linuxdebug/drivers/net/ethernet/netronome/nfp/flower/offload.c

1963 lines
56 KiB
C
Raw Normal View History

2024-07-16 15:50:57 +02:00
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2017-2018 Netronome Systems, Inc. */
#include <linux/skbuff.h>
#include <net/devlink.h>
#include <net/pkt_cls.h>
#include "cmsg.h"
#include "main.h"
#include "conntrack.h"
#include "../nfpcore/nfp_cpp.h"
#include "../nfpcore/nfp_nsp.h"
#include "../nfp_app.h"
#include "../nfp_main.h"
#include "../nfp_net.h"
#include "../nfp_port.h"
#define NFP_FLOWER_SUPPORTED_TCPFLAGS \
(TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
TCPHDR_PSH | TCPHDR_URG)
#define NFP_FLOWER_SUPPORTED_CTLFLAGS \
(FLOW_DIS_IS_FRAGMENT | \
FLOW_DIS_FIRST_FRAG)
#define NFP_FLOWER_WHITELIST_DISSECTOR \
(BIT(FLOW_DISSECTOR_KEY_CONTROL) | \
BIT(FLOW_DISSECTOR_KEY_BASIC) | \
BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | \
BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | \
BIT(FLOW_DISSECTOR_KEY_TCP) | \
BIT(FLOW_DISSECTOR_KEY_PORTS) | \
BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | \
BIT(FLOW_DISSECTOR_KEY_VLAN) | \
BIT(FLOW_DISSECTOR_KEY_CVLAN) | \
BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \
BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \
BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \
BIT(FLOW_DISSECTOR_KEY_ENC_OPTS) | \
BIT(FLOW_DISSECTOR_KEY_ENC_IP) | \
BIT(FLOW_DISSECTOR_KEY_MPLS) | \
BIT(FLOW_DISSECTOR_KEY_CT) | \
BIT(FLOW_DISSECTOR_KEY_META) | \
BIT(FLOW_DISSECTOR_KEY_IP))
#define NFP_FLOWER_WHITELIST_TUN_DISSECTOR \
(BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \
BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \
BIT(FLOW_DISSECTOR_KEY_ENC_OPTS) | \
BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \
BIT(FLOW_DISSECTOR_KEY_ENC_IP))
#define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R \
(BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS))
#define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R \
(BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS))
#define NFP_FLOWER_MERGE_FIELDS \
(NFP_FLOWER_LAYER_PORT | \
NFP_FLOWER_LAYER_MAC | \
NFP_FLOWER_LAYER_TP | \
NFP_FLOWER_LAYER_IPV4 | \
NFP_FLOWER_LAYER_IPV6)
#define NFP_FLOWER_PRE_TUN_RULE_FIELDS \
(NFP_FLOWER_LAYER_EXT_META | \
NFP_FLOWER_LAYER_PORT | \
NFP_FLOWER_LAYER_MAC | \
NFP_FLOWER_LAYER_IPV4 | \
NFP_FLOWER_LAYER_IPV6)
struct nfp_flower_merge_check {
union {
struct {
__be16 tci;
struct nfp_flower_mac_mpls l2;
struct nfp_flower_tp_ports l4;
union {
struct nfp_flower_ipv4 ipv4;
struct nfp_flower_ipv6 ipv6;
};
};
unsigned long vals[8];
};
};
int
nfp_flower_xmit_flow(struct nfp_app *app, struct nfp_fl_payload *nfp_flow,
u8 mtype)
{
u32 meta_len, key_len, mask_len, act_len, tot_len;
struct sk_buff *skb;
unsigned char *msg;
meta_len = sizeof(struct nfp_fl_rule_metadata);
key_len = nfp_flow->meta.key_len;
mask_len = nfp_flow->meta.mask_len;
act_len = nfp_flow->meta.act_len;
tot_len = meta_len + key_len + mask_len + act_len;
/* Convert to long words as firmware expects
* lengths in units of NFP_FL_LW_SIZ.
*/
nfp_flow->meta.key_len >>= NFP_FL_LW_SIZ;
nfp_flow->meta.mask_len >>= NFP_FL_LW_SIZ;
nfp_flow->meta.act_len >>= NFP_FL_LW_SIZ;
skb = nfp_flower_cmsg_alloc(app, tot_len, mtype, GFP_KERNEL);
if (!skb)
return -ENOMEM;
msg = nfp_flower_cmsg_get_data(skb);
memcpy(msg, &nfp_flow->meta, meta_len);
memcpy(&msg[meta_len], nfp_flow->unmasked_data, key_len);
memcpy(&msg[meta_len + key_len], nfp_flow->mask_data, mask_len);
memcpy(&msg[meta_len + key_len + mask_len],
nfp_flow->action_data, act_len);
/* Convert back to bytes as software expects
* lengths in units of bytes.
*/
nfp_flow->meta.key_len <<= NFP_FL_LW_SIZ;
nfp_flow->meta.mask_len <<= NFP_FL_LW_SIZ;
nfp_flow->meta.act_len <<= NFP_FL_LW_SIZ;
nfp_ctrl_tx(app->ctrl, skb);
return 0;
}
static bool nfp_flower_check_higher_than_mac(struct flow_rule *rule)
{
return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS) ||
flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS) ||
flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) ||
flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP);
}
static bool nfp_flower_check_higher_than_l3(struct flow_rule *rule)
{
return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) ||
flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP);
}
static int
nfp_flower_calc_opt_layer(struct flow_dissector_key_enc_opts *enc_opts,
u32 *key_layer_two, int *key_size, bool ipv6,
struct netlink_ext_ack *extack)
{
if (enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY ||
(ipv6 && enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY_V6)) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: geneve options exceed maximum length");
return -EOPNOTSUPP;
}
if (enc_opts->len > 0) {
*key_layer_two |= NFP_FLOWER_LAYER2_GENEVE_OP;
*key_size += sizeof(struct nfp_flower_geneve_options);
}
return 0;
}
static int
nfp_flower_calc_udp_tun_layer(struct flow_dissector_key_ports *enc_ports,
struct flow_dissector_key_enc_opts *enc_op,
u32 *key_layer_two, u8 *key_layer, int *key_size,
struct nfp_flower_priv *priv,
enum nfp_flower_tun_type *tun_type, bool ipv6,
struct netlink_ext_ack *extack)
{
int err;
switch (enc_ports->dst) {
case htons(IANA_VXLAN_UDP_PORT):
*tun_type = NFP_FL_TUNNEL_VXLAN;
*key_layer |= NFP_FLOWER_LAYER_VXLAN;
if (ipv6) {
*key_layer |= NFP_FLOWER_LAYER_EXT_META;
*key_size += sizeof(struct nfp_flower_ext_meta);
*key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6;
*key_size += sizeof(struct nfp_flower_ipv6_udp_tun);
} else {
*key_size += sizeof(struct nfp_flower_ipv4_udp_tun);
}
if (enc_op) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on vxlan tunnels");
return -EOPNOTSUPP;
}
break;
case htons(GENEVE_UDP_PORT):
if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE)) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve offload");
return -EOPNOTSUPP;
}
*tun_type = NFP_FL_TUNNEL_GENEVE;
*key_layer |= NFP_FLOWER_LAYER_EXT_META;
*key_size += sizeof(struct nfp_flower_ext_meta);
*key_layer_two |= NFP_FLOWER_LAYER2_GENEVE;
if (ipv6) {
*key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6;
*key_size += sizeof(struct nfp_flower_ipv6_udp_tun);
} else {
*key_size += sizeof(struct nfp_flower_ipv4_udp_tun);
}
if (!enc_op)
break;
if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE_OPT)) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve option offload");
return -EOPNOTSUPP;
}
err = nfp_flower_calc_opt_layer(enc_op, key_layer_two, key_size,
ipv6, extack);
if (err)
return err;
break;
default:
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel type unknown");
return -EOPNOTSUPP;
}
return 0;
}
int
nfp_flower_calculate_key_layers(struct nfp_app *app,
struct net_device *netdev,
struct nfp_fl_key_ls *ret_key_ls,
struct flow_rule *rule,
enum nfp_flower_tun_type *tun_type,
struct netlink_ext_ack *extack)
{
struct flow_dissector *dissector = rule->match.dissector;
struct flow_match_basic basic = { NULL, NULL};
struct nfp_flower_priv *priv = app->priv;
u32 key_layer_two;
u8 key_layer;
int key_size;
int err;
if (dissector->used_keys & ~NFP_FLOWER_WHITELIST_DISSECTOR) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match not supported");
return -EOPNOTSUPP;
}
