4 or IPv6\n");
return (-EOPNOTSUPP);
}
} else if ((ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_SRC_PORT_TCP) ||
(ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_DST_PORT_TCP)) {
pr_debug("RX Hash fields_mask is not supported - both TCP SRC and DST must be set\n");
return (-EOPNOTSUPP);
}
if (ucmd->rx_hash_fields_mask & MLX4_IB_RX_HASH_INNER) {
if (dev->dev->caps.tunnel_offload_mode ==
MLX4_TUNNEL_OFFLOAD_MODE_VXLAN) {
/*
* Hash according to inner headers if exist, otherwise
* according to outer headers.
*/
rss_ctx->flags |= MLX4_RSS_BY_INNER_HEADERS_IPONLY;
} else {
pr_debug("RSS Hash for inner headers isn't supported\n");
return (-EOPNOTSUPP);
}
}
return 0;
}
static int create_qp_rss(struct mlx4_ib_dev *dev,
struct ib_qp_init_attr *init_attr,
struct mlx4_ib_create_qp_rss *ucmd,
struct mlx4_ib_qp *qp)
{
int qpn;
int err;
qp->mqp.usage = MLX4_RES_USAGE_USER_VERBS;
err = mlx4_qp_reserve_range(dev->dev, 1, 1, &qpn, 0, qp->mqp.usage);
if (err)
return err;
err = mlx4_qp_alloc(dev->dev, qpn, &qp->mqp);
if (err)
goto err_qpn;
INIT_LIST_HEAD(&qp->gid_list);
INIT_LIST_HEAD(&qp->steering_rules);
qp->mlx4_ib_qp_type = MLX4_IB_QPT_RAW_PACKET;
qp->state = IB_QPS_RESET;
/* Set dummy send resources to be compatible with HV and PRM */
qp->sq_no_prefetch = 1;
qp->sq.wqe_cnt = 1;
qp->sq.wqe_shift = MLX4_IB_MIN_SQ_STRIDE;
qp->buf_size = qp->sq.wqe_cnt << MLX4_IB_MIN_SQ_STRIDE;
qp->mtt = (to_mqp(
(struct ib_qp *)init_attr->rwq_ind_tbl->ind_tbl[0]))->mtt;
qp->rss_ctx = kzalloc(sizeof(*qp->rss_ctx), GFP_KERNEL);
if (!qp->rss_ctx) {
err = -ENOMEM;
goto err_qp_alloc;
}
err = set_qp_rss(dev, qp->rss_ctx, init_attr, ucmd);
if (err)
goto err;
return 0;
err:
kfree(qp->rss_ctx);
err_qp_alloc:
mlx4_qp_remove(dev->dev, &qp->mqp);
mlx4_qp_free(dev->dev, &qp->mqp);
err_qpn:
mlx4_qp_release_range(dev->dev, qpn, 1);
return err;
}
static int _mlx4_ib_create_qp_rss(struct ib_pd *pd, struct mlx4_ib_qp *qp,
struct ib_qp_init_attr *init_attr,
struct ib_udata *udata)
{
struct mlx4_ib_create_qp_rss ucmd = {};
size_t required_cmd_sz;
int err;
if (!udata) {
pr_debug("RSS QP with NULL udata\n");
return -EINVAL;
}
if (udata->outlen)
return -EOPNOTSUPP;
required_cmd_sz = offsetof(typeof(ucmd), reserved1) +
sizeof(ucmd.reserved1);
if (udata->inlen < required_cmd_sz) {
pr_debug("invalid inlen\n");
return -EINVAL;
}
if (ib_copy_from_udata(&ucmd, udata, min(sizeof(ucmd), udata->inlen))) {
pr_debug("copy failed\n");
return -EFAULT;
}
if (memchr_inv(ucmd.reserved, 0, sizeof(ucmd.reserved)))
return -EOPNOTSUPP;
if (ucmd.comp_mask || ucmd.reserved1)
return -EOPNOTSUPP;
if (udata->inlen > sizeof(ucmd) &&
!ib_is_udata_cleared(udata, sizeof(ucmd),
udata->inlen - sizeof(ucmd))) {
pr_debug("inlen is not supported\n");
return -EOPNOTSUPP;
}
if (init_attr->qp_type != IB_QPT_RAW_PACKET) {
pr_debug("RSS QP with unsupported QP type %d\n",
init_attr->qp_type);
return -EOPNOTSUPP;
}
if (init_attr->create_flags) {
pr_debug("RSS QP doesn't support create flags\n");
return -EOPNOTSUPP;
}
if (init_attr->send_cq || init_attr->cap.max_send_wr) {
pr_debug("RSS QP with unsupported send attributes\n");
return -EOPNOTSUPP;
}
qp->pri.vid = 0xFFFF;
qp->alt.vid = 0xFFFF;
err = create_qp_rss(to_mdev(pd->device), init_attr, &ucmd, qp);
if (err)
return err;
qp->ibqp.qp_num = qp->mqp.qpn;
return 0;
}
/*
* This function allocates a WQN from a range which is consecutive and aligned
* to its size. In case the range is full, then it creates a new range and
* allocates WQN from it. The new range will be used for following allocations.
*/
static int mlx4_ib_alloc_wqn(struct mlx4_ib_ucontext *context,
struct mlx4_ib_qp *qp, int range_size, int *wqn)
{
struct mlx4_ib_dev *dev = to_mdev(context->ibucontext.device);
struct mlx4_wqn_range *range;
int err = 0;
mutex_lock(&context->wqn_ranges_mutex);
range = list_first_entry_or_null(&context->wqn_ranges_list,
struct mlx4_wqn_range, list);
if (!range || (range->refcount == range->size) || range->dirty) {
range = kzalloc(sizeof(*range), GFP_KERNEL);
if (!range) {
err = -ENOMEM;
goto out;
}
err = mlx4_qp_reserve_range(dev->dev, range_size,
range_size, &range->base_wqn, 0,
qp->mqp.usage);
if (err) {
kfree(range);
goto out;
}
range->size = range_size;
list_add(&range->list, &context->wqn_ranges_list);
} else if (range_size != 1) {
/*
* Requesting a new range (>1) when last range is still open, is
* not valid.
*/
err = -EINVAL;
goto out;
}
qp->wqn_range = range;
*wqn = range->base_wqn + range->refcount;
range->refcount++;
out:
mutex_unlock(&context->wqn_ranges_mutex);
return err;
}
static void mlx4_ib_release_wqn(struct mlx4_ib_ucontext *context,
struct mlx4_ib_qp *qp, bool dirty_release)
{
struct mlx4_ib_dev *dev = to_mdev(context->ibucontext.device);
struct mlx4_wqn_range *range;
mutex_lock(&context->wqn_ranges_mutex);
range = qp->wqn_range;
range->refcount--;
if (!range->refcount) {
mlx4_qp_release_range(dev->dev, range->base_wqn,
range->size);
list_del(&range->list);
kfree(range);
} else if (dirty_release) {
/*
* A range which one of its WQNs is destroyed, won't be able to be
* reused for further WQN allocations.
* The next created WQ will allocate a new range.
*/
range->dirty = true;
}
mutex_unlock(&context->wqn_ranges_mutex);
}
static int create_rq(struct ib_pd *pd, struct ib_qp_init_attr *init_attr,
struct ib_udata *udata, struct mlx4_ib_qp *qp)
{
struct mlx4_ib_dev *dev = to_mdev(pd->device);
int qpn;
int err;
struct mlx4_ib_ucontext *context = rdma_udata_to_drv_context(
udata, struct mlx4_ib_ucontext, ibucontext);
struct mlx4_ib_cq *mcq;
unsigned long flags;
int range_size;
struct mlx4_ib_create_wq wq;
size_t copy_len;
int shift;
int n;
qp->mlx4_ib_qp_type = MLX4_IB_QPT_RAW_PACKET;
spin_lock_init(&qp->sq.lock);
spin_lock_init(&qp->rq.lock);
INIT_LIST_HEAD(&qp->gid_list);
INIT_LIST_HEAD(&qp->steering_rules);
qp->state = IB_QPS_RESET;
copy_len = min(sizeof(struct mlx4_ib_create_wq), udata->inlen);
if (ib_copy_from_udata(&wq, udata, copy_len)) {
err = -EFAULT;
goto err;
}
if (wq.comp_mask || wq.reserved[0] || wq.reserved[1] ||
wq.reserved[2]) {
pr_debug("user command isn't supported\n");
err = -EOPNOTSUPP;
goto err;
}
if (wq.log_range_size > ilog2(dev->dev->caps.max_rss_tbl_sz)) {
pr_debug("WQN range size must be equal or smaller than %d\n",
dev->dev->caps.max_rss_tbl_sz);
err = -EOPNOTSUPP;
goto err;
}
range_size = 1 << wq.log_range_size;
if (init_attr->create_flags & IB_QP_CREATE_SCATTER_FCS)
qp->flags |= MLX4_IB_QP_SCATTER_FCS;
err = set_rq_size(dev, &init_attr->cap, true, true, qp, qp->inl_recv_sz);
if (err)
goto err;
qp->sq_no_prefetch = 1;
qp->sq.wqe_cnt = 1;
qp->sq.wqe_shift = MLX4_IB_MIN_SQ_STRIDE;
qp->buf_size = (qp->rq.wqe_cnt << qp->rq.wqe_shift) +
(qp->sq.wqe_cnt << qp->sq.wqe_shift);
qp->umem = ib_umem_get(pd->device, wq.buf_addr, qp->buf_size, 0);
if (IS_ERR(qp->umem)) {
err = PTR_ERR(qp->umem);
goto err;
}
shift = mlx4_ib_umem_calc_optimal_mtt_size(qp->umem, 0, &n);
err = mlx4_mtt_init(dev->dev, n, shift, &qp->mtt);
if (err)
goto err_buf;
err = mlx4_ib_umem_write_mtt(dev, &qp->mtt, qp->umem);
if (err)
goto err_mtt;
err = mlx4_ib_db_map_user(udata, wq.db_addr, &qp->db);
if (err)
goto err_mtt;
qp->mqp.usage = MLX4_RES_USAGE_USER_VERBS;
err = mlx4_ib_alloc_wqn(context, qp, range_size, &qpn);
if (err)
goto err_wrid;
err = mlx4_qp_alloc(dev->dev, qpn, &qp->mqp);
if (err)
goto err_qpn;
/*
* Hardware wants QPN written in big-endian order (after
* shifting) for send doorbell. Precompute this value to save
* a little bit when posting sends.
*/
qp->doorbell_qpn = swab32(qp->mqp.qpn << 8);
qp->mqp.event = mlx4_ib_wq_event;
spin_lock_irqsave(&dev->reset_flow_resource_lock, flags);
mlx4_ib_lock_cqs(to_mcq(init_attr->send_cq),
to_mcq(init_attr->recv_cq));
/* Maintain device to QPs access, needed for further handling
* via reset flow
*/
list_add_tail(&qp->qps_list, &dev->qp_list);
/* Maintain CQ to QPs access, needed for further handling
* via reset flow
*/
mcq = to_mcq(init_attr->send_cq);
list_add_tail(&qp->cq_send_list, &mcq->send_qp_list);
mcq = to_mcq(init_attr->recv_cq);
list_add_tail(&qp->cq_recv_list, &mcq->recv_qp_list);
mlx4_ib_unlock_cqs(to_mcq(init_attr->send_cq),
to_mcq(init_attr->recv_cq));
spin_unlock_irqrestore(&dev->reset_flow_resource_lock, flags);
return 0;
err_qpn:
mlx4_ib_release_wqn(context, qp, 0);
err_wrid:
mlx4_ib_db_unmap_user(context, &qp->db);
err_mtt:
mlx4_mtt_cleanup(dev->dev, &qp->mtt);
err_buf:
ib_umem_release(qp->umem);
err:
return err;
}
static int create_qp_common(struct ib_pd *pd, struct ib_qp_init_attr *init_attr,
struct ib_udata *udata, int sqpn,
struct mlx4_ib_qp *qp)
{
struct mlx4_ib_dev *dev = to_mdev(pd->device);
int qpn;
int err;
struct mlx4_ib_ucontext *context = rdma_udata_to_drv_context(
udata, struct mlx4_ib_ucontext, ibucontext);
enum mlx4_ib_qp_type qp_type = (enum mlx4_ib_qp_type) init_attr->qp_type;
struct mlx4_ib_cq *mcq;
unsigned long flags;
/* When tunneling special qps, we use a plain UD qp */
if (sqpn) {
if (mlx4_is_mfunc(dev->dev) &&
(!mlx4_is_master(dev->dev) ||
!(init_attr->create_flags & MLX4_IB_SRIOV_SQP))) {
if (init_attr->qp_type == IB_QPT_GSI)
qp_type = MLX4_IB_QPT_PROXY_GSI;
else {
if (mlx4_is_master(dev->dev) ||
qp0_enabled_vf(dev->dev, sqpn))
qp_type = MLX4_IB_QPT_PROXY_SMI_OWNER;
else
qp_type = MLX4_IB_QPT_PROXY_SMI;
}
}
qpn = sqpn;
/* add extra sg entry for tunneling */
init_attr->cap.max_recv_sge++;
} else if (init_attr->create_flags & MLX4_IB_SRIOV_TUNNEL_QP) {
struct mlx4_ib_qp_tunnel_init_attr *tnl_init =
container_of(init_attr,
struct mlx4_ib_qp_tunnel_init_attr, init_attr);
if ((tnl_init->proxy_qp_type != IB_QPT_SMI &&
tnl_init->proxy_qp_type != IB_QPT_GSI) ||
!mlx4_is_master(dev->dev))
return -EINVAL;
if (tnl_init->proxy_qp_type == IB_QPT_GSI)
qp_type = MLX4_IB_QPT_TUN_GSI;
else if (tnl_init->slave == mlx4_master_func_num(dev->dev) ||
mlx4_vf_smi_enabled(dev->dev, tnl_init->slave,
tnl_init->port))
qp_type = MLX4_IB_QPT_TUN_SMI_OWNER;
else
qp_type = MLX4_IB_QPT_TUN_SMI;
/* we are definitely in the PPF here, since we are creating
* tunnel QPs. base_tunnel_sqpn is therefore valid. */
qpn = dev->dev->phys_caps.base_tunnel_sqpn + 8 * tnl_init->slave
+ tnl_init->proxy_qp_type * 2 + tnl_init->port - 1;
sqpn = qpn;
}
if (init_attr->qp_type == IB_QPT_SMI ||
init_attr->qp_type == IB_QPT_GSI || qp_type == MLX4_IB_QPT_SMI ||
qp_type == MLX4_IB_QPT_GSI ||
(qp_type & (MLX4_IB_QPT_PROXY_SMI | MLX4_IB_QPT_PROXY_SMI_OWNER |
MLX4_IB_QPT_PROXY_GSI | MLX4_IB_QPT_TUN_SMI_OWNER))) {
qp->sqp = kzalloc(sizeof(struct mlx4_ib_sqp), GFP_KERNEL);
if (!qp->sqp)
return -ENOMEM;
}
qp->mlx4_ib_qp_type = qp_type;
spin_lock_init(&qp->sq.lock);
spin_lock_init(&qp->rq.lock);
INIT_LIST_HEAD(&qp->gid_list);
INIT_LIST_HEAD(&qp->steering_rules);
qp->state = IB_QPS_RESET;
if (init_attr->sq_sig_type == IB_SIGNAL_ALL_WR)
qp->sq_signal_bits = cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE);
if (udata) {
struct mlx4_ib_create_qp ucmd;
size_t copy_len;
int shift;
int n;
copy_len = sizeof(struct mlx4_ib_create_qp);
if (ib_copy_from_udata(&ucmd, udata, copy_len)) {
err = -EFAULT;
goto err;
}
qp->inl_recv_sz = ucmd.inl_recv_sz;
if (init_attr->create_flags & IB_QP_CREATE_SCATTER_FCS) {
if (!(dev->dev->caps.flags &
MLX4_DEV_CAP_FLAG_FCS_KEEP)) {
pr_debug("scatter FCS is unsupported\n");
err = -EOPNOTSUPP;
goto err;
}
qp->flags |= MLX4_IB_QP_SCATTER_FCS;
}
err = set_rq_size(dev, &init_attr->cap, udata,
qp_has_rq(init_attr), qp, qp->inl_recv_sz);
if (err)
goto err;
qp->sq_no_prefetch = ucmd.sq_no_prefetch;
err = set_user_sq_size(dev, qp, &ucmd);
if (err)
goto err;
qp->umem =
ib_umem_get(pd->device, ucmd.buf_addr, qp->buf_size, 0);
if (IS_ERR(qp->umem)) {
err = PTR_ERR(qp->umem);
goto err;
}
shift = mlx4_ib_umem_calc_optimal_mtt_size(qp->umem, 0, &n);
err = mlx4_mtt_init(dev->dev, n, shift, &qp->mtt);
if (err)
goto err_buf;
err = mlx4_ib_umem_write_mtt(dev, &qp->mtt, qp->umem);
if (err)
goto err_mtt;
if (qp_has_rq(init_attr)) {
err = mlx4_ib_db_map_user(udata, ucmd.db_addr, &qp->db);
if (err)
goto err_mtt;
}
qp->mqp.usage = MLX4_RES_USAGE_USER_VERBS;
} else {
err = set_rq_size(dev, &init_attr->cap, udata,
qp_has_rq(init_attr), qp, 0);
if (err)
goto err;
qp->sq_no_prefetch = 0;
if (init_attr->create_flags & IB_QP_CREATE_IPOIB_UD_LSO)
qp->flags |= MLX4_IB_QP_LSO;
if (init_attr->create_flags & IB_QP_CREATE_NETIF_QP) {
if (dev->steering_support ==
MLX4_STEERING_MODE_DEVICE_MANAGED)
qp->flags |= MLX4_IB_QP_NETIF;
else {
err = -EINVAL;
goto err;
}
}
err = set_kernel_sq_size(dev, &init_attr->cap, qp_type, qp);
if (err)
goto err;
if (qp_has_rq(init_attr)) {
err = mlx4_db_alloc(dev->dev, &qp->db, 0);
if (err)
goto err;
*qp->db.db = 0;
}
if (mlx4_buf_alloc(dev->dev, qp->buf_size, PAGE_SIZE * 2,
&qp->buf)) {
err = -ENOMEM;
goto err_db;
}
err = mlx4_mtt_init(dev->dev, qp->buf.npages, qp->buf.page_shift,
&qp->mtt);
if (err)
goto err_buf;
err = mlx4_buf_write_mtt(dev->dev, &qp->mtt, &qp->buf);
if (err)
goto err_mtt;
qp->sq.wrid = kvmalloc_array(qp->sq.wqe_cnt,
sizeof(u64), GFP_KERNEL);
qp->rq.wrid = kvmalloc_array(qp->rq.wqe_cnt,
sizeof(u64), GFP_KERNEL);
if (!qp->sq.wrid || !qp->rq.wrid) {
err = -ENOMEM;
goto err_wrid;
}
qp->mqp.usage = MLX4_RES_USAGE_DRIVER;
}
if (sqpn) {
if (qp->mlx4_ib_qp_type & (MLX4_IB_QPT_PROXY_SMI_OWNER |
MLX4_IB_QPT_PROXY_SMI | MLX4_IB_QPT_PROXY_GSI)) {
if (alloc_proxy_bufs(pd->device, qp)) {
err = -ENOMEM;
goto err_wrid;
}
}
} else {
/* Raw packet QPNs may not have bits 6,7 set in their qp_num;
* otherwise, the WQE BlueFlame setup flow wrongly causes
* VLAN insertion. */
if (init_attr->qp_type == IB_QPT_RAW_PACKET)
err = mlx4_qp_reserve_range(dev->dev, 1, 1, &qpn,
(init_attr->cap.max_send_wr ?
