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Chapter 1

Introduction

Nowadays, automation has covered many
areas, many jobs. Complex devices are
used every day and generate massive data
streams of multidimensional measurement
data in real-time to characterize their real-
time status. Therefore, it is important to
detect the data stream generated by the de-
vices, which ensures the daily life of people
nowadays. Occasionally, certain devices fail,
causing a system outage, and postmortem
analysis shows that these devices produced
anomalies prior to the outage. If the tech-
nicians are notified in time, they can repair
the device in time to minimize the damage
before it breaks down. Finding anomalies
with traditional supervised machine learn-
ing methods is often impractical or impos-
sible because the failure is too complex, the
device is too new, or the data changes too
quickly and is not updated in a timely man-
ner. Therefore, methods for unsupervised
anomaly detection for data streams are of
particular interest. Then due to the char-
acteristics of unsupervised learning, when
dealing with these problems, unsupervised
learning is more suitable.

Unsupervised learning applies to sit-
uations where you have a data set but no

labels or a few normal data labels. Rely-
ing on the model itself through continuous
exploration, summarizing and summarizing
the knowledge, trying to discover the inher-
ent laws or features in the data, to label the
training data. (including K-Means, PCA,
AE, etc.). When the proportion of abnor-
mal data in our data is small and the value
of abnormal data is quite different from the
normal value, we usually adopt unsupervised
learning. However, if the proportion of ab-
normal data is high, it may lead to unsatis-
factory final results.

Several factors should be considered when
developing an unsupervised multidimen-
sional data stream anomaly detection solu-
tion:

• Multidimensional
Data streams are always multidimen-
sional. Devices generate data streams
with high dimensionality, where the
anomaly is observable in a subset of
dimensions, but masked in noise di-
mensions. Unfortunately, with increas-
ing dimensionality, many conventional
anomaly detection methods fail to work
effectively.
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CHAPTER 1. INTRODUCTION 2

• Correlated
Data streams are always correlated, not
independent. For example, under nor-
mal conditions, the desired set point
temperature and the observed temper-
ature are always highly correlated.

• Multimodal
They are also always multimodal. Like
some devices have an active mode and
standby mode. However, there are none
or only a few intermediate data points
for transitions between different modes,
like concept drift in time series data.

These characteristics of the data stream
make anomaly detection more difficult. But
at the same time, we also have to consider
the different types of anomalies. There are
2 most frequently occurring anomaly types:
Point Anomaly and Contextual Anomaly.

• Point Anomaly
It can also be called a global anomaly,
that is, a certain point is different
from most of the global points, then
this point constitutes a single-point
anomaly.
In the Figure 1.1[5], we can find that
the three parts of O1, O2 and O3 are
different from most of the global points
(N1, N2), and O1, O2 and O3 are the
point anomalies in this data.

Figure 1.1: Point Anomalies O1, O2, O3

• Contextual Anomaly
This type of anomaly is mostly an
anomaly in time series data, that is,
there is a big difference between the per-
formance at a certain point in time and
the time period before and after then
the anomaly is a contextual anomaly.
In the Figure 1.2[5], note that the tem-
perature at time t1 is the same as that
at time t2 but occurs in a different con-
text and hence is not considered as an
anomaly[5].

Figure 1.2: Contextual anomaly t2 in a tem-
perature time series.

According to the difficulties we are facing
now, we need to use unsupervised anomaly
detection methods to find anomalies in the
data stream. And just as important is how
to explain why this data is an anomalous, or
further what caused the anomalous. This al-
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lows these failures or other situations caused
by anomalous to be dealt with in a timely
manner.
In this paper, we will introduce and dis-
cuss several unsupervised anomaly detection
methods and anomaly interpretation meth-
ods for the data stream.



Chapter 2

Related Works

2.1 Unsupervised anomaly

detection approaches

Anomaly detection has been studied for
decades. And so far, there have been many
unsupervised anomaly detection methods
for data streams. They can be divided into
4 broad categories, like in Figure 2.1.

Figure 2.1: Different unsupervised anomaly
detection categories

In this chapter, we want to introduce some
common methods and related work for solv-
ing anomaly detection.