/* If any tun dissector is used then the required set must be used. */
if (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR &&
(dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R)
!= NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R &&
(dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R)
!= NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel match not supported");
return -EOPNOTSUPP;
}
key_layer_two = 0;
key_layer = NFP_FLOWER_LAYER_PORT;
key_size = sizeof(struct nfp_flower_meta_tci) +
sizeof(struct nfp_flower_in_port);
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS) ||
flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_MPLS)) {
key_layer |= NFP_FLOWER_LAYER_MAC;
key_size += sizeof(struct nfp_flower_mac_mpls);
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
struct flow_match_vlan vlan;
flow_rule_match_vlan(rule, &vlan);
if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_PCP) &&
vlan.key->vlan_priority) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support VLAN PCP offload");
return -EOPNOTSUPP;
}
if (priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ &&
!(key_layer_two & NFP_FLOWER_LAYER2_QINQ)) {
key_layer |= NFP_FLOWER_LAYER_EXT_META;
key_size += sizeof(struct nfp_flower_ext_meta);
key_size += sizeof(struct nfp_flower_vlan);
key_layer_two |= NFP_FLOWER_LAYER2_QINQ;
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CVLAN)) {
struct flow_match_vlan cvlan;
if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support VLAN QinQ offload");
return -EOPNOTSUPP;
}
flow_rule_match_vlan(rule, &cvlan);
if (!(key_layer_two & NFP_FLOWER_LAYER2_QINQ)) {
key_layer |= NFP_FLOWER_LAYER_EXT_META;
key_size += sizeof(struct nfp_flower_ext_meta);
key_size += sizeof(struct nfp_flower_vlan);
key_layer_two |= NFP_FLOWER_LAYER2_QINQ;
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_CONTROL)) {
struct flow_match_enc_opts enc_op = { NULL, NULL };
struct flow_match_ipv4_addrs ipv4_addrs;
struct flow_match_ipv6_addrs ipv6_addrs;
struct flow_match_control enc_ctl;
struct flow_match_ports enc_ports;
bool ipv6_tun = false;
flow_rule_match_enc_control(rule, &enc_ctl);
if (enc_ctl.mask->addr_type != 0xffff) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: wildcarded protocols on tunnels are not supported");
return -EOPNOTSUPP;
}
ipv6_tun = enc_ctl.key->addr_type ==
FLOW_DISSECTOR_KEY_IPV6_ADDRS;
if (ipv6_tun &&
!(priv->flower_ext_feats & NFP_FL_FEATS_IPV6_TUN)) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: firmware does not support IPv6 tunnels");
return -EOPNOTSUPP;
}
if (!ipv6_tun &&
enc_ctl.key->addr_type != FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel address type not IPv4 or IPv6");
return -EOPNOTSUPP;
}
if (ipv6_tun) {
flow_rule_match_enc_ipv6_addrs(rule, &ipv6_addrs);
if (memchr_inv(&ipv6_addrs.mask->dst, 0xff,
sizeof(ipv6_addrs.mask->dst))) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv6 destination address is supported");
return -EOPNOTSUPP;
}
} else {
flow_rule_match_enc_ipv4_addrs(rule, &ipv4_addrs);
if (ipv4_addrs.mask->dst != cpu_to_be32(~0)) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv4 destination address is supported");
return -EOPNOTSUPP;
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_OPTS))
flow_rule_match_enc_opts(rule, &enc_op);
if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
/* Check if GRE, which has no enc_ports */
if (!netif_is_gretap(netdev) && !netif_is_ip6gretap(netdev)) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: an exact match on L4 destination port is required for non-GRE tunnels");
return -EOPNOTSUPP;
}
*tun_type = NFP_FL_TUNNEL_GRE;
key_layer |= NFP_FLOWER_LAYER_EXT_META;
key_size += sizeof(struct nfp_flower_ext_meta);
key_layer_two |= NFP_FLOWER_LAYER2_GRE;
if (ipv6_tun) {
key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6;
key_size +=
sizeof(struct nfp_flower_ipv6_gre_tun);
} else {
key_size +=
sizeof(struct nfp_flower_ipv4_gre_tun);
}
if (enc_op.key) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on GRE tunnels");
return -EOPNOTSUPP;
}
} else {
flow_rule_match_enc_ports(rule, &enc_ports);
if (enc_ports.mask->dst != cpu_to_be16(~0)) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match L4 destination port is supported");
return -EOPNOTSUPP;
}
err = nfp_flower_calc_udp_tun_layer(enc_ports.key,
enc_op.key,
&key_layer_two,
&key_layer,
&key_size, priv,
tun_type, ipv6_tun,
extack);
if (err)
return err;
/* Ensure the ingress netdev matches the expected
* tun type.
*/
if (!nfp_fl_netdev_is_tunnel_type(netdev, *tun_type)) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ingress netdev does not match the expected tunnel type");
return -EOPNOTSUPP;
}
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC))
flow_rule_match_basic(rule, &basic);
if (basic.mask && basic.mask->n_proto) {
/* Ethernet type is present in the key. */
switch (basic.key->n_proto) {
case cpu_to_be16(ETH_P_IP):
key_layer |= NFP_FLOWER_LAYER_IPV4;
key_size += sizeof(struct nfp_flower_ipv4);
break;
case cpu_to_be16(ETH_P_IPV6):
key_layer |= NFP_FLOWER_LAYER_IPV6;
key_size += sizeof(struct nfp_flower_ipv6);
break;
/* Currently we do not offload ARP
* because we rely on it to get to the host.
*/
case cpu_to_be16(ETH_P_ARP):
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ARP not supported");
return -EOPNOTSUPP;
case cpu_to_be16(ETH_P_MPLS_UC):
case cpu_to_be16(ETH_P_MPLS_MC):
if (!(key_layer & NFP_FLOWER_LAYER_MAC)) {
key_layer |= NFP_FLOWER_LAYER_MAC;
key_size += sizeof(struct nfp_flower_mac_mpls);
}
break;
/* Will be included in layer 2. */
case cpu_to_be16(ETH_P_8021Q):
break;
default:
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on given EtherType is not supported");
return -EOPNOTSUPP;
}
} else if (nfp_flower_check_higher_than_mac(rule)) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match above L2 without specified EtherType");
return -EOPNOTSUPP;
}
if (basic.mask && basic.mask->ip_proto) {
switch (basic.key->ip_proto) {
case IPPROTO_TCP:
case IPPROTO_UDP:
case IPPROTO_SCTP:
case IPPROTO_ICMP:
case IPPROTO_ICMPV6:
key_layer |= NFP_FLOWER_LAYER_TP;
key_size += sizeof(struct nfp_flower_tp_ports);
break;
}
}
if (!(key_layer & NFP_FLOWER_LAYER_TP) &&
nfp_flower_check_higher_than_l3(rule)) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match on L4 information without specified IP protocol type");
return -EOPNOTSUPP;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_TCP)) {
struct flow_match_tcp tcp;
u32 tcp_flags;
flow_rule_match_tcp(rule, &tcp);
tcp_flags = be16_to_cpu(tcp.key->flags);
if (tcp_flags & ~NFP_FLOWER_SUPPORTED_TCPFLAGS) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: no match support for selected TCP flags");
return -EOPNOTSUPP;
}
/* We only support PSH and URG flags when either
* FIN, SYN or RST is present as well.
*/
if ((tcp_flags & (TCPHDR_PSH | TCPHDR_URG)) &&
!(tcp_flags & (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST))) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: PSH and URG is only supported when used with FIN, SYN or RST");
return -EOPNOTSUPP;
}
/* We need to store TCP flags in the either the IPv4 or IPv6 key
* space, thus we need to ensure we include a IPv4/IPv6 key
* layer if we have not done so already.
