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1 INTRODUCTION

During the launch of Columbia orbiter STS-107 a piece of foam shed from the Shuttle external fuel tank struck the
leading edge of the orbiter’s left wing, compromising the thermal protection system.This turned out to be the very
reason for the loss of the Orbiter during entry into the earth’s atmosphere. One of the functions of the Data Processing
System part of the Modular Auxiliary Data System(MADS) on board the Columbia Orbiter was to support annunciation
of vehicle system failures and out-of-tolerance system conditions. [1]

Figure 1 depicts the Pressure taps on the lower left wing of the Orbiter during the launch clearly show that pressure
tap V07P8073 among others has been hit at 84 seconds. This data was the first clue of something wrong with the system
but was not reported anomalous by the system, so the crew on board as well as the ground crew were unaware about it.
Spacecraft are exceptionally complex and expensive machines with thousands of telemetry channels detailing aspects
such as temperature, radiation, power, instrumentation, and computational activities. Anomaly detection system are a
critical tool here to monitor these channels and avoid potential hazards by reducing the amount of manual intervention
needed.[1][3]

2 PAPER SUMMARY

Anomalies are the patterns that do not conform to the past behavior of the data. Anomaly detection methods for
multivariate time series data can also be used for spacecraft telemetry data. Thus, challenges central to anomaly
detection in multivariate time series data also hold for spacecraft telemetry. Data being monitored are often noisy,
high-dimensional, highly non-stationary and dependent on current context. A lack of labelled anomalies necessitates
the use of unsupervised or semi-supervised approaches. Specific to spacecraft, finding the source channel or system
of anomalies and minimal number of false positives is also important. The authors of the paper have provided a
3-step procedure for anomaly detection in spacecraft telemetry data which can also be applied to any multivariate
time series data. Firstly, LSTMs are used to predict high volume telemetry data per channel using inputs as previous
telemetry values and encoded command information for the channel. Secondly, an unsupervised thresholding method
is then used to automatically assess hundreds to thousands of diverse streams of telemetry data and determine whether
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Fig. 1. Anomalous behaviour is clearly noticeable but was not communicated by the system. (https://history.nasa.gov/columbia/
Troxell/Columbia).

resulting prediction errors represent spacecraft anomalies. Lastly, strategies for mitigating false positive anomalies are
applied.[3][4]

2.1 LSTM - type of Recurrent Neural Network

At the heart of a LSTM is the presence of cell state and the different gates. Cell state is the memory of the network. It
can carry relevant information throughout the processing of the sequence. So even information from the earlier time
steps can make it’s way to later time steps, reducing the effects of short-term memory. The Forget gate decides what is
relevant to keep from prior steps, the input gate decides what information is relevant to add from the current step and
the output gate determines what the next hidden state should be. The accuracy of an anomaly detection method largely
depends on the time window or the amount of previous values considered. As LSTMs overcome Vanishing Gradient
problem, they can bridge up to 1000 timestamps. Because of their ability to learn long term correlations in a sequence,
they obviate the need for a pre-specified time window and are capable of accurately modelling complex multivariate
sequences.[6] Due to the above mentioned properties of LSTM, a single model is created for each telemetry channel
using LSTM and each model is used to predict values for that channel.
Manuscript submitted to ACM
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Fig. 2. Anomalies are labeled with red circles. The first anomaly in the is subtle and challenging. The spiking behavior does not return
to the baseline as expected, and this is soon the new normal pattern. The second anomaly is a simple spike anomaly after which the
system returns to previous patterns. The third anomaly identifies a long period inconsistent with the normal spiking pattern. ([4]).