MLX4_RESERVE_ETH_BF_QP : 0) |
(init_attr->cap.max_recv_wr ?
MLX4_RESERVE_A0_QP : 0),
qp->mqp.usage);
else
if (qp->flags & MLX4_IB_QP_NETIF)
err = mlx4_ib_steer_qp_alloc(dev, 1, &qpn);
else
err = mlx4_qp_reserve_range(dev->dev, 1, 1,
&qpn, 0, qp->mqp.usage);
if (err)
goto err_proxy;
}
if (init_attr->create_flags & IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK)
qp->flags |= MLX4_IB_QP_BLOCK_MULTICAST_LOOPBACK;
err = mlx4_qp_alloc(dev->dev, qpn, &qp->mqp);
if (err)
goto err_qpn;
if (init_attr->qp_type == IB_QPT_XRC_TGT)
qp->mqp.qpn |= (1 << 23);
/*
* Hardware wants QPN written in big-endian order (after
* shifting) for send doorbell. Precompute this value to save
* a little bit when posting sends.
*/
qp->doorbell_qpn = swab32(qp->mqp.qpn << 8);
qp->mqp.event = mlx4_ib_qp_event;
spin_lock_irqsave(&dev->reset_flow_resource_lock, flags);
mlx4_ib_lock_cqs(to_mcq(init_attr->send_cq),
to_mcq(init_attr->recv_cq));
/* Maintain device to QPs access, needed for further handling
* via reset flow
*/
list_add_tail(&qp->qps_list, &dev->qp_list);
/* Maintain CQ to QPs access, needed for further handling
* via reset flow
*/
mcq = to_mcq(init_attr->send_cq);
list_add_tail(&qp->cq_send_list, &mcq->send_qp_list);
mcq = to_mcq(init_attr->recv_cq);
list_add_tail(&qp->cq_recv_list, &mcq->recv_qp_list);
mlx4_ib_unlock_cqs(to_mcq(init_attr->send_cq),
to_mcq(init_attr->recv_cq));
spin_unlock_irqrestore(&dev->reset_flow_resource_lock, flags);
return 0;
err_qpn:
if (!sqpn) {
if (qp->flags & MLX4_IB_QP_NETIF)
mlx4_ib_steer_qp_free(dev, qpn, 1);
else
mlx4_qp_release_range(dev->dev, qpn, 1);
}
err_proxy:
if (qp->mlx4_ib_qp_type == MLX4_IB_QPT_PROXY_GSI)
free_proxy_bufs(pd->device, qp);
err_wrid:
if (udata) {
if (qp_has_rq(init_attr))
mlx4_ib_db_unmap_user(context, &qp->db);
} else {
kvfree(qp->sq.wrid);
kvfree(qp->rq.wrid);
}
err_mtt:
mlx4_mtt_cleanup(dev->dev, &qp->mtt);
err_buf:
if (!qp->umem)
mlx4_buf_free(dev->dev, qp->buf_size, &qp->buf);
ib_umem_release(qp->umem);
err_db:
if (!udata && qp_has_rq(init_attr))
mlx4_db_free(dev->dev, &qp->db);
err:
kfree(qp->sqp);
return err;
}
static enum mlx4_qp_state to_mlx4_state(enum ib_qp_state state)
{
switch (state) {
case IB_QPS_RESET: return MLX4_QP_STATE_RST;
case IB_QPS_INIT: return MLX4_QP_STATE_INIT;
case IB_QPS_RTR: return MLX4_QP_STATE_RTR;
case IB_QPS_RTS: return MLX4_QP_STATE_RTS;
case IB_QPS_SQD: return MLX4_QP_STATE_SQD;
case IB_QPS_SQE: return MLX4_QP_STATE_SQER;
case IB_QPS_ERR: return MLX4_QP_STATE_ERR;
default: return -1;
}
}
static void mlx4_ib_lock_cqs(struct mlx4_ib_cq *send_cq, struct mlx4_ib_cq *recv_cq)
__acquires(&send_cq->lock) __acquires(&recv_cq->lock)
{
if (send_cq == recv_cq) {
spin_lock(&send_cq->lock);
__acquire(&recv_cq->lock);
} else if (send_cq->mcq.cqn < recv_cq->mcq.cqn) {
spin_lock(&send_cq->lock);
spin_lock_nested(&recv_cq->lock, SINGLE_DEPTH_NESTING);
} else {
spin_lock(&recv_cq->lock);
spin_lock_nested(&send_cq->lock, SINGLE_DEPTH_NESTING);
}
}
static void mlx4_ib_unlock_cqs(struct mlx4_ib_cq *send_cq, struct mlx4_ib_cq *recv_cq)
__releases(&send_cq->lock) __releases(&recv_cq->lock)
{
if (send_cq == recv_cq) {
__release(&recv_cq->lock);
spin_unlock(&send_cq->lock);
} else if (send_cq->mcq.cqn < recv_cq->mcq.cqn) {
spin_unlock(&recv_cq->lock);
spin_unlock(&send_cq->lock);
} else {
spin_unlock(&send_cq->lock);
spin_unlock(&recv_cq->lock);
}
}
static void del_gid_entries(struct mlx4_ib_qp *qp)
{
struct mlx4_ib_gid_entry *ge, *tmp;
list_for_each_entry_safe(ge, tmp, &qp->gid_list, list) {
list_del(&ge->list);
kfree(ge);
}
}
static struct mlx4_ib_pd *get_pd(struct mlx4_ib_qp *qp)
{
if (qp->ibqp.qp_type == IB_QPT_XRC_TGT)
return to_mpd(to_mxrcd(qp->ibqp.xrcd)->pd);
else
return to_mpd(qp->ibqp.pd);
}
static void get_cqs(struct mlx4_ib_qp *qp, enum mlx4_ib_source_type src,
struct mlx4_ib_cq **send_cq, struct mlx4_ib_cq **recv_cq)
{
switch (qp->ibqp.qp_type) {
case IB_QPT_XRC_TGT:
*send_cq = to_mcq(to_mxrcd(qp->ibqp.xrcd)->cq);
*recv_cq = *send_cq;
break;
case IB_QPT_XRC_INI:
*send_cq = to_mcq(qp->ibqp.send_cq);
*recv_cq = *send_cq;
break;
default:
*recv_cq = (src == MLX4_IB_QP_SRC) ? to_mcq(qp->ibqp.recv_cq) :
to_mcq(qp->ibwq.cq);
*send_cq = (src == MLX4_IB_QP_SRC) ? to_mcq(qp->ibqp.send_cq) :
*recv_cq;
break;
}
}
static void destroy_qp_rss(struct mlx4_ib_dev *dev, struct mlx4_ib_qp *qp)
{
if (qp->state != IB_QPS_RESET) {
int i;
for (i = 0; i < (1 << qp->ibqp.rwq_ind_tbl->log_ind_tbl_size);
i++) {
struct ib_wq *ibwq = qp->ibqp.rwq_ind_tbl->ind_tbl[i];
struct mlx4_ib_qp *wq = to_mqp((struct ib_qp *)ibwq);
mutex_lock(&wq->mutex);
wq->rss_usecnt--;
mutex_unlock(&wq->mutex);
}
if (mlx4_qp_modify(dev->dev, NULL, to_mlx4_state(qp->state),
MLX4_QP_STATE_RST, NULL, 0, 0, &qp->mqp))
pr_warn("modify QP %06x to RESET failed.\n",
qp->mqp.qpn);
}
mlx4_qp_remove(dev->dev, &qp->mqp);
mlx4_qp_free(dev->dev, &qp->mqp);
mlx4_qp_release_range(dev->dev, qp->mqp.qpn, 1);
del_gid_entries(qp);
}
static void destroy_qp_common(struct mlx4_ib_dev *dev, struct mlx4_ib_qp *qp,
enum mlx4_ib_source_type src,
struct ib_udata *udata)
{
struct mlx4_ib_cq *send_cq, *recv_cq;
unsigned long flags;
if (qp->state != IB_QPS_RESET) {
if (mlx4_qp_modify(dev->dev, NULL, to_mlx4_state(qp->state),
MLX4_QP_STATE_RST, NULL, 0, 0, &qp->mqp))
pr_warn("modify QP %06x to RESET failed.\n",
qp->mqp.qpn);
if (qp->pri.smac || (!qp->pri.smac && qp->pri.smac_port)) {
mlx4_unregister_mac(dev->dev, qp->pri.smac_port, qp->pri.smac);
qp->pri.smac = 0;
qp->pri.smac_port = 0;
}
if (qp->alt.smac) {
mlx4_unregister_mac(dev->dev, qp->alt.smac_port, qp->alt.smac);
qp->alt.smac = 0;
}
if (qp->pri.vid < 0x1000) {
mlx4_unregister_vlan(dev->dev, qp->pri.vlan_port, qp->pri.vid);
qp->pri.vid = 0xFFFF;
qp->pri.candidate_vid = 0xFFFF;
qp->pri.update_vid = 0;
}
if (qp->alt.vid < 0x1000) {
mlx4_unregister_vlan(dev->dev, qp->alt.vlan_port, qp->alt.vid);
qp->alt.vid = 0xFFFF;
qp->alt.candidate_vid = 0xFFFF;
qp->alt.update_vid = 0;
}
}
get_cqs(qp, src, &send_cq, &recv_cq);
spin_lock_irqsave(&dev->reset_flow_resource_lock, flags);
mlx4_ib_lock_cqs(send_cq, recv_cq);
/* del from lists under both locks above to protect reset flow paths */
list_del(&qp->qps_list);
list_del(&qp->cq_send_list);
list_del(&qp->cq_recv_list);
if (!udata) {
__mlx4_ib_cq_clean(recv_cq, qp->mqp.qpn,
qp->ibqp.srq ? to_msrq(qp->ibqp.srq): NULL);
if (send_cq != recv_cq)
__mlx4_ib_cq_clean(send_cq, qp->mqp.qpn, NULL);
}
mlx4_qp_remove(dev->dev, &qp->mqp);
mlx4_ib_unlock_cqs(send_cq, recv_cq);
spin_unlock_irqrestore(&dev->reset_flow_resource_lock, flags);
mlx4_qp_free(dev->dev, &qp->mqp);
if (!is_sqp(dev, qp) && !is_tunnel_qp(dev, qp)) {
if (qp->flags & MLX4_IB_QP_NETIF)
mlx4_ib_steer_qp_free(dev, qp->mqp.qpn, 1);
else if (src == MLX4_IB_RWQ_SRC)
mlx4_ib_release_wqn(
rdma_udata_to_drv_context(
udata,
struct mlx4_ib_ucontext,
ibucontext),
qp, 1);
else
mlx4_qp_release_range(dev->dev, qp->mqp.qpn, 1);
}
mlx4_mtt_cleanup(dev->dev, &qp->mtt);
if (udata) {
if (qp->rq.wqe_cnt) {
struct mlx4_ib_ucontext *mcontext =
rdma_udata_to_drv_context(
udata,
struct mlx4_ib_ucontext,
ibucontext);
mlx4_ib_db_unmap_user(mcontext, &qp->db);
}
} else {
kvfree(qp->sq.wrid);
kvfree(qp->rq.wrid);
if (qp->mlx4_ib_qp_type & (MLX4_IB_QPT_PROXY_SMI_OWNER |
MLX4_IB_QPT_PROXY_SMI | MLX4_IB_QPT_PROXY_GSI))
free_proxy_bufs(&dev->ib_dev, qp);
mlx4_buf_free(dev->dev, qp->buf_size, &qp->buf);
if (qp->rq.wqe_cnt)
mlx4_db_free(dev->dev, &qp->db);
}
ib_umem_release(qp->umem);
del_gid_entries(qp);
}
static u32 get_sqp_num(struct mlx4_ib_dev *dev, struct ib_qp_init_attr *attr)
{
/* Native or PPF */
if (!mlx4_is_mfunc(dev->dev) ||
(mlx4_is_master(dev->dev) &&
attr->create_flags & MLX4_IB_SRIOV_SQP)) {
return dev->dev->phys_caps.base_sqpn +
(attr->qp_type == IB_QPT_SMI ? 0 : 2) +
attr->port_num - 1;
}
/* PF or VF -- creating proxies */
if (attr->qp_type == IB_QPT_SMI)
return dev->dev->caps.spec_qps[attr->port_num - 1].qp0_proxy;
else
return dev->dev->caps.spec_qps[attr->port_num - 1].qp1_proxy;
}
static int _mlx4_ib_create_qp(struct ib_pd *pd, struct mlx4_ib_qp *qp,
struct ib_qp_init_attr *init_attr,
struct ib_udata *udata)
{
int err;
int sup_u_create_flags = MLX4_IB_QP_BLOCK_MULTICAST_LOOPBACK;
u16 xrcdn = 0;
if (init_attr->rwq_ind_tbl)
return _mlx4_ib_create_qp_rss(pd, qp, init_attr, udata);
/*
* We only support LSO, vendor flag1, and multicast loopback blocking,
* and only for kernel UD QPs.
*/
if (init_attr->create_flags & ~(MLX4_IB_QP_LSO |
MLX4_IB_QP_BLOCK_MULTICAST_LOOPBACK |
MLX4_IB_SRIOV_TUNNEL_QP |
MLX4_IB_SRIOV_SQP |
MLX4_IB_QP_NETIF |
MLX4_IB_QP_CREATE_ROCE_V2_GSI))
return -EOPNOTSUPP;
if (init_attr->create_flags & IB_QP_CREATE_NETIF_QP) {
if (init_attr->qp_type != IB_QPT_UD)
return -EINVAL;
}
if (init_attr->create_flags) {
if (udata && init_attr->create_flags & ~(sup_u_create_flags))
return -EINVAL;
if ((init_attr->create_flags & ~(MLX4_IB_SRIOV_SQP |
MLX4_IB_QP_CREATE_ROCE_V2_GSI |
MLX4_IB_QP_BLOCK_MULTICAST_LOOPBACK) &&
init_attr->qp_type != IB_QPT_UD) ||
(init_attr->create_flags & MLX4_IB_SRIOV_SQP &&
init_attr->qp_type > IB_QPT_GSI) ||
(init_attr->create_flags & MLX4_IB_QP_CREATE_ROCE_V2_GSI &&
init_attr->qp_type != IB_QPT_GSI))
return -EINVAL;
}
switch (init_attr->qp_type) {
case IB_QPT_XRC_TGT:
pd = to_mxrcd(init_attr->xrcd)->pd;
xrcdn = to_mxrcd(init_attr->xrcd)->xrcdn;
init_attr->send_cq = to_mxrcd(init_attr->xrcd)->cq;
fallthrough;
case IB_QPT_XRC_INI:
if (!(to_mdev(pd->device)->dev->caps.flags & MLX4_DEV_CAP_FLAG_XRC))
return -ENOSYS;
init_attr->recv_cq = init_attr->send_cq;
fallthrough;
case IB_QPT_RC:
case IB_QPT_UC:
case IB_QPT_RAW_PACKET:
case IB_QPT_UD:
qp->pri.vid = 0xFFFF;
qp->alt.vid = 0xFFFF;
err = create_qp_common(pd, init_attr, udata, 0, qp);
if (err)
return err;
qp->ibqp.qp_num = qp->mqp.qpn;
qp->xrcdn = xrcdn;
break;
case IB_QPT_SMI:
case IB_QPT_GSI:
{
int sqpn;
if (init_attr->create_flags & MLX4_IB_QP_CREATE_ROCE_V2_GSI) {
int res = mlx4_qp_reserve_range(to_mdev(pd->device)->dev,
1, 1, &sqpn, 0,
MLX4_RES_USAGE_DRIVER);
if (res)
return res;
} else {
sqpn = get_sqp_num(to_mdev(pd->device), init_attr);
}
qp->pri.vid = 0xFFFF;
qp->alt.vid = 0xFFFF;
err = create_qp_common(pd, init_attr, udata, sqpn, qp);
if (err)
return err;
if (init_attr->create_flags &
(MLX4_IB_SRIOV_SQP | MLX4_IB_SRIOV_TUNNEL_QP))
/* Internal QP created with ib_create_qp */
rdma_restrack_no_track(&qp->ibqp.res);
qp->port = init_attr->port_num;
qp->ibqp.qp_num = init_attr->qp_type == IB_QPT_SMI ? 0 :
init_attr->create_flags & MLX4_IB_QP_CREATE_ROCE_V2_GSI ? sqpn : 1;
break;
}
default:
/* Don't support raw QPs */
return -EOPNOTSUPP;
}
return 0;
}
int mlx4_ib_create_qp(struct ib_qp *ibqp, struct ib_qp_init_attr *init_attr,
struct ib_udata *udata)
{
struct ib_device *device = ibqp->device;
struct mlx4_ib_dev *dev = to_mdev(device);
struct mlx4_ib_qp *qp = to_mqp(ibqp);
struct ib_pd *pd = ibqp->pd;
int ret;
mutex_init(&qp->mutex);
ret = _mlx4_ib_create_qp(pd, qp, init_attr, udata);
if (ret)
return ret;
if (init_attr->qp_type == IB_QPT_GSI &&
!(init_attr->create_flags & MLX4_IB_QP_CREATE_ROCE_V2_GSI)) {
struct mlx4_ib_sqp *sqp = qp->sqp;
int is_eth = rdma_cap_eth_ah(&dev->ib_dev, init_attr->port_num);
if (is_eth &&
dev->dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_ROCE_V1_V2) {
init_attr->create_flags |= MLX4_IB_QP_CREATE_ROCE_V2_GSI;
sqp->roce_v2_gsi = ib_create_qp(pd, init_attr);
if (IS_ERR(sqp->roce_v2_gsi)) {
pr_err("Failed to create GSI QP for RoCEv2 (%ld)\n", PTR_ERR(sqp->roce_v2_gsi));
sqp->roce_v2_gsi = NULL;
} else {
to_mqp(sqp->roce_v2_gsi)->flags |=
MLX4_IB_ROCE_V2_GSI_QP;
}
init_attr->create_flags &= ~MLX4_IB_QP_CREATE_ROCE_V2_GSI;
}
}
return 0;
}
static int _mlx4_ib_destroy_qp(struct ib_qp *qp, struct ib_udata *udata)
{
struct mlx4_ib_dev *dev = to_mdev(qp->device);
struct mlx4_ib_qp *mqp = to_mqp(qp);
if (is_qp0(dev, mqp))
mlx4_CLOSE_PORT(dev->dev, mqp->port);
if (mqp->mlx4_ib_qp_type == MLX4_IB_QPT_PROXY_GSI &&
dev->qp1_proxy[mqp->port - 1] == mqp) {
mutex_lock(&dev->qp1_proxy_lock[mqp->port - 1]);
dev->qp1_proxy[mqp->port - 1] = NULL;
mutex_unlock(&dev->qp1_proxy_lock[mqp->port - 1]);
}
if (mqp->counter_index)
mlx4_ib_free_qp_counter(dev, mqp);
if (qp->rwq_ind_tbl) {
destroy_qp_rss(dev, mqp);
} else {
destroy_qp_common(dev, mqp, MLX4_IB_QP_SRC, udata);
}
kfree(mqp->sqp);
return 0;
}
int mlx4_ib_destroy_qp(struct ib_qp *qp, struct ib_udata *udata)
{
struct mlx4_ib_qp *mqp = to_mqp(qp);
if (mqp->mlx4_ib_qp_type == MLX4_IB_QPT_GSI) {
struct mlx4_ib_sqp *sqp = mqp->sqp;
if (sqp->roce_v2_gsi)
ib_destroy_qp(sqp->roce_v2_gsi);
}
return _mlx4_ib_destroy_qp(qp, udata);
}
static int to_mlx4_st(struct mlx4_ib_dev *dev, enum mlx4_ib_qp_type type)
{
switch (type) {
case MLX4_IB_QPT_RC: return MLX4_QP_ST_RC;
case MLX4_IB_QPT_UC: return MLX4_QP_ST_UC;
case MLX4_IB_QPT_UD: return MLX4_QP_ST_UD;
case MLX4_IB_QPT_XRC_INI:
case MLX4_IB_QPT_XRC_TGT: return MLX4_QP_ST_XRC;
case MLX4_IB_QPT_SMI:
case MLX4_IB_QPT_GSI:
case MLX4_IB_QPT_RAW_PACKET: return MLX4_QP_ST_MLX;
case MLX4_IB_QPT_PROXY_SMI_OWNER:
case MLX4_IB_QPT_TUN_SMI_OWNER: return (mlx4_is_mfunc(dev->dev) ?