*/
if (!basic.key) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on L3 protocol");
return -EOPNOTSUPP;
}
if (!(key_layer & NFP_FLOWER_LAYER_IPV4) &&
!(key_layer & NFP_FLOWER_LAYER_IPV6)) {
switch (basic.key->n_proto) {
case cpu_to_be16(ETH_P_IP):
key_layer |= NFP_FLOWER_LAYER_IPV4;
key_size += sizeof(struct nfp_flower_ipv4);
break;
case cpu_to_be16(ETH_P_IPV6):
key_layer |= NFP_FLOWER_LAYER_IPV6;
key_size += sizeof(struct nfp_flower_ipv6);
break;
default:
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on IPv4/IPv6");
return -EOPNOTSUPP;
}
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
struct flow_match_control ctl;
flow_rule_match_control(rule, &ctl);
if (ctl.key->flags & ~NFP_FLOWER_SUPPORTED_CTLFLAGS) {
NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on unknown control flag");
return -EOPNOTSUPP;
}
}
ret_key_ls->key_layer = key_layer;
ret_key_ls->key_layer_two = key_layer_two;
ret_key_ls->key_size = key_size;
return 0;
}
struct nfp_fl_payload *
nfp_flower_allocate_new(struct nfp_fl_key_ls *key_layer)
{
struct nfp_fl_payload *flow_pay;
flow_pay = kmalloc(sizeof(*flow_pay), GFP_KERNEL);
if (!flow_pay)
return NULL;
flow_pay->meta.key_len = key_layer->key_size;
flow_pay->unmasked_data = kmalloc(key_layer->key_size, GFP_KERNEL);
if (!flow_pay->unmasked_data)
goto err_free_flow;
flow_pay->meta.mask_len = key_layer->key_size;
flow_pay->mask_data = kmalloc(key_layer->key_size, GFP_KERNEL);
if (!flow_pay->mask_data)
goto err_free_unmasked;
flow_pay->action_data = kmalloc(NFP_FL_MAX_A_SIZ, GFP_KERNEL);
if (!flow_pay->action_data)
goto err_free_mask;
flow_pay->nfp_tun_ipv4_addr = 0;
flow_pay->nfp_tun_ipv6 = NULL;
flow_pay->meta.flags = 0;
INIT_LIST_HEAD(&flow_pay->linked_flows);
flow_pay->in_hw = false;
flow_pay->pre_tun_rule.dev = NULL;
return flow_pay;
err_free_mask:
kfree(flow_pay->mask_data);
err_free_unmasked:
kfree(flow_pay->unmasked_data);
err_free_flow:
kfree(flow_pay);
return NULL;
}
static int
nfp_flower_update_merge_with_actions(struct nfp_fl_payload *flow,
struct nfp_flower_merge_check *merge,
u8 *last_act_id, int *act_out)
{
struct nfp_fl_set_ipv6_tc_hl_fl *ipv6_tc_hl_fl;
struct nfp_fl_set_ip4_ttl_tos *ipv4_ttl_tos;
struct nfp_fl_set_ip4_addrs *ipv4_add;
struct nfp_fl_set_ipv6_addr *ipv6_add;
struct nfp_fl_push_vlan *push_vlan;
struct nfp_fl_pre_tunnel *pre_tun;
struct nfp_fl_set_tport *tport;
struct nfp_fl_set_eth *eth;
struct nfp_fl_act_head *a;
unsigned int act_off = 0;
bool ipv6_tun = false;
u8 act_id = 0;
u8 *ports;
int i;
while (act_off < flow->meta.act_len) {
a = (struct nfp_fl_act_head *)&flow->action_data[act_off];
act_id = a->jump_id;
switch (act_id) {
case NFP_FL_ACTION_OPCODE_OUTPUT:
if (act_out)
(*act_out)++;
break;
case NFP_FL_ACTION_OPCODE_PUSH_VLAN:
push_vlan = (struct nfp_fl_push_vlan *)a;
if (push_vlan->vlan_tci)
merge->tci = cpu_to_be16(0xffff);
break;
case NFP_FL_ACTION_OPCODE_POP_VLAN:
merge->tci = cpu_to_be16(0);
break;
case NFP_FL_ACTION_OPCODE_SET_TUNNEL:
/* New tunnel header means l2 to l4 can be matched. */
eth_broadcast_addr(&merge->l2.mac_dst[0]);
eth_broadcast_addr(&merge->l2.mac_src[0]);
memset(&merge->l4, 0xff,
sizeof(struct nfp_flower_tp_ports));
if (ipv6_tun)
memset(&merge->ipv6, 0xff,
sizeof(struct nfp_flower_ipv6));
else
memset(&merge->ipv4, 0xff,
sizeof(struct nfp_flower_ipv4));
break;
case NFP_FL_ACTION_OPCODE_SET_ETHERNET:
eth = (struct nfp_fl_set_eth *)a;
for (i = 0; i < ETH_ALEN; i++)
merge->l2.mac_dst[i] |= eth->eth_addr_mask[i];
for (i = 0; i < ETH_ALEN; i++)
merge->l2.mac_src[i] |=
eth->eth_addr_mask[ETH_ALEN + i];
break;
case NFP_FL_ACTION_OPCODE_SET_IPV4_ADDRS:
ipv4_add = (struct nfp_fl_set_ip4_addrs *)a;
merge->ipv4.ipv4_src |= ipv4_add->ipv4_src_mask;
merge->ipv4.ipv4_dst |= ipv4_add->ipv4_dst_mask;
break;
case NFP_FL_ACTION_OPCODE_SET_IPV4_TTL_TOS:
ipv4_ttl_tos = (struct nfp_fl_set_ip4_ttl_tos *)a;
merge->ipv4.ip_ext.ttl |= ipv4_ttl_tos->ipv4_ttl_mask;
merge->ipv4.ip_ext.tos |= ipv4_ttl_tos->ipv4_tos_mask;
break;
case NFP_FL_ACTION_OPCODE_SET_IPV6_SRC:
ipv6_add = (struct nfp_fl_set_ipv6_addr *)a;
for (i = 0; i < 4; i++)
merge->ipv6.ipv6_src.in6_u.u6_addr32[i] |=
ipv6_add->ipv6[i].mask;
break;
case NFP_FL_ACTION_OPCODE_SET_IPV6_DST:
ipv6_add = (struct nfp_fl_set_ipv6_addr *)a;
for (i = 0; i < 4; i++)
merge->ipv6.ipv6_dst.in6_u.u6_addr32[i] |=
ipv6_add->ipv6[i].mask;
break;
case NFP_FL_ACTION_OPCODE_SET_IPV6_TC_HL_FL:
ipv6_tc_hl_fl = (struct nfp_fl_set_ipv6_tc_hl_fl *)a;
merge->ipv6.ip_ext.ttl |=
ipv6_tc_hl_fl->ipv6_hop_limit_mask;
merge->ipv6.ip_ext.tos |= ipv6_tc_hl_fl->ipv6_tc_mask;
merge->ipv6.ipv6_flow_label_exthdr |=
ipv6_tc_hl_fl->ipv6_label_mask;
break;
case NFP_FL_ACTION_OPCODE_SET_UDP:
case NFP_FL_ACTION_OPCODE_SET_TCP:
tport = (struct nfp_fl_set_tport *)a;
ports = (u8 *)&merge->l4.port_src;
for (i = 0; i < 4; i++)
ports[i] |= tport->tp_port_mask[i];
break;
case NFP_FL_ACTION_OPCODE_PRE_TUNNEL:
pre_tun = (struct nfp_fl_pre_tunnel *)a;
ipv6_tun = be16_to_cpu(pre_tun->flags) &
NFP_FL_PRE_TUN_IPV6;
break;
case NFP_FL_ACTION_OPCODE_PRE_LAG:
case NFP_FL_ACTION_OPCODE_PUSH_GENEVE:
break;
default:
return -EOPNOTSUPP;
}
act_off += a->len_lw << NFP_FL_LW_SIZ;
}
if (last_act_id)
*last_act_id = act_id;
return 0;
}
static int
nfp_flower_populate_merge_match(struct nfp_fl_payload *flow,
struct nfp_flower_merge_check *merge,
bool extra_fields)
{
struct nfp_flower_meta_tci *meta_tci;
u8 *mask = flow->mask_data;
u8 key_layer, match_size;
memset(merge, 0, sizeof(struct nfp_flower_merge_check));
meta_tci = (struct nfp_flower_meta_tci *)mask;
key_layer = meta_tci->nfp_flow_key_layer;
if (key_layer & ~NFP_FLOWER_MERGE_FIELDS && !extra_fields)
return -EOPNOTSUPP;
merge->tci = meta_tci->tci;
mask += sizeof(struct nfp_flower_meta_tci);
if (key_layer & NFP_FLOWER_LAYER_EXT_META)
mask += sizeof(struct nfp_flower_ext_meta);
mask += sizeof(struct nfp_flower_in_port);
if (key_layer & NFP_FLOWER_LAYER_MAC) {
match_size = sizeof(struct nfp_flower_mac_mpls);
memcpy(&merge->l2, mask, match_size);
mask += match_size;
}
if (key_layer & NFP_FLOWER_LAYER_TP) {
match_size = sizeof(struct nfp_flower_tp_ports);
memcpy(&merge->l4, mask, match_size);
mask += match_size;
}
if (key_layer & NFP_FLOWER_LAYER_IPV4) {
match_size = sizeof(struct nfp_flower_ipv4);
memcpy(&merge->ipv4, mask, match_size);
}
if (key_layer & NFP_FLOWER_LAYER_IPV6) {
match_size = sizeof(struct nfp_flower_ipv6);
memcpy(&merge->ipv6, mask, match_size);
}
return 0;
}
static int
nfp_flower_can_merge(struct nfp_fl_payload *sub_flow1,
struct nfp_fl_payload *sub_flow2)
{
/* Two flows can be merged if sub_flow2 only matches on bits that are
* either matched by sub_flow1 or set by a sub_flow1 action. This
* ensures that every packet that hits sub_flow1 and recirculates is
* guaranteed to hit sub_flow2.
