
Graph Anomaly Detection
Names : Hemani Chand, Jatin Rattan
Supervisor: Simon Kluettermann

Figure 1: Graph Anomaly Detection is a Social Network

ABSTRACT
The field of graph anomaly detection has seen a drastic increase in
interest in the recent years. While the definition of anomaly is not
restricted, anomalies are the deviated data points that do not con-
form to the expected behaviour and anomaly detection is finding
patterns in our data to identify and detect anomalies. Anomalies in
graph-structured data are relevant in a variety of sectors, including
economics, social networking, and network security. Anomalies, in
many cases, may also have real and adverse impacts, for instance,
fake news can create panic and chaos with misleading beliefs. Yet,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

in reality, many objects have rich relationships with each other,
which can provide valuable complementary information for anal-
ysis. Graph anomaly detection aims to identify anomalous graph
objects (i.e., nodes, edges or sub-graphs) in a single graph or multi-
ple graphs. Graph anomaly detection with deep learning is expected
to generate more fruitful results. Furthermore, due to the complex-
ity of graph data (e.g., irregular topologies, relational dependencies,
node/edge types/attributes/directions/multiplicities/weights, enor-
mous size, etc.), traditional anomaly detection approaches are un-
able to effectively address this problem. However, the introduction
of deep learning has helped us to overcome these constraints.

KEYWORDS
datasets, ego, egonet, near-clique, near-star, deep neural networks

ACM Reference Format:
Names : Hemani Chand, Jatin Rattan and Supervisor: Simon Kluettermann.
2022. Graph Anomaly Detection. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Names : Hemani Chand, Jatin Rattan and Supervisor: Simon Kluettermann

1 INTRODUCTION
Anomaly detection in graph-structured data have gotten a lot of
attention in recent years since it has a lot of applications in many
industries. The network communication behaviour can be repre-
sented as a directed graph in the network intrusion detection issue,
for example, where the hosts are nodes/vertices and the network
connections are edges. Users are referred to as nodes/vertices in the
social network scenario, while user interactions are referred to as
edges. To identify fraud or spam activity in the graph, graph anom-
aly detection methods can be applied. Because of the structural
information included in graphs, identifying anomalies in the graph
becomes a more difficult challenge in non-Euclidean space graph
anomaly detection, which tries to discover anomalous graph objects
(i.e. nodes, edges, or sub-graphs) in a single graph. We define words
that are common to all representation learning and structured data
embedding approaches. Graph embedding is an approach that is
used to transform nodes, edges, and their features into a vector
space (a lower dimension) whilst maximally preserving properties
like graph structure and information. Graphs are tricky because
they can vary in terms of their scale, specificity, and subject.

Malicious nodes, edges, sub-graphs, and graphs can all be de-
tected via anomaly detection. Anomalous node detection attempts
to locate and detect malevolent objects in the real world. Anoma-
lous edge detection is used since it is not just the items themselves
that can be malicious, but also the relationships between them.
Sometimes nodes or edges appear normal when examined individ-
ually, but become abnormal when viewed collectively, sub graph
anomaly detection becomes critical in such scenarios. When an
entire graph in a collection or database of graphs is an anomaly,
anomalous graph detection is performed.

To detect anomalous nodes in plain graphs and attributed graph,
the classic non-deep learning procedures are summarized first, fol-
lowed by a more modern, sophisticated detection strategy based
on representation learning. Firstly, we concentrate on OddBall, a
non-traditional approach. We focus on neighbourhoods in this part,
which is a sphere or a ball (hence the name OddBall) surrounding
each node (the ego), that is, we consider the induced sub-graph of
its nearby nodes, which is referred to as the egonet, for each node.
Secondly, we will talk about the Deep Neural Network technique
named as DONE (Deep Outlier aware attributed Network Embed-
ding). In this section, we will discuss an unsupervised algorithm
which reduces the effect of outliers in network embedding. Finally,
we will compare the two strategies to see how DONE outperforms
OddBall in a few different scenarios and will conclude from our
observations.

2 ANOMALY DETECTION IN GRAPHS
Anomaly detection in graph data will be discussed in two categories:
plain graphs and attributed graphs. A graph with attributed nodes
and edges is one in which nodes and edges have characteristics
associated with them. For example, users in a social network, they
may have a variety of hobbies, work/live in different areas, have
varying levels of education, and so on, whereas relational connec-
tions may have varying strengths, kinds, and frequencies. A plain
graph, on the other hand, is made up of nodes and edges that is the
connections between them.

