test_pie/external/MRF/block.h

286 lines
8.7 KiB
C
Raw Normal View History

2023-09-14 11:12:02 +02:00
/* block.h */
/*
Copyright 2001 Vladimir Kolmogorov (vnk@cs.cornell.edu), Yuri Boykov (yuri@csd.uwo.ca).
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
Template classes Block and DBlock
Implement adding and deleting items of the same type in blocks.
If there there are many items then using Block or DBlock
is more efficient than using 'new' and 'delete' both in terms
of memory and time since
(1) On some systems there is some minimum amount of memory
that 'new' can allocate (e.g., 64), so if items are
small that a lot of memory is wasted.
(2) 'new' and 'delete' are designed for items of varying size.
If all items has the same size, then an algorithm for
adding and deleting can be made more efficient.
(3) All Block and DBlock functions are inline, so there are
no extra function calls.
Differences between Block and DBlock:
(1) DBlock allows both adding and deleting items,
whereas Block allows only adding items.
(2) Block has an additional operation of scanning
items added so far (in the order in which they were added).
(3) Block allows to allocate several consecutive
items at a time, whereas DBlock can add only a single item.
Note that no constructors or destructors are called for items.
Example usage for items of type 'MyType':
///////////////////////////////////////////////////
#include "block.h"
#define BLOCK_SIZE 1024
typedef struct { int a, b; } MyType;
MyType *ptr, *array[10000];
...
Block<MyType> *block = new Block<MyType>(BLOCK_SIZE);
// adding items
for (int i=0; i<sizeof(array); i++)
{
ptr = block -> New();
ptr -> a = ptr -> b = rand();
}
// reading items
for (ptr=block->ScanFirst(); ptr; ptr=block->ScanNext())
{
printf("%d %d\n", ptr->a, ptr->b);
}
delete block;
...
DBlock<MyType> *dblock = new DBlock<MyType>(BLOCK_SIZE);
// adding items
for (int i=0; i<sizeof(array); i++)
{
array[i] = dblock -> New();
}
// deleting items
for (int i=0; i<sizeof(array); i+=2)
{
dblock -> Delete(array[i]);
}
// adding items
for (int i=0; i<sizeof(array); i++)
{
array[i] = dblock -> New();
}
delete dblock;
///////////////////////////////////////////////////
Note that DBlock deletes items by marking them as
empty (i.e., by adding them to the list of free items),
so that this memory could be used for subsequently
added items. Thus, at each moment the memory allocated
is determined by the maximum number of items allocated
simultaneously at earlier moments. All memory is
deallocated only when the destructor is called.
*/
#ifndef __BLOCK_H__
#define __BLOCK_H__
#include <stdlib.h>
/***********************************************************************/
/***********************************************************************/
/***********************************************************************/
template <class Type> class Block
{
public:
/* Constructor. Arguments are the block size and
(optionally) the pointer to the function which
will be called if allocation failed; the message
passed to this function is "Not enough memory!" */
Block(int size, void (*err_function)(char *) = NULL) { first = last = NULL; block_size = size; error_function = err_function; }
/* Destructor. Deallocates all items added so far */
~Block() { while (first) { block *next = first -> next; delete first; first = next; } }
/* Allocates 'num' consecutive items; returns pointer
to the first item. 'num' cannot be greater than the
block size since items must fit in one block */
Type *New(int num = 1)
{
Type *t;
if (!last || last->current + num > last->last)
{
if (last && last->next) last = last -> next;
else
{
block *next = (block *) new char [sizeof(block) + (block_size-1)*sizeof(Type)];
if (!next) { if (error_function) (*error_function)("Not enough memory!"); exit(1); }
if (last) last -> next = next;
else first = next;
last = next;
last -> current = & ( last -> data[0] );
last -> last = last -> current + block_size;
last -> next = NULL;
}
}
t = last -> current;
last -> current += num;
return t;
}
/* Returns the first item (or NULL, if no items were added) */
Type *ScanFirst()
{
scan_current_block = first;
if (!scan_current_block) return NULL;
scan_current_data = & ( scan_current_block -> data[0] );
return scan_current_data ++;
}
/* Returns the next item (or NULL, if all items have been read)
Can be called only if previous ScanFirst() or ScanNext()
call returned not NULL. */
Type *ScanNext()
{
if (scan_current_data >= scan_current_block -> current)
{
scan_current_block = scan_current_block -> next;
if (!scan_current_block) return NULL;
scan_current_data = & ( scan_current_block -> data[0] );
}
return scan_current_data ++;
}
/* Marks all elements as empty */
void Reset()
{
block *b;
if (!first) return;
for (b=first; ; b=b->next)
{
b -> current = & ( b -> data[0] );
if (b == last) break;
}
last = first;
}
/***********************************************************************/
private:
typedef struct block_st
{
Type *current, *last;
struct block_st *next;
Type data[1];
} block;
int block_size;
block *first;
block *last;
block *scan_current_block;
Type *scan_current_data;
void (*error_function)(const char *);
};
/***********************************************************************/
/***********************************************************************/
/***********************************************************************/
template <class Type> class DBlock
{
public:
/* Constructor. Arguments are the block size and
(optionally) the pointer to the function which
will be called if allocation failed; the message
passed to this function is "Not enough memory!" */
DBlock(int size, void (*err_function)(const char *) = NULL) { first = NULL; first_free = NULL; block_size = size; error_function = err_function; }
/* Destructor. Deallocates all items added so far */
~DBlock() { while (first) { block *next = first -> next; delete first; first = next; } }
/* Allocates one item */
Type *New()
{
block_item *item;
if (!first_free)
{
block *next = first;
first = (block *) new char [sizeof(block) + (block_size-1)*sizeof(block_item)];
if (!first) { if (error_function) (*error_function)("Not enough memory!"); exit(1); }
first_free = & (first -> data[0] );
for (item=first_free; item<first_free+block_size-1; item++)
item -> next_free = item + 1;
item -> next_free = NULL;
first -> next = next;
}
item = first_free;
first_free = item -> next_free;
return (Type *) item;
}
/* Deletes an item allocated previously */
void Delete(Type *t)
{
((block_item *) t) -> next_free = first_free;
first_free = (block_item *) t;
}
/***********************************************************************/
private:
typedef union block_item_st
{
Type t;
block_item_st *next_free;
} block_item;
typedef struct block_st
{
struct block_st *next;
block_item data[1];
} block;
int block_size;
block *first;
block_item *first_free;
void (*error_function)(const char *);
};
#endif