MLX4_QP_ST_MLX : -1);
case MLX4_IB_QPT_PROXY_SMI:
case MLX4_IB_QPT_TUN_SMI:
case MLX4_IB_QPT_PROXY_GSI:
case MLX4_IB_QPT_TUN_GSI: return (mlx4_is_mfunc(dev->dev) ?
MLX4_QP_ST_UD : -1);
default: return -1;
}
}
static __be32 to_mlx4_access_flags(struct mlx4_ib_qp *qp, const struct ib_qp_attr *attr,
int attr_mask)
{
u8 dest_rd_atomic;
u32 access_flags;
u32 hw_access_flags = 0;
if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
dest_rd_atomic = attr->max_dest_rd_atomic;
else
dest_rd_atomic = qp->resp_depth;
if (attr_mask & IB_QP_ACCESS_FLAGS)
access_flags = attr->qp_access_flags;
else
access_flags = qp->atomic_rd_en;
if (!dest_rd_atomic)
access_flags &= IB_ACCESS_REMOTE_WRITE;
if (access_flags & IB_ACCESS_REMOTE_READ)
hw_access_flags |= MLX4_QP_BIT_RRE;
if (access_flags & IB_ACCESS_REMOTE_ATOMIC)
hw_access_flags |= MLX4_QP_BIT_RAE;
if (access_flags & IB_ACCESS_REMOTE_WRITE)
hw_access_flags |= MLX4_QP_BIT_RWE;
return cpu_to_be32(hw_access_flags);
}
static void store_sqp_attrs(struct mlx4_ib_sqp *sqp, const struct ib_qp_attr *attr,
int attr_mask)
{
if (attr_mask & IB_QP_PKEY_INDEX)
sqp->pkey_index = attr->pkey_index;
if (attr_mask & IB_QP_QKEY)
sqp->qkey = attr->qkey;
if (attr_mask & IB_QP_SQ_PSN)
sqp->send_psn = attr->sq_psn;
}
static void mlx4_set_sched(struct mlx4_qp_path *path, u8 port)
{
path->sched_queue = (path->sched_queue & 0xbf) | ((port - 1) << 6);
}
static int _mlx4_set_path(struct mlx4_ib_dev *dev,
const struct rdma_ah_attr *ah,
u64 smac, u16 vlan_tag, struct mlx4_qp_path *path,
struct mlx4_roce_smac_vlan_info *smac_info, u8 port)
{
int vidx;
int smac_index;
int err;
path->grh_mylmc = rdma_ah_get_path_bits(ah) & 0x7f;
path->rlid = cpu_to_be16(rdma_ah_get_dlid(ah));
if (rdma_ah_get_static_rate(ah)) {
path->static_rate = rdma_ah_get_static_rate(ah) +
MLX4_STAT_RATE_OFFSET;
while (path->static_rate > IB_RATE_2_5_GBPS + MLX4_STAT_RATE_OFFSET &&
!(1 << path->static_rate & dev->dev->caps.stat_rate_support))
--path->static_rate;
} else
path->static_rate = 0;
if (rdma_ah_get_ah_flags(ah) & IB_AH_GRH) {
const struct ib_global_route *grh = rdma_ah_read_grh(ah);
int real_sgid_index =
mlx4_ib_gid_index_to_real_index(dev, grh->sgid_attr);
if (real_sgid_index < 0)
return real_sgid_index;
if (real_sgid_index >= dev->dev->caps.gid_table_len[port]) {
pr_err("sgid_index (%u) too large. max is %d\n",
real_sgid_index, dev->dev->caps.gid_table_len[port] - 1);
return -1;
}
path->grh_mylmc |= 1 << 7;
path->mgid_index = real_sgid_index;
path->hop_limit = grh->hop_limit;
path->tclass_flowlabel =
cpu_to_be32((grh->traffic_class << 20) |
(grh->flow_label));
memcpy(path->rgid, grh->dgid.raw, 16);
}
if (ah->type == RDMA_AH_ATTR_TYPE_ROCE) {
if (!(rdma_ah_get_ah_flags(ah) & IB_AH_GRH))
return -1;
path->sched_queue = MLX4_IB_DEFAULT_SCHED_QUEUE |
((port - 1) << 6) | ((rdma_ah_get_sl(ah) & 7) << 3);
path->feup |= MLX4_FEUP_FORCE_ETH_UP;
if (vlan_tag < 0x1000) {
if (smac_info->vid < 0x1000) {
/* both valid vlan ids */
if (smac_info->vid != vlan_tag) {
/* different VIDs. unreg old and reg new */
err = mlx4_register_vlan(dev->dev, port, vlan_tag, &vidx);
if (err)
return err;
smac_info->candidate_vid = vlan_tag;
smac_info->candidate_vlan_index = vidx;
smac_info->candidate_vlan_port = port;
smac_info->update_vid = 1;
path->vlan_index = vidx;
} else {
path->vlan_index = smac_info->vlan_index;
}
} else {
/* no current vlan tag in qp */
err = mlx4_register_vlan(dev->dev, port, vlan_tag, &vidx);
if (err)
return err;
smac_info->candidate_vid = vlan_tag;
smac_info->candidate_vlan_index = vidx;
smac_info->candidate_vlan_port = port;
smac_info->update_vid = 1;
path->vlan_index = vidx;
}
path->feup |= MLX4_FVL_FORCE_ETH_VLAN;
path->fl = 1 << 6;
} else {
/* have current vlan tag. unregister it at modify-qp success */
if (smac_info->vid < 0x1000) {
smac_info->candidate_vid = 0xFFFF;
smac_info->update_vid = 1;
}
}
/* get smac_index for RoCE use.
* If no smac was yet assigned, register one.
* If one was already assigned, but the new mac differs,
* unregister the old one and register the new one.
*/
if ((!smac_info->smac && !smac_info->smac_port) ||
smac_info->smac != smac) {
/* register candidate now, unreg if needed, after success */
smac_index = mlx4_register_mac(dev->dev, port, smac);
if (smac_index >= 0) {
smac_info->candidate_smac_index = smac_index;
smac_info->candidate_smac = smac;
smac_info->candidate_smac_port = port;
} else {
return -EINVAL;
}
} else {
smac_index = smac_info->smac_index;
}
memcpy(path->dmac, ah->roce.dmac, 6);
path->ackto = MLX4_IB_LINK_TYPE_ETH;
/* put MAC table smac index for IBoE */
path->grh_mylmc = (u8) (smac_index) | 0x80;
} else {
path->sched_queue = MLX4_IB_DEFAULT_SCHED_QUEUE |
((port - 1) << 6) | ((rdma_ah_get_sl(ah) & 0xf) << 2);
}
return 0;
}
static int mlx4_set_path(struct mlx4_ib_dev *dev, const struct ib_qp_attr *qp,
enum ib_qp_attr_mask qp_attr_mask,
struct mlx4_ib_qp *mqp,
struct mlx4_qp_path *path, u8 port,
u16 vlan_id, u8 *smac)
{
return _mlx4_set_path(dev, &qp->ah_attr,
ether_addr_to_u64(smac),
vlan_id,
path, &mqp->pri, port);
}
static int mlx4_set_alt_path(struct mlx4_ib_dev *dev,
const struct ib_qp_attr *qp,
enum ib_qp_attr_mask qp_attr_mask,
struct mlx4_ib_qp *mqp,
struct mlx4_qp_path *path, u8 port)
{
return _mlx4_set_path(dev, &qp->alt_ah_attr,
0,
0xffff,
path, &mqp->alt, port);
}
static void update_mcg_macs(struct mlx4_ib_dev *dev, struct mlx4_ib_qp *qp)
{
struct mlx4_ib_gid_entry *ge, *tmp;
list_for_each_entry_safe(ge, tmp, &qp->gid_list, list) {
if (!ge->added && mlx4_ib_add_mc(dev, qp, &ge->gid)) {
ge->added = 1;
ge->port = qp->port;
}
}
}
static int handle_eth_ud_smac_index(struct mlx4_ib_dev *dev,
struct mlx4_ib_qp *qp,
struct mlx4_qp_context *context)
{
u64 u64_mac;
int smac_index;
u64_mac = atomic64_read(&dev->iboe.mac[qp->port - 1]);
context->pri_path.sched_queue = MLX4_IB_DEFAULT_SCHED_QUEUE | ((qp->port - 1) << 6);
if (!qp->pri.smac && !qp->pri.smac_port) {
smac_index = mlx4_register_mac(dev->dev, qp->port, u64_mac);
if (smac_index >= 0) {
qp->pri.candidate_smac_index = smac_index;
qp->pri.candidate_smac = u64_mac;
qp->pri.candidate_smac_port = qp->port;
context->pri_path.grh_mylmc = 0x80 | (u8) smac_index;
} else {
return -ENOENT;
}
}
return 0;
}
static int create_qp_lb_counter(struct mlx4_ib_dev *dev, struct mlx4_ib_qp *qp)
{
struct counter_index *new_counter_index;
int err;
u32 tmp_idx;
if (rdma_port_get_link_layer(&dev->ib_dev, qp->port) !=
IB_LINK_LAYER_ETHERNET ||
!(qp->flags & MLX4_IB_QP_BLOCK_MULTICAST_LOOPBACK) ||
!(dev->dev->caps.flags2 & MLX4_DEV_CAP_FLAG2_LB_SRC_CHK))
return 0;
err = mlx4_counter_alloc(dev->dev, &tmp_idx, MLX4_RES_USAGE_DRIVER);
if (err)
return err;
new_counter_index = kmalloc(sizeof(*new_counter_index), GFP_KERNEL);
if (!new_counter_index) {
mlx4_counter_free(dev->dev, tmp_idx);
return -ENOMEM;
}
new_counter_index->index = tmp_idx;
new_counter_index->allocated = 1;
qp->counter_index = new_counter_index;
mutex_lock(&dev->counters_table[qp->port - 1].mutex);
list_add_tail(&new_counter_index->list,
&dev->counters_table[qp->port - 1].counters_list);
mutex_unlock(&dev->counters_table[qp->port - 1].mutex);
return 0;
}
enum {
MLX4_QPC_ROCE_MODE_1 = 0,
MLX4_QPC_ROCE_MODE_2 = 2,
MLX4_QPC_ROCE_MODE_UNDEFINED = 0xff
};
static u8 gid_type_to_qpc(enum ib_gid_type gid_type)
{
switch (gid_type) {
case IB_GID_TYPE_ROCE:
return MLX4_QPC_ROCE_MODE_1;
case IB_GID_TYPE_ROCE_UDP_ENCAP:
return MLX4_QPC_ROCE_MODE_2;
default:
return MLX4_QPC_ROCE_MODE_UNDEFINED;
}
}
/*
* Go over all RSS QP's childes (WQs) and apply their HW state according to
* their logic state if the RSS QP is the first RSS QP associated for the WQ.
*/
static int bringup_rss_rwqs(struct ib_rwq_ind_table *ind_tbl, u8 port_num,
struct ib_udata *udata)
{
int err = 0;
int i;
for (i = 0; i < (1 << ind_tbl->log_ind_tbl_size); i++) {
struct ib_wq *ibwq = ind_tbl->ind_tbl[i];
struct mlx4_ib_qp *wq = to_mqp((struct ib_qp *)ibwq);
mutex_lock(&wq->mutex);
/* Mlx4_ib restrictions:
* WQ's is associated to a port according to the RSS QP it is
* associates to.
* In case the WQ is associated to a different port by another
* RSS QP, return a failure.