The nodes or edges in the graphs may also be labelled numer-
ically or categorically to denote their classes (e.g., normal or ab-
normal). As a result, we look at three different kinds of anoma-
lous nodes: structural anomalies, community anomalies, and global
anomalies. Firstly, global anomalies, where only node attributes are
considered. The node attributes that differ considerably from those
of the other nodes in the network. Secondly, structural anomalies,
in this we only consider graph structural information, that they
have abnormal nodes with distinctive connectivity patterns. Lastly,
community anomaly, in this we consider both node attribute and
graph structural information.

2.1 Plain graphs
The structural information in real-world networks is represented by
plain graphs. The graph structure has been widely used from many
perspectives to discover anomalous nodes in simple graphs. We
will be discussing traditional non-deep learning approach named
as Oddball under plain graphs.

2.2 Attributed graphs
It is possible to have a richer graph representation for some types of
data, in which nodes and edges have (non-unique) attributes. Social
networks with user interests as properties, transaction networks
with time, location, and amount as attributes, automobile shipments
with visited regions, personal information, and other graphs are
examples of this type. This class of attributed graph anomaly de-
tection algorithms makes use of the structure and coherence of the
graph’s attributes to uncover patterns and abnormalities. Under this
category, we will be discussing a deep neural network technique
named as DONE.

3 TRADITIONAL NON DEEP LEARNING
TECHNIQUE

Traditional non-deep learning techniques have been widely used
in many real-world networks to identify anomalous nodes prior
to recent developments in deep learning and other state-of-the-art
data mining technologies. Many a times, one of the steps of deep
learning techniques generally involves converting a graph anomaly
detection problem to a traditional anomaly detection problem and
then follow a series of steps that perform deep learning to detect
the anomalies. This could also imply that even if we think that the
deep learning techniques will overcome the traditional non deep
learning techniques, it can never really happen because we will
carry forward the basic idea.

3.1 OddBall
The core principle behind the entire OddBall anomaly detection
technique is the OddBall paradigm, which is used in psychology re-
search to display sequences of repeated stimuli that are infrequently
disrupted by a deviant stimulus and the participant’s reaction to
this "oddball" stimulus is recorded. Similar to the deviant stimu-
lus, anomaly detection adopts OddBall as a feature-based classical
anomaly detection technique that works on plain graphs to capture
unusual nodes. The name OddBall originates from the idea of fo-
cussing on the neighborhood of a node, that is, a sphere, or a ball
around each node. It takes a graph as an input and outputs a list of

Graph Anomaly Detection Conference’17, July 2017, Washington, DC, USA

outliers. OddBall’s non-deep learning feature makes it very simple
and outright. Whenever there is a large plain graph with a lot of
weight, it is often difficult to discriminate. The primary concern
being if such an effortless technique could detect anomalies in a
vast graph for real. Oddball indeed discovers irregular nodes even
in large graphs based on statistical features and several pattern
discoveries that lead to power laws. The method finds structural
anomalous nodes by employing statistical features which could be
the number of neighbours of a particular node, the number of edges
of a particular node, the total weight of the edges. OddBall method
is not just used to detect anomalies in a variety of applications, but
is also a significant part of the data cleaning process which is a very
vital step of data pre-processing.

3.1.1 Ego and Egonet.
The node around which a neighborhood, a sphere or a ball is built is
called an ego, and the induced sub-graph of its nearby neighboring
nodes, is the egonet. While we choose statistical features to detect
anomalies in this method, we could extract the ego and the egonet
of a single node and study it individually. By doing this each node
comes out to be a low dimensional feature space. The OddBall
technique considers a node to be an anomaly if it i) forms local
structures in the shape of near-clique or near stars, ii) has heavy
vicinities in the sense that the total weight of all the links in the
neighborhood of a node is very high (heavy vicinities), or iii) has a
single very heavy link with one of the neighbors (dominant heavy
link). In simpler terms, if the neighborhood of an ego in a network
is significantly different from those of others, it is considered as an
anomalous node.