2.1.1 One-class Classification

One-class classifiers are trained to learn
a transformation function f : X → c

that generates a scalar value as a class
score c ⊂ C, when the input data resem-
bles the observed, and mostly normal, data

stream[1]. Then, we consider some data
points as outliers when their c values are
clearly different from the values in C. Two
of the representative models are One-class
SVM(OCSVM)[14] and Deep Support Vec-
tor Data Description(DSVDD)[10].

• DSVDD
SVDD is an unsupervised learning
model based on SVM. Unlike OCSVM,
SVDD tries to find the smallest possi-
ble hypersphere that contains most of
the training set[16]. However, because
SVM struggles with high-dimensional
data[9], and when the training data
only has normal data, it is impossible to
control the false alarm rate by selecting
hyperparameters[17].

• OCSVM
In OCSVM only normal data are used
to train the model and a hyperplane is
trained that circle the normal data in
the sample, like Figure 2.2. Prediction
is the use of this hyperplane to make
decisions, and samples that are within
the circle are considered normal data
and outside the boundaries are identi-
fied as anomalies. But it also has the
same problems as SVDD.

4
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Figure 2.2: OCSVM schematic diagram

2.1.2 Density-based

Density-based outlier detection methods
study the densities of objects and their
neighbors. Here, an object is identified as
an outlier if its density is relatively lower
than that of its neighbors. Many real-world
datasets demonstrate a more complex struc-
ture, where objects may be considered out-
liers relative to their local neighborhoods
rather than relative to the global data dis-
tribution.

Figure 2.3: Density-based anomaly detection
method

Consider the example in the Figure 2.3
above, where the distance-based approach
is able to detect o3, but for o1 and o2,
it is not as obvious. The idea of density-
based is that we need to compare the density
around an object with the density around
its local neighbors. The basic assump-
tion of the density-based outlier detection
method is that the density around a non-
anomalous object is similar to the den-
sity around its neighbors, while the density
around an anomalous object is significantly
different from the density around its neigh-
bors.

• Isolation Forest
One widely used approach originally
proposed[11], called Isolation Forest, is
an ensemble of random trees that recur-
sively partition the data space until all
points are isolated. In the process of de-
tecting, if some samples reach the leaf
nodes soon, they may be regarded as
abnormal points. To reduce the influ-
ence of randomness, a forest is formed
by constructing multiple trees, and then
the average path length of the sample in
all trees is calculated to find anomalies.
If there is a lot of noise or irrelevant di-
mensions in the data, it will affect the
construction of the tree and reduce the
reliability of the algorithm.
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2.1.3 Autoencoder and generative
methods

Autoencoder and generative methods only
use normal data to train the encoder-
decoder architecture. Then the raw data in-
puts into the autoencoder and the autoen-
coder outputs the reconstruction data. If
some points have greater reconstruction er-
ror than other points. These points tend to
anomalies.

• Auroencoders
In 2002, Hawkins et al. proposed
an Autoencoder[8] that detects anoma-
lies by reconstructing data errors. In
2016, Malhotra et al. proposed
a Long Short Term Memory(LSTM)
network-based Encoder Decoder (Au-
toencoder) scheme for Anomaly Detec-
tion (EncDec-AD) that learns to re-
construct ‘normal’ time-series behavior,
and thereafter uses the reconstruction
error to detect anomalies [12]. And in
2018, on the basis of EncDec-AD, Zong
et al. proposed in the paper to com-
bine the deep autoencoder(Including
LSTM autoencoder and vanilla au-
toencoder) with a Gaussian Mixture
Model(DAGMM), by generating a low-
dimensional representation and recon-
struction error for each input data
point, which is further fed into a
GMM[18]. Instead of using the stan-
dard Expectation-Maximization (EM)
algorithm to realize its data anomaly
detection. DAGMM solves the problem
that the system performance is limited

due to the low convergence speed when
applying the EM algorithm.

• Generative methods
In 2018, Akcay et al. proposed
GANomaly[2] based on the GAN and
Autoencoder. Different from the gen-
eral method based on self-encoder,
it adopts the structure of Encoder1-
Decoder-Encoder2. At the same time,
learn the two mapping relationships of
"original data to reconstructed data"
and "original data encoding to recon-
structed data encoding". Finally, the
difference between the latent space fea-
tures generated by the first part of
the encoder (the encoding of the orig-
inal data) and the latent space fea-
tures (the encoding of the reconstructed
data) generated by the second part of
the encoder is used to pay attention to
the small changes in the data[2]. That
solves the problem that the encoder is
susceptible to noise.