*/
struct nfp_flower_merge_check sub_flow1_merge, sub_flow2_merge;
int err, act_out = 0;
u8 last_act_id = 0;
err = nfp_flower_populate_merge_match(sub_flow1, &sub_flow1_merge,
true);
if (err)
return err;
err = nfp_flower_populate_merge_match(sub_flow2, &sub_flow2_merge,
false);
if (err)
return err;
err = nfp_flower_update_merge_with_actions(sub_flow1, &sub_flow1_merge,
&last_act_id, &act_out);
if (err)
return err;
/* Must only be 1 output action and it must be the last in sequence. */
if (act_out != 1 || last_act_id != NFP_FL_ACTION_OPCODE_OUTPUT)
return -EOPNOTSUPP;
/* Reject merge if sub_flow2 matches on something that is not matched
* on or set in an action by sub_flow1.
*/
err = bitmap_andnot(sub_flow2_merge.vals, sub_flow2_merge.vals,
sub_flow1_merge.vals,
sizeof(struct nfp_flower_merge_check) * 8);
if (err)
return -EINVAL;
return 0;
}
static unsigned int
nfp_flower_copy_pre_actions(char *act_dst, char *act_src, int len,
bool *tunnel_act)
{
unsigned int act_off = 0, act_len;
struct nfp_fl_act_head *a;
u8 act_id = 0;
while (act_off < len) {
a = (struct nfp_fl_act_head *)&act_src[act_off];
act_len = a->len_lw << NFP_FL_LW_SIZ;
act_id = a->jump_id;
switch (act_id) {
case NFP_FL_ACTION_OPCODE_PRE_TUNNEL:
if (tunnel_act)
*tunnel_act = true;
fallthrough;
case NFP_FL_ACTION_OPCODE_PRE_LAG:
memcpy(act_dst + act_off, act_src + act_off, act_len);
break;
default:
return act_off;
}
act_off += act_len;
}
return act_off;
}
static int
nfp_fl_verify_post_tun_acts(char *acts, int len, struct nfp_fl_push_vlan **vlan)
{
struct nfp_fl_act_head *a;
unsigned int act_off = 0;
while (act_off < len) {
a = (struct nfp_fl_act_head *)&acts[act_off];
if (a->jump_id == NFP_FL_ACTION_OPCODE_PUSH_VLAN && !act_off)
*vlan = (struct nfp_fl_push_vlan *)a;
else if (a->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT)
return -EOPNOTSUPP;
act_off += a->len_lw << NFP_FL_LW_SIZ;
}
/* Ensure any VLAN push also has an egress action. */
if (*vlan && act_off <= sizeof(struct nfp_fl_push_vlan))
return -EOPNOTSUPP;
return 0;
}
static int
nfp_fl_push_vlan_after_tun(char *acts, int len, struct nfp_fl_push_vlan *vlan)
{
struct nfp_fl_set_tun *tun;
struct nfp_fl_act_head *a;
unsigned int act_off = 0;
while (act_off < len) {
a = (struct nfp_fl_act_head *)&acts[act_off];
if (a->jump_id == NFP_FL_ACTION_OPCODE_SET_TUNNEL) {
tun = (struct nfp_fl_set_tun *)a;
tun->outer_vlan_tpid = vlan->vlan_tpid;
tun->outer_vlan_tci = vlan->vlan_tci;
return 0;
}
act_off += a->len_lw << NFP_FL_LW_SIZ;
}
/* Return error if no tunnel action is found. */
return -EOPNOTSUPP;
}
static int
nfp_flower_merge_action(struct nfp_fl_payload *sub_flow1,
struct nfp_fl_payload *sub_flow2,
struct nfp_fl_payload *merge_flow)
{
unsigned int sub1_act_len, sub2_act_len, pre_off1, pre_off2;
struct nfp_fl_push_vlan *post_tun_push_vlan = NULL;
bool tunnel_act = false;
char *merge_act;
int err;
/* The last action of sub_flow1 must be output - do not merge this. */
sub1_act_len = sub_flow1->meta.act_len - sizeof(struct nfp_fl_output);
sub2_act_len = sub_flow2->meta.act_len;
if (!sub2_act_len)
return -EINVAL;
if (sub1_act_len + sub2_act_len > NFP_FL_MAX_A_SIZ)
return -EINVAL;
/* A shortcut can only be applied if there is a single action. */
if (sub1_act_len)
merge_flow->meta.shortcut = cpu_to_be32(NFP_FL_SC_ACT_NULL);
else
merge_flow->meta.shortcut = sub_flow2->meta.shortcut;
merge_flow->meta.act_len = sub1_act_len + sub2_act_len;
merge_act = merge_flow->action_data;
/* Copy any pre-actions to the start of merge flow action list. */
pre_off1 = nfp_flower_copy_pre_actions(merge_act,
sub_flow1->action_data,
sub1_act_len, &tunnel_act);
merge_act += pre_off1;
sub1_act_len -= pre_off1;
pre_off2 = nfp_flower_copy_pre_actions(merge_act,
sub_flow2->action_data,
sub2_act_len, NULL);
merge_act += pre_off2;
sub2_act_len -= pre_off2;
/* FW does a tunnel push when egressing, therefore, if sub_flow 1 pushes
* a tunnel, there are restrictions on what sub_flow 2 actions lead to a
* valid merge.
*/
if (tunnel_act) {
char *post_tun_acts = &sub_flow2->action_data[pre_off2];
err = nfp_fl_verify_post_tun_acts(post_tun_acts, sub2_act_len,
&post_tun_push_vlan);
if (err)
return err;
if (post_tun_push_vlan) {
pre_off2 += sizeof(*post_tun_push_vlan);
sub2_act_len -= sizeof(*post_tun_push_vlan);
}
}
/* Copy remaining actions from sub_flows 1 and 2. */
memcpy(merge_act, sub_flow1->action_data + pre_off1, sub1_act_len);
if (post_tun_push_vlan) {
/* Update tunnel action in merge to include VLAN push. */
err = nfp_fl_push_vlan_after_tun(merge_act, sub1_act_len,
post_tun_push_vlan);
if (err)
return err;
merge_flow->meta.act_len -= sizeof(*post_tun_push_vlan);
}
merge_act += sub1_act_len;
memcpy(merge_act, sub_flow2->action_data + pre_off2, sub2_act_len);
return 0;
}
/* Flow link code should only be accessed under RTNL. */
static void nfp_flower_unlink_flow(struct nfp_fl_payload_link *link)
{
list_del(&link->merge_flow.list);
list_del(&link->sub_flow.list);
kfree(link);
}
static void nfp_flower_unlink_flows(struct nfp_fl_payload *merge_flow,
struct nfp_fl_payload *sub_flow)
{
struct nfp_fl_payload_link *link;
list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list)
if (link->sub_flow.flow == sub_flow) {
nfp_flower_unlink_flow(link);
return;
}
}
static int nfp_flower_link_flows(struct nfp_fl_payload *merge_flow,
struct nfp_fl_payload *sub_flow)
{
struct nfp_fl_payload_link *link;
link = kmalloc(sizeof(*link), GFP_KERNEL);
if (!link)
return -ENOMEM;
link->merge_flow.flow = merge_flow;
list_add_tail(&link->merge_flow.list, &merge_flow->linked_flows);
link->sub_flow.flow = sub_flow;
list_add_tail(&link->sub_flow.list, &sub_flow->linked_flows);
return 0;
}
/**
* nfp_flower_merge_offloaded_flows() - Merge 2 existing flows to single flow.