Figure 2: Glimpse of an ego node and egonet

• Near cliques or near stars: Nodes whose neighbors are ei-
ther very strongly connected (near-cliques) or not connected
(near-stars) appear unusual and are classified as anomalous.
These structures are illustrated in figure 3. For example if
a malicious user on Facebook tries to befriend me and the
user’s profile says that the user is studying in TU Dortmund.
Now having no mutual friends or all mutual friends should
be considered suspicious and lead to the malicious user being
an anomaly. Cliques and stars generate the extreme values
of a power-law relationship(discussed later) between the
number of nodes in an ego-net and the number of edges.

Therefore, anomalies can be detected by fitting a power-
law curve to the network and analyzing the residuals for
significant deviation from the expected relationship.

Figure 3: Near-clique and near-star structures

• Heavy vicinities: This can be understood with the help of an
example where a malicious user is trying to connect to mul-
tiple users in order to extract information to commit some
kind of fraud like credit card fraud. Now calling multiple
people where the number of calls is the weight will lead to a
multiple weights with all links around which will result in a
high total weight.

• Dominant heavy link: Similar to the above scenario if the
malicious user already has a target in mind after doing the
background check, we can expect multiple calls to a single
user which will cause a single dominant heavy link.

3.1.2 K-step neighborhood and K-value.
The "k step neighborhood" is defined as the collection of node
i, all of its k-step-away nodes, and all of the connections across
these nodes in the induced sub graph, which is also known as the
"egonet." While we aim to detect abnormalities in social networks
and do social network research, an egonet is typically a node’s
1-step neighborhood (where we choose k = 1 in social network
analysis). This does not mean that the value of k cannot change
in other scenarios. The value of k in k step neighborhood can be
assigned any value. However as observed from various previous
research studies, taking a value of k > 1 has not resulted in any
additional relevant information. As a result, selecting a basic k value
of 1 is mostly viewed to be wise.

3.1.3 Feature Extraction.
The most critical aspect of OddBall lies under feature extraction.
If the statistical features are properly chosen, OddBall works ef-
fectively. However the hard truth is that it is often hard to select
appropriate features in a real world that has uncountable features
and since the domain specialists are constantly generating new
statistics. Statistical features that are quickly computable and pro-
duce readable patterns should ideally be selected. A set of four
features have been highly successful in spotting patterns. These
are as follows:

• The number of neighbors of node i which is also known as
the degree 𝑁𝑖 ,

• The number of edges in an egonet 𝐸𝑖 ,
• The total weight of the egonet𝑊𝑖 ,

Conference’17, July 2017, Washington, DC, USA Names : Hemani Chand, Jatin Rattan and Supervisor: Simon Kluettermann

• The principal eigenvalue of the weighted adjacency matrix
of egonet _(𝑤,𝑖) .

Different kinds of grouping can be applied to the above features
in order to see what yields us with the best resulting patterns to
flag anomalies. This could be grouping number of nodes and edges
as features to get near cliques or stars or any other kind of grouping
that could lead us to fruitful results.

3.1.4 Laws.
Pattern recognition is inevitable and is governed by a few laws. Odd-
Ball identifies and employs multiple power law patterns that drive
the ego-nets of all nodes, i.e. subgraphs of nodes and their neigh-
bors, for anomaly identification. OddBall calculates a Least Squares
fitting line for a power law first, then calculates the anomalousness
of each node based on its distance from the fitting line. There are
a total of four laws namely Egonet Power Density Law, Egonet
Weight Power Law, Egonet _𝑤 Power Law and Egonet Rank Power
Law. These laws detect patterns among graphs that finally lead us
to recognising anomalies. Egonet Density Power Law detects near-
cliques and stars. Egonet Weight Power Law detects recurrences
of interactions (heavy vicinities). Egonet Rank Power Law detects
single dominating heavy edge or the one strongly connected pair
(dominant heavy link). These laws are given below:

Egonet Density Power Law
EDPL is the abbreviation of this law which takes into account the
number of nodes 𝑁𝑖 and the number of edges 𝐸𝑖 of a given graph
𝐺𝑖 and the law is given by:

𝐸𝑖 ∝ (𝑁𝛼
𝑖
), 1 ≤ 𝛼 ≤ 2.

