Open Thesis Topics

Simon.Kluettermann@cs.tu-dortmund.de

ls9 tu Dortmund

27. September 2022

Simon Kluettermann

- First: Find a topic and a supervisor
- Work one month on this, to make sure
 - you still like your topic
 - and you are sure you can handle the topic
- then short presentation in front of our chair (15min, relaxed)
 - get some feedback/suggestions
- afterwards register the thesis
 - (different for CS/DS students)
- Problem: We are not able to supervise more than 2 students at the same time (CS faculty rules)

- First: A short summary of each Topic
- Then time for questions/Talk with your supervisor about each topic that sounds interesting
- Your own topics are always welcome;)

- Im working on Anomaly Detection
- That means characterising an often very complex distributions, to find events that dont match the expected distribution

- kNN algorithm can also be used for AD
- if the k closest point is further away, a sample is considered more anomalous

•
$$r = \frac{k}{2N \cdot pdf}$$

• Powerful method, as it can model the pdf directly

- The model (mostly) ignores every known sample except one
- So there are extensions
- $avg = \frac{1}{N} \sum_{i} knn_i(x)$
- wavg = $\frac{1}{N}\sum_{i}\frac{knn_{i}(x)}{i}$

Dataset	wavg	avg	1	3	5
vertebral	0.4506	0.4506	0.4667	0.4667	0.45
thyroid	0.9138	0.9151	0.8763	0.9086	0.914
<i>Iris_setosa</i>	0.9333	0.9333	0.9333	0.9	0.9
breastw	0.9361	0.9361	0.9211	0.9248	0.9286
wine	0.95	0.95	0.9	0.95	0.95
pendigits	0.9487	0.9487	0.9391	0.9295	0.9359
segment	0.9747	0.9747	0.9495	0.9545	0.9394
banknote — authentication	0.9777	0.9776	0.9408	0.943	0.9583
vowels	0.9998	0.9972	0.99	0.92	0.93
Ecoli	1.0	1.0	0.9	1.0	1.0
Average	0.7528	0.7520	0.7325	0.7229	0.7157

- Evaluation as anomaly detector is complicated
 - Requires known anomalies
- $\bullet \ \Rightarrow So$ evaluate as density estimator
 - Does not require anomalies
 - Allows generating infinite amounts of training data

- Collect Extensions of the oc-knn algorithm
- Define some distance measure to a known pdf
- Generate random datapoints following the pdf
- Evaluate which algorithm finds the pdf the best

- Knowledge of python (sum([i for i in range(5) if i%2]))
 - Ideally incl numpy
- Basic university level Math (you could argue that $r_k \propto \frac{k}{pdf}$)
- Ideally some experience working on a ssh server
- $\bullet \ \Rightarrow \textsf{Good as a Bachelor Thesis}$
- For a Master Thesis, I would extend this a bit (Could you also find k?)

• Deep Learning Method, in which the output is normalised

• $\int f(x) dx = 1 \ \forall f(x)$

- Can be used to estimate probability density functions
- $\bullet \ \Rightarrow \mathsf{Thus} \ \mathsf{useful} \ \mathsf{for} \ \mathsf{AD}$
- $\int f(h(x)) \| \frac{\delta x}{\delta h} \| dh = 1 \ \forall h(x)$

- How to apply this to graphs?
- One Paper (Liu 2019) uses two NN:
- Autoencoder graph \Rightarrow vector
- NF on vector data
- which is fine, but also not really graph specific
- No interaction between encoding and transformation

- So why not do this directly?
- \Rightarrow Requires differentiating a graph
- Why not use only one Network?
- Graph \Rightarrow Vector \Rightarrow pdf
- \Rightarrow Finds trivial solution, as $< pdf > \propto rac{1}{\sigma_{Vector}}$
- So regularise the standart deviation of the vector space!
 - Interplay between encoding and NF
 - Could also be useful for highdim data

- Proficient in python ([i for i in range(1,N) if not [j for j in range(2,i) if not i%j]])
 - Ideally incl numpy, tensorflow, keras
- Some deep learning experience
- University level math (google Cholesky Decomposition. Why is this useful for NF?)
- Ideally some experience working on a ssh server
- A bit more challenging \Rightarrow Better as a Master thesis
- (Still we would start very slowly of course)

- Isolation Forest: Different Anomaly Detection Algorithm
- Problem: Isolation Forests dont work on categorical data
- $\bullet \ \Rightarrow \mathsf{Extend}$ them to categorical data

- Reidentification: Find known objects in new images
- Task: Find if two images of pallet blocks are of the same pallet block
- Use AD to represent the pallet blocks

- Ensemble: Combination of multiple models
- Task: Explain the prediction of a model using the ensemble structure

- Task: Explore a new kind of ensemble
- Instead of many uncorrelated models, let the models interact during training

Questions?