
Anomaly detection algorithms using active learning
Sofia Vergara (230259, sofia.vergarapuccini@tu-dortmund.de)

Abstract
Active learning for anomaly detection improves the accuracy
of a model by providing iteratively a budget of data points
to a human analyst for obtaining their true label. Usually
anomaly detection models are based on profiling normal
instances for determining what an anomaly is. An alterna-
tive to this, consists on isolating anomaly instances given a
set of attributes. On this paper the BAL algorithm [4] using
isolation Trees and the WisCon algorithm [1] for contextual
anomaly detection are discussed. Furthermore, the research
is extended to streaming data since a change in the distri-
bution of the data might impose a challenge to the learning
algorithm. In active learning, informative examples have
to be provided to the analyst so these are useful to the al-
gorithm to learn. This paper covers two query techniques
which take into account how diverse are the anomalies and
how relevant for the model are the subspaces where these
are found.

1 Introduction
Anomaly detection consists on unveiling data points that
present an abnormal behaviour compared to regular instances
(nominals). Such data points are rare among the complete
set and in unsupervised environments are hard to classify,
since no hard boundary exists that is able to identify them.
Anomaly detection has different fields of application rang-
ing from fraud detection to the discovery of a new star in
astronomy. Thus, it is of importance that the model is very
precise with the correct classification of true anomalies (true
positives). Considering active learning within the anomaly
detection framework can enhance the performance of the
detection algorithm. Active learning consists on repeatedly
querying an oracle, e.g human analyst for labelling a bud-
get of instances. The true labels are then provided to the
algorithm so this can correctly learn the decision boundary.
This approach is of great relevance when there is abundant
unlabelled data and the process of labelling is expensive [8].
Some of the approaches considering active learning are com-
bined with ensemble models given that these produce more
robust results than a single detector.

On this paper, isolation Forest trees (IFOR) [7] using differ-
ent weighting schemes are presented for anomaly detection.
Furthermore, it is assume that the analyst is in the capacity
to label a low number of instances compared to the size of
the data set. Therefore, informative examples must be pro-
vided. Some of the strategies for providing such examples
consist on taking the instances with the highest anomaly
scores or choosing samples close to the uncertainty region.
However, new strategies have been developed considering

the overlapping attributes of the instances and the relevance
of contextual features. These strategies are discussed on this
paper. Anomaly detection using active learning, can be as
well extended to streaming data. One of the challenges of
streaming information is that incoming data might have a
change in its distribution, affecting the performance of the
model to unseen data. Hence, the distribution of the data and
weighting of new instances have to be taken into account
on the learning algorithms. One such model in this paper
is the streaming active learning algorithm (SAL), in which
the KL-Divergence is used to replace old data by new one
when there is great divergence in the distribution of the set.
This paper is organized as follows: Section 2 presents anom-
aly detection algorithms using active learning for static and
streaming data proposed in [4]. Section 3 describes some
limitations of the algorithms presented on section 2, and
how other techniques overcome such limitations. Further-
more, section 4 shows some query strategies for obtaining
informative instances and finally section 5 concludes this
paper.

2 Active learning for anomaly detection
Active learning consists on the interaction between an ana-
lyst and a learning algorithm, in which the feedback of the
analyst on true labels of the data is provided to the algorithm
in order to adjust its parameters and improve the prediction
accuracy.

In Active Anomaly detection, few but informative samples
of the data (nominal or anomaly) are labeled by the user and
with these, the algorithm solves an optimization problem
in order to obtain new hyperparameters for the base detec-
tor(s), refining the performance of the algorithm. The goal in
active anomaly detection is to maximize the amount of true
positives (real anomalies) presented to the user from a lim-
ited amount of instances available. Unlike in classification
problems, in anomaly detection there is no hard decision
boundary separating anomalies from nominal data making
the performance of a single detector highly susceptible to the
data, type of anomalies, problem application, etc. Therefore,
ensemble methods, i.e combining predictions from multiple
detectors, achieve more reliable results and have fewer false
positives. The next subsection discusses a framework for
anomaly detection using active learning and isolation forest
trees to target these instances.

2.1 Tree based anomaly detection ensembles
algorithms

[4] proposes an active learning framework (Figure 1) consist-
ing on multiple iterations and in each of these, the following
steps are performed:

• Select one or more data points from the input data
set based on a query strategy using the results of the
initialized model, e.g highest scored instances, uncer-
tainty sampling, among others.

• Provide the chosen data points to the analyst with a
set of explanations or interpretative rules to carry on
the labelling process.

• Based on the feedback, update the weights of the scor-
ing functions so that the algorithm is consistent with
the analyst’s feedback.