*/
if ((wq->rss_usecnt > 0) && (wq->port != port_num)) {
err = -EINVAL;
mutex_unlock(&wq->mutex);
break;
}
wq->port = port_num;
if ((wq->rss_usecnt == 0) && (ibwq->state == IB_WQS_RDY)) {
err = _mlx4_ib_modify_wq(ibwq, IB_WQS_RDY, udata);
if (err) {
mutex_unlock(&wq->mutex);
break;
}
}
wq->rss_usecnt++;
mutex_unlock(&wq->mutex);
}
if (i && err) {
int j;
for (j = (i - 1); j >= 0; j--) {
struct ib_wq *ibwq = ind_tbl->ind_tbl[j];
struct mlx4_ib_qp *wq = to_mqp((struct ib_qp *)ibwq);
mutex_lock(&wq->mutex);
if ((wq->rss_usecnt == 1) &&
(ibwq->state == IB_WQS_RDY))
if (_mlx4_ib_modify_wq(ibwq, IB_WQS_RESET,
udata))
pr_warn("failed to reverse WQN=0x%06x\n",
ibwq->wq_num);
wq->rss_usecnt--;
mutex_unlock(&wq->mutex);
}
}
return err;
}
static void bring_down_rss_rwqs(struct ib_rwq_ind_table *ind_tbl,
struct ib_udata *udata)
{
int i;
for (i = 0; i < (1 << ind_tbl->log_ind_tbl_size); i++) {
struct ib_wq *ibwq = ind_tbl->ind_tbl[i];
struct mlx4_ib_qp *wq = to_mqp((struct ib_qp *)ibwq);
mutex_lock(&wq->mutex);
if ((wq->rss_usecnt == 1) && (ibwq->state == IB_WQS_RDY))
if (_mlx4_ib_modify_wq(ibwq, IB_WQS_RESET, udata))
pr_warn("failed to reverse WQN=%x\n",
ibwq->wq_num);
wq->rss_usecnt--;
mutex_unlock(&wq->mutex);
}
}
static void fill_qp_rss_context(struct mlx4_qp_context *context,
struct mlx4_ib_qp *qp)
{
struct mlx4_rss_context *rss_context;
rss_context = (void *)context + offsetof(struct mlx4_qp_context,
pri_path) + MLX4_RSS_OFFSET_IN_QPC_PRI_PATH;
rss_context->base_qpn = cpu_to_be32(qp->rss_ctx->base_qpn_tbl_sz);
rss_context->default_qpn =
cpu_to_be32(qp->rss_ctx->base_qpn_tbl_sz & 0xffffff);
if (qp->rss_ctx->flags & (MLX4_RSS_UDP_IPV4 | MLX4_RSS_UDP_IPV6))
rss_context->base_qpn_udp = rss_context->default_qpn;
rss_context->flags = qp->rss_ctx->flags;
/* Currently support just toeplitz */
rss_context->hash_fn = MLX4_RSS_HASH_TOP;
memcpy(rss_context->rss_key, qp->rss_ctx->rss_key,
MLX4_EN_RSS_KEY_SIZE);
}
static int __mlx4_ib_modify_qp(void *src, enum mlx4_ib_source_type src_type,
const struct ib_qp_attr *attr, int attr_mask,
enum ib_qp_state cur_state,
enum ib_qp_state new_state,
struct ib_udata *udata)
{
struct ib_srq *ibsrq;
const struct ib_gid_attr *gid_attr = NULL;
struct ib_rwq_ind_table *rwq_ind_tbl;
enum ib_qp_type qp_type;
struct mlx4_ib_dev *dev;
struct mlx4_ib_qp *qp;
struct mlx4_ib_pd *pd;
struct mlx4_ib_cq *send_cq, *recv_cq;
struct mlx4_ib_ucontext *ucontext = rdma_udata_to_drv_context(
udata, struct mlx4_ib_ucontext, ibucontext);
struct mlx4_qp_context *context;
enum mlx4_qp_optpar optpar = 0;
int sqd_event;
int steer_qp = 0;
int err = -EINVAL;
int counter_index;
if (src_type == MLX4_IB_RWQ_SRC) {
struct ib_wq *ibwq;
ibwq = (struct ib_wq *)src;
ibsrq = NULL;
rwq_ind_tbl = NULL;
qp_type = IB_QPT_RAW_PACKET;
qp = to_mqp((struct ib_qp *)ibwq);
dev = to_mdev(ibwq->device);
pd = to_mpd(ibwq->pd);
} else {
struct ib_qp *ibqp;
ibqp = (struct ib_qp *)src;
ibsrq = ibqp->srq;
rwq_ind_tbl = ibqp->rwq_ind_tbl;
qp_type = ibqp->qp_type;
qp = to_mqp(ibqp);
dev = to_mdev(ibqp->device);
pd = get_pd(qp);
}
/* APM is not supported under RoCE */
if (attr_mask & IB_QP_ALT_PATH &&
rdma_port_get_link_layer(&dev->ib_dev, qp->port) ==
IB_LINK_LAYER_ETHERNET)
return -ENOTSUPP;
context = kzalloc(sizeof *context, GFP_KERNEL);
if (!context)
return -ENOMEM;
context->flags = cpu_to_be32((to_mlx4_state(new_state) << 28) |
(to_mlx4_st(dev, qp->mlx4_ib_qp_type) << 16));
if (!(attr_mask & IB_QP_PATH_MIG_STATE))
context->flags |= cpu_to_be32(MLX4_QP_PM_MIGRATED << 11);
else {
optpar |= MLX4_QP_OPTPAR_PM_STATE;
switch (attr->path_mig_state) {
case IB_MIG_MIGRATED:
context->flags |= cpu_to_be32(MLX4_QP_PM_MIGRATED << 11);
break;
case IB_MIG_REARM:
context->flags |= cpu_to_be32(MLX4_QP_PM_REARM << 11);
break;
case IB_MIG_ARMED:
context->flags |= cpu_to_be32(MLX4_QP_PM_ARMED << 11);
break;
}
}
if (qp->inl_recv_sz)
context->param3 |= cpu_to_be32(1 << 25);
if (qp->flags & MLX4_IB_QP_SCATTER_FCS)
context->param3 |= cpu_to_be32(1 << 29);
if (qp_type == IB_QPT_GSI || qp_type == IB_QPT_SMI)
context->mtu_msgmax = (IB_MTU_4096 << 5) | 11;
else if (qp_type == IB_QPT_RAW_PACKET)
context->mtu_msgmax = (MLX4_RAW_QP_MTU << 5) | MLX4_RAW_QP_MSGMAX;
else if (qp_type == IB_QPT_UD) {
if (qp->flags & MLX4_IB_QP_LSO)
context->mtu_msgmax = (IB_MTU_4096 << 5) |
ilog2(dev->dev->caps.max_gso_sz);
else
context->mtu_msgmax = (IB_MTU_4096 << 5) | 13;
} else if (attr_mask & IB_QP_PATH_MTU) {
if (attr->path_mtu < IB_MTU_256 || attr->path_mtu > IB_MTU_4096) {
pr_err("path MTU (%u) is invalid\n",
attr->path_mtu);
goto out;
}
context->mtu_msgmax = (attr->path_mtu << 5) |
ilog2(dev->dev->caps.max_msg_sz);
}
if (!rwq_ind_tbl) { /* PRM RSS receive side should be left zeros */
if (qp->rq.wqe_cnt)
context->rq_size_stride = ilog2(qp->rq.wqe_cnt) << 3;
context->rq_size_stride |= qp->rq.wqe_shift - 4;
}
if (qp->sq.wqe_cnt)
context->sq_size_stride = ilog2(qp->sq.wqe_cnt) << 3;
context->sq_size_stride |= qp->sq.wqe_shift - 4;
if (new_state == IB_QPS_RESET && qp->counter_index)
mlx4_ib_free_qp_counter(dev, qp);
if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT) {
context->sq_size_stride |= !!qp->sq_no_prefetch << 7;
context->xrcd = cpu_to_be32((u32) qp->xrcdn);
if (qp_type == IB_QPT_RAW_PACKET)
context->param3 |= cpu_to_be32(1 << 30);
}
if (ucontext)
context->usr_page = cpu_to_be32(
mlx4_to_hw_uar_index(dev->dev, ucontext->uar.index));
else
context->usr_page = cpu_to_be32(
mlx4_to_hw_uar_index(dev->dev, dev->priv_uar.index));
if (attr_mask & IB_QP_DEST_QPN)
context->remote_qpn = cpu_to_be32(attr->dest_qp_num);
if (attr_mask & IB_QP_PORT) {
if (cur_state == IB_QPS_SQD && new_state == IB_QPS_SQD &&
!(attr_mask & IB_QP_AV)) {
mlx4_set_sched(&context->pri_path, attr->port_num);
optpar |= MLX4_QP_OPTPAR_SCHED_QUEUE;
}
}
if (cur_state == IB_QPS_INIT && new_state == IB_QPS_RTR) {
err = create_qp_lb_counter(dev, qp);
if (err)
goto out;
counter_index =
dev->counters_table[qp->port - 1].default_counter;
if (qp->counter_index)
counter_index = qp->counter_index->index;
if (counter_index != -1) {
context->pri_path.counter_index = counter_index;
optpar |= MLX4_QP_OPTPAR_COUNTER_INDEX;
if (qp->counter_index) {
context->pri_path.fl |=
MLX4_FL_ETH_SRC_CHECK_MC_LB;
context->pri_path.vlan_control |=
MLX4_CTRL_ETH_SRC_CHECK_IF_COUNTER;
}
} else
context->pri_path.counter_index =
MLX4_SINK_COUNTER_INDEX(dev->dev);
if (qp->flags & MLX4_IB_QP_NETIF) {
mlx4_ib_steer_qp_reg(dev, qp, 1);
steer_qp = 1;
}
if (qp_type == IB_QPT_GSI) {
enum ib_gid_type gid_type = qp->flags & MLX4_IB_ROCE_V2_GSI_QP ?
IB_GID_TYPE_ROCE_UDP_ENCAP : IB_GID_TYPE_ROCE;
u8 qpc_roce_mode = gid_type_to_qpc(gid_type);
context->rlkey_roce_mode |= (qpc_roce_mode << 6);
}
}
if (attr_mask & IB_QP_PKEY_INDEX) {
if (qp->mlx4_ib_qp_type & MLX4_IB_QPT_ANY_SRIOV)
context->pri_path.disable_pkey_check = 0x40;
context->pri_path.pkey_index = attr->pkey_index;
optpar |= MLX4_QP_OPTPAR_PKEY_INDEX;
}
if (attr_mask & IB_QP_AV) {
u8 port_num = mlx4_is_bonded(dev->dev) ? 1 :
attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
u16 vlan = 0xffff;
u8 smac[ETH_ALEN];
int is_eth =
rdma_cap_eth_ah(&dev->ib_dev, port_num) &&
rdma_ah_get_ah_flags(&attr->ah_attr) & IB_AH_GRH;
if (is_eth) {
gid_attr = attr->ah_attr.grh.sgid_attr;
err = rdma_read_gid_l2_fields(gid_attr, &vlan,
&smac[0]);
if (err)
goto out;
}
if (mlx4_set_path(dev, attr, attr_mask, qp, &context->pri_path,
port_num, vlan, smac))
goto out;
optpar |= (MLX4_QP_OPTPAR_PRIMARY_ADDR_PATH |
MLX4_QP_OPTPAR_SCHED_QUEUE);
if (is_eth &&
(cur_state == IB_QPS_INIT && new_state == IB_QPS_RTR)) {
u8 qpc_roce_mode = gid_type_to_qpc(gid_attr->gid_type);
if (qpc_roce_mode == MLX4_QPC_ROCE_MODE_UNDEFINED) {
err = -EINVAL;
goto out;
}
context->rlkey_roce_mode |= (qpc_roce_mode << 6);
}
}
if (attr_mask & IB_QP_TIMEOUT) {
context->pri_path.ackto |= attr->timeout << 3;
optpar |= MLX4_QP_OPTPAR_ACK_TIMEOUT;
}
if (attr_mask & IB_QP_ALT_PATH) {
if (attr->alt_port_num == 0 ||
attr->alt_port_num > dev->dev->caps.num_ports)
goto out;
if (attr->alt_pkey_index >=
dev->dev->caps.pkey_table_len[attr->alt_port_num])
goto out;
if (mlx4_set_alt_path(dev, attr, attr_mask, qp,
&context->alt_path,
attr->alt_port_num))
goto out;
context->alt_path.pkey_index = attr->alt_pkey_index;
context->alt_path.ackto = attr->alt_timeout << 3;
optpar |= MLX4_QP_OPTPAR_ALT_ADDR_PATH;
}
context->pd = cpu_to_be32(pd->pdn);
if (!rwq_ind_tbl) {
context->params1 = cpu_to_be32(MLX4_IB_ACK_REQ_FREQ << 28);
get_cqs(qp, src_type, &send_cq, &recv_cq);
} else { /* Set dummy CQs to be compatible with HV and PRM */
send_cq = to_mcq(rwq_ind_tbl->ind_tbl[0]->cq);
recv_cq = send_cq;
}
context->cqn_send = cpu_to_be32(send_cq->mcq.cqn);
context->cqn_recv = cpu_to_be32(recv_cq->mcq.cqn);
/* Set "fast registration enabled" for all kernel QPs */
if (!ucontext)
context->params1 |= cpu_to_be32(1 << 11);
if (attr_mask & IB_QP_RNR_RETRY) {
context->params1 |= cpu_to_be32(attr->rnr_retry << 13);
optpar |= MLX4_QP_OPTPAR_RNR_RETRY;
}
if (attr_mask & IB_QP_RETRY_CNT) {
context->params1 |= cpu_to_be32(attr->retry_cnt << 16);
optpar |= MLX4_QP_OPTPAR_RETRY_COUNT;
}
if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC) {
if (attr->max_rd_atomic)
context->params1 |=
cpu_to_be32(fls(attr->max_rd_atomic - 1) << 21);
optpar |= MLX4_QP_OPTPAR_SRA_MAX;
}
if (attr_mask & IB_QP_SQ_PSN)
context->next_send_psn = cpu_to_be32(attr->sq_psn);
if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC) {
if (attr->max_dest_rd_atomic)
context->params2 |=
cpu_to_be32(fls(attr->max_dest_rd_atomic - 1) << 21);
optpar |= MLX4_QP_OPTPAR_RRA_MAX;
}
if (attr_mask & (IB_QP_ACCESS_FLAGS | IB_QP_MAX_DEST_RD_ATOMIC)) {
context->params2 |= to_mlx4_access_flags(qp, attr, attr_mask);
optpar |= MLX4_QP_OPTPAR_RWE | MLX4_QP_OPTPAR_RRE | MLX4_QP_OPTPAR_RAE;
}
if (ibsrq)
context->params2 |= cpu_to_be32(MLX4_QP_BIT_RIC);
if (attr_mask & IB_QP_MIN_RNR_TIMER) {
context->rnr_nextrecvpsn |= cpu_to_be32(attr->min_rnr_timer << 24);
optpar |= MLX4_QP_OPTPAR_RNR_TIMEOUT;
}
if (attr_mask & IB_QP_RQ_PSN)
context->rnr_nextrecvpsn |= cpu_to_be32(attr->rq_psn);
/* proxy and tunnel qp qkeys will be changed in modify-qp wrappers */
if (attr_mask & IB_QP_QKEY) {
if (qp->mlx4_ib_qp_type &
(MLX4_IB_QPT_PROXY_SMI_OWNER | MLX4_IB_QPT_TUN_SMI_OWNER))
context->qkey = cpu_to_be32(IB_QP_SET_QKEY);
else {
if (mlx4_is_mfunc(dev->dev) &&
!(qp->mlx4_ib_qp_type & MLX4_IB_QPT_ANY_SRIOV) &&
(attr->qkey & MLX4_RESERVED_QKEY_MASK) ==
MLX4_RESERVED_QKEY_BASE) {
pr_err("Cannot use reserved QKEY"
" 0x%x (range 0xffff0000..0xffffffff"
" is reserved)\n", attr->qkey);
err = -EINVAL;
goto out;
}
context->qkey = cpu_to_be32(attr->qkey);
}
optpar |= MLX4_QP_OPTPAR_Q_KEY;
}
if (ibsrq)
context->srqn = cpu_to_be32(1 << 24 |
to_msrq(ibsrq)->msrq.srqn);
if (qp->rq.wqe_cnt &&
cur_state == IB_QPS_RESET &&
new_state == IB_QPS_INIT)
context->db_rec_addr = cpu_to_be64(qp->db.dma);
if (cur_state == IB_QPS_INIT &&
new_state == IB_QPS_RTR &&
(qp_type == IB_QPT_GSI || qp_type == IB_QPT_SMI ||
qp_type == IB_QPT_UD || qp_type == IB_QPT_RAW_PACKET)) {
context->pri_path.sched_queue = (qp->port - 1) << 6;
if (qp->mlx4_ib_qp_type == MLX4_IB_QPT_SMI ||
qp->mlx4_ib_qp_type &
(MLX4_IB_QPT_PROXY_SMI_OWNER | MLX4_IB_QPT_TUN_SMI_OWNER)) {
context->pri_path.sched_queue |= MLX4_IB_DEFAULT_QP0_SCHED_QUEUE;
if (qp->mlx4_ib_qp_type != MLX4_IB_QPT_SMI)
context->pri_path.fl = 0x80;
} else {
if (qp->mlx4_ib_qp_type & MLX4_IB_QPT_ANY_SRIOV)
context->pri_path.fl = 0x80;
context->pri_path.sched_queue |= MLX4_IB_DEFAULT_SCHED_QUEUE;
}
if (rdma_port_get_link_layer(&dev->ib_dev, qp->port) ==
IB_LINK_LAYER_ETHERNET) {
if (qp->mlx4_ib_qp_type == MLX4_IB_QPT_TUN_GSI ||
qp->mlx4_ib_qp_type == MLX4_IB_QPT_GSI)
context->pri_path.feup = 1 << 7; /* don't fsm */
/* handle smac_index */
if (qp->mlx4_ib_qp_type == MLX4_IB_QPT_UD ||
qp->mlx4_ib_qp_type == MLX4_IB_QPT_PROXY_GSI ||
qp->mlx4_ib_qp_type == MLX4_IB_QPT_TUN_GSI) {
err = handle_eth_ud_smac_index(dev, qp, context);
if (err) {
err = -EINVAL;
goto out;
}
if (qp->mlx4_ib_qp_type == MLX4_IB_QPT_PROXY_GSI)
dev->qp1_proxy[qp->port - 1] = qp;
}
}
}
if (qp_type == IB_QPT_RAW_PACKET) {
context->pri_path.ackto = (context->pri_path.ackto & 0xf8) |
MLX4_IB_LINK_TYPE_ETH;
if (dev->dev->caps.tunnel_offload_mode == MLX4_TUNNEL_OFFLOAD_MODE_VXLAN) {
/* set QP to receive both tunneled & non-tunneled packets */
if (!rwq_ind_tbl)
context->srqn = cpu_to_be32(7 << 28);
}
}
if (qp_type == IB_QPT_UD && (new_state == IB_QPS_RTR)) {
int is_eth = rdma_port_get_link_layer(
&dev->ib_dev, qp->port) ==
IB_LINK_LAYER_ETHERNET;
if (is_eth) {
context->pri_path.ackto = MLX4_IB_LINK_TYPE_ETH;
optpar |= MLX4_QP_OPTPAR_PRIMARY_ADDR_PATH;
}
}
if (cur_state == IB_QPS_RTS && new_state == IB_QPS_SQD &&
attr_mask & IB_QP_EN_SQD_ASYNC_NOTIFY && attr->en_sqd_async_notify)
sqd_event = 1;
else
sqd_event = 0;
if (!ucontext &&
cur_state == IB_QPS_RESET &&
new_state == IB_QPS_INIT)
context->rlkey_roce_mode |= (1 << 4);
/*
* Before passing a kernel QP to the HW, make sure that the
* ownership bits of the send queue are set and the SQ
* headroom is stamped so that the hardware doesn't start
* processing stale work requests.
*/
if (!ucontext &&
cur_state == IB_QPS_RESET &&
new_state == IB_QPS_INIT) {
struct mlx4_wqe_ctrl_seg *ctrl;
int i;
for (i = 0; i < qp->sq.wqe_cnt; ++i) {
ctrl = get_send_wqe(qp, i);
ctrl->owner_opcode = cpu_to_be32(1 << 31);
ctrl->qpn_vlan.fence_size =
1 << (qp->sq.wqe_shift - 4);
stamp_send_wqe(qp, i);
}
}
if (rwq_ind_tbl &&
cur_state == IB_QPS_RESET &&
new_state == IB_QPS_INIT) {
fill_qp_rss_context(context, qp);
context->flags |= cpu_to_be32(1 << MLX4_RSS_QPC_FLAG_OFFSET);
}
err = mlx4_qp_modify(dev->dev, &qp->mtt, to_mlx4_state(cur_state),
to_mlx4_state(new_state), context, optpar,
sqd_event, &qp->mqp);
if (err)
goto out;
qp->state = new_state;
if (attr_mask & IB_QP_ACCESS_FLAGS)
qp->atomic_rd_en = attr->qp_access_flags;
if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
qp->resp_depth = attr->max_dest_rd_atomic;
if (attr_mask & IB_QP_PORT) {
qp->port = attr->port_num;
update_mcg_macs(dev, qp);
}
if (attr_mask & IB_QP_ALT_PATH)
qp->alt_port = attr->alt_port_num;
if (is_sqp(dev, qp))
store_sqp_attrs(qp->sqp, attr, attr_mask);
/*
* If we moved QP0 to RTR, bring the IB link up; if we moved
* QP0 to RESET or ERROR, bring the link back down.