* @app: Pointer to the APP handle
* @sub_flow1: Initial flow matched to produce merge hint
* @sub_flow2: Post recirculation flow matched in merge hint
*
* Combines 2 flows (if valid) to a single flow, removing the initial from hw
* and offloading the new, merged flow.
*
* Return: negative value on error, 0 in success.
*/
int nfp_flower_merge_offloaded_flows(struct nfp_app *app,
struct nfp_fl_payload *sub_flow1,
struct nfp_fl_payload *sub_flow2)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_fl_payload *merge_flow;
struct nfp_fl_key_ls merge_key_ls;
struct nfp_merge_info *merge_info;
u64 parent_ctx = 0;
int err;
ASSERT_RTNL();
if (sub_flow1 == sub_flow2 ||
nfp_flower_is_merge_flow(sub_flow1) ||
nfp_flower_is_merge_flow(sub_flow2))
return -EINVAL;
/* Check if the two flows are already merged */
parent_ctx = (u64)(be32_to_cpu(sub_flow1->meta.host_ctx_id)) << 32;
parent_ctx |= (u64)(be32_to_cpu(sub_flow2->meta.host_ctx_id));
if (rhashtable_lookup_fast(&priv->merge_table,
&parent_ctx, merge_table_params)) {
nfp_flower_cmsg_warn(app, "The two flows are already merged.\n");
return 0;
}
err = nfp_flower_can_merge(sub_flow1, sub_flow2);
if (err)
return err;
merge_key_ls.key_size = sub_flow1->meta.key_len;
merge_flow = nfp_flower_allocate_new(&merge_key_ls);
if (!merge_flow)
return -ENOMEM;
merge_flow->tc_flower_cookie = (unsigned long)merge_flow;
merge_flow->ingress_dev = sub_flow1->ingress_dev;
memcpy(merge_flow->unmasked_data, sub_flow1->unmasked_data,
sub_flow1->meta.key_len);
memcpy(merge_flow->mask_data, sub_flow1->mask_data,
sub_flow1->meta.mask_len);
err = nfp_flower_merge_action(sub_flow1, sub_flow2, merge_flow);
if (err)
goto err_destroy_merge_flow;
err = nfp_flower_link_flows(merge_flow, sub_flow1);
if (err)
goto err_destroy_merge_flow;
err = nfp_flower_link_flows(merge_flow, sub_flow2);
if (err)
goto err_unlink_sub_flow1;
err = nfp_compile_flow_metadata(app, merge_flow->tc_flower_cookie, merge_flow,
merge_flow->ingress_dev, NULL);
if (err)
goto err_unlink_sub_flow2;
err = rhashtable_insert_fast(&priv->flow_table, &merge_flow->fl_node,
nfp_flower_table_params);
if (err)
goto err_release_metadata;
merge_info = kmalloc(sizeof(*merge_info), GFP_KERNEL);
if (!merge_info) {
err = -ENOMEM;
goto err_remove_rhash;
}
merge_info->parent_ctx = parent_ctx;
err = rhashtable_insert_fast(&priv->merge_table, &merge_info->ht_node,
merge_table_params);
if (err)
goto err_destroy_merge_info;
err = nfp_flower_xmit_flow(app, merge_flow,
NFP_FLOWER_CMSG_TYPE_FLOW_MOD);
if (err)
goto err_remove_merge_info;
merge_flow->in_hw = true;
sub_flow1->in_hw = false;
return 0;
err_remove_merge_info:
WARN_ON_ONCE(rhashtable_remove_fast(&priv->merge_table,
&merge_info->ht_node,
merge_table_params));
err_destroy_merge_info:
kfree(merge_info);
err_remove_rhash:
WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
&merge_flow->fl_node,
nfp_flower_table_params));
err_release_metadata:
nfp_modify_flow_metadata(app, merge_flow);
err_unlink_sub_flow2:
nfp_flower_unlink_flows(merge_flow, sub_flow2);
err_unlink_sub_flow1:
nfp_flower_unlink_flows(merge_flow, sub_flow1);
err_destroy_merge_flow:
kfree(merge_flow->action_data);
kfree(merge_flow->mask_data);
kfree(merge_flow->unmasked_data);
kfree(merge_flow);
return err;
}
/**
* nfp_flower_validate_pre_tun_rule()
* @app: Pointer to the APP handle
* @flow: Pointer to NFP flow representation of rule
* @key_ls: Pointer to NFP key layers structure
* @extack: Netlink extended ACK report
*
* Verifies the flow as a pre-tunnel rule.
*
* Return: negative value on error, 0 if verified.
*/
static int
nfp_flower_validate_pre_tun_rule(struct nfp_app *app,
struct nfp_fl_payload *flow,
struct nfp_fl_key_ls *key_ls,
struct netlink_ext_ack *extack)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_flower_meta_tci *meta_tci;
struct nfp_flower_mac_mpls *mac;
u8 *ext = flow->unmasked_data;
struct nfp_fl_act_head *act;
u8 *mask = flow->mask_data;
bool vlan = false;
int act_offset;
u8 key_layer;
meta_tci = (struct nfp_flower_meta_tci *)flow->unmasked_data;
key_layer = key_ls->key_layer;
if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) {
if (meta_tci->tci & cpu_to_be16(NFP_FLOWER_MASK_VLAN_PRESENT)) {
u16 vlan_tci = be16_to_cpu(meta_tci->tci);
vlan_tci &= ~NFP_FLOWER_MASK_VLAN_PRESENT;
flow->pre_tun_rule.vlan_tci = cpu_to_be16(vlan_tci);
vlan = true;
} else {
flow->pre_tun_rule.vlan_tci = cpu_to_be16(0xffff);
}
}
if (key_layer & ~NFP_FLOWER_PRE_TUN_RULE_FIELDS) {
NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: too many match fields");
return -EOPNOTSUPP;
} else if (key_ls->key_layer_two & ~NFP_FLOWER_LAYER2_QINQ) {
NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: non-vlan in extended match fields");
return -EOPNOTSUPP;
}
if (!(key_layer & NFP_FLOWER_LAYER_MAC)) {
NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: MAC fields match required");
return -EOPNOTSUPP;
}
if (!(key_layer & NFP_FLOWER_LAYER_IPV4) &&
!(key_layer & NFP_FLOWER_LAYER_IPV6)) {
NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: match on ipv4/ipv6 eth_type must be present");
return -EOPNOTSUPP;
}
if (key_layer & NFP_FLOWER_LAYER_IPV6)
flow->pre_tun_rule.is_ipv6 = true;
else
flow->pre_tun_rule.is_ipv6 = false;
/* Skip fields known to exist. */
mask += sizeof(struct nfp_flower_meta_tci);
ext += sizeof(struct nfp_flower_meta_tci);
if (key_ls->key_layer_two) {
mask += sizeof(struct nfp_flower_ext_meta);
ext += sizeof(struct nfp_flower_ext_meta);
}
mask += sizeof(struct nfp_flower_in_port);
ext += sizeof(struct nfp_flower_in_port);
/* Ensure destination MAC address is fully matched. */
mac = (struct nfp_flower_mac_mpls *)mask;
if (!is_broadcast_ether_addr(&mac->mac_dst[0])) {
NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: dest MAC field must not be masked");
return -EOPNOTSUPP;
}
/* Ensure source MAC address is fully matched. This is only needed
* for firmware with the DECAP_V2 feature enabled. Don't do this
* for firmware without this feature to keep old behaviour.