Figure 1. Framework for Anomaly Detection with Active
Learning
Let Y be the ensemble composed by m detectors, which

assign scores z, z = {𝑧1, ..., 𝑧𝑚}, to each instance x𝑖 , x𝑖 ∈ 𝑅𝑑 ,
and it has associated a hidden label 𝑦𝑖 = {−1, +1}, where +1
corresponds to an anomaly. The scores z are assumed to be
normalized, ranging from [-1,1] or [0,1] where higher values
represent a higher degree of anomaly. For a tree ensemble the
scoring function is a linear combination of the scores given
by 𝑆 (x) = w ∗ z, where w are the weights assigned to each
detector,w ∈ 𝑅𝑚 , and represent the parameters Θ to tune us-
ing the analyst’s feedback. The initialization values of these
weights are important for improving the label-efficiency of
active learning. Usually the detectors get the same weights as
a starting point. The ideal set of weights, allows the scoring
function to push anomalies in a extreme positive region of
the scoring space, while nominal instances have lower scores.
However, this ideal set is not often reached in practice, i.e the
obtained parameters and ideal weights are misaligned, which
contribute to the occurrence of false positives. Hence, pro-
viding the user good examples to label helps the algorithm
on learning the optimal weights efficiently.
By designing a hyperplane that passes through the un-

certainty region and choosing data points located in this,
the model shapes the decision boundary reliably, even if the
selected instance is a nominal (false positive).
One of the tree based ensembles used for anomaly de-

tection, is Isolation forest (IFOR) [7]. This method consists

on isolating anomalies instead of profiling how a normal
instance should be. Since in a data set anomalies are few
and some of their attributes are very different from nominal
instances, these can be isolated by means of a binary tree
structure, in which its partitions are generated by selecting
randomly an attribute of the feature space and a random split
point between the minimum and maximum of the selected
attribute. This process is done recursively until the instance
reaches a leaf node.
The number of partitions required to isolate a point is

equivalent to the path length 𝑙 from the root node to a
leaf node. Since anomalies have distinguishable attributes
from nominal values, these are susceptible to being isolated
faster, i.e at earlier partitioning, which produces shorter path
lengths from the root to the leaf (Figure 2). It is worth noting,
that isolation forests are only used in ensembles, so the aver-
age path length of an anomaly is shorter. On the other hand,
nominal values belong to denser regions, so more partitions
are needed to reach a leaf node, reason why their path length
is deeper.

Figure 2. Isolation forest methodology [7]

After training a model with𝑇 trees, the leaf nodes of each
tree represent the𝑚 ensembles. The path length 𝑙 , from the
root to the leaf, multiplied by -1 represents the score score𝑖 =
−𝑙 of each instance. If the instance does not belong to this
partition (leaf), its score is equal to 0. Moreover, instances
which are isolated faster have a less negative scores due to its
shorter path length (anomalies) compared to nominal points.
Afterwards, the scores are normalized, since thesemight vary
in scale for each detector. Given that a data point belongs to
only one leaf node per tree, and the model is trained with 𝑇
trees, each instance belongs to a few leaf nodes (equal to 𝑇)
so the score vector is sparse.
Among some of the advantages of IFOR, it is found that

since this method relies on partitioning recursively the fea-
ture space, this does not utilize distance or density measures
which require major computational costs as the dimensional-
ity increases. Furthermore, IFOR has linear time complexity
and a low memory requirement, given the sparse scoring
vectors and it has the capacity to scale up to handle large
and high dimensional data.
Other tree based ensemble models are HST and RSF [5].

These two techniques have a fixed depth, so the anomaly
2

scores are computed using sample counts and densities at
the leaf nodes.

2.2 Obtaining Compact subspaces
For subsection 2.2, 2.3 and 2.4 the general terms explaining
each part of the algorithm have the following notation:

• Y is the ensemble composed by𝑚 detectors
• 𝑍 = {𝑧1, ..., 𝑧𝑝 } represent the instances to be described,
e.g true anomalies discovered by the analyst and |𝑍 | =
𝑝

• 𝑆 = 𝑠1 ∪ ... ∪ 𝑠𝑝 are the most relevant subspaces con-
taining 𝑧𝑖 and |𝑆 | = 𝑘

• v are the volumes of the subspaces in 𝑆 , v ∈ 𝑅𝑘
• x is a binary vector where 1 indicates that the subspace
𝑠 𝑗 is included in the covering set, x ∈ {0, 1}𝑘 , and 0
otherwise

• u𝑗 is a vector for each instance 𝑧𝑖 containing 1 if the
instance belongs to subspace 𝑠 𝑗 and 0 otherwise, u𝑗 ∈
{0, 1}𝑘

• 𝑈 = [u𝑇1 , ...,u𝑇𝑝]𝑇 is the matrix composed by the u𝑗

vectors
• 𝐵 is the budget of instances the analyst can label
• w are the weights of the𝑚 ensembles
• H is the score matrix of unlabeled instances obtained
from the ensemble