*/
if (is_qp0(dev, qp)) {
if (cur_state != IB_QPS_RTR && new_state == IB_QPS_RTR)
if (mlx4_INIT_PORT(dev->dev, qp->port))
pr_warn("INIT_PORT failed for port %d\n",
qp->port);
if (cur_state != IB_QPS_RESET && cur_state != IB_QPS_ERR &&
(new_state == IB_QPS_RESET || new_state == IB_QPS_ERR))
mlx4_CLOSE_PORT(dev->dev, qp->port);
}
/*
* If we moved a kernel QP to RESET, clean up all old CQ
* entries and reinitialize the QP.
*/
if (new_state == IB_QPS_RESET) {
if (!ucontext) {
mlx4_ib_cq_clean(recv_cq, qp->mqp.qpn,
ibsrq ? to_msrq(ibsrq) : NULL);
if (send_cq != recv_cq)
mlx4_ib_cq_clean(send_cq, qp->mqp.qpn, NULL);
qp->rq.head = 0;
qp->rq.tail = 0;
qp->sq.head = 0;
qp->sq.tail = 0;
qp->sq_next_wqe = 0;
if (qp->rq.wqe_cnt)
*qp->db.db = 0;
if (qp->flags & MLX4_IB_QP_NETIF)
mlx4_ib_steer_qp_reg(dev, qp, 0);
}
if (qp->pri.smac || (!qp->pri.smac && qp->pri.smac_port)) {
mlx4_unregister_mac(dev->dev, qp->pri.smac_port, qp->pri.smac);
qp->pri.smac = 0;
qp->pri.smac_port = 0;
}
if (qp->alt.smac) {
mlx4_unregister_mac(dev->dev, qp->alt.smac_port, qp->alt.smac);
qp->alt.smac = 0;
}
if (qp->pri.vid < 0x1000) {
mlx4_unregister_vlan(dev->dev, qp->pri.vlan_port, qp->pri.vid);
qp->pri.vid = 0xFFFF;
qp->pri.candidate_vid = 0xFFFF;
qp->pri.update_vid = 0;
}
if (qp->alt.vid < 0x1000) {
mlx4_unregister_vlan(dev->dev, qp->alt.vlan_port, qp->alt.vid);
qp->alt.vid = 0xFFFF;
qp->alt.candidate_vid = 0xFFFF;
qp->alt.update_vid = 0;
}
}
out:
if (err && qp->counter_index)
mlx4_ib_free_qp_counter(dev, qp);
if (err && steer_qp)
mlx4_ib_steer_qp_reg(dev, qp, 0);
kfree(context);
if (qp->pri.candidate_smac ||
(!qp->pri.candidate_smac && qp->pri.candidate_smac_port)) {
if (err) {
mlx4_unregister_mac(dev->dev, qp->pri.candidate_smac_port, qp->pri.candidate_smac);
} else {
if (qp->pri.smac || (!qp->pri.smac && qp->pri.smac_port))
mlx4_unregister_mac(dev->dev, qp->pri.smac_port, qp->pri.smac);
qp->pri.smac = qp->pri.candidate_smac;
qp->pri.smac_index = qp->pri.candidate_smac_index;
qp->pri.smac_port = qp->pri.candidate_smac_port;
}
qp->pri.candidate_smac = 0;
qp->pri.candidate_smac_index = 0;
qp->pri.candidate_smac_port = 0;
}
if (qp->alt.candidate_smac) {
if (err) {
mlx4_unregister_mac(dev->dev, qp->alt.candidate_smac_port, qp->alt.candidate_smac);
} else {
if (qp->alt.smac)
mlx4_unregister_mac(dev->dev, qp->alt.smac_port, qp->alt.smac);
qp->alt.smac = qp->alt.candidate_smac;
qp->alt.smac_index = qp->alt.candidate_smac_index;
qp->alt.smac_port = qp->alt.candidate_smac_port;
}
qp->alt.candidate_smac = 0;
qp->alt.candidate_smac_index = 0;
qp->alt.candidate_smac_port = 0;
}
if (qp->pri.update_vid) {
if (err) {
if (qp->pri.candidate_vid < 0x1000)
mlx4_unregister_vlan(dev->dev, qp->pri.candidate_vlan_port,
qp->pri.candidate_vid);
} else {
if (qp->pri.vid < 0x1000)
mlx4_unregister_vlan(dev->dev, qp->pri.vlan_port,
qp->pri.vid);
qp->pri.vid = qp->pri.candidate_vid;
qp->pri.vlan_port = qp->pri.candidate_vlan_port;
qp->pri.vlan_index = qp->pri.candidate_vlan_index;
}
qp->pri.candidate_vid = 0xFFFF;
qp->pri.update_vid = 0;
}
if (qp->alt.update_vid) {
if (err) {
if (qp->alt.candidate_vid < 0x1000)
mlx4_unregister_vlan(dev->dev, qp->alt.candidate_vlan_port,
qp->alt.candidate_vid);
} else {
if (qp->alt.vid < 0x1000)
mlx4_unregister_vlan(dev->dev, qp->alt.vlan_port,
qp->alt.vid);
qp->alt.vid = qp->alt.candidate_vid;
qp->alt.vlan_port = qp->alt.candidate_vlan_port;
qp->alt.vlan_index = qp->alt.candidate_vlan_index;
}
qp->alt.candidate_vid = 0xFFFF;
qp->alt.update_vid = 0;
}
return err;
}
enum {
MLX4_IB_MODIFY_QP_RSS_SUP_ATTR_MSK = (IB_QP_STATE |
IB_QP_PORT),
};
static int _mlx4_ib_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
int attr_mask, struct ib_udata *udata)
{
struct mlx4_ib_dev *dev = to_mdev(ibqp->device);
struct mlx4_ib_qp *qp = to_mqp(ibqp);
enum ib_qp_state cur_state, new_state;
int err = -EINVAL;
mutex_lock(&qp->mutex);
cur_state = attr_mask & IB_QP_CUR_STATE ? attr->cur_qp_state : qp->state;
new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
attr_mask)) {
pr_debug("qpn 0x%x: invalid attribute mask specified "
"for transition %d to %d. qp_type %d,"
" attr_mask 0x%x\n",
ibqp->qp_num, cur_state, new_state,
ibqp->qp_type, attr_mask);
goto out;
}
if (ibqp->rwq_ind_tbl) {
if (!(((cur_state == IB_QPS_RESET) &&
(new_state == IB_QPS_INIT)) ||
((cur_state == IB_QPS_INIT) &&
(new_state == IB_QPS_RTR)))) {
pr_debug("qpn 0x%x: RSS QP unsupported transition %d to %d\n",
ibqp->qp_num, cur_state, new_state);
err = -EOPNOTSUPP;
goto out;
}
if (attr_mask & ~MLX4_IB_MODIFY_QP_RSS_SUP_ATTR_MSK) {
pr_debug("qpn 0x%x: RSS QP unsupported attribute mask 0x%x for transition %d to %d\n",
ibqp->qp_num, attr_mask, cur_state, new_state);
err = -EOPNOTSUPP;
goto out;
}
}
if (mlx4_is_bonded(dev->dev) && (attr_mask & IB_QP_PORT)) {
if ((cur_state == IB_QPS_RESET) && (new_state == IB_QPS_INIT)) {
if ((ibqp->qp_type == IB_QPT_RC) ||
(ibqp->qp_type == IB_QPT_UD) ||
(ibqp->qp_type == IB_QPT_UC) ||
(ibqp->qp_type == IB_QPT_RAW_PACKET) ||
(ibqp->qp_type == IB_QPT_XRC_INI)) {
attr->port_num = mlx4_ib_bond_next_port(dev);
}
} else {
/* no sense in changing port_num
* when ports are bonded */
attr_mask &= ~IB_QP_PORT;
}
}
if ((attr_mask & IB_QP_PORT) &&
(attr->port_num == 0 || attr->port_num > dev->num_ports)) {
pr_debug("qpn 0x%x: invalid port number (%d) specified "
"for transition %d to %d. qp_type %d\n",
ibqp->qp_num, attr->port_num, cur_state,
new_state, ibqp->qp_type);
goto out;
}
if ((attr_mask & IB_QP_PORT) && (ibqp->qp_type == IB_QPT_RAW_PACKET) &&
(rdma_port_get_link_layer(&dev->ib_dev, attr->port_num) !=
IB_LINK_LAYER_ETHERNET))
goto out;
if (attr_mask & IB_QP_PKEY_INDEX) {
int p = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
if (attr->pkey_index >= dev->dev->caps.pkey_table_len[p]) {
pr_debug("qpn 0x%x: invalid pkey index (%d) specified "
"for transition %d to %d. qp_type %d\n",
ibqp->qp_num, attr->pkey_index, cur_state,
new_state, ibqp->qp_type);
goto out;
}
}
if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC &&
attr->max_rd_atomic > dev->dev->caps.max_qp_init_rdma) {
pr_debug("qpn 0x%x: max_rd_atomic (%d) too large. "
"Transition %d to %d. qp_type %d\n",
ibqp->qp_num, attr->max_rd_atomic, cur_state,
new_state, ibqp->qp_type);
goto out;
}
if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC &&
attr->max_dest_rd_atomic > dev->dev->caps.max_qp_dest_rdma) {
pr_debug("qpn 0x%x: max_dest_rd_atomic (%d) too large. "
"Transition %d to %d. qp_type %d\n",
ibqp->qp_num, attr->max_dest_rd_atomic, cur_state,
new_state, ibqp->qp_type);
goto out;
}
if (cur_state == new_state && cur_state == IB_QPS_RESET) {
err = 0;
goto out;
}
if (ibqp->rwq_ind_tbl && (new_state == IB_QPS_INIT)) {
err = bringup_rss_rwqs(ibqp->rwq_ind_tbl, attr->port_num,
udata);
if (err)
goto out;
}
err = __mlx4_ib_modify_qp(ibqp, MLX4_IB_QP_SRC, attr, attr_mask,
cur_state, new_state, udata);
if (ibqp->rwq_ind_tbl && err)
bring_down_rss_rwqs(ibqp->rwq_ind_tbl, udata);
if (mlx4_is_bonded(dev->dev) && (attr_mask & IB_QP_PORT))
attr->port_num = 1;
out:
mutex_unlock(&qp->mutex);
return err;
}
int mlx4_ib_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
int attr_mask, struct ib_udata *udata)
{
struct mlx4_ib_qp *mqp = to_mqp(ibqp);
int ret;
if (attr_mask & ~IB_QP_ATTR_STANDARD_BITS)
return -EOPNOTSUPP;
ret = _mlx4_ib_modify_qp(ibqp, attr, attr_mask, udata);
if (mqp->mlx4_ib_qp_type == MLX4_IB_QPT_GSI) {
struct mlx4_ib_sqp *sqp = mqp->sqp;
int err = 0;
if (sqp->roce_v2_gsi)
err = ib_modify_qp(sqp->roce_v2_gsi, attr, attr_mask);
if (err)
pr_err("Failed to modify GSI QP for RoCEv2 (%d)\n",
err);
}
return ret;
}
static int vf_get_qp0_qkey(struct mlx4_dev *dev, int qpn, u32 *qkey)
{
int i;
for (i = 0; i < dev->caps.num_ports; i++) {
if (qpn == dev->caps.spec_qps[i].qp0_proxy ||
qpn == dev->caps.spec_qps[i].qp0_tunnel) {
*qkey = dev->caps.spec_qps[i].qp0_qkey;
return 0;
}
}
return -EINVAL;
}
static int build_sriov_qp0_header(struct mlx4_ib_qp *qp,
const struct ib_ud_wr *wr,
void *wqe, unsigned *mlx_seg_len)
{
struct mlx4_ib_dev *mdev = to_mdev(qp->ibqp.device);
struct mlx4_ib_sqp *sqp = qp->sqp;
struct ib_device *ib_dev = qp->ibqp.device;
struct mlx4_wqe_mlx_seg *mlx = wqe;
struct mlx4_wqe_inline_seg *inl = wqe + sizeof *mlx;
struct mlx4_ib_ah *ah = to_mah(wr->ah);
u16 pkey;
u32 qkey;
int send_size;
int header_size;
int spc;
int err;
int i;
if (wr->wr.opcode != IB_WR_SEND)
return -EINVAL;
send_size = 0;
for (i = 0; i < wr->wr.num_sge; ++i)
send_size += wr->wr.sg_list[i].length;
/* for proxy-qp0 sends, need to add in size of tunnel header */
/* for tunnel-qp0 sends, tunnel header is already in s/g list */
if (qp->mlx4_ib_qp_type == MLX4_IB_QPT_PROXY_SMI_OWNER)
send_size += sizeof (struct mlx4_ib_tunnel_header);
ib_ud_header_init(send_size, 1, 0, 0, 0, 0, 0, 0, &sqp->ud_header);
if (qp->mlx4_ib_qp_type == MLX4_IB_QPT_PROXY_SMI_OWNER) {
sqp->ud_header.lrh.service_level =
be32_to_cpu(ah->av.ib.sl_tclass_flowlabel) >> 28;
sqp->ud_header.lrh.destination_lid =
cpu_to_be16(ah->av.ib.g_slid & 0x7f);
sqp->ud_header.lrh.source_lid =
cpu_to_be16(ah->av.ib.g_slid & 0x7f);
}
mlx->flags &= cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE);
/* force loopback */
mlx->flags |= cpu_to_be32(MLX4_WQE_MLX_VL15 | 0x1 | MLX4_WQE_MLX_SLR);
mlx->rlid = sqp->ud_header.lrh.destination_lid;
sqp->ud_header.lrh.virtual_lane = 0;
sqp->ud_header.bth.solicited_event = !!(wr->wr.send_flags & IB_SEND_SOLICITED);
err = ib_get_cached_pkey(ib_dev, qp->port, 0, &pkey);
if (err)
return err;
sqp->ud_header.bth.pkey = cpu_to_be16(pkey);
if (qp->mlx4_ib_qp_type == MLX4_IB_QPT_TUN_SMI_OWNER)
sqp->ud_header.bth.destination_qpn = cpu_to_be32(wr->remote_qpn);
else
sqp->ud_header.bth.destination_qpn =
cpu_to_be32(mdev->dev->caps.spec_qps[qp->port - 1].qp0_tunnel);
sqp->ud_header.bth.psn = cpu_to_be32((sqp->send_psn++) & ((1 << 24) - 1));
if (mlx4_is_master(mdev->dev)) {
if (mlx4_get_parav_qkey(mdev->dev, qp->mqp.qpn, &qkey))
return -EINVAL;
} else {
if (vf_get_qp0_qkey(mdev->dev, qp->mqp.qpn, &qkey))
return -EINVAL;
}
sqp->ud_header.deth.qkey = cpu_to_be32(qkey);
sqp->ud_header.deth.source_qpn = cpu_to_be32(qp->mqp.qpn);
sqp->ud_header.bth.opcode = IB_OPCODE_UD_SEND_ONLY;
sqp->ud_header.immediate_present = 0;
header_size = ib_ud_header_pack(&sqp->ud_header, sqp->header_buf);
/*
* Inline data segments may not cross a 64 byte boundary. If
* our UD header is bigger than the space available up to the
* next 64 byte boundary in the WQE, use two inline data
* segments to hold the UD header.
*/
spc = MLX4_INLINE_ALIGN -
((unsigned long) (inl + 1) & (MLX4_INLINE_ALIGN - 1));
if (header_size <= spc) {
inl->byte_count = cpu_to_be32(1 << 31 | header_size);
memcpy(inl + 1, sqp->header_buf, header_size);
i = 1;
} else {
inl->byte_count = cpu_to_be32(1 << 31 | spc);
memcpy(inl + 1, sqp->header_buf, spc);
inl = (void *) (inl + 1) + spc;
memcpy(inl + 1, sqp->header_buf + spc, header_size - spc);
/*
* Need a barrier here to make sure all the data is
* visible before the byte_count field is set.
* Otherwise the HCA prefetcher could grab the 64-byte
* chunk with this inline segment and get a valid (!=
* 0xffffffff) byte count but stale data, and end up
* generating a packet with bad headers.
*
* The first inline segment's byte_count field doesn't
* need a barrier, because it comes after a
* control/MLX segment and therefore is at an offset
* of 16 mod 64.