*/
if (priv->flower_ext_feats & NFP_FL_FEATS_DECAP_V2) {
mac = (struct nfp_flower_mac_mpls *)mask;
if (!is_broadcast_ether_addr(&mac->mac_src[0])) {
NL_SET_ERR_MSG_MOD(extack,
"unsupported pre-tunnel rule: source MAC field must not be masked");
return -EOPNOTSUPP;
}
}
if (mac->mpls_lse) {
NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: MPLS not supported");
return -EOPNOTSUPP;
}
/* Ensure destination MAC address matches pre_tun_dev. */
mac = (struct nfp_flower_mac_mpls *)ext;
if (memcmp(&mac->mac_dst[0], flow->pre_tun_rule.dev->dev_addr, 6)) {
NL_SET_ERR_MSG_MOD(extack,
"unsupported pre-tunnel rule: dest MAC must match output dev MAC");
return -EOPNOTSUPP;
}
/* Save mac addresses in pre_tun_rule entry for later use */
memcpy(&flow->pre_tun_rule.loc_mac, &mac->mac_dst[0], ETH_ALEN);
memcpy(&flow->pre_tun_rule.rem_mac, &mac->mac_src[0], ETH_ALEN);
mask += sizeof(struct nfp_flower_mac_mpls);
ext += sizeof(struct nfp_flower_mac_mpls);
if (key_layer & NFP_FLOWER_LAYER_IPV4 ||
key_layer & NFP_FLOWER_LAYER_IPV6) {
/* Flags and proto fields have same offset in IPv4 and IPv6. */
int ip_flags = offsetof(struct nfp_flower_ipv4, ip_ext.flags);
int ip_proto = offsetof(struct nfp_flower_ipv4, ip_ext.proto);
int size;
int i;
size = key_layer & NFP_FLOWER_LAYER_IPV4 ?
sizeof(struct nfp_flower_ipv4) :
sizeof(struct nfp_flower_ipv6);
/* Ensure proto and flags are the only IP layer fields. */
for (i = 0; i < size; i++)
if (mask[i] && i != ip_flags && i != ip_proto) {
NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: only flags and proto can be matched in ip header");
return -EOPNOTSUPP;
}
ext += size;
mask += size;
}
if ((priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) {
if (key_ls->key_layer_two & NFP_FLOWER_LAYER2_QINQ) {
struct nfp_flower_vlan *vlan_tags;
u16 vlan_tpid;
u16 vlan_tci;
vlan_tags = (struct nfp_flower_vlan *)ext;
vlan_tci = be16_to_cpu(vlan_tags->outer_tci);
vlan_tpid = be16_to_cpu(vlan_tags->outer_tpid);
vlan_tci &= ~NFP_FLOWER_MASK_VLAN_PRESENT;
flow->pre_tun_rule.vlan_tci = cpu_to_be16(vlan_tci);
flow->pre_tun_rule.vlan_tpid = cpu_to_be16(vlan_tpid);
vlan = true;
} else {
flow->pre_tun_rule.vlan_tci = cpu_to_be16(0xffff);
flow->pre_tun_rule.vlan_tpid = cpu_to_be16(0xffff);
}
}
/* Action must be a single egress or pop_vlan and egress. */
act_offset = 0;
act = (struct nfp_fl_act_head *)&flow->action_data[act_offset];
if (vlan) {
if (act->jump_id != NFP_FL_ACTION_OPCODE_POP_VLAN) {
NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: match on VLAN must have VLAN pop as first action");
return -EOPNOTSUPP;
}
act_offset += act->len_lw << NFP_FL_LW_SIZ;
act = (struct nfp_fl_act_head *)&flow->action_data[act_offset];
}
if (act->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT) {
NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: non egress action detected where egress was expected");
return -EOPNOTSUPP;
}
act_offset += act->len_lw << NFP_FL_LW_SIZ;
/* Ensure there are no more actions after egress. */
if (act_offset != flow->meta.act_len) {
NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: egress is not the last action");
return -EOPNOTSUPP;
}
return 0;
}
static bool offload_pre_check(struct flow_cls_offload *flow)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(flow);
struct flow_dissector *dissector = rule->match.dissector;
struct flow_match_ct ct;
if (dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_CT)) {
flow_rule_match_ct(rule, &ct);
/* Allow special case where CT match is all 0 */
if (memchr_inv(ct.key, 0, sizeof(*ct.key)))
return false;
}
if (flow->common.chain_index)
return false;
return true;
}
/**
* nfp_flower_add_offload() - Adds a new flow to hardware.
* @app: Pointer to the APP handle
* @netdev: netdev structure.
* @flow: TC flower classifier offload structure.
*
* Adds a new flow to the repeated hash structure and action payload.
*
* Return: negative value on error, 0 if configured successfully.
*/
static int
nfp_flower_add_offload(struct nfp_app *app, struct net_device *netdev,
struct flow_cls_offload *flow)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(flow);
enum nfp_flower_tun_type tun_type = NFP_FL_TUNNEL_NONE;
struct nfp_flower_priv *priv = app->priv;
struct netlink_ext_ack *extack = NULL;
struct nfp_fl_payload *flow_pay;
struct nfp_fl_key_ls *key_layer;
struct nfp_port *port = NULL;
int err;
extack = flow->common.extack;
if (nfp_netdev_is_nfp_repr(netdev))
port = nfp_port_from_netdev(netdev);
if (is_pre_ct_flow(flow))
return nfp_fl_ct_handle_pre_ct(priv, netdev, flow, extack);
if (is_post_ct_flow(flow))
return nfp_fl_ct_handle_post_ct(priv, netdev, flow, extack);
if (!offload_pre_check(flow))
return -EOPNOTSUPP;
key_layer = kmalloc(sizeof(*key_layer), GFP_KERNEL);
if (!key_layer)
return -ENOMEM;
err = nfp_flower_calculate_key_layers(app, netdev, key_layer, rule,
&tun_type, extack);
if (err)
goto err_free_key_ls;
flow_pay = nfp_flower_allocate_new(key_layer);
if (!flow_pay) {
err = -ENOMEM;
goto err_free_key_ls;
}
err = nfp_flower_compile_flow_match(app, rule, key_layer, netdev,
flow_pay, tun_type, extack);
if (err)
goto err_destroy_flow;
err = nfp_flower_compile_action(app, rule, netdev, flow_pay, extack);
if (err)
goto err_destroy_flow;
if (flow_pay->pre_tun_rule.dev) {
err = nfp_flower_validate_pre_tun_rule(app, flow_pay, key_layer, extack);
if (err)
goto err_destroy_flow;
}
err = nfp_compile_flow_metadata(app, flow->cookie, flow_pay, netdev, extack);
if (err)
goto err_destroy_flow;
flow_pay->tc_flower_cookie = flow->cookie;
err = rhashtable_insert_fast(&priv->flow_table, &flow_pay->fl_node,
nfp_flower_table_params);
if (err) {
NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot insert flow into tables for offloads");
goto err_release_metadata;
}
if (flow_pay->pre_tun_rule.dev) {
if (priv->flower_ext_feats & NFP_FL_FEATS_DECAP_V2) {
struct nfp_predt_entry *predt;
predt = kzalloc(sizeof(*predt), GFP_KERNEL);
if (!predt) {
err = -ENOMEM;
goto err_remove_rhash;
}
predt->flow_pay = flow_pay;
INIT_LIST_HEAD(&predt->nn_list);
spin_lock_bh(&priv->predt_lock);
list_add(&predt->list_head, &priv->predt_list);
flow_pay->pre_tun_rule.predt = predt;
nfp_tun_link_and_update_nn_entries(app, predt);
spin_unlock_bh(&priv->predt_lock);
} else {
err = nfp_flower_xmit_pre_tun_flow(app, flow_pay);
}
} else {
err = nfp_flower_xmit_flow(app, flow_pay,
NFP_FLOWER_CMSG_TYPE_FLOW_ADD);
}
if (err)
goto err_remove_rhash;
if (port)
port->tc_offload_cnt++;
flow_pay->in_hw = true;
/* Deallocate flow payload when flower rule has been destroyed. */
kfree(key_layer);
return 0;
err_remove_rhash:
WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