• H+ is the score matrix for instances with a label +1
(received from analyst), i.e anomaly

• H+ is the score matrix for instances with a label -1, i.e
nominal

• 𝜏 is the hyperparameter indicating the expected frac-
tion of instances that are anomalous

It is of interest to provide the analyst descriptions of the
instances to label because these are useful for understanding
the predictions made by the model in a concise way. To
achieve this, it is necessary to select a subset of the most
relevant and less voluminous, i.e compact, subspaces which
contain all instances to be described. This problem is treated
as part of the set cover problem [6], since it is desired to get
the smallest collection of subspaces including all data points
to describe.
A compact set of subspaces containing all the candidate

instances is obtained as:

S∗ = argmin(x ∗ v), (1)

s.t U ∗ x ≥ 1, where 1 is a column vector of 𝑝 1’s.
By obtaining a compact set of subspaces it is easier to

quickly query on the next iterations different classes of anom-
alies belonging to different subspaces. Moreover, with this
subset it is possible to get additional information such as
the amount of instances per relevant subspace helping to
prioritize the work of the analyst.

2.3 Obtaining precise subspaces
Although the previous approach provides the minimum
amount of subspaces containing all instances to be described.
It does not consider the precision of the subspace, i.e if many
nominals are included in this, nor how easy the predicate
rule defining the subspace is. An example of a predicate rule
is the following: If credit score = ‘Low’ or (employed = False
and savings < 100), then approve loan = False. In this rule,
three features (credit-score, employed, savings) are taken
into account for defining a description. As the length of the
predicate rule increases, the definition of the subspace be-
comes harder to understand. To solve this, the Equation (1)
is modified as:

S∗ = argmin(x ∗ (v ◦ (1𝑘 + [) + ℎ)), (2)

s.t U ∗ x ≥ 1𝑝 , where 1𝑘 is a column vector of 𝑘 1’s,
[= {[1, ..., [𝑘 } are the amount of nominal data points present
in the subspaces in 𝑆 and ℎ = {ℎ1, ..., ℎ𝑘 } are the rules’ com-
plexities of the subspaces in 𝑆 given by ℎ 𝑗 = 2rule_length(𝑠 𝑗)−1,
the rule_length is defined by the number of feature-range
predicates required to define a description. This equation
penalizes how imprecise and complex the subspace 𝑠 𝑗 is.
The procedure for finding the optimal set of subspaces

starts by taking all candidate subspaces (leaf nodes) obtained
by the ensemble and the set of instances to describe 𝑍 , which
contain true positives and in addtion, unlabeled instances
sampled as nominals. Using the feedback of the analyst, it is
possible to identify the most relevant candidate subspaces
for the selection process. The algorithm starts by calculating
the volume, amount of nominals [and complexity of the
subspaces . Afterwards, Equation 2 is applied, and the subset
of subspaces S* is obtained. Furthermore, the precision of the
subspaces is computed based on [, and only those having a
precision greater than a threshold 𝑡 are retained, i.e subspaces
having only few false positives. This process uses stepwise
selection and filtering for obtaining the optimal subset of
subspaces providing simple descriptions for the analyst.

2.4 Update of ensemble weights
[4] proposed the model Batch Active learning (BAL) using
Isolation Forest and active learning for finding anomalies.
A key part of the model is the parameter tuning process.
BAL updates the weights of the scoring function aiming to
keep the hyperplane in the region of uncertainty through
the budget 𝐵. This algorithm depends only on the hyper-
parameter 𝜏 , being this the fraction of instances that are
anomalous. Hence, if the anomalies are rare, 𝜏 should be set
to a small value.

The algorithm iterates through the instances of the budget
𝐵 and calculates the anomaly scores as a = H ∗w. In each
iteration 𝑡 , the highest scored instance is given to the analyst
to label and if the label assigned is +1, the score of the data

3

point is added to the matrix H+, otherwise to H−. Further-
more, the score of the instance is removed from the matrix
H so that is not taken into account in the next iteration.
By this point, the weights are recalculated by minimizing
a loss function composed by the hinge loss, in which if the
anomaly scores of the true positives in H+ computed with
the current set of weights w(𝑡) , are lower than in the previ-
ous iteration, the model is penalized, encouraging that the
scores inH+ are higher for the current iteration than for the
previous one and for H− lower. The loss function as well
takes into account the influence of the prior weights, and
as more instances are labeled, the importance of the priors
reduces. This optimization problem is solved using gradi-
ent descent and the weights of the base detectors take as
initialization values w𝑢𝑛𝑖 𝑓 = [1√

𝑚
, ..., 1√

𝑚
]𝑇 . The algorithm

finishes when the number of iterations is the same as the
number of instances in 𝐵, and this returns the normalized
vector of final weights and matrices of scores H, H+, H−.