*/
wmb();
inl->byte_count = cpu_to_be32(1 << 31 | (header_size - spc));
i = 2;
}
*mlx_seg_len =
ALIGN(i * sizeof (struct mlx4_wqe_inline_seg) + header_size, 16);
return 0;
}
static u8 sl_to_vl(struct mlx4_ib_dev *dev, u8 sl, int port_num)
{
union sl2vl_tbl_to_u64 tmp_vltab;
u8 vl;
if (sl > 15)
return 0xf;
tmp_vltab.sl64 = atomic64_read(&dev->sl2vl[port_num - 1]);
vl = tmp_vltab.sl8[sl >> 1];
if (sl & 1)
vl &= 0x0f;
else
vl >>= 4;
return vl;
}
static int fill_gid_by_hw_index(struct mlx4_ib_dev *ibdev, u8 port_num,
int index, union ib_gid *gid,
enum ib_gid_type *gid_type)
{
struct mlx4_ib_iboe *iboe = &ibdev->iboe;
struct mlx4_port_gid_table *port_gid_table;
unsigned long flags;
port_gid_table = &iboe->gids[port_num - 1];
spin_lock_irqsave(&iboe->lock, flags);
memcpy(gid, &port_gid_table->gids[index].gid, sizeof(*gid));
*gid_type = port_gid_table->gids[index].gid_type;
spin_unlock_irqrestore(&iboe->lock, flags);
if (rdma_is_zero_gid(gid))
return -ENOENT;
return 0;
}
#define MLX4_ROCEV2_QP1_SPORT 0xC000
static int build_mlx_header(struct mlx4_ib_qp *qp, const struct ib_ud_wr *wr,
void *wqe, unsigned *mlx_seg_len)
{
struct mlx4_ib_sqp *sqp = qp->sqp;
struct ib_device *ib_dev = qp->ibqp.device;
struct mlx4_ib_dev *ibdev = to_mdev(ib_dev);
struct mlx4_wqe_mlx_seg *mlx = wqe;
struct mlx4_wqe_ctrl_seg *ctrl = wqe;
struct mlx4_wqe_inline_seg *inl = wqe + sizeof *mlx;
struct mlx4_ib_ah *ah = to_mah(wr->ah);
union ib_gid sgid;
u16 pkey;
int send_size;
int header_size;
int spc;
int i;
int err = 0;
u16 vlan = 0xffff;
bool is_eth;
bool is_vlan = false;
bool is_grh;
bool is_udp = false;
int ip_version = 0;
send_size = 0;
for (i = 0; i < wr->wr.num_sge; ++i)
send_size += wr->wr.sg_list[i].length;
is_eth = rdma_port_get_link_layer(qp->ibqp.device, qp->port) == IB_LINK_LAYER_ETHERNET;
is_grh = mlx4_ib_ah_grh_present(ah);
if (is_eth) {
enum ib_gid_type gid_type;
if (mlx4_is_mfunc(to_mdev(ib_dev)->dev)) {
/* When multi-function is enabled, the ib_core gid
* indexes don't necessarily match the hw ones, so
* we must use our own cache */
err = mlx4_get_roce_gid_from_slave(to_mdev(ib_dev)->dev,
be32_to_cpu(ah->av.ib.port_pd) >> 24,
ah->av.ib.gid_index, &sgid.raw[0]);
if (err)
return err;
} else {
err = fill_gid_by_hw_index(ibdev, qp->port,
ah->av.ib.gid_index, &sgid,
&gid_type);
if (!err) {
is_udp = gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP;
if (is_udp) {
if (ipv6_addr_v4mapped((struct in6_addr *)&sgid))
ip_version = 4;
else
ip_version = 6;
is_grh = false;
}
} else {
return err;
}
}
if (ah->av.eth.vlan != cpu_to_be16(0xffff)) {
vlan = be16_to_cpu(ah->av.eth.vlan) & 0x0fff;
is_vlan = true;
}
}
err = ib_ud_header_init(send_size, !is_eth, is_eth, is_vlan, is_grh,
ip_version, is_udp, 0, &sqp->ud_header);
if (err)
return err;
if (!is_eth) {
sqp->ud_header.lrh.service_level =
be32_to_cpu(ah->av.ib.sl_tclass_flowlabel) >> 28;
sqp->ud_header.lrh.destination_lid = ah->av.ib.dlid;
sqp->ud_header.lrh.source_lid = cpu_to_be16(ah->av.ib.g_slid & 0x7f);
}
if (is_grh || (ip_version == 6)) {
sqp->ud_header.grh.traffic_class =
(be32_to_cpu(ah->av.ib.sl_tclass_flowlabel) >> 20) & 0xff;
sqp->ud_header.grh.flow_label =
ah->av.ib.sl_tclass_flowlabel & cpu_to_be32(0xfffff);
sqp->ud_header.grh.hop_limit = ah->av.ib.hop_limit;
if (is_eth) {
memcpy(sqp->ud_header.grh.source_gid.raw, sgid.raw, 16);
} else {
if (mlx4_is_mfunc(to_mdev(ib_dev)->dev)) {
/* When multi-function is enabled, the ib_core gid
* indexes don't necessarily match the hw ones, so
* we must use our own cache
*/
sqp->ud_header.grh.source_gid.global
.subnet_prefix =
cpu_to_be64(atomic64_read(
&(to_mdev(ib_dev)
->sriov
.demux[qp->port - 1]
.subnet_prefix)));
sqp->ud_header.grh.source_gid.global
.interface_id =
to_mdev(ib_dev)
->sriov.demux[qp->port - 1]
.guid_cache[ah->av.ib.gid_index];
} else {
sqp->ud_header.grh.source_gid =
ah->ibah.sgid_attr->gid;
}
}
memcpy(sqp->ud_header.grh.destination_gid.raw,
ah->av.ib.dgid, 16);
}
if (ip_version == 4) {
sqp->ud_header.ip4.tos =
(be32_to_cpu(ah->av.ib.sl_tclass_flowlabel) >> 20) & 0xff;
sqp->ud_header.ip4.id = 0;
sqp->ud_header.ip4.frag_off = htons(IP_DF);
sqp->ud_header.ip4.ttl = ah->av.eth.hop_limit;
memcpy(&sqp->ud_header.ip4.saddr,
sgid.raw + 12, 4);
memcpy(&sqp->ud_header.ip4.daddr, ah->av.ib.dgid + 12, 4);
sqp->ud_header.ip4.check = ib_ud_ip4_csum(&sqp->ud_header);
}
if (is_udp) {
sqp->ud_header.udp.dport = htons(ROCE_V2_UDP_DPORT);
sqp->ud_header.udp.sport = htons(MLX4_ROCEV2_QP1_SPORT);
sqp->ud_header.udp.csum = 0;
}
mlx->flags &= cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE);
if (!is_eth) {
mlx->flags |=
cpu_to_be32((!qp->ibqp.qp_num ? MLX4_WQE_MLX_VL15 : 0) |
(sqp->ud_header.lrh.destination_lid ==
IB_LID_PERMISSIVE ?
MLX4_WQE_MLX_SLR :
0) |
(sqp->ud_header.lrh.service_level << 8));
if (ah->av.ib.port_pd & cpu_to_be32(0x80000000))
mlx->flags |= cpu_to_be32(0x1); /* force loopback */
mlx->rlid = sqp->ud_header.lrh.destination_lid;
}
switch (wr->wr.opcode) {
case IB_WR_SEND:
sqp->ud_header.bth.opcode = IB_OPCODE_UD_SEND_ONLY;
sqp->ud_header.immediate_present = 0;
break;
case IB_WR_SEND_WITH_IMM:
sqp->ud_header.bth.opcode = IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE;
sqp->ud_header.immediate_present = 1;
sqp->ud_header.immediate_data = wr->wr.ex.imm_data;
break;
default:
return -EINVAL;
}
if (is_eth) {
u16 ether_type;
u16 pcp = (be32_to_cpu(ah->av.ib.sl_tclass_flowlabel) >> 29) << 13;
ether_type = (!is_udp) ? ETH_P_IBOE:
(ip_version == 4 ? ETH_P_IP : ETH_P_IPV6);
mlx->sched_prio = cpu_to_be16(pcp);
ether_addr_copy(sqp->ud_header.eth.smac_h, ah->av.eth.s_mac);
ether_addr_copy(sqp->ud_header.eth.dmac_h, ah->av.eth.mac);
memcpy(&ctrl->srcrb_flags16[0], ah->av.eth.mac, 2);
memcpy(&ctrl->imm, ah->av.eth.mac + 2, 4);
if (!memcmp(sqp->ud_header.eth.smac_h, sqp->ud_header.eth.dmac_h, 6))
mlx->flags |= cpu_to_be32(MLX4_WQE_CTRL_FORCE_LOOPBACK);
if (!is_vlan) {
sqp->ud_header.eth.type = cpu_to_be16(ether_type);
} else {
sqp->ud_header.vlan.type = cpu_to_be16(ether_type);
sqp->ud_header.vlan.tag = cpu_to_be16(vlan | pcp);
}
} else {
sqp->ud_header.lrh.virtual_lane =
!qp->ibqp.qp_num ?
15 :
sl_to_vl(to_mdev(ib_dev),
sqp->ud_header.lrh.service_level,
qp->port);
if (qp->ibqp.qp_num && sqp->ud_header.lrh.virtual_lane == 15)
return -EINVAL;
if (sqp->ud_header.lrh.destination_lid == IB_LID_PERMISSIVE)
sqp->ud_header.lrh.source_lid = IB_LID_PERMISSIVE;
}
sqp->ud_header.bth.solicited_event = !!(wr->wr.send_flags & IB_SEND_SOLICITED);
if (!qp->ibqp.qp_num)
err = ib_get_cached_pkey(ib_dev, qp->port, sqp->pkey_index,
&pkey);
else
err = ib_get_cached_pkey(ib_dev, qp->port, wr->pkey_index,
&pkey);
if (err)
return err;
sqp->ud_header.bth.pkey = cpu_to_be16(pkey);
sqp->ud_header.bth.destination_qpn = cpu_to_be32(wr->remote_qpn);
sqp->ud_header.bth.psn = cpu_to_be32((sqp->send_psn++) & ((1 << 24) - 1));
sqp->ud_header.deth.qkey = cpu_to_be32(wr->remote_qkey & 0x80000000 ?
sqp->qkey : wr->remote_qkey);
sqp->ud_header.deth.source_qpn = cpu_to_be32(qp->ibqp.qp_num);
header_size = ib_ud_header_pack(&sqp->ud_header, sqp->header_buf);
if (0) {
pr_err("built UD header of size %d:\n", header_size);
for (i = 0; i < header_size / 4; ++i) {
if (i % 8 == 0)
pr_err(" [%02x] ", i * 4);
pr_cont(" %08x",
be32_to_cpu(((__be32 *) sqp->header_buf)[i]));
if ((i + 1) % 8 == 0)
pr_cont("\n");
}
pr_err("\n");
}
/*
* Inline data segments may not cross a 64 byte boundary. If
* our UD header is bigger than the space available up to the
* next 64 byte boundary in the WQE, use two inline data
* segments to hold the UD header.
*/
spc = MLX4_INLINE_ALIGN -
((unsigned long) (inl + 1) & (MLX4_INLINE_ALIGN - 1));
if (header_size <= spc) {
inl->byte_count = cpu_to_be32(1 << 31 | header_size);
memcpy(inl + 1, sqp->header_buf, header_size);
i = 1;
} else {
inl->byte_count = cpu_to_be32(1 << 31 | spc);
memcpy(inl + 1, sqp->header_buf, spc);
inl = (void *) (inl + 1) + spc;
memcpy(inl + 1, sqp->header_buf + spc, header_size - spc);
/*
* Need a barrier here to make sure all the data is
* visible before the byte_count field is set.
* Otherwise the HCA prefetcher could grab the 64-byte
* chunk with this inline segment and get a valid (!=
* 0xffffffff) byte count but stale data, and end up
* generating a packet with bad headers.
*
* The first inline segment's byte_count field doesn't
* need a barrier, because it comes after a
* control/MLX segment and therefore is at an offset
* of 16 mod 64.
*/
wmb();
inl->byte_count = cpu_to_be32(1 << 31 | (header_size - spc));
i = 2;
}
*mlx_seg_len =
ALIGN(i * sizeof (struct mlx4_wqe_inline_seg) + header_size, 16);
return 0;
}
static int mlx4_wq_overflow(struct mlx4_ib_wq *wq, int nreq, struct ib_cq *ib_cq)
{
unsigned cur;
struct mlx4_ib_cq *cq;
cur = wq->head - wq->tail;
if (likely(cur + nreq < wq->max_post))
return 0;
cq = to_mcq(ib_cq);
spin_lock(&cq->lock);
cur = wq->head - wq->tail;
spin_unlock(&cq->lock);
return cur + nreq >= wq->max_post;
}
static __be32 convert_access(int acc)
{
return (acc & IB_ACCESS_REMOTE_ATOMIC ?
cpu_to_be32(MLX4_WQE_FMR_AND_BIND_PERM_ATOMIC) : 0) |
(acc & IB_ACCESS_REMOTE_WRITE ?
cpu_to_be32(MLX4_WQE_FMR_AND_BIND_PERM_REMOTE_WRITE) : 0) |
(acc & IB_ACCESS_REMOTE_READ ?
cpu_to_be32(MLX4_WQE_FMR_AND_BIND_PERM_REMOTE_READ) : 0) |
(acc & IB_ACCESS_LOCAL_WRITE ? cpu_to_be32(MLX4_WQE_FMR_PERM_LOCAL_WRITE) : 0) |
cpu_to_be32(MLX4_WQE_FMR_PERM_LOCAL_READ);
}
static void set_reg_seg(struct mlx4_wqe_fmr_seg *fseg,
const struct ib_reg_wr *wr)
{
struct mlx4_ib_mr *mr = to_mmr(wr->mr);
fseg->flags = convert_access(wr->access);
fseg->mem_key = cpu_to_be32(wr->key);
fseg->buf_list = cpu_to_be64(mr->page_map);
fseg->start_addr = cpu_to_be64(mr->ibmr.iova);
fseg->reg_len = cpu_to_be64(mr->ibmr.length);
fseg->offset = 0; /* XXX -- is this just for ZBVA? */
fseg->page_size = cpu_to_be32(ilog2(mr->ibmr.page_size));
fseg->reserved[0] = 0;
fseg->reserved[1] = 0;
}
static void set_local_inv_seg(struct mlx4_wqe_local_inval_seg *iseg, u32 rkey)
{
memset(iseg, 0, sizeof(*iseg));
iseg->mem_key = cpu_to_be32(rkey);
}
static __always_inline void set_raddr_seg(struct mlx4_wqe_raddr_seg *rseg,
u64 remote_addr, u32 rkey)
{
rseg->raddr = cpu_to_be64(remote_addr);
rseg->rkey = cpu_to_be32(rkey);
rseg->reserved = 0;
}
static void set_atomic_seg(struct mlx4_wqe_atomic_seg *aseg,
const struct ib_atomic_wr *wr)
{
if (wr->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP) {
aseg->swap_add = cpu_to_be64(wr->swap);
aseg->compare = cpu_to_be64(wr->compare_add);
} else if (wr->wr.opcode == IB_WR_MASKED_ATOMIC_FETCH_AND_ADD) {
aseg->swap_add = cpu_to_be64(wr->compare_add);
aseg->compare = cpu_to_be64(wr->compare_add_mask);
} else {
aseg->swap_add = cpu_to_be64(wr->compare_add);
aseg->compare = 0;
}
}
static void set_masked_atomic_seg(struct mlx4_wqe_masked_atomic_seg *aseg,
const struct ib_atomic_wr *wr)
{
aseg->swap_add = cpu_to_be64(wr->swap);
aseg->swap_add_mask = cpu_to_be64(wr->swap_mask);
aseg->compare = cpu_to_be64(wr->compare_add);
aseg->compare_mask = cpu_to_be64(wr->compare_add_mask);
}
static void set_datagram_seg(struct mlx4_wqe_datagram_seg *dseg,
const struct ib_ud_wr *wr)
{
memcpy(dseg->av, &to_mah(wr->ah)->av, sizeof (struct mlx4_av));
dseg->dqpn = cpu_to_be32(wr->remote_qpn);
dseg->qkey = cpu_to_be32(wr->remote_qkey);
dseg->vlan = to_mah(wr->ah)->av.eth.vlan;
memcpy(dseg->mac, to_mah(wr->ah)->av.eth.mac, 6);
}
static void set_tunnel_datagram_seg(struct mlx4_ib_dev *dev,
struct mlx4_wqe_datagram_seg *dseg,
const struct ib_ud_wr *wr,
enum mlx4_ib_qp_type qpt)
{
union mlx4_ext_av *av = &to_mah(wr->ah)->av;
struct mlx4_av sqp_av = {0};
int port = *((u8 *) &av->ib.port_pd) & 0x3;
/* force loopback */
sqp_av.port_pd = av->ib.port_pd | cpu_to_be32(0x80000000);
sqp_av.g_slid = av->ib.g_slid & 0x7f; /* no GRH */
sqp_av.sl_tclass_flowlabel = av->ib.sl_tclass_flowlabel &
cpu_to_be32(0xf0000000);
memcpy(dseg->av, &sqp_av, sizeof (struct mlx4_av));
if (qpt == MLX4_IB_QPT_PROXY_GSI)
dseg->dqpn = cpu_to_be32(dev->dev->caps.spec_qps[port - 1].qp1_tunnel);
else
dseg->dqpn = cpu_to_be32(dev->dev->caps.spec_qps[port - 1].qp0_tunnel);
/* Use QKEY from the QP context, which is set by master */
dseg->qkey = cpu_to_be32(IB_QP_SET_QKEY);
}
static void build_tunnel_header(const struct ib_ud_wr *wr, void *wqe,
unsigned *mlx_seg_len)
{
struct mlx4_wqe_inline_seg *inl = wqe;
struct mlx4_ib_tunnel_header hdr;
struct mlx4_ib_ah *ah = to_mah(wr->ah);
int spc;
int i;
memcpy(&hdr.av, &ah->av, sizeof hdr.av);
hdr.remote_qpn = cpu_to_be32(wr->remote_qpn);
hdr.pkey_index = cpu_to_be16(wr->pkey_index);
hdr.qkey = cpu_to_be32(wr->remote_qkey);
memcpy(hdr.mac, ah->av.eth.mac, 6);
hdr.vlan = ah->av.eth.vlan;
spc = MLX4_INLINE_ALIGN -
((unsigned long) (inl + 1) & (MLX4_INLINE_ALIGN - 1));
if (sizeof (hdr) <= spc) {
memcpy(inl + 1, &hdr, sizeof (hdr));
wmb();
inl->byte_count = cpu_to_be32(1 << 31 | sizeof (hdr));
i = 1;
} else {
memcpy(inl + 1, &hdr, spc);
wmb();
inl->byte_count = cpu_to_be32(1 << 31 | spc);
inl = (void *) (inl + 1) + spc;
memcpy(inl + 1, (void *) &hdr + spc, sizeof (hdr) - spc);
wmb();
inl->byte_count = cpu_to_be32(1 << 31 | (sizeof (hdr) - spc));
i = 2;
}
*mlx_seg_len =
ALIGN(i * sizeof (struct mlx4_wqe_inline_seg) + sizeof (hdr), 16);
}
static void set_mlx_icrc_seg(void *dseg)
{
u32 *t = dseg;
struct mlx4_wqe_inline_seg *iseg = dseg;
t[1] = 0;
/*
* Need a barrier here before writing the byte_count field to
* make sure that all the data is visible before the
* byte_count field is set. Otherwise, if the segment begins
* a new cacheline, the HCA prefetcher could grab the 64-byte
* chunk and get a valid (!= * 0xffffffff) byte count but
* stale data, and end up sending the wrong data.