Egonet Weight Power Law
EWPL is the abbreviation of this law which takes into account the
total weight𝑊𝑖and the number of edges 𝐸𝑖 of a given graph𝐺𝑖 and
the law is given by:

𝑊𝑖 ∝ 𝐸
𝛽

𝑖
, 𝛽 ≥ 1.

Egonet _𝑤 Power Law
ELWPL is the abbreviation of this law which takes into account the
principal eigenvalue _𝑤,𝑖 of the weighted adjacency matrix and the
total weight𝑊𝑖 of a given graph 𝐺𝑖 and the law is given by:

_𝑤,𝑖 ∝𝑊
𝛾

𝑖
, 0.5 ≤ 𝛾 ≤ 1.

Egonet Rank Power Law
ERPL is the abbreviation of this law which takes into account the
rank R𝑖 , 𝑗𝑎𝑛𝑑𝑡ℎ𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑊𝑖, 𝑗 of edge j of a given graph 𝐺𝑖 and the
law is given by:

𝑊𝑖, 𝑗 ∝ 𝑅\
𝑖,𝑗
, \ ≤ 0.

3.1.5 Anomaly score.
Let 𝑦𝑖 be the y-value of node i and 𝑥𝑖 be the x value of node i when
we have a particular feature pair f(x, y). The anomaly score of node
i given the power law equation y = 𝐶𝑥\

𝑖
is given below.

AS(i) = max(𝑦𝑖 ,𝐶𝑥\𝑖)
min(𝑦𝑖 ,𝐶𝑥\𝑖)

∗ log(|𝑦𝑖 −𝐶𝑥\
𝑖
| + 1)

The score of the outlier could also be measured as the distance
to the fitting line where we see how much the does the calculated
value deviate from the actual value(as it can be seen in figure 4,
distance between point 12 and the fitting line gives us the anomaly
score). Doing this calculation, anomaly score (AS) will be 0 when
actual value 𝑦𝑖 is equal to the expected value𝐶𝑥\𝑖 (points 2,3,4,5 will
have as anomaly score close to 0 as all these points lie almost on

Figure 4: Graph depicting outlier score calculations

the red fitting line in figure 4). This simple strategy not only aids
in the detection of outliers, but also allows the nodes to be sorted
according to their anomaly scores. This approach, however, is prone
to missing some outliers and so may produce false negatives. If it is
the case that there are some points that are far from the rest of the
points, but are still close to the fitting line (if hypothetically point 1
in figure 2 was really far away from all other points, it would still
be near to the fitting line and would not have a high anomaly score
and hence would not be anomalous). In such a case when x and y
values are severe, this will clearly result in false negatives(should
have been an anomaly but is actually a normal data point).

Overall OddBall builds its solution based on the analysis of the
egonetworks by extracting all these egonetworks, adopting fea-
ture extraction and selection, and then using the principle laws to
identify anomalies. One of the drawbacks of OddBall is the process
of choosing appropriate features, which are also quite critical in
anomaly detection. If the features are wrongly chosen it would
just lead to a waste of time and we will land up with results that
are worthless(not to forget with efforts gone in vain). The other
drawback of this technique is that it relies heavily on near clique
or near star structure which cannot be used to detect anomalies in
bipartite or heterogenous graphs. [1]

4 DEEP NEURAL NETWORK TECHNIQUE
Deep neural networks, which can be used to learn multiple lev-
els of feature representations, has achieved successful results in
different fields. Autoencoder(AE) and deep neural networks are
two deep learning methods that provide a robust foundation for
learning data representations. The AE are the types of unsupervised
learning technique used primarily for getting a representation of a
given data. It has three major parts namely, encoder, latent space
and decoder. Firstly, the encoder is responsible for reducing the
dimension of the input data to minimize the computation required
to learn the pattern and feature of the data. Secondly, the latent
space is called the lower dimension code or the low dimensional
representation that acts as the intermediate step. Finally, a decoder

Graph Anomaly Detection Conference’17, July 2017, Washington, DC, USA

is responsible to transform the encoding back to the input dimen-
sion and produce the most similar or closest generation. The task of
mapping the nodes of a network (or graph) to a lower dimensional
vector space is known as network embedding. These embedding
techniques often take use of the fact that node attribute values
are significantly associated with the network’s link structure, and
therefore give additional information for network representation.
Real-world networks, on the other hand, have nodes that infringe
on the community’s property. Such a node may have edges with
nodes from other communities at random, or its properties may be
comparable to those of nodes from other communities. Community
outliers are the names given to these nodes. Therefore, to detect the
outliers while generating node embedding, we propose an AE based
deep architecture (DONE) for unsupervised network embedding
that minimizes the influence of outliers. [3]