2.5 Ensemble algorithms for anomaly detection in
streaming data

Tree ensembles can as well be extended to streaming data
that comes in windows of size 𝐾 and might be unlimited.
The streaming active learning algorithm (SAL) handles the
phenomenon of concept drift [9], which is characterized by
the change of distribution of the data during the course of
time, often producing that a model is built on obsolete data,
forcing it to have a regular update to be consistent with the
new behaviour. SAL starts by training all members of the
ensemble with the first window. If the model is an IFOR
and a new window arrives, only a subset of the trees of the
current window is replaced with the information of the new
window if there is a large change in the distribution of the
data. This is evaluated using the KL divergence [2], which is
an asymmetric measure on how one probability distribution
𝑃 is different from a second one 𝑄 ; in information theory it
can as well be seen as the amount of information lost when
𝑄 is used to approximate to 𝑃 . Thus, if there is a significant
number of trees that are divergent in the current model,
then all of the corresponding nodes and learned weights of
these are discarded. On the other hand, the𝑚′ leaf nodes
and weights of the new trees are added to the current model.
The weights of the new trees are initialized in 𝑣 = 1√

𝑚′ .
The updated model is employed to determine which un-

labeled instances to keep. This one retains only the most
anomalous instances among the ones in memory and the
new window, discarding the rest. Afterwards the weights
are tuned with the analyst feedback using a process similar
to BAL. The algorithm continues until no more windows are
obtained or the budget 𝐵 is exhausted. In general it is not
easy to know how large is the change in distribution of the
data from one window to another, therefore it is reasonable
to change 20% of the older ensemble members for new ones.

3 Related Work
3.1 Ensemble algorithms for contextual anomaly

detection
The BAL algorithm uses the full dimensional space to detect
anomalies by means of tree ensembles. However, real world
systems often produce anomalies that are catalogued as such
depending on the situation. For example in cold regions, high
energy consumption is normal during winter but the same
behaviour might be abnormal in summer, i.e in this situation
the environmental factor contextualizes what an anomaly
is. Hence, considering only a global perspective can be mis-
leading given that it can produce or hide abnormal instances.
To leverage this, a technique named "Wisdom of contexts"
(WisCon) [1] uses contextual attributes e.g "ambient tem-
perature" for defining contexts and behavioural attributes
e.g "energy consumption" to determine whether an instance
deviates significantly from the other data points or not. A
context𝐶 is defined as a subset of attributes from a set𝐷 , and
the remaining represent the behavioural features 𝐵 = 𝐷 \𝐶 .
In a large data set, a context can be decided in many ways,
therefore one can take initially all possible combinations of
contextual attributes from the feature set.
The framework of WisCon is similar in structure to the

one presented by [4]. However, WisCon calculates on the
third step the importance of the contexts and prune those
which are not relevant based on the analyst’s feedback. Af-
terwards it combines all anomaly scores from the individual
base detectors with their weights to generate the final anom-
aly scores. A brief description of the steps is as follows:

• Create multiple contexts from the feature space and
generate a base detector for each of these, producing
a set of anomaly scores.

• Provide a small budget of anomalies to the analyst, to
catalogue them as anomalies or nominal values. Dif-
ferent query strategies can be employed at this point.

• Estimate the importance of each context based on the
analyst feedback using a strategy similar to AdaBoost.
Prune uninformative contexts and calculate aweighted
aggregation of the remaining.

Figure 3. WisCon Framework

Let𝑈 = {x1, x2, x𝑗 , ..., x𝑛} be an unlabeled dataset with fea-
tures 𝐹 = {𝑓1, 𝑓2, ..., 𝑓𝑑 } and a set of contexts𝐶 = {𝐶1,𝐶2, ...,𝐶𝑚},

4

𝐶 ∈ 𝐹 and 𝐵 = 𝐹 \𝐶 the behavioural features. The algorithm
starts by estimating clusters (reference groups) 𝑅(𝑥 𝑗 ,𝐶𝑖) for
each instance 𝑥 𝑗 w.r.t each𝐶𝑖 . This can be done by using any
clustering algorithm suitable for the data set. Afterwards,
using isolation forest trees the deviation of the instances 𝑥 𝑗
to their cluster is computed. This is achieved by creating𝑀
separate isolation trees for each cluster in 𝐶𝑖 and using the
respective behavioural attributes 𝐵𝑖 the abnormal instances
are isolated, i.e isolate those instances whose behaviour differ
by far from their cluster group. The result from the iForest of
all the clusters in the context 𝐶𝑖 is the set of anomaly scores
𝑆𝑖 , where 𝑠𝑖, 𝑗 ∈ 𝑆𝑖 is the anomaly score of 𝑥 𝑗 in the context𝐶𝑖

and |𝑆𝑖 | = 𝑛. However, since the base detectors are applied
on different contexts, the resulting scores vary in range and
scale. Therefore, these are converted into probabilities.