*/
wmb();
iseg->byte_count = cpu_to_be32((1 << 31) | 4);
}
static void set_data_seg(struct mlx4_wqe_data_seg *dseg, struct ib_sge *sg)
{
dseg->lkey = cpu_to_be32(sg->lkey);
dseg->addr = cpu_to_be64(sg->addr);
/*
* Need a barrier here before writing the byte_count field to
* make sure that all the data is visible before the
* byte_count field is set. Otherwise, if the segment begins
* a new cacheline, the HCA prefetcher could grab the 64-byte
* chunk and get a valid (!= * 0xffffffff) byte count but
* stale data, and end up sending the wrong data.
*/
wmb();
dseg->byte_count = cpu_to_be32(sg->length);
}
static void __set_data_seg(struct mlx4_wqe_data_seg *dseg, struct ib_sge *sg)
{
dseg->byte_count = cpu_to_be32(sg->length);
dseg->lkey = cpu_to_be32(sg->lkey);
dseg->addr = cpu_to_be64(sg->addr);
}
static int build_lso_seg(struct mlx4_wqe_lso_seg *wqe,
const struct ib_ud_wr *wr, struct mlx4_ib_qp *qp,
unsigned *lso_seg_len, __be32 *lso_hdr_sz, __be32 *blh)
{
unsigned halign = ALIGN(sizeof *wqe + wr->hlen, 16);
if (unlikely(halign > MLX4_IB_CACHE_LINE_SIZE))
*blh = cpu_to_be32(1 << 6);
if (unlikely(!(qp->flags & MLX4_IB_QP_LSO) &&
wr->wr.num_sge > qp->sq.max_gs - (halign >> 4)))
return -EINVAL;
memcpy(wqe->header, wr->header, wr->hlen);
*lso_hdr_sz = cpu_to_be32(wr->mss << 16 | wr->hlen);
*lso_seg_len = halign;
return 0;
}
static __be32 send_ieth(const struct ib_send_wr *wr)
{
switch (wr->opcode) {
case IB_WR_SEND_WITH_IMM:
case IB_WR_RDMA_WRITE_WITH_IMM:
return wr->ex.imm_data;
case IB_WR_SEND_WITH_INV:
return cpu_to_be32(wr->ex.invalidate_rkey);
default:
return 0;
}
}
static void add_zero_len_inline(void *wqe)
{
struct mlx4_wqe_inline_seg *inl = wqe;
memset(wqe, 0, 16);
inl->byte_count = cpu_to_be32(1 << 31);
}
static int _mlx4_ib_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
const struct ib_send_wr **bad_wr, bool drain)
{
struct mlx4_ib_qp *qp = to_mqp(ibqp);
void *wqe;
struct mlx4_wqe_ctrl_seg *ctrl;
struct mlx4_wqe_data_seg *dseg;
unsigned long flags;
int nreq;
int err = 0;
unsigned ind;
int size;
unsigned seglen;
__be32 dummy;
__be32 *lso_wqe;
__be32 lso_hdr_sz;
__be32 blh;
int i;
struct mlx4_ib_dev *mdev = to_mdev(ibqp->device);
if (qp->mlx4_ib_qp_type == MLX4_IB_QPT_GSI) {
struct mlx4_ib_sqp *sqp = qp->sqp;
if (sqp->roce_v2_gsi) {
struct mlx4_ib_ah *ah = to_mah(ud_wr(wr)->ah);
enum ib_gid_type gid_type;
union ib_gid gid;
if (!fill_gid_by_hw_index(mdev, qp->port,
ah->av.ib.gid_index,
&gid, &gid_type))
qp = (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ?
to_mqp(sqp->roce_v2_gsi) : qp;
else
pr_err("Failed to get gid at index %d. RoCEv2 will not work properly\n",
ah->av.ib.gid_index);
}
}
spin_lock_irqsave(&qp->sq.lock, flags);
if (mdev->dev->persist->state & MLX4_DEVICE_STATE_INTERNAL_ERROR &&
!drain) {
err = -EIO;
*bad_wr = wr;
nreq = 0;
goto out;
}
ind = qp->sq_next_wqe;
for (nreq = 0; wr; ++nreq, wr = wr->next) {
lso_wqe = &dummy;
blh = 0;
if (mlx4_wq_overflow(&qp->sq, nreq, qp->ibqp.send_cq)) {
err = -ENOMEM;
*bad_wr = wr;
goto out;
}
if (unlikely(wr->num_sge > qp->sq.max_gs)) {
err = -EINVAL;
*bad_wr = wr;
goto out;
}
ctrl = wqe = get_send_wqe(qp, ind & (qp->sq.wqe_cnt - 1));
qp->sq.wrid[(qp->sq.head + nreq) & (qp->sq.wqe_cnt - 1)] = wr->wr_id;
ctrl->srcrb_flags =
(wr->send_flags & IB_SEND_SIGNALED ?
cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE) : 0) |
(wr->send_flags & IB_SEND_SOLICITED ?
cpu_to_be32(MLX4_WQE_CTRL_SOLICITED) : 0) |
((wr->send_flags & IB_SEND_IP_CSUM) ?
cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM |
MLX4_WQE_CTRL_TCP_UDP_CSUM) : 0) |
qp->sq_signal_bits;
ctrl->imm = send_ieth(wr);
wqe += sizeof *ctrl;
size = sizeof *ctrl / 16;
switch (qp->mlx4_ib_qp_type) {
case MLX4_IB_QPT_RC:
case MLX4_IB_QPT_UC:
switch (wr->opcode) {
case IB_WR_ATOMIC_CMP_AND_SWP:
case IB_WR_ATOMIC_FETCH_AND_ADD:
case IB_WR_MASKED_ATOMIC_FETCH_AND_ADD:
set_raddr_seg(wqe, atomic_wr(wr)->remote_addr,
atomic_wr(wr)->rkey);
wqe += sizeof (struct mlx4_wqe_raddr_seg);
set_atomic_seg(wqe, atomic_wr(wr));
wqe += sizeof (struct mlx4_wqe_atomic_seg);
size += (sizeof (struct mlx4_wqe_raddr_seg) +
sizeof (struct mlx4_wqe_atomic_seg)) / 16;
break;
case IB_WR_MASKED_ATOMIC_CMP_AND_SWP:
set_raddr_seg(wqe, atomic_wr(wr)->remote_addr,
atomic_wr(wr)->rkey);
wqe += sizeof (struct mlx4_wqe_raddr_seg);
set_masked_atomic_seg(wqe, atomic_wr(wr));
wqe += sizeof (struct mlx4_wqe_masked_atomic_seg);
size += (sizeof (struct mlx4_wqe_raddr_seg) +
sizeof (struct mlx4_wqe_masked_atomic_seg)) / 16;
break;
case IB_WR_RDMA_READ:
case IB_WR_RDMA_WRITE:
case IB_WR_RDMA_WRITE_WITH_IMM:
set_raddr_seg(wqe, rdma_wr(wr)->remote_addr,
rdma_wr(wr)->rkey);
wqe += sizeof (struct mlx4_wqe_raddr_seg);
size += sizeof (struct mlx4_wqe_raddr_seg) / 16;
break;
case IB_WR_LOCAL_INV:
ctrl->srcrb_flags |=
cpu_to_be32(MLX4_WQE_CTRL_STRONG_ORDER);
set_local_inv_seg(wqe, wr->ex.invalidate_rkey);
wqe += sizeof (struct mlx4_wqe_local_inval_seg);
size += sizeof (struct mlx4_wqe_local_inval_seg) / 16;
break;
case IB_WR_REG_MR:
ctrl->srcrb_flags |=
cpu_to_be32(MLX4_WQE_CTRL_STRONG_ORDER);
set_reg_seg(wqe, reg_wr(wr));
wqe += sizeof(struct mlx4_wqe_fmr_seg);
size += sizeof(struct mlx4_wqe_fmr_seg) / 16;
break;
default:
/* No extra segments required for sends */
break;
}
break;
case MLX4_IB_QPT_TUN_SMI_OWNER:
err = build_sriov_qp0_header(qp, ud_wr(wr), ctrl,
&seglen);
if (unlikely(err)) {
*bad_wr = wr;
goto out;
}
wqe += seglen;
size += seglen / 16;
break;
case MLX4_IB_QPT_TUN_SMI:
case MLX4_IB_QPT_TUN_GSI:
/* this is a UD qp used in MAD responses to slaves. */
set_datagram_seg(wqe, ud_wr(wr));
/* set the forced-loopback bit in the data seg av */
*(__be32 *) wqe |= cpu_to_be32(0x80000000);
wqe += sizeof (struct mlx4_wqe_datagram_seg);
size += sizeof (struct mlx4_wqe_datagram_seg) / 16;
break;
case MLX4_IB_QPT_UD:
set_datagram_seg(wqe, ud_wr(wr));
wqe += sizeof (struct mlx4_wqe_datagram_seg);
size += sizeof (struct mlx4_wqe_datagram_seg) / 16;
if (wr->opcode == IB_WR_LSO) {
err = build_lso_seg(wqe, ud_wr(wr), qp, &seglen,
&lso_hdr_sz, &blh);
if (unlikely(err)) {
*bad_wr = wr;
goto out;
}
lso_wqe = (__be32 *) wqe;
wqe += seglen;
size += seglen / 16;
}
break;
case MLX4_IB_QPT_PROXY_SMI_OWNER:
err = build_sriov_qp0_header(qp, ud_wr(wr), ctrl,
&seglen);
if (unlikely(err)) {
*bad_wr = wr;
goto out;
}
wqe += seglen;
size += seglen / 16;
/* to start tunnel header on a cache-line boundary */
add_zero_len_inline(wqe);
wqe += 16;
size++;
build_tunnel_header(ud_wr(wr), wqe, &seglen);
wqe += seglen;
size += seglen / 16;
break;
case MLX4_IB_QPT_PROXY_SMI:
case MLX4_IB_QPT_PROXY_GSI:
/* If we are tunneling special qps, this is a UD qp.
* In this case we first add a UD segment targeting
* the tunnel qp, and then add a header with address
* information */
set_tunnel_datagram_seg(to_mdev(ibqp->device), wqe,
ud_wr(wr),
qp->mlx4_ib_qp_type);
wqe += sizeof (struct mlx4_wqe_datagram_seg);
size += sizeof (struct mlx4_wqe_datagram_seg) / 16;
build_tunnel_header(ud_wr(wr), wqe, &seglen);
wqe += seglen;
size += seglen / 16;
break;
case MLX4_IB_QPT_SMI:
case MLX4_IB_QPT_GSI:
err = build_mlx_header(qp, ud_wr(wr), ctrl, &seglen);
if (unlikely(err)) {
*bad_wr = wr;
goto out;
}
wqe += seglen;
size += seglen / 16;
break;
default:
break;
}
/*
* Write data segments in reverse order, so as to
* overwrite cacheline stamp last within each
* cacheline. This avoids issues with WQE
* prefetching.
*/
dseg = wqe;
dseg += wr->num_sge - 1;
size += wr->num_sge * (sizeof (struct mlx4_wqe_data_seg) / 16);
/* Add one more inline data segment for ICRC for MLX sends */
if (unlikely(qp->mlx4_ib_qp_type == MLX4_IB_QPT_SMI ||
qp->mlx4_ib_qp_type == MLX4_IB_QPT_GSI ||
qp->mlx4_ib_qp_type &
(MLX4_IB_QPT_PROXY_SMI_OWNER | MLX4_IB_QPT_TUN_SMI_OWNER))) {
set_mlx_icrc_seg(dseg + 1);
size += sizeof (struct mlx4_wqe_data_seg) / 16;
}
for (i = wr->num_sge - 1; i >= 0; --i, --dseg)
set_data_seg(dseg, wr->sg_list + i);
/*
* Possibly overwrite stamping in cacheline with LSO
* segment only after making sure all data segments
* are written.
*/
wmb();
*lso_wqe = lso_hdr_sz;
ctrl->qpn_vlan.fence_size = (wr->send_flags & IB_SEND_FENCE ?
MLX4_WQE_CTRL_FENCE : 0) | size;
/*
* Make sure descriptor is fully written before
* setting ownership bit (because HW can start
* executing as soon as we do).
*/
wmb();
if (wr->opcode < 0 || wr->opcode >= ARRAY_SIZE(mlx4_ib_opcode)) {
*bad_wr = wr;
err = -EINVAL;
goto out;
}
ctrl->owner_opcode = mlx4_ib_opcode[wr->opcode] |
(ind & qp->sq.wqe_cnt ? cpu_to_be32(1 << 31) : 0) | blh;
/*
* We can improve latency by not stamping the last
* send queue WQE until after ringing the doorbell, so
* only stamp here if there are still more WQEs to post.
*/
if (wr->next)
stamp_send_wqe(qp, ind + qp->sq_spare_wqes);
ind++;
}
out:
if (likely(nreq)) {
qp->sq.head += nreq;
/*
* Make sure that descriptors are written before
* doorbell record.
*/
wmb();
writel_relaxed(qp->doorbell_qpn,
to_mdev(ibqp->device)->uar_map + MLX4_SEND_DOORBELL);
stamp_send_wqe(qp, ind + qp->sq_spare_wqes - 1);
qp->sq_next_wqe = ind;
}
spin_unlock_irqrestore(&qp->sq.lock, flags);
return err;
}
int mlx4_ib_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
const struct ib_send_wr **bad_wr)
{
return _mlx4_ib_post_send(ibqp, wr, bad_wr, false);
}
static int _mlx4_ib_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
const struct ib_recv_wr **bad_wr, bool drain)
{
struct mlx4_ib_qp *qp = to_mqp(ibqp);
struct mlx4_wqe_data_seg *scat;
unsigned long flags;
int err = 0;
int nreq;
int ind;
int max_gs;
int i;
struct mlx4_ib_dev *mdev = to_mdev(ibqp->device);
max_gs = qp->rq.max_gs;
spin_lock_irqsave(&qp->rq.lock, flags);
if (mdev->dev->persist->state & MLX4_DEVICE_STATE_INTERNAL_ERROR &&
!drain) {
err = -EIO;
*bad_wr = wr;
nreq = 0;
goto out;
}
ind = qp->rq.head & (qp->rq.wqe_cnt - 1);
for (nreq = 0; wr; ++nreq, wr = wr->next) {
if (mlx4_wq_overflow(&qp->rq, nreq, qp->ibqp.recv_cq)) {
err = -ENOMEM;
*bad_wr = wr;
goto out;
}
if (unlikely(wr->num_sge > qp->rq.max_gs)) {
err = -EINVAL;
*bad_wr = wr;
goto out;
}
scat = get_recv_wqe(qp, ind);
if (qp->mlx4_ib_qp_type & (MLX4_IB_QPT_PROXY_SMI_OWNER |
MLX4_IB_QPT_PROXY_SMI | MLX4_IB_QPT_PROXY_GSI)) {
ib_dma_sync_single_for_device(ibqp->device,
qp->sqp_proxy_rcv[ind].map,
sizeof (struct mlx4_ib_proxy_sqp_hdr),
DMA_FROM_DEVICE);
scat->byte_count =
cpu_to_be32(sizeof (struct mlx4_ib_proxy_sqp_hdr));
/* use dma lkey from upper layer entry */
scat->lkey = cpu_to_be32(wr->sg_list->lkey);
scat->addr = cpu_to_be64(qp->sqp_proxy_rcv[ind].map);
scat++;
max_gs--;
}
for (i = 0; i < wr->num_sge; ++i)
__set_data_seg(scat + i, wr->sg_list + i);
if (i < max_gs) {
scat[i].byte_count = 0;
scat[i].lkey = cpu_to_be32(MLX4_INVALID_LKEY);
scat[i].addr = 0;
}
qp->rq.wrid[ind] = wr->wr_id;
ind = (ind + 1) & (qp->rq.wqe_cnt - 1);
}
out:
if (likely(nreq)) {
qp->rq.head += nreq;
/*
* Make sure that descriptors are written before
* doorbell record.