2.1.4 Negative Selection Algo-
rithms (NSA)

NSA were initially pro as a biologically
inspired method of detecting computer
viruses[6]. Most NSAs apply search algo-
rithms that attempt to emulate how an-
tibodies distinguish pathogens from body
cells. In 2020, Sipple proposed a new clas-
sifier with Negative Sampling. He used the
existing dataset to build a hypercube V. And
the edge length of each dimension is the
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difference between the maximum and the
minimum values of this dimension, which
is ∆v. And the data within this hyper-
cube are treated as positive samples (also
known as normal data). Then he added
or subtracted a δ to each dimension to ob-
tain a strictly greater hull U to bound neg-
ative samples(also known as outliers) with
edge length ∆u. By taking normal data and
anomalies uniformly in V and U a binary
classification model can be trained, like in
Figure 2.4.

Figure 2.4: Negative sampling Algorithm

Ideally, we would like to train a binary
classifier F on data that has as few la-
beling errors as possible. Intuitively, it
makes sense to develop an algorithm that
carefully selects the negative sample to
avoid the Normal space. For example,
Gonzalez proposes a type of region growing
approach that avoids choosing points close
to the positive sample[7]. However, such a
sampling approach is difficult and/or com-
putationally expensive in high dimensions
because we are not able to characterize
the positive volume[15]. However, Sipple
proposed an easier method. Since the

sampling is uniform, the probability of
getting a true anomaly (true negative) in
Normal Hypercube V (probability of false
positive) is the ratio of the volumes of
the two hypercubes. The volumes can be
obtained by multiplying each edge. Due to
every ∆u is a little bigger than ∆v, so if
there is enough high dimensional data, the
probability of false positive will converge to
0.

Figure 2.5: Solve false positive problem

In Figure 2.5, it is an example for this.
Even though each u is only 10% bigger than
v, the probability of false positives is con-
verging to 0 when the data exceeds 30 di-
mensions.

2.2 Anomaly Interpretation

Many of these anomaly detection methods
have been applied in people’s daily life.
Therefore, the interpretation of anomalies
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is also essential. If the technical staff can
find the cause of the anomaly faster and dis-
cover where the anomaly is generated, the
anomaly can be solved more easily. There
are currently 2 major categories of interpre-
tation methods: Integrated Gradients and
Layerwise relevance propagation(LRP).

2.2.1 Integrated Gradients

For Integrated Gradient, when we attribute
the occurrence of something to a cause, we
should take the absence of that cause as the
baseline. For example, for an image recogni-
tion system, the baseline can be an all-black
picture, while for a NLP system, the base-
line can be a word vector with all values of 0.
Therefore, if we want to explain anomalies,
we should compare anomalies to the most
normal data. In Figure 2.6, Sipple defined
a baseline set U∗, which is a subset from
U[15]. Unlike U, the data in U∗ are the most
likely to be normal. After that, he used eu-
clidean distance to calculate the distance be-
tween the data point and each point in U∗,
and chose the closest u∗ as the baseline of
data point x. Finally, used Integrated Gra-
dient to compute and integrates the gradi-
ent for each dimension from a baseline point
to the observed point. That is, quantify-
ing each dimension by the Integrated Gradi-
ent, which can indicate which dimensions are
contributing the most to the data being nor-
mal or being abnormal. Sipple refers to this
as Blame(B). If a data is abnormal, then the
sum of the blames of each dimension should
be close to 1.

Figure 2.6: Baseline choose and Integrated
Gradient

For example, in Figure 2.7, it’s an
anomaly interpretation of an anomalous
point x with F (x) = 0.(in this work he used
the term positive to refer to the space that is
sampled by observation and is mostly Nor-
mal, and negative to refer to an unobserved
complement space from which a labeled sam-
ple has to be generated. So F (x) = 0 means
x is anomaly) Three dimensions assigned
most of the blame. We can assume that the
cause of the anomaly is mainly due to these
dimensions.