2.2 Telemetry Value Prediction using LSTM

Every channel being monitored is modeled separately because LSTMs struggle to accurately predict high dimensional
data. Modeling each channel independently also allows traceability down to the channel level. If the system were to be
trained to detect anomalies at the subsystem level without this traceability, for example, operations engineers would
still need to review a multitude of channels and alarms across the entire subsystem to find the source of the issue. Early
stopping can be used to limit training to models and channels that show decreases in validation error.[3]
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Fig. 3. Long Short Term Memory ([6]).
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𝑒 (𝑡 ) = [𝑦 (𝑡 ) − 𝑦 (𝑡 ) ] (3)

𝑒 = [𝑒 (𝑡−ℎ) , . . . , 𝑒 (𝑡−𝑙𝑠 ) , . . . , 𝑒 (𝑡 ) ] (4)

Consider a time series 𝑋 = {x(1) , x(2) , . . . , x(𝑛) } where each step x(𝑡 ) ∈ 𝑅m in the time series is an m-dimensional
vector {𝑥 (1)1 , 𝑥

(2)
2 , . . . , 𝑥

(𝑡 )
𝑚 }, whose elements correspond to input variables. For each point x(𝑡 ) , a sequence length

𝑙𝑠 determines the number of points to input into the model for prediction and a prediction length 𝑙𝑝 determines the
number of steps ahead to predict, where the number of dimensions d being predicted is 1 ≤ 𝑑 ≤ 𝑚. Since telemetry
values for a single channel are predicted at a time 𝑑 = 1 is considered. Also 𝑙𝑝 = 1 is used to limit the number of
predictions for each step t and decrease processing time. As a result, a single scalar prediction 𝑦 (𝑡 ) is generated for the
actual telemetry value at each step t. Once a predicted value 𝑦 (𝑡 ) is generated for each step t, the prediction error is
calculated as Equation 3. Each 𝑒 (𝑡 ) is appended to a one-dimensional vector of errors as in Equation 4 where h is the
number of historical error values used to evaluate current errors. [3]

2.3 Dynamic Error Thresholding

The goal is to detect spacecraft anomalies that are only abnormally high or low smoothed prediction errors. Abrupt
changes in values are often not perfectly predicted by LSTMs and result in sharp spikes in error values even when this
behaviour is normal. So the set of errors e are smoothed to dampen spikes in errors that frequently occur with such
predictions.[3]

𝑒𝑠 = [𝑒 (𝑡−ℎ)𝑠 , . . . , 𝑒
(𝑡−𝑙𝑠 )
𝑠 , . . . , 𝑒

(𝑡−1)
𝑠 , 𝑒

(𝑡 )
𝑠 ] (5)

Exponentially-weighted average (EWMA) is used to generate the smoothed errors in Equation 5. A threshold is
selected and moothed errors above the threshold are classified as anomalies.[3]

𝜖 = 𝜇 (𝑒𝑠 ) + 𝑧𝜎 (𝑒𝑠 ) (6)

𝜖 = argmax(𝜖) = (Δ𝜇 (𝑒𝑠 )/𝜇 (𝑒𝑠 )) + (Δ𝜎 (𝑒𝑠 )/𝜎 (𝑒𝑠 ))
|𝑒𝑎 | + |𝐸2𝑠𝑒𝑞 |

(7)

𝑠 (𝑖) =
max(𝑒 (𝑖)𝑠𝑒𝑞) − argmax(𝜖)

𝜇 (𝑒𝑠 ) + 𝜎 (𝑒𝑠 )
(8)

To determine the threshold:

• From Equation 6, values evaluated for 𝜖 are determined using 𝑧 which is an ordered set of positive values
representing the number of standard deviations above 𝜇 (𝑒𝑠 ) and experimental results show values from two to
ten to work.

• From Equation 7, a threshold is found such that, if all values above are removed, that would cause the greatest
percent decrease in the mean and standard deviation of the smoothed errors 𝑒𝑠 . The function also penalizes for
having larger numbers of anomalous values |𝑒𝑎 | and sequences |𝐸𝑠𝑒𝑞 | to prevent overly greedy behavior.

• From Equation 8, indicating the severity of the anomaly, the highest smoothed error in each sequence of
anomalous errors is given a normalized score based on its distance from the chosen threshold.[3]
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2.4 Mitigating False Positives

The precision of prediction-based anomaly detection approaches heavily depends on the amount of historical data
that is considered. If large amount of historical data is taken into account it becomes expensive to query and process
historical data in real-time scenarios and a lack of history can lead to false positives that are only deemed anomalous
because of the narrow context in which they are evaluated.