On the second step of the framework, a query strategy is
performed using the resulting scores and provide the most
informative instances to the analyst for labelling. It is as-
sumed that the analyst is able to categorize 𝑏 instances and
after each iteration, the importance scores of the contexts
in 𝐶 are updated in the model taking into account the feed-
back received. The importance of a context𝐶𝑖 quantifies how
good this one is for discovering anomalies. This step aims
to maximize the expected information gain of 𝑥 𝑗 , which
is achieved by the type of query strategy performed. On
this step the labeled instances belong to the set 𝐿, where
𝐿 = {(𝑥1, 𝑦1), ..., (𝑥𝑡 , 𝑦𝑡)} at iteration 𝑡 and 𝑦 𝑗 ∈ {0, 1} is the
label received.
On the third step, once an instance has been labeled by

the analyst, the importance or weights of the contexts have
to be updated. This task is carried out using the AdaBoost
weighting scheme, which estimates the classification error
of the base detectors to determine their usefulness.

Firstly the detection error is calculated by converting the
score of the 𝑗th instance in context 𝐶𝑖 into predictions, i.e
transform the probability scores 𝑆𝑖 = {𝑠𝑖,1, 𝑠𝑖,2, ..., 𝑠𝑖,𝑛} into
a hard label 𝑃𝑖 = {𝑝𝑖,1, ..., 𝑝𝑖,𝑛} where 𝑝𝑖, 𝑗 ∈ {0, 1} and 1
means that the ensemble classifies an instance as an anomaly.
The hard label 𝑝𝑖, 𝑗 is calculated using a threshold between
anomalies and nominals, e.g 0.9 keeping 0.1 as the false alarm
rate. Afterwards, with the labeled data set 𝐿, the detection
error 𝜖 for the context 𝐶𝑖 at iteration 𝑡 is:

𝜖𝑖,𝑡 =

∑𝑡
𝑗=1 \ 𝑗𝑙𝑖, 𝑗∑𝑡
𝑗=1 \ 𝑗

, (3),

where \ 𝑗 is the weight for each point in the labeled set,
𝑥 𝑗 ∈ 𝐿, and 𝑙𝑖, 𝑗 is 0 if 𝑝𝑖, 𝑗 = 𝑦 𝑗 , i.e if the prediction is the same
as the true label and 1 otherwise. The weights \ 𝑗 depend
on the query strategy used, if no differences between the
instances are assumed then \ 𝑗 = 1

𝑡
for each 𝑥 𝑗 ∈ 𝐿. With the

detection error, it is possible to calculate the importance of
the context as:

𝐼𝑖 =
1
2
𝑙𝑛(1 − 𝜖𝑖,𝑡

𝜖𝑖,𝑡
), (4)

Negative results of 𝐼𝑖 indicate that the context performs
worse than a random detector, with a detection error greater
than 0.5. The calculation of the weights \ 𝑗 , detection error 𝜖𝑖,𝑡
and importance 𝐼𝑖 are recalculated every time a new instance
is labeled by the analyst, added to the set 𝐿 and removed
from the unlabeled set𝑈 .
The last part of the algorithm consists on pruning the

irrelevant contexts and updating the final anomaly scores.
Pruning consists in removing the contexts that have a nega-
tive importance 𝐼𝑖 < 0.
With the remaining 𝑝 contexts and respective scores S𝑝 ,

the final anomaly scores for the instances are calculated as:

𝑠 𝑗 =

∑𝑝

𝑖=1 𝐼𝑖 × 𝑠𝑖, 𝑗∑𝑝

𝑖=1 𝐼𝑖
, (5)

where 𝑝 = |𝑆𝑝 |, and 𝑠𝑖, 𝑗 ∈ 𝑆𝑖 is the anomaly score of 𝑥 𝑗 in
context 𝐶𝑖 . This result is a weighted sum of the importance
and scores of the contexts, which is employed in the next
iterations for finding the most informative instances.