4.1 DONE
It is AE based deep architecture (DONE) technique to minimize
the effect of outliers for network embedding, in an unsupervised
way. The goal of DONE is to find global, structural, and communal
anomalies in attributed graphs. This study calculates three anom-
aly scores for each node, indicating the likelihood of one of three
scenarios:

• It shares similar attributes with nodes in other communities.
• It connects with other communities.
• It structurally belongs to one community but has attributes
that follow the pattern of another community.

Figure 5: Deep neural network based approach (DONE).

DONE uses two parallel autoencoders: a structural AE and an
attribute AE. Both AEs are trained by reducing reconstruction er-
rors and maintaining homophily, which assumes that all linked
nodes in the network have the same representation. Because their
structure or attribute patterns do not conform to the conventional
behavior, nodes showing the established characteristics are difficult
to reconstruct while training the AEs, resulting in increased recon-
struction mistakes. Each encoder and decoder have L layers, and
both autoencoders employed a Leaky ReLU nonlinearity function
with a negative input slope, where ReLU is an activation function
defined as the argument’s positive component.

The structural outlier, attribute outlier, and combination outlier
scores for each node correspond to the three categories of outliers,
denoted as 𝑜𝑖𝑠 , 𝑜𝑖𝑎 and 𝑜𝑖𝑐𝑜𝑚 corresponding to structural, attribute
and combined outliers respectively for node i, i = 1,......,N. The set
of all the outlier scores is denoted by O. We assume that the overall
outlier score for each kind of outlier in the network is constant. In
a perfect network with no outliers, the outlier scores of all nodes

are identical. Accordingly, we formulate the loss function for this
approach. DONE creates a loss function that is anomaly-aware and
has five distinct loss, namely proximity loss, homophily loss both
for structural AE and attribute AE and the combining of structural
and attributes. Firstly, we must compute proximity loss since we
want to retain the network’s distinct orders of proximities. Because
the input to the structural autoencoder captures a node’s local
neighborhood, minimizing this reconstruction loss preserves the
network’s higher order proximity.

L𝑃𝑟𝑜𝑥𝑠𝑡𝑟 =
∑𝑁
𝑖=1 log(

1
𝑂𝑠

𝑖
)∥𝑥𝑖 − 𝑥𝑖 ∥22

Secondly, next component of the loss function is used to preserve
homophily in networks. Edge-connected nodes have a tendency to
behave similarly, and they should be near in the embedding space as
well. Again, structural outliers should contribute less to homophily
loss since they have links to nodes from various communities at
random.

L𝐻𝑜𝑚𝑜
𝑠𝑡𝑟 =

∑𝑁
𝑖=1 log(

1
𝑂𝑠

𝑖
) 1
|(𝑁 (𝑖) |

∑
𝑗 ∈N(i) ∥ℎ𝑠𝑖 − ℎ̂𝑠

𝑖
∥22

For the attribute autoencoder, the following two losses may be
stated with a similar reasoning.

L𝑃𝑟𝑜𝑥𝑎𝑡𝑟 =
∑𝑁
𝑖=1 log(

1
𝑂𝑎

𝑖
) ∥𝑐𝑖 − 𝑐𝑖 ∥22

L𝐻𝑜𝑚𝑜
𝑎𝑡𝑟 =

∑𝑁
𝑖=1 log(

1
𝑂𝑎

𝑖
) 1
|(𝑁 (𝑖) |

∑
𝑗 ∈N(i) ∥ℎ𝑎𝑖 − ℎ̂𝑎

𝑖
∥22

Lastly, the connection structure and node properties of a node
in a network are highly associated, according to the homophily
property. As a result, it’s critical to use one to compliment the other.
Although we are obtaining embedding that match to the network’s
structure and properties, it is necessary to regularize them for each
node. As a result, we create the final loss function component.