Fig. 4. Pruning Method [3]

𝑒𝑚𝑎𝑥 = [0.01396, 0.01072, 0.00994]

𝑝 = 0.1

𝑑 (1) = 0.23 > 𝑝

𝑑 (2) = 0.07 < 𝑝 (9)

To mitigate false positives and limit memory usage and computation cost, a pruning procedure in which a new set,
𝑒𝑚𝑎𝑥 , is created containing𝑚𝑎𝑥 (𝑒𝑠𝑒𝑞) for all error sequences sorted in descending order. Also, a maximum smoothed
error that is not anomalous is added to the end of 𝑒𝑚𝑎𝑥 . The sequence is then stepped through incrementally and
the percent decrease between the consecutive values of 𝑒𝑚𝑎𝑥 at each step is calculated. If at some step a minimum
percentage decrease 𝑝 is exceeded by 𝑑 (𝑖) , all errors and their corresponding anomaly sequences remain anomalies. If
Manuscript submitted to ACM
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the minimum decrease p is not met, then all those smoothed error sequences are reclassified as nominal.[3] A second
strategy for limiting false positives can be employed once a small amount of anomaly labeled data has been gathered.
Based on the assumption that anomalies of similar magnitude 𝑠 generally are not frequently recurring within the same
channel, a minimum score 𝑠𝑚𝑖𝑛 is set such that future anomalies are re-classified as nominal if 𝑠 < 𝑠𝑚𝑖𝑛 .[3]

2.5 Experiment Results

For testing purposes, data from spacecrafts such as SMAP and MSL are used. Both these spacecrafts are very different
missions representing varying degrees of difficulty when it comes to anomaly detection. Compared to MSL, operations
for the SMAP spacecraft are routine and resulting telemetry can be more easily predicted with less training and less data.
MSL performs a much wider variety of behaviors with varying regularity. For both of them, Incident Surprise Anomaly
Report were used to obtain labeled anomalies.If multiple anomalous sequences and channels closely resembled each
other, only one was kept for the experiment in order to create a diverse and balanced set.[3] A 5 day span is considered
around the anomalies, primary anomaly occuring time 𝑡𝑎 and the span is 𝑡𝑠 = 𝑡𝑎 − 3𝑑 to 𝑡𝑓 = 𝑡𝑎 + 2𝑑 . Each labeled
anomalous sequence of telemetry values is compared against the final set of predicted anomalous sequences according
to the following:

• True Positive: Only one true positive is recorded even if portions of multiple predicted sequences fall within a
labeled sequence.

• False Positive: For all predicted sequences that do not overlap a labeled anomalous region.

Table 1. Model Parameters [3]

Hidden Layers 2
Units in Hidden Layers 80
Sequence Length 250
Training Iterations 35
Drop out 0.3
Batch Size 64
Optimizer Adam

2.5.1 Model Parameters. Telemetry values are aggregated into 1-minute windows and evaluated in batches of 70
minutes and each 70 minute batch of values is evaluated using 2100 prior values to calculate an error. Each model is
shallow with only two hidden layers and 80 units in each layer. The p parameter is an important parameter to control
precision and recall, and an appropriate value can be inferred when labels are available. Here, reasonable results were
achieved with 0.05 < 𝑝 < 0.20.[3]

2.5.2 Final Experiment Result. From Table 2, for the non parametric approach pruning only decreases overall recall by
4.8% (84.8% to 80.0%) while increasing overall precision by 38.6 %(48.9% to 87.5%). If LSTM predictions are poor and
resulting smoothed errors do not contain a signal then thresholding methods will be ineffective. The Gaussian tail
approach results in lower levels of precision and recall using various parameter settings. Pruning greatly improves
precision but at a high recall cost, resulting in an F(0.5) score that is still well below the score achieved by the
non-parametric approach with pruning.[3]
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Fig. 5. Overall precision and recall for parametric and non-parameteric approach [3]

3 OTHER ANOMALY DETECTION METHODS FOR SPACECRAFT DATA

3.1 Out of Limits(OOL)

The Out of Limits approach consists of defining an upper and lower threshold so that when a measurement goes above
the upper limit or below the lower one, an alarm is triggered. Then engineers will inspect the parameter that is out
of limits and determine whether it is an anomaly or not and decide which action to take. It is still the most popular
approach because low computational expense, broad and straight-forward applicability and ease of understanding.