3.2 Concept drift adaption using up to date and
delayed feedback

Regarding the SAL algorithm for streaming data, the selec-
tion of instances given to the analyst is based on providing
the most anomalous instances within the new and already
stored data points. This process does not guarantee that the
chosen samples correspond to up to date observations con-
sistent with the new distribution of the data or if on the
other hand, the queried instances have the highest anomaly
scores but belong to past windows. Thus, although the most
anomalous instances might be selected, these might not be
good representatives of the current reality, e.g changes in
behaviour of a fraudulent customer.
[3] proposes a fraud detection model for streaming data

in which, delayed and up to date feedback are combined
in order to provide accurate alerts to the analysts. In this
model as well, the goal is to maximize the number of true
positives, since otherwise the analysts might decide to ignore
the incoming fraud alerts thrown by the model. The idea of
this model consists on building a classifier, e.g Random forest,
only with the instances of the new window 𝑡 based on the
latest binary classifier 𝐾𝑡−1 : 𝑅𝑛 → {+,−} and the 𝑧, 𝑧 > 0
transactions with highest probability of being an anomaly
are given to the analyst to label, so 𝐹𝑡 = {(x, 𝑦), x ∈ 𝑧}. 𝑡
is assumed by the authors to be a window consisting of 1
day. Delayed feedback from instances older than 𝛾 days is
also received at the time point 𝑡 , i.e 𝐷𝑡−𝛾 = (x, 𝑦), x ∈ 𝑇𝑡−𝛾 ,
where𝑇𝑡−𝛾 are the previous 𝛾 days. From this approach it can
be noticed that the distribution of 𝐷𝑡−𝛾 is skewed towards
the nominal instances, since this is the predominant class
in a data set, while 𝐹𝑡 is ideally skewed towards anomalies,
since this is the class aimed to be presented to the analyst,
but it can as well contain false positives. An ensemble of
classifiers Y𝐷𝑡 = {𝑀1, ..., 𝑀𝛼 } is then used for training 𝐷𝑡−𝛾 ,

5

where each individual classifier𝑀𝑖 is trained on 𝐷𝑡−𝛾−𝑖 , 𝑖 =
1, ..., 𝛼 , obtaining |𝑀 | = 𝛼 classifiers. The anomaly score
of this ensemble is obtained by averaging the probability
scores of the individual classifiers. Finally the classifier for 𝐹𝑡
and the ensemble Y𝐷𝑡 are used to obtain the final probability
scores of all instances as:

𝑃𝐴Y
𝑡
=
𝑃𝐹𝑡 (+|x) + 𝑃Y𝐷𝑡 (+|x)

2
, (6)

where 𝐴Y
𝑡 represent the set of alerts and 𝑃𝐹𝑡 and 𝑃Y𝐷𝑡 are

the scoring probabilities being the posterior probability of
obtaining an anomaly given 𝑥 for subset 𝐹𝑡 and𝐷𝑡−𝛾−𝑖 respec-
tively. This calculation gives a higher weight to the classifiers
using 𝐹𝑡 , i.e to the most recent instances. Both classifiers are
built separately and not with the complete set, because the
classifier trained on 𝐹𝑡 learns how to label transactions that
are most likely to be anomalous but might not be precise
with the majority of nominal instances.

4 Query strategies
4.1 Select-Diverse
In section 2.1 it is showed that one of the techniques em-
ployed for the selection of instances for the analyst to label
is taking the highest ranked data points. However, this strat-
egy might lack diversity in the type of anomalies presented,
since most of them might come from the same subspace (leaf
node). Hence, the authors of BAL [4] propose a strategy to
avoid this, called "Select-Diverse", which aims for looking at
instances coming from subspaces having minimum overlap
using Equation 1 of subsection 2.2. The process starts by
getting the top ranked instances 𝑍 from the ensemble and
their respective compact subspaces 𝑆∗ (Equation 1). Having
an empty vector 𝑄 , it takes the highest ranked instance of
𝑍 , adds it to 𝑄 and removes it from 𝑍 . On the next iteration,
the algorithm takes again the highest ranked instance of 𝑍
having minimum overlapping with the instances in 𝑄 , and
subsequently adds it to 𝑄 , removing it from 𝑍 . This process
is repeated until |𝑄 | is equal to the amount of instances 𝑏
given for labelling to the analyst. The resulting subset con-
tains only instances being the most anomalous and having
minimum overlap.

Select-Diverse however, does not guarantee that the most
informative instances are used in the algorithm to learn
correctly the decision boundary, since it takes into account
the anomaly score but not how relevant is the subspace
where these are found for discovering new anomalies.

4.2 Low Confidence Anomaly sampling
The authors ofWisCon [1] propose a different strategy called
"Low confidence anomaly sampling" (LCA) that aims to se-
lect instances that maximize the information gain on the
relevance of the contexts. This follows the same approach as
Query-by-Committee, in which the samples that generate
the maximum disagreement among the committee models,

e.g base detectors, are given to the analyst. LCA assumes
that there are multiple contexts unveiling anomalies, but
these are rare among all possible contexts of the feature set.

Figure 4.a and 4.b show the distributions of the true anom-
alies and true nominal instances. On Figure 4.a it is observed
that many of the true anomalies are only scoring as anom-
alies in less than 20% of the contexts (left side of the distribu-
tion), so these are catalogued as low confidence anomalies
because only a minority of contexts were able to unveil them.
Thus, querying instances from a context belonging to this
group of detectors, is most likely a good context and should
have a high importance score. At the same time, Figure 4.b
shows that on the left side are located the high confidence
nominals, hence querying instances on the left side of the
distribution would lead to query normal instances rather
than anomalies since these are usually rare in data sets.