*/
wmb();
*qp->db.db = cpu_to_be32(qp->rq.head & 0xffff);
}
spin_unlock_irqrestore(&qp->rq.lock, flags);
return err;
}
int mlx4_ib_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
const struct ib_recv_wr **bad_wr)
{
return _mlx4_ib_post_recv(ibqp, wr, bad_wr, false);
}
static inline enum ib_qp_state to_ib_qp_state(enum mlx4_qp_state mlx4_state)
{
switch (mlx4_state) {
case MLX4_QP_STATE_RST: return IB_QPS_RESET;
case MLX4_QP_STATE_INIT: return IB_QPS_INIT;
case MLX4_QP_STATE_RTR: return IB_QPS_RTR;
case MLX4_QP_STATE_RTS: return IB_QPS_RTS;
case MLX4_QP_STATE_SQ_DRAINING:
case MLX4_QP_STATE_SQD: return IB_QPS_SQD;
case MLX4_QP_STATE_SQER: return IB_QPS_SQE;
case MLX4_QP_STATE_ERR: return IB_QPS_ERR;
default: return -1;
}
}
static inline enum ib_mig_state to_ib_mig_state(int mlx4_mig_state)
{
switch (mlx4_mig_state) {
case MLX4_QP_PM_ARMED: return IB_MIG_ARMED;
case MLX4_QP_PM_REARM: return IB_MIG_REARM;
case MLX4_QP_PM_MIGRATED: return IB_MIG_MIGRATED;
default: return -1;
}
}
static int to_ib_qp_access_flags(int mlx4_flags)
{
int ib_flags = 0;
if (mlx4_flags & MLX4_QP_BIT_RRE)
ib_flags |= IB_ACCESS_REMOTE_READ;
if (mlx4_flags & MLX4_QP_BIT_RWE)
ib_flags |= IB_ACCESS_REMOTE_WRITE;
if (mlx4_flags & MLX4_QP_BIT_RAE)
ib_flags |= IB_ACCESS_REMOTE_ATOMIC;
return ib_flags;
}
static void to_rdma_ah_attr(struct mlx4_ib_dev *ibdev,
struct rdma_ah_attr *ah_attr,
struct mlx4_qp_path *path)
{
struct mlx4_dev *dev = ibdev->dev;
u8 port_num = path->sched_queue & 0x40 ? 2 : 1;
memset(ah_attr, 0, sizeof(*ah_attr));
if (port_num == 0 || port_num > dev->caps.num_ports)
return;
ah_attr->type = rdma_ah_find_type(&ibdev->ib_dev, port_num);
if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE)
rdma_ah_set_sl(ah_attr, ((path->sched_queue >> 3) & 0x7) |
((path->sched_queue & 4) << 1));
else
rdma_ah_set_sl(ah_attr, (path->sched_queue >> 2) & 0xf);
rdma_ah_set_port_num(ah_attr, port_num);
rdma_ah_set_dlid(ah_attr, be16_to_cpu(path->rlid));
rdma_ah_set_path_bits(ah_attr, path->grh_mylmc & 0x7f);
rdma_ah_set_static_rate(ah_attr,
path->static_rate ? path->static_rate - 5 : 0);
if (path->grh_mylmc & (1 << 7)) {
rdma_ah_set_grh(ah_attr, NULL,
be32_to_cpu(path->tclass_flowlabel) & 0xfffff,
path->mgid_index,
path->hop_limit,
(be32_to_cpu(path->tclass_flowlabel)
>> 20) & 0xff);
rdma_ah_set_dgid_raw(ah_attr, path->rgid);
}
}
int mlx4_ib_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *qp_attr, int qp_attr_mask,
struct ib_qp_init_attr *qp_init_attr)
{
struct mlx4_ib_dev *dev = to_mdev(ibqp->device);
struct mlx4_ib_qp *qp = to_mqp(ibqp);
struct mlx4_qp_context context;
int mlx4_state;
int err = 0;
if (ibqp->rwq_ind_tbl)
return -EOPNOTSUPP;
mutex_lock(&qp->mutex);
if (qp->state == IB_QPS_RESET) {
qp_attr->qp_state = IB_QPS_RESET;
goto done;
}
err = mlx4_qp_query(dev->dev, &qp->mqp, &context);
if (err) {
err = -EINVAL;
goto out;
}
mlx4_state = be32_to_cpu(context.flags) >> 28;
qp->state = to_ib_qp_state(mlx4_state);
qp_attr->qp_state = qp->state;
qp_attr->path_mtu = context.mtu_msgmax >> 5;
qp_attr->path_mig_state =
to_ib_mig_state((be32_to_cpu(context.flags) >> 11) & 0x3);
qp_attr->qkey = be32_to_cpu(context.qkey);
qp_attr->rq_psn = be32_to_cpu(context.rnr_nextrecvpsn) & 0xffffff;
qp_attr->sq_psn = be32_to_cpu(context.next_send_psn) & 0xffffff;
qp_attr->dest_qp_num = be32_to_cpu(context.remote_qpn) & 0xffffff;
qp_attr->qp_access_flags =
to_ib_qp_access_flags(be32_to_cpu(context.params2));
if (qp->ibqp.qp_type == IB_QPT_RC || qp->ibqp.qp_type == IB_QPT_UC ||
qp->ibqp.qp_type == IB_QPT_XRC_INI ||
qp->ibqp.qp_type == IB_QPT_XRC_TGT) {
to_rdma_ah_attr(dev, &qp_attr->ah_attr, &context.pri_path);
to_rdma_ah_attr(dev, &qp_attr->alt_ah_attr, &context.alt_path);
qp_attr->alt_pkey_index = context.alt_path.pkey_index & 0x7f;
qp_attr->alt_port_num =
rdma_ah_get_port_num(&qp_attr->alt_ah_attr);
}
qp_attr->pkey_index = context.pri_path.pkey_index & 0x7f;
if (qp_attr->qp_state == IB_QPS_INIT)
qp_attr->port_num = qp->port;
else
qp_attr->port_num = context.pri_path.sched_queue & 0x40 ? 2 : 1;
/* qp_attr->en_sqd_async_notify is only applicable in modify qp */
qp_attr->sq_draining = mlx4_state == MLX4_QP_STATE_SQ_DRAINING;
qp_attr->max_rd_atomic = 1 << ((be32_to_cpu(context.params1) >> 21) & 0x7);
qp_attr->max_dest_rd_atomic =
1 << ((be32_to_cpu(context.params2) >> 21) & 0x7);
qp_attr->min_rnr_timer =
(be32_to_cpu(context.rnr_nextrecvpsn) >> 24) & 0x1f;
qp_attr->timeout = context.pri_path.ackto >> 3;
qp_attr->retry_cnt = (be32_to_cpu(context.params1) >> 16) & 0x7;
qp_attr->rnr_retry = (be32_to_cpu(context.params1) >> 13) & 0x7;
qp_attr->alt_timeout = context.alt_path.ackto >> 3;
done:
qp_attr->cur_qp_state = qp_attr->qp_state;
qp_attr->cap.max_recv_wr = qp->rq.wqe_cnt;
qp_attr->cap.max_recv_sge = qp->rq.max_gs;
if (!ibqp->uobject) {
qp_attr->cap.max_send_wr = qp->sq.wqe_cnt;
qp_attr->cap.max_send_sge = qp->sq.max_gs;
} else {
qp_attr->cap.max_send_wr = 0;
qp_attr->cap.max_send_sge = 0;
}
/*
* We don't support inline sends for kernel QPs (yet), and we
* don't know what userspace's value should be.
*/
qp_attr->cap.max_inline_data = 0;
qp_init_attr->cap = qp_attr->cap;
qp_init_attr->create_flags = 0;
if (qp->flags & MLX4_IB_QP_BLOCK_MULTICAST_LOOPBACK)
qp_init_attr->create_flags |= IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK;
if (qp->flags & MLX4_IB_QP_LSO)
qp_init_attr->create_flags |= IB_QP_CREATE_IPOIB_UD_LSO;
if (qp->flags & MLX4_IB_QP_NETIF)
qp_init_attr->create_flags |= IB_QP_CREATE_NETIF_QP;
qp_init_attr->sq_sig_type =
qp->sq_signal_bits == cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE) ?
IB_SIGNAL_ALL_WR : IB_SIGNAL_REQ_WR;
out:
mutex_unlock(&qp->mutex);
return err;
}
struct ib_wq *mlx4_ib_create_wq(struct ib_pd *pd,
struct ib_wq_init_attr *init_attr,
struct ib_udata *udata)
{
struct mlx4_dev *dev = to_mdev(pd->device)->dev;
struct ib_qp_init_attr ib_qp_init_attr = {};
struct mlx4_ib_qp *qp;
struct mlx4_ib_create_wq ucmd;
int err, required_cmd_sz;
if (!udata)
return ERR_PTR(-EINVAL);
required_cmd_sz = offsetof(typeof(ucmd), comp_mask) +
sizeof(ucmd.comp_mask);
if (udata->inlen < required_cmd_sz) {
pr_debug("invalid inlen\n");
return ERR_PTR(-EINVAL);
}
if (udata->inlen > sizeof(ucmd) &&
!ib_is_udata_cleared(udata, sizeof(ucmd),
udata->inlen - sizeof(ucmd))) {
pr_debug("inlen is not supported\n");
return ERR_PTR(-EOPNOTSUPP);
}
if (udata->outlen)
return ERR_PTR(-EOPNOTSUPP);
if (init_attr->wq_type != IB_WQT_RQ) {
pr_debug("unsupported wq type %d\n", init_attr->wq_type);
return ERR_PTR(-EOPNOTSUPP);
}
if (init_attr->create_flags & ~IB_WQ_FLAGS_SCATTER_FCS ||
!(dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP)) {
pr_debug("unsupported create_flags %u\n",
init_attr->create_flags);
return ERR_PTR(-EOPNOTSUPP);
}
qp = kzalloc(sizeof(*qp), GFP_KERNEL);
if (!qp)
return ERR_PTR(-ENOMEM);
mutex_init(&qp->mutex);
qp->pri.vid = 0xFFFF;
qp->alt.vid = 0xFFFF;
ib_qp_init_attr.qp_context = init_attr->wq_context;
ib_qp_init_attr.qp_type = IB_QPT_RAW_PACKET;
ib_qp_init_attr.cap.max_recv_wr = init_attr->max_wr;
ib_qp_init_attr.cap.max_recv_sge = init_attr->max_sge;
ib_qp_init_attr.recv_cq = init_attr->cq;
ib_qp_init_attr.send_cq = ib_qp_init_attr.recv_cq; /* Dummy CQ */
if (init_attr->create_flags & IB_WQ_FLAGS_SCATTER_FCS)
ib_qp_init_attr.create_flags |= IB_QP_CREATE_SCATTER_FCS;
err = create_rq(pd, &ib_qp_init_attr, udata, qp);
if (err) {
kfree(qp);
return ERR_PTR(err);
}
qp->ibwq.event_handler = init_attr->event_handler;
qp->ibwq.wq_num = qp->mqp.qpn;
qp->ibwq.state = IB_WQS_RESET;
return &qp->ibwq;
}
static int ib_wq2qp_state(enum ib_wq_state state)
{
switch (state) {
case IB_WQS_RESET:
return IB_QPS_RESET;
case IB_WQS_RDY:
return IB_QPS_RTR;
default:
return IB_QPS_ERR;
}
}
static int _mlx4_ib_modify_wq(struct ib_wq *ibwq, enum ib_wq_state new_state,
struct ib_udata *udata)
{
struct mlx4_ib_qp *qp = to_mqp((struct ib_qp *)ibwq);
enum ib_qp_state qp_cur_state;
enum ib_qp_state qp_new_state;
int attr_mask;
int err;
/* ib_qp.state represents the WQ HW state while ib_wq.state represents
* the WQ logic state.
*/
qp_cur_state = qp->state;
qp_new_state = ib_wq2qp_state(new_state);
if (ib_wq2qp_state(new_state) == qp_cur_state)
return 0;
if (new_state == IB_WQS_RDY) {
struct ib_qp_attr attr = {};
attr.port_num = qp->port;
attr_mask = IB_QP_PORT;
err = __mlx4_ib_modify_qp(ibwq, MLX4_IB_RWQ_SRC, &attr,
attr_mask, IB_QPS_RESET, IB_QPS_INIT,
udata);
if (err) {
pr_debug("WQN=0x%06x failed to apply RST->INIT on the HW QP\n",
ibwq->wq_num);
return err;
}
qp_cur_state = IB_QPS_INIT;
}
attr_mask = 0;
err = __mlx4_ib_modify_qp(ibwq, MLX4_IB_RWQ_SRC, NULL, attr_mask,
qp_cur_state, qp_new_state, udata);
if (err && (qp_cur_state == IB_QPS_INIT)) {
qp_new_state = IB_QPS_RESET;
if (__mlx4_ib_modify_qp(ibwq, MLX4_IB_RWQ_SRC, NULL,
attr_mask, IB_QPS_INIT, IB_QPS_RESET,
udata)) {
pr_warn("WQN=0x%06x failed with reverting HW's resources failure\n",
ibwq->wq_num);
qp_new_state = IB_QPS_INIT;
}
}
qp->state = qp_new_state;
return err;
}
int mlx4_ib_modify_wq(struct ib_wq *ibwq, struct ib_wq_attr *wq_attr,
u32 wq_attr_mask, struct ib_udata *udata)
{
struct mlx4_ib_qp *qp = to_mqp((struct ib_qp *)ibwq);
struct mlx4_ib_modify_wq ucmd = {};
size_t required_cmd_sz;
enum ib_wq_state cur_state, new_state;
int err = 0;
required_cmd_sz = offsetof(typeof(ucmd), reserved) +
sizeof(ucmd.reserved);
if (udata->inlen < required_cmd_sz)
return -EINVAL;
if (udata->inlen > sizeof(ucmd) &&
!ib_is_udata_cleared(udata, sizeof(ucmd),
udata->inlen - sizeof(ucmd)))
return -EOPNOTSUPP;
if (ib_copy_from_udata(&ucmd, udata, min(sizeof(ucmd), udata->inlen)))
return -EFAULT;
if (ucmd.comp_mask || ucmd.reserved)
return -EOPNOTSUPP;
if (wq_attr_mask & IB_WQ_FLAGS)
return -EOPNOTSUPP;
cur_state = wq_attr->curr_wq_state;
new_state = wq_attr->wq_state;
if ((new_state == IB_WQS_RDY) && (cur_state == IB_WQS_ERR))
return -EINVAL;
if ((new_state == IB_WQS_ERR) && (cur_state == IB_WQS_RESET))
return -EINVAL;
/* Need to protect against the parent RSS which also may modify WQ
* state.
*/
mutex_lock(&qp->mutex);
/* Can update HW state only if a RSS QP has already associated to this
* WQ, so we can apply its port on the WQ.
*/
if (qp->rss_usecnt)
err = _mlx4_ib_modify_wq(ibwq, new_state, udata);
if (!err)
ibwq->state = new_state;
mutex_unlock(&qp->mutex);
return err;
}
int mlx4_ib_destroy_wq(struct ib_wq *ibwq, struct ib_udata *udata)
{
struct mlx4_ib_dev *dev = to_mdev(ibwq->device);
struct mlx4_ib_qp *qp = to_mqp((struct ib_qp *)ibwq);
if (qp->counter_index)
mlx4_ib_free_qp_counter(dev, qp);
destroy_qp_common(dev, qp, MLX4_IB_RWQ_SRC, udata);
kfree(qp);
return 0;
}
int mlx4_ib_create_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table,
struct ib_rwq_ind_table_init_attr *init_attr,
struct ib_udata *udata)
{
struct mlx4_ib_create_rwq_ind_tbl_resp resp = {};
unsigned int ind_tbl_size = 1 << init_attr->log_ind_tbl_size;
struct ib_device *device = rwq_ind_table->device;
unsigned int base_wqn;
size_t min_resp_len;
int i, err = 0;
if (udata->inlen > 0 &&
!ib_is_udata_cleared(udata, 0,
udata->inlen))
return -EOPNOTSUPP;
min_resp_len = offsetof(typeof(resp), reserved) + sizeof(resp.reserved);
if (udata->outlen && udata->outlen < min_resp_len)
return -EINVAL;
if (ind_tbl_size >
device->attrs.rss_caps.max_rwq_indirection_table_size) {
pr_debug("log_ind_tbl_size = %d is bigger than supported = %d\n",
ind_tbl_size,
device->attrs.rss_caps.max_rwq_indirection_table_size);
return -EINVAL;
}
base_wqn = init_attr->ind_tbl[0]->wq_num;
if (base_wqn % ind_tbl_size) {
pr_debug("WQN=0x%x isn't aligned with indirection table size\n",
base_wqn);
return -EINVAL;
}
for (i = 1; i < ind_tbl_size; i++) {
if (++base_wqn != init_attr->ind_tbl[i]->wq_num) {
pr_debug("indirection table's WQNs aren't consecutive\n");
return -EINVAL;
}
}
if (udata->outlen) {
resp.response_length = offsetof(typeof(resp), response_length) +
sizeof(resp.response_length);
err = ib_copy_to_udata(udata, &resp, resp.response_length);
}
return err;
}
struct mlx4_ib_drain_cqe {
struct ib_cqe cqe;
struct completion done;
};
static void mlx4_ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct mlx4_ib_drain_cqe *cqe = container_of(wc->wr_cqe,
struct mlx4_ib_drain_cqe,
cqe);
complete(&cqe->done);
}
/* This function returns only once the drained WR was completed */
static void handle_drain_completion(struct ib_cq *cq,
struct mlx4_ib_drain_cqe *sdrain,
struct mlx4_ib_dev *dev)
{
struct mlx4_dev *mdev = dev->dev;
if (cq->poll_ctx == IB_POLL_DIRECT) {
while (wait_for_completion_timeout(&sdrain->done, HZ / 10) <= 0)
ib_process_cq_direct(cq, -1);
return;
}
if (mdev->persist->state == MLX4_DEVICE_STATE_INTERNAL_ERROR) {
struct mlx4_ib_cq *mcq = to_mcq(cq);
bool triggered = false;
unsigned long flags;
spin_lock_irqsave(&dev->reset_flow_resource_lock, flags);
/* Make sure that the CQ handler won't run if wasn't run yet */
if (!mcq->mcq.reset_notify_added)
mcq->mcq.reset_notify_added = 1;
else
triggered = true;
spin_unlock_irqrestore(&dev->reset_flow_resource_lock, flags);
if (triggered) {
/* Wait for any scheduled/running task to be ended */
switch (cq->poll_ctx) {
case IB_POLL_SOFTIRQ:
irq_poll_disable(&cq->iop);
irq_poll_enable(&cq->iop);
break;
case IB_POLL_WORKQUEUE:
cancel_work_sync(&cq->work);
break;
default:
WARN_ON_ONCE(1);
}
}
/* Run the CQ handler - this makes sure that the drain WR will
* be processed if wasn't processed yet.
*/
mcq->mcq.comp(&mcq->mcq);
}
wait_for_completion(&sdrain->done);
}
void mlx4_ib_drain_sq(struct ib_qp *qp)
{
struct ib_cq *cq = qp->send_cq;
struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
struct mlx4_ib_drain_cqe sdrain;
const struct ib_send_wr *bad_swr;
struct ib_rdma_wr swr = {
.wr = {
.next = NULL,
{ .wr_cqe = &sdrain.cqe, },
.opcode = IB_WR_RDMA_WRITE,
},
};
int ret;
struct mlx4_ib_dev *dev = to_mdev(qp->device);
struct mlx4_dev *mdev = dev->dev;
ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
if (ret && mdev->persist->state != MLX4_DEVICE_STATE_INTERNAL_ERROR) {
WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
return;
}
sdrain.cqe.done = mlx4_ib_drain_qp_done;
init_completion(&sdrain.done);
ret = _mlx4_ib_post_send(qp, &swr.wr, &bad_swr, true);
if (ret) {
WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
return;
}
handle_drain_completion(cq, &sdrain, dev);
}
void mlx4_ib_drain_rq(struct ib_qp *qp)
{
struct ib_cq *cq = qp->recv_cq;
struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
struct mlx4_ib_drain_cqe rdrain;
struct ib_recv_wr rwr = {};
const struct ib_recv_wr *bad_rwr;
int ret;
struct mlx4_ib_dev *dev = to_mdev(qp->device);
struct mlx4_dev *mdev = dev->dev;
ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
if (ret && mdev->persist->state != MLX4_DEVICE_STATE_INTERNAL_ERROR) {
WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
return;
}
rwr.wr_cqe = &rdrain.cqe;
rdrain.cqe.done = mlx4_ib_drain_qp_done;
init_completion(&rdrain.done);
ret = _mlx4_ib_post_recv(qp, &rwr, &bad_rwr, true);
if (ret) {
WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
return;
}
handle_drain_completion(cq, &rdrain, dev);
}