L𝐶𝑜𝑚 =
∑𝑁
𝑖=1 log(

1
𝑂𝑐𝑜𝑚

𝑖
) ∥ℎ𝑠

𝑖
− ℎ𝑎

𝑖
∥22

𝐿𝐷𝑂𝑁𝐸 = 𝛼1𝐿𝑃𝑟𝑜𝑥𝑠𝑡𝑟 + 𝛼2𝐿𝐻𝑜𝑚𝑜
𝑠𝑡𝑟 + 𝛼3𝐿𝑃𝑟𝑜𝑥𝑎𝑡𝑟 + 𝛼4𝐿𝐻𝑜𝑚𝑜

𝑎𝑡𝑟 + 𝛼5𝐿𝐶𝑜𝑚

𝛼 = 𝑐𝑜𝑒 𝑓 𝑓 𝑖𝑐𝑖𝑒𝑛𝑡 .

The anomaly scores of each node are defined by minimizing the
sum of these loss functions, and the top-k nodes with greater scores
are recognized as anomalies. [2]

5 COMPARISON
While traditional techniques like OddBall do not take into account
community outliers, DONE which deep neural network based tech-
nique stands out in this situation. Most network embedding algo-
rithms also do not consider collective anomalies when they generate
the node embeddings. To counter this, many algorithms have been
proposed until now. However, these algorithms are complex and
expensive. Also, these counter algorithms do not scale for large real
world networks. Most importantly, these algorithms do not capture
non linear behaviour which most real networks exhibit. The false
negatives problem in case of OddBall can also be reduced using
deep learning technique which handles high dimensional intricate
data very effortlessly. DONE which is an unsupervised learning
algorithm has been able to solve all the problems by giving an effi-
cient performance. Overall in cases where both techniques (OddBall
and DONE) could be used to solve a single anomaly detection use
case, DONE is expected to give a better accuracy.

6 CONCLUSION
In this work, we propose two techniques, detecting and minimizing
the effect of outliers. In the first technique we proposed the idea of

Conference’17, July 2017, Washington, DC, USA Names : Hemani Chand, Jatin Rattan and Supervisor: Simon Kluettermann

OddBall that focuses on a node’s immediate surrounding nodes in
order to detect anomalies by identifying deviations while choosing
some features on the basis of pattern recognition which is based
on a few laws. In the second technique we propose an outlier resis-
tant network embedding approach (DONE) based on adversarial
learning. Both our methods are fast but deep learning techniques
are generally more scalable in terms of computing, and they can
handle larger data sets.

Some of our personal future expectations involve having prior
knowledge about each graph before tackling with it in order to
detect anomalies and proper management of imbalanced data sets.
Having prior domain knowledge can prove to be extremely useful
for example in case of OddBall (which relies heavily on statistical
features). If we have a prior idea of what features could be bene-
ficial, it can be of utmost importance as it will lead to drastically
improved results. Also imbalanced data poses a problem in the sense
that anomalies are often rare and their proportion is far smaller

compared to the normal objects. As a result these anomalies are
ignored which in the longer run leads to a sub-optimal and depleted
performance. So in order to tackle this data imbalanced problem
we could either undersample our majority class(which could lead
to huge data loss) or oversample our minority class(which is still a
better option since it does not cause much data loss). We hope to
expand both these methods in the future of dynamic and multiplex
networks, which are common in many real-world applications.

REFERENCES
[1] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. 2010. OddBall: Spotting

Anomalies in Weighted Graphs. 410–421. https://doi.org/10.1007/978-3-642-
13672-6_40

[2] Sambaran Bandyopadhyay, Lokesh N, Saley Vivek, and M. Murty. 2020. Outlier
Resistant Unsupervised Deep Architectures for Attributed Network Embedding.
25–33. https://doi.org/10.1145/3336191.3371788

[3] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Quan Sheng, and Hui Xiong. 2021. A
Comprehensive Survey on Graph Anomaly Detection with Deep Learning.

https://doi.org/10.1007/978-3-642-13672-6_40
https://doi.org/10.1007/978-3-642-13672-6_40
https://doi.org/10.1145/3336191.3371788

	Abstract
	1 Introduction
	2 Anomaly detection in graphs
	2.1 Plain graphs
	2.2 Attributed graphs

	3 Traditional non deep learning technique
	3.1 OddBall

	4 Deep neural network technique
	4.1 DONE

	5 Comparison
	6 Conclusion
	References