&flow_pay->fl_node,
nfp_flower_table_params));
err_release_metadata:
nfp_modify_flow_metadata(app, flow_pay);
err_destroy_flow:
if (flow_pay->nfp_tun_ipv6)
nfp_tunnel_put_ipv6_off(app, flow_pay->nfp_tun_ipv6);
kfree(flow_pay->action_data);
kfree(flow_pay->mask_data);
kfree(flow_pay->unmasked_data);
kfree(flow_pay);
err_free_key_ls:
kfree(key_layer);
return err;
}
static void
nfp_flower_remove_merge_flow(struct nfp_app *app,
struct nfp_fl_payload *del_sub_flow,
struct nfp_fl_payload *merge_flow)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_fl_payload_link *link, *temp;
struct nfp_merge_info *merge_info;
struct nfp_fl_payload *origin;
u64 parent_ctx = 0;
bool mod = false;
int err;
link = list_first_entry(&merge_flow->linked_flows,
struct nfp_fl_payload_link, merge_flow.list);
origin = link->sub_flow.flow;
/* Re-add rule the merge had overwritten if it has not been deleted. */
if (origin != del_sub_flow)
mod = true;
err = nfp_modify_flow_metadata(app, merge_flow);
if (err) {
nfp_flower_cmsg_warn(app, "Metadata fail for merge flow delete.\n");
goto err_free_links;
}
if (!mod) {
err = nfp_flower_xmit_flow(app, merge_flow,
NFP_FLOWER_CMSG_TYPE_FLOW_DEL);
if (err) {
nfp_flower_cmsg_warn(app, "Failed to delete merged flow.\n");
goto err_free_links;
}
} else {
__nfp_modify_flow_metadata(priv, origin);
err = nfp_flower_xmit_flow(app, origin,
NFP_FLOWER_CMSG_TYPE_FLOW_MOD);
if (err)
nfp_flower_cmsg_warn(app, "Failed to revert merge flow.\n");
origin->in_hw = true;
}
err_free_links:
/* Clean any links connected with the merged flow. */
list_for_each_entry_safe(link, temp, &merge_flow->linked_flows,
merge_flow.list) {
u32 ctx_id = be32_to_cpu(link->sub_flow.flow->meta.host_ctx_id);
parent_ctx = (parent_ctx << 32) | (u64)(ctx_id);
nfp_flower_unlink_flow(link);
}
merge_info = rhashtable_lookup_fast(&priv->merge_table,
&parent_ctx,
merge_table_params);
if (merge_info) {
WARN_ON_ONCE(rhashtable_remove_fast(&priv->merge_table,
&merge_info->ht_node,
merge_table_params));
kfree(merge_info);
}
kfree(merge_flow->action_data);
kfree(merge_flow->mask_data);
kfree(merge_flow->unmasked_data);
WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
&merge_flow->fl_node,
nfp_flower_table_params));
kfree_rcu(merge_flow, rcu);
}
void
nfp_flower_del_linked_merge_flows(struct nfp_app *app,
struct nfp_fl_payload *sub_flow)
{
struct nfp_fl_payload_link *link, *temp;
/* Remove any merge flow formed from the deleted sub_flow. */
list_for_each_entry_safe(link, temp, &sub_flow->linked_flows,
sub_flow.list)
nfp_flower_remove_merge_flow(app, sub_flow,
link->merge_flow.flow);
}
/**
* nfp_flower_del_offload() - Removes a flow from hardware.
* @app: Pointer to the APP handle
* @netdev: netdev structure.
* @flow: TC flower classifier offload structure
*
* Removes a flow from the repeated hash structure and clears the
* action payload. Any flows merged from this are also deleted.
*
* Return: negative value on error, 0 if removed successfully.
*/
static int
nfp_flower_del_offload(struct nfp_app *app, struct net_device *netdev,
struct flow_cls_offload *flow)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_fl_ct_map_entry *ct_map_ent;
struct netlink_ext_ack *extack = NULL;
struct nfp_fl_payload *nfp_flow;
struct nfp_port *port = NULL;
int err;
extack = flow->common.extack;
if (nfp_netdev_is_nfp_repr(netdev))
port = nfp_port_from_netdev(netdev);
/* Check ct_map_table */
ct_map_ent = rhashtable_lookup_fast(&priv->ct_map_table, &flow->cookie,
nfp_ct_map_params);
if (ct_map_ent) {
err = nfp_fl_ct_del_flow(ct_map_ent);
return err;
}
nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev);
if (!nfp_flow) {
NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot remove flow that does not exist");
return -ENOENT;
}
err = nfp_modify_flow_metadata(app, nfp_flow);
if (err)
goto err_free_merge_flow;
if (nfp_flow->nfp_tun_ipv4_addr)
nfp_tunnel_del_ipv4_off(app, nfp_flow->nfp_tun_ipv4_addr);
if (nfp_flow->nfp_tun_ipv6)
nfp_tunnel_put_ipv6_off(app, nfp_flow->nfp_tun_ipv6);
if (!nfp_flow->in_hw) {
err = 0;
goto err_free_merge_flow;
}
if (nfp_flow->pre_tun_rule.dev) {
if (priv->flower_ext_feats & NFP_FL_FEATS_DECAP_V2) {
struct nfp_predt_entry *predt;
predt = nfp_flow->pre_tun_rule.predt;
if (predt) {
spin_lock_bh(&priv->predt_lock);
nfp_tun_unlink_and_update_nn_entries(app, predt);
list_del(&predt->list_head);
spin_unlock_bh(&priv->predt_lock);
kfree(predt);
}
} else {
err = nfp_flower_xmit_pre_tun_del_flow(app, nfp_flow);
}
} else {
err = nfp_flower_xmit_flow(app, nfp_flow,
NFP_FLOWER_CMSG_TYPE_FLOW_DEL);
}
/* Fall through on error. */
err_free_merge_flow:
nfp_flower_del_linked_merge_flows(app, nfp_flow);
if (port)
port->tc_offload_cnt--;
kfree(nfp_flow->action_data);
kfree(nfp_flow->mask_data);
kfree(nfp_flow->unmasked_data);
WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
&nfp_flow->fl_node,
nfp_flower_table_params));
kfree_rcu(nfp_flow, rcu);
return err;
}
static void
__nfp_flower_update_merge_stats(struct nfp_app *app,
struct nfp_fl_payload *merge_flow)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_fl_payload_link *link;
struct nfp_fl_payload *sub_flow;
u64 pkts, bytes, used;
u32 ctx_id;
ctx_id = be32_to_cpu(merge_flow->meta.host_ctx_id);
pkts = priv->stats[ctx_id].pkts;
/* Do not cycle subflows if no stats to distribute. */
if (!pkts)
return;
bytes = priv->stats[ctx_id].bytes;
used = priv->stats[ctx_id].used;
/* Reset stats for the merge flow. */
priv->stats[ctx_id].pkts = 0;
priv->stats[ctx_id].bytes = 0;
/* The merge flow has received stats updates from firmware.
* Distribute these stats to all subflows that form the merge.
* The stats will collected from TC via the subflows.
*/
list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list) {
sub_flow = link->sub_flow.flow;
ctx_id = be32_to_cpu(sub_flow->meta.host_ctx_id);
priv->stats[ctx_id].pkts += pkts;
priv->stats[ctx_id].bytes += bytes;
priv->stats[ctx_id].used = max_t(u64, used,
priv->stats[ctx_id].used);
}
}
void
nfp_flower_update_merge_stats(struct nfp_app *app,
struct nfp_fl_payload *sub_flow)
{
struct nfp_fl_payload_link *link;
/* Get merge flows that the subflow forms to distribute their stats. */
list_for_each_entry(link, &sub_flow->linked_flows, sub_flow.list)
__nfp_flower_update_merge_stats(app, link->merge_flow.flow);
}
/**
* nfp_flower_get_stats() - Populates flow stats obtained from hardware.
* @app: Pointer to the APP handle
* @netdev: Netdev structure.
* @flow: TC flower classifier offload structure
*
* Populates a flow statistics structure which which corresponds to a
* specific flow.
*
* Return: negative value on error, 0 if stats populated successfully.
