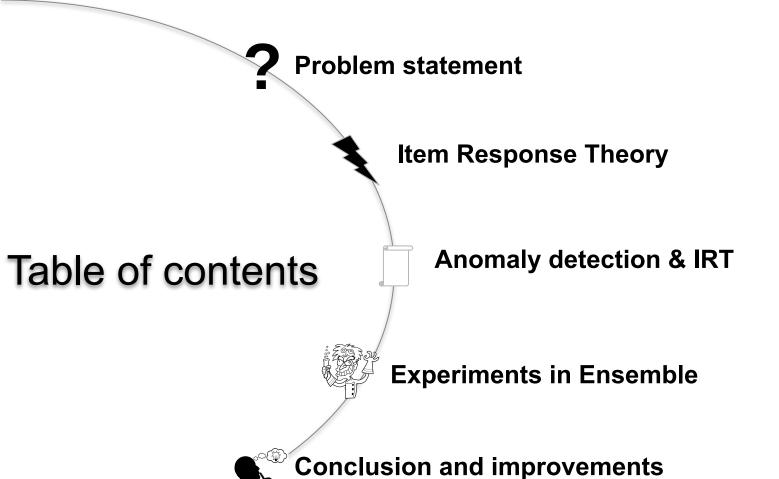
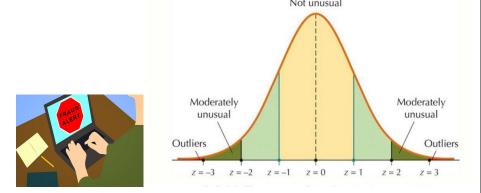
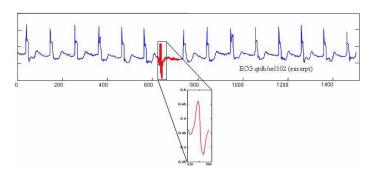
Anomaly Ensembles

Nikitha Rao



Problem statement

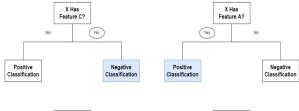


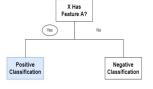


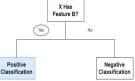
- Anomaly detection Identifying outliers
- Example: Left and right tails in a Normal distribution
- Several everyday application:
 Fraud detection, fault
 detection, defect detection
 etc.
- Main focus: Identify deviations from a "normal" data set.

Solution: Ensembles

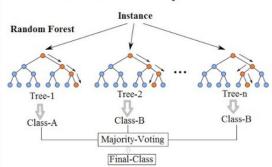
Ensemble Assessing Sample X







Random Forest Simplified



- Combine several base models to produce one optimal model
- Bagging, stacking, boosting
- **Example**
 - Decision trees, Random forests etc.

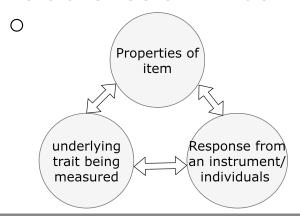
?: Challenge: Anomalies i.e. the class truth OR ground label - unknown!

Need: Class labels

- Models the ground truth as a latent trait (unobservable characteristic or attribute).
- Explains the relationship between

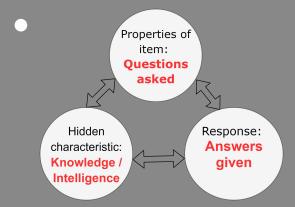


Establishes a link between



\ ltem response theory

- **Psychometrics Root of IRT**
- Classic example: **Examination**



Extend the concept to anomaly detection