Figure 4. True anomalies and normal instances

To select low confidence anomalies, LCA selects data
points around the margin (e.g anomalies recognized in 50%
of the contexts) using the importance scores of the contexts.
The margin rate of an instance 𝑥 𝑗 , quantifies the closeness
of 𝑥 𝑗 to the margin of the distribution as follows:

margin(𝑥 𝑗) = 100 × (1 − |
2
∑𝑚

𝑖=1 𝐼𝑖 × 𝑝𝑖, 𝑗∑𝑚
𝑖=1 𝐼𝑖

− 1|), (7)

where 𝐼𝑖 is the importance of the context 𝐶𝑖 and 𝑝𝑖, 𝑗 ∈
{0, 1} is the hard label assigned to 𝑥 𝑗 using 𝑠𝑖, 𝑗 (subsection
3.1) , such that margin(𝑥 𝑗) ∈ [0, 100]. The low confidence
anomaly sampling measure is defined as:

Q𝐿𝐶𝐴 = argmax
exp(_ ×margin(𝑥))

𝑢𝑥
, (8)

where _ is the bias factor controlling how influenced the
sampling is towards margin rates, e.g _ = 0 is equal to ran-
dom sampling. A reasonable bias factor is between 0.96 and
0.98. Moreover, 𝑢𝑥 is an independently and uniformly dis-
tributed random variable drawn for each 𝑥 . Q𝐿𝐶𝐴 gives the
instances with higher margin rates, a higher probability of
being selected.

After the analyst labels a data point, the importance of the
contexts and themargin rates are updated in order to increase

6

the margin rates of low confidence anomalies. To avoid se-
lecting normal samples, different weights \ 𝑗 are given to the
instances after receiving their true label from the analyst.
Given a sample (𝑥 𝑗 , 𝑦 𝑗) ∈ 𝐿 the weight \ 𝑗 of 𝑥 𝑗 is equal to
margin(𝑥 𝑗) if 𝑦 𝑗 = 1, i.e if it is a true anomaly, otherwise the
weight is 0 (when it is a nominal). With this approach, the im-
pact of normal data points is eliminated from the importance
scores of the contexts. Hence, less informative instances have
less impact on 𝐼𝑖 even if they are sampled.

5 Conclusions
This report studied how ensemble methods and active learn-
ing are used in anomaly detection. Ensemble methods pro-
vide more reliable results compared to a single detector, since
these are less susceptible to imbalanced data. On this paper
it was introduced the Isolation Forest for anomaly detection.
This ensemble method diverges from other models, since it
does not search for profiling normal instances but isolating
instances with extreme values of an attribute by repeteadly
partitioning the feature space and choosing random split
points of the attribute until all instances reach a leaf node.
Furthermore, active learning is a strategy that consists on
providing a small set of instances from a large data set to an
oracle, i.e analyst, so that this can judge if the data point is
an anomaly or a normal instance and subsequently forward
the feedback to the model. This process is useful when there
is abundant data and labelling all of the instances is too ex-
pensive. Good examples of instances need to be provided to
the analyst, so the model can learn efficiently the decision
boundary for recognizing true anomalies. For this reason, the
query strategy chosen has a high relevance on this process.
On this paper two strategies were presented, Select-Diverse
consists on giving the analyst the most anomalous instances
with the least possible subspace overlap, so that different
types of anomalies are showed. The second one, Low Confi-
dence Anomalies (LCA) chooses those anomalies which are
identified only in a few possible scenarios, i.e contexts, with
the idea to explore the capacity of each context to provide
true anomalies.
On this report, two algorithms using isolation forest and

active learning are studied; BAL (Batch Active learning) con-
sists on running multiple trees and taking the leaf nodes as
the base detectors for the model. The instances get a score by
each detector, calculated as the length path from the root to
the leaf and these are multiplied by the weight, i.e relevance,
of each detector to get the total anomaly score. The weights
of the leaves are computed by minimizing the amount of
errors made by the model when assigning low scores to true
anomalies and high scores to true normal points. WisCon
on the other hand, considers that anomalies might be de-
termined as such depending on the context they are being
analysed, suggesting that having only a global perspective