Figure 2.7: Result by Integrated Gradient[15]
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2.2.2 Layerwise relevance propa-
gation(LRP)

LRP[3] produces a heatmap in the input
space indicating the importance/relevance
of each part contributing to the final classifi-
cation outcome. In contrast to susceptibility
maps produced by guided back propagation
(“Which change would change the outcome
most?”), the LRP method is able to directly
highlight positive contributions to the net-
work classification in the input space[4]. The
authors in paper [4] used LRP to explain the
disease problem in the medical brain view
and obtained relatively good results. How-
ever, LRP has only been shown to outper-
form gradient methods on images[13], so the
results are not as good as gradient methods
in data streams.
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Studied Models

In the paper[15], author implemented the
Negative Sampling Algorithm(NSA) with
Random Forest(NSRF) and Neural Net-
works(NSNN) and used them to compare
with 4 other unsupervised anomaly detec-
tion methods, namely OCSVM, DSVDD,
Isolation Forest(ISO) and Extended Isola-
tion Forest(EIF). He compared them on 5
standard benchmark datasets and a multi-
dimensional, multimodal dataset from a real
climate control device.

Before conducting record trial runs, he
performed hyperparameter optimization on
AUC for each algorithm and selected the
highest performing parameters. He con-
ducted four formal trials with five-fold cross
validation for each dataset and anomaly de-
tector, which generated a total of twenty
AUC results per detector algorithm and
dataset against a held-out 20% validation
slices. The mean and standard deviation of
each dataset-detector combination are pre-
sented in Figure 3.2 as percentages. For each
of the six detectors, he performed a pairwise
Wilcoxon rank-sum test of significance and
highlighted top performing algorithms, us-
ing a significance threshold of 5% [15].

Figure 3.1: Datasets

Figure 3.2: Result in AUC

In Figure 3.2, we can find that a rela-
tively good result can be obtained by using
the NSA and Density-based approaches on
5 standard benchmark datasets. And NSA
performs best in real-world data.

10



Chapter 4

Discussion and Conclusion

According to the previous introduction
and experiments, we can find that different
anomaly detection methods have their own
advantages and disadvantages. For example:

• One-class Classification
Because SVM struggles with high-
dimensional data[9], and when the
training data only has normal data,
One-class Classification methods can
not control the false alarm rate by se-
lecting hyperparameters[17].

• Density-based Approaches
The computational complexity is also
high because of the need to traverse the
data to calculate the distance, which is
not suitable for online applications or
for high-dimensional data. In addition,
only anomalies can be found, not clus-
ters, and manual tuning is required.

• Autoencoder and generative
methods
When there are more outliers in the
training data, the model may not work
particularly well, and what we want to
do is unsupervised anomaly detection
(using only normal data learning), so
the training allows a small amount of
outliers, but when the outliers account

for a relatively large amount, Autoen-
coder may overfit (learn the anomaly
pattern).

• Negative Sampling Algorithm
As shown in Figure 2.5, False positive
occurs when taking positive samples,
and the probability is particularly high
in low dimensions. Moreover, this Algo-
rithm is currently only applicable to de-
tect point anomalies, while in real life,
most data streams are time dependent,
in other words, time series data, where
the probability of contextual anomalies
is high. So how to combine this algo-
rithm with time series in the future is
an important work.

Thus, when these methods are actually
put into real life, we need to consider the ad-
vantages and disadvantages of each method
as well as our own actual situation before
choosing the right one.

In paper[15], Sipple shows that
NSNN(Negative Sampling Neural Net-
works) is already being used in the real
world. In 2019, actively monitors over
15000 power and climate control devices
installed in 145 office buildings in Google.
Each NSNN instance is associated with a

11
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single cohort and periodically retrains a
model over a sliding historical window to
adapt to seasonal changes, and predicts an
anomaly score to each new state vector.
And he used Integrated Gradient to help
technicians understand the anomalies by
assigning a proportional Blame to individ-
ual dimensions. Since it is going in 2019,
over 44% of all device-level anomalies result
in calling technicians support. However,
these are not enough to show that he has
been good enough, because he has only
experimented in Google, and different
companies may have different equipment
and produce different data.

Finally, anomaly interpretation is particu-
larly important for anomaly detection, espe-
cially for devices. Because there is no point
in anomaly detection if the anomaly is found
but not resolved. Therefore, in anomaly de-
tection, it is necessary to choose a suitable
anomaly detection method as well as to find
a suitable anomaly interpretation method in
order to finally deal with the anomaly and
make the devices operate normally and work
smoothly.
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