Issues with this approach are that as seen in Figure 6,some behaviors are anomalous even if they are within the
defined limits. A lot of manual intervention is still needed with this approach.[5]
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Table 2. Result for each spacecraft [3]

Thresholding Approach Precision Recall F(0.5) score
Non parametric with Pruning(p = 0.13)
MSL 92.6% 69.4% 0.69
SMAP 85.5% 85.5% 0.71
Total 87.5% 80% 0.71
Non parametric without Pruning(p = 0)
MSL 75.8% 69.4% 0.61
SMAP 43.0% 92.8% 0.44
Total 48.9% 84.8% 0.47
Gaussian tail(𝜖𝑛𝑜𝑟𝑚 = 0.0001)
MSL 84.2% 44.4% 0.54
SMAP 88.5% 78.3% 0.71
Total 87.5% 66.7% 0.66
Gaussian tail(𝜖𝑛𝑜𝑟𝑚 = 0.01)
MSL 61.3% 52.8% 0.48
SMAP 82.4% 81.2% 0.68
Total 75.8% 71.4% 0.62
Gaussian tail with Pruning(𝜖𝑛𝑜𝑟𝑚 = 0.01, 𝑝 = 0.13)
MSL 88.2% 41.7% 0.54
SMAP 92.7% 73.9% 0.71
Total 91.7% 62.9% 0.66

Fig. 6. OOL Approach Limitation [5]
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3.2 Nearest Neighbor Based Approach

Orca(currently being used on ISS) uses a nearest-neighbour approach to search for unusual data points in multivariate
data sets by calculating the distance of each data point from neighbouring points. Distance between points is measured
with the Euclidean distance measure for continuous parameters and the Hamming distance for discrete parameters.
The program outputs a score for each point representing the average distance to the nearest k neighbors in the data set.
The value of k is specified by the user. Points that have a larger average distance to their nearest neighbors than most
other points in the data set are considered anomalies.[2] Issues with this approach are:

• The number of past values to be considered needs to be decided.
• High computational complexity and memory consumption as distances of each point with all other points is to
be calculated.

• Can only find global anomalies, does not consider local neighborhood.

3.3 Clustering Based Approach

The IMS(Inductive Monitoring System)(currently being used on ISS) tool uses clustering to analyze archived spacecraft
data and characterize nominal interactions between selected parameters. This characterization, or model, is compared
with real time or archived system data to detect off nominal behavior. [2]

4 CRITICISM

Table 3. LSTM-NDT(Independent Channel) and MTAD-TF(Dependent Channel) [7]

Dataset Precision Recall F1 score
LSTM-NDT
MSL 0.5944 0.5374 0.5640
SMAP 0.8965 0.8846 0.8905
SMD 0.5684 0.6438 0.6037
MTAD-TF
MSL 0.9043 0.8988 0.9015
SMAP 0.9779 0.8192 0.8916
SMD 0.9045 0.9048 0.8940

Limitations with the approach:

• From Table 3, LSTM-NDT has a high score on SMAP, but it performs poorly on MSL and SMD, reflecting that
the model is very sensitive to different scenarios[7]. As one of the goals of the authors of the paper was to build
an anomaly detection system that can be very well applied to not only different spacecrafts data but also for any
multivariate time series data. This goal is not being met.

• Along with the telemetry data, channel specific command information is also an input to the model that the
model is very much dependent on. Refining it would lead to more accurate anomaly detection.

• The dependencies between different channels is not taken into account.

5 SUMMARY

An anomaly detection system that caters to the particular need of a spacecraft system considering the time and precision
critical environment of a spacecraft has been proposed in the paper I have reported on. Using state of the art deep
Manuscript submitted to ACM
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learning algorithm Long Short Term Memory, gives this approach an advantage of not being heavily dependent on
the amount of historical data that can be used to predict telemetry data. A dynamic thresholding approach has been
proposed that does not make any assumptions about the prediction error distribution. This makes this approach superior
to others that assume data to be normally distributed. Considering the key areas of improvement as those mentioned
in the ?? section are addressed in the future refinements of the approach, it can be well applied to a large number of
varied anomaly detection tasks in multivariate time series data.
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