might hide true anomalies. Hence, this method clusters in-
stances with respect to their context and calculates the iso-
lation forest based on each cluster and their behavioural
attributes. The importance, i.e weights of the contexts are
calculated using a strategy similar to AdaBoost, taking into
account the missclassified instances based on the analyst’s
feedback and the type of instance predicted (true anomaly
or nominal). Only the contexts with a few amount of false
positives are retained. We consider that WisCon, is a model
with a broader application field since in real life problems,
usually considering the full space of attributes to evaluate
the data does not provide as much information, as just fo-
cusing on a few. A similar problem occurs with full space
and subspace clustering, in which taking into account all
attributes as equally important leads to deteriorating the
accuracy of the clusters, since small sized clusters might be
overlooked. In WisCon, as the instances are first grouped
taking into account their contextual attributes, e.g environ-
mental factors, and then evaluated based on their behaviour
in that context, it is easier to find instances with abnormal
patterns. However, determining what a context is can be a
difficult task, since only considering random combinations
of attributes or using PCA might not be a sensible approach.

Anomaly detection using active learning can be extended
to streaming data. One challenge faced when building mod-
els for streaming data is that the distribution of the data
might change during the course of time. Hence, the learning
algorithm can become obsolete and fail to recognize new
anomalies. For this reason, every time a new window of
information arrives, the algorithm SAL (Streaming Active
Learning) evaluates if there is a change in the distribution
of the data, and replaces the obsolete information with the
one that has changed. Afterwards, it uses the same approach
as BAL to calculate the scores of the anomalies and update
the weights of the detectors. Another approach, consists on
implementing a Random Forest on the new data, using the
latest classifier, and combining its predictions with a model
built on the previous 𝑛 days, to provide a set alerts with
anomalies that should be checked in detail. The methods
presented on this paper are an example of different strate-
gies for implementing active learning in anomaly detection
for static and streaming data. Further studies can evaluate
a feasible approach for determining how a context can be
defined. In terms of the definition of compact subspaces, it
can be studied if it is a reasonable approach to penalize a
subspace based on the amount of nominal values in this.

References
[1] E. Calikus, S. Nowaczyk, M. Bouguelia, and O Dikmen. 2021. Wisdom

of the Contexts: Active Ensemble Learning for Contextual Anomaly
Detection. (2021). https://doi.org/workingpaper

[2] Antonio Clim, Răzvan Daniel Zota, and Grigore TinicĂ. 2018. The
Kullback-Leibler Divergence Used in Machine Learning Algorithms for
Health Care Applications and Hypertension Prediction: A Literature
Review. Procedia Computer Science 141 (2018), 448–453. https://doi.

7

https://doi.org/working paper
https://doi.org/10.1016/j.procs.2018.10.144

org/10.1016/j.procs.2018.10.144
[3] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bntempi.

2015. Credit Card Fraud Detection and Concept-Drift Adaptation with
Delayed Supervised Information. (2015), 1–8. https://doi.org/10.1109/
IJCNN.2015.7280527

[4] S. Das, M. Islam, N. Kannapan, and J. Doppa. 2019. Active Anom-
aly detection via Ensembles: Insights, Algorithms and Interpretabil-
ity. School of EECS, Washington State Univeristy (2019). https:
//doi.org/1901.08930v1

[5] Hemant Ishwaran, Udaya B. Kogalur, Eugene H. Blackstone, and
Michael S. Lauer. 2008. Random survival forests. The Annals of Applied

Statistics 2, 3 (2008), 841 – 860. https://doi.org/10.1214/08-AOAS169
[6] Bernhard Korte and Jens Vygen. 2012. Combinatorial Optimization:

Theory and Algorithms (5th ed.). Springer Publishing Company, Incor-
porated.

[7] F. Liu, K. Ting, and Z. Zhou. 2008. Isolation forest. Eighth IEEE
International Conference on Data Mining (2008), 413–422. https:
//doi.org/10.1109/ICDM.2008.17

[8] Burr Settles. 2009. Active Learning Literature Survey. (2009).
[9] Alexey Tsymbal. 2004. The Problem of Concept Drift: Definitions and

Related Work. (05 2004).

8

https://doi.org/10.1016/j.procs.2018.10.144
https://doi.org/10.1109/IJCNN.2015.7280527
https://doi.org/10.1109/IJCNN.2015.7280527
https://doi.org/1901.08930v1
https://doi.org/1901.08930v1
https://doi.org/10.1214/08-AOAS169
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ICDM.2008.17

	Abstract
	1 Introduction
	2 Active learning for anomaly detection
	2.1 Tree based anomaly detection ensembles algorithms
	2.2 Obtaining Compact subspaces
	2.3 Obtaining precise subspaces
	2.4 Update of ensemble weights
	2.5 Ensemble algorithms for anomaly detection in streaming data

	3 Related Work
	3.1 Ensemble algorithms for contextual anomaly detection
	3.2 Concept drift adaption using up to date and delayed feedback

	4 Query strategies
	4.1 Select-Diverse
	4.2 Low Confidence Anomaly sampling

	5 Conclusions
	References