*/
static int
nfp_flower_get_stats(struct nfp_app *app, struct net_device *netdev,
struct flow_cls_offload *flow)
{
struct nfp_flower_priv *priv = app->priv;
struct nfp_fl_ct_map_entry *ct_map_ent;
struct netlink_ext_ack *extack = NULL;
struct nfp_fl_payload *nfp_flow;
u32 ctx_id;
/* Check ct_map table first */
ct_map_ent = rhashtable_lookup_fast(&priv->ct_map_table, &flow->cookie,
nfp_ct_map_params);
if (ct_map_ent)
return nfp_fl_ct_stats(flow, ct_map_ent);
extack = flow->common.extack;
nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev);
if (!nfp_flow) {
NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot dump stats for flow that does not exist");
return -EINVAL;
}
ctx_id = be32_to_cpu(nfp_flow->meta.host_ctx_id);
spin_lock_bh(&priv->stats_lock);
/* If request is for a sub_flow, update stats from merged flows. */
if (!list_empty(&nfp_flow->linked_flows))
nfp_flower_update_merge_stats(app, nfp_flow);
flow_stats_update(&flow->stats, priv->stats[ctx_id].bytes,
priv->stats[ctx_id].pkts, 0, priv->stats[ctx_id].used,
FLOW_ACTION_HW_STATS_DELAYED);
priv->stats[ctx_id].pkts = 0;
priv->stats[ctx_id].bytes = 0;
spin_unlock_bh(&priv->stats_lock);
return 0;
}
static int
nfp_flower_repr_offload(struct nfp_app *app, struct net_device *netdev,
struct flow_cls_offload *flower)
{
if (!eth_proto_is_802_3(flower->common.protocol))
return -EOPNOTSUPP;
switch (flower->command) {
case FLOW_CLS_REPLACE:
return nfp_flower_add_offload(app, netdev, flower);
case FLOW_CLS_DESTROY:
return nfp_flower_del_offload(app, netdev, flower);
case FLOW_CLS_STATS:
return nfp_flower_get_stats(app, netdev, flower);
default:
return -EOPNOTSUPP;
}
}
static int nfp_flower_setup_tc_block_cb(enum tc_setup_type type,
void *type_data, void *cb_priv)
{
struct flow_cls_common_offload *common = type_data;
struct nfp_repr *repr = cb_priv;
if (!tc_can_offload_extack(repr->netdev, common->extack))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_CLSFLOWER:
return nfp_flower_repr_offload(repr->app, repr->netdev,
type_data);
case TC_SETUP_CLSMATCHALL:
return nfp_flower_setup_qos_offload(repr->app, repr->netdev,
type_data);
default:
return -EOPNOTSUPP;
}
}
static LIST_HEAD(nfp_block_cb_list);
static int nfp_flower_setup_tc_block(struct net_device *netdev,
struct flow_block_offload *f)
{
struct nfp_repr *repr = netdev_priv(netdev);
struct nfp_flower_repr_priv *repr_priv;
struct flow_block_cb *block_cb;
if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
return -EOPNOTSUPP;
repr_priv = repr->app_priv;
repr_priv->block_shared = f->block_shared;
f->driver_block_list = &nfp_block_cb_list;
switch (f->command) {
case FLOW_BLOCK_BIND:
if (flow_block_cb_is_busy(nfp_flower_setup_tc_block_cb, repr,
&nfp_block_cb_list))
return -EBUSY;
block_cb = flow_block_cb_alloc(nfp_flower_setup_tc_block_cb,
repr, repr, NULL);
if (IS_ERR(block_cb))
return PTR_ERR(block_cb);
flow_block_cb_add(block_cb, f);
list_add_tail(&block_cb->driver_list, &nfp_block_cb_list);
return 0;
case FLOW_BLOCK_UNBIND:
block_cb = flow_block_cb_lookup(f->block,
nfp_flower_setup_tc_block_cb,
repr);
if (!block_cb)
return -ENOENT;
flow_block_cb_remove(block_cb, f);
list_del(&block_cb->driver_list);
return 0;
default:
return -EOPNOTSUPP;
}
}
int nfp_flower_setup_tc(struct nfp_app *app, struct net_device *netdev,
enum tc_setup_type type, void *type_data)
{
switch (type) {
case TC_SETUP_BLOCK:
return nfp_flower_setup_tc_block(netdev, type_data);
default:
return -EOPNOTSUPP;
}
}
struct nfp_flower_indr_block_cb_priv {
struct net_device *netdev;
struct nfp_app *app;
struct list_head list;
};
static struct nfp_flower_indr_block_cb_priv *
nfp_flower_indr_block_cb_priv_lookup(struct nfp_app *app,
struct net_device *netdev)
{
struct nfp_flower_indr_block_cb_priv *cb_priv;
struct nfp_flower_priv *priv = app->priv;
list_for_each_entry(cb_priv, &priv->indr_block_cb_priv, list)
if (cb_priv->netdev == netdev)
return cb_priv;
return NULL;
}
static int nfp_flower_setup_indr_block_cb(enum tc_setup_type type,
void *type_data, void *cb_priv)
{
struct nfp_flower_indr_block_cb_priv *priv = cb_priv;
switch (type) {
case TC_SETUP_CLSFLOWER:
return nfp_flower_repr_offload(priv->app, priv->netdev,
type_data);
default:
return -EOPNOTSUPP;
}
}
void nfp_flower_setup_indr_tc_release(void *cb_priv)
{
struct nfp_flower_indr_block_cb_priv *priv = cb_priv;
list_del(&priv->list);
kfree(priv);
}
static int
nfp_flower_setup_indr_tc_block(struct net_device *netdev, struct Qdisc *sch, struct nfp_app *app,
struct flow_block_offload *f, void *data,
void (*cleanup)(struct flow_block_cb *block_cb))
{
struct nfp_flower_indr_block_cb_priv *cb_priv;
struct nfp_flower_priv *priv = app->priv;
struct flow_block_cb *block_cb;
if ((f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS &&
!nfp_flower_internal_port_can_offload(app, netdev)) ||
(f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS &&
nfp_flower_internal_port_can_offload(app, netdev)))
return -EOPNOTSUPP;
switch (f->command) {
case FLOW_BLOCK_BIND:
cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev);
if (cb_priv &&
flow_block_cb_is_busy(nfp_flower_setup_indr_block_cb,
cb_priv,
&nfp_block_cb_list))
return -EBUSY;
cb_priv = kmalloc(sizeof(*cb_priv), GFP_KERNEL);
if (!cb_priv)
return -ENOMEM;
cb_priv->netdev = netdev;
cb_priv->app = app;
list_add(&cb_priv->list, &priv->indr_block_cb_priv);
block_cb = flow_indr_block_cb_alloc(nfp_flower_setup_indr_block_cb,
cb_priv, cb_priv,
nfp_flower_setup_indr_tc_release,
f, netdev, sch, data, app, cleanup);
if (IS_ERR(block_cb)) {
list_del(&cb_priv->list);
kfree(cb_priv);
return PTR_ERR(block_cb);
}
flow_block_cb_add(block_cb, f);
list_add_tail(&block_cb->driver_list, &nfp_block_cb_list);
return 0;
case FLOW_BLOCK_UNBIND:
cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev);
if (!cb_priv)
return -ENOENT;
block_cb = flow_block_cb_lookup(f->block,
nfp_flower_setup_indr_block_cb,
cb_priv);
if (!block_cb)
return -ENOENT;
flow_indr_block_cb_remove(block_cb, f);
list_del(&block_cb->driver_list);
return 0;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int
nfp_setup_tc_no_dev(struct nfp_app *app, enum tc_setup_type type, void *data)
{
if (!data)
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_ACT:
return nfp_setup_tc_act_offload(app, data);
default:
return -EOPNOTSUPP;
}
}
int
nfp_flower_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, void *cb_priv,
enum tc_setup_type type, void *type_data,
void *data,
void (*cleanup)(struct flow_block_cb *block_cb))
{
if (!netdev)
return nfp_setup_tc_no_dev(cb_priv, type, data);
if (!nfp_fl_is_netdev_to_offload(netdev))
return -EOPNOTSUPP;
switch (type) {
case TC_SETUP_BLOCK:
return nfp_flower_setup_indr_tc_block(netdev, sch, cb_priv,
type_data, data, cleanup);
default:
return -EOPNOTSUPP;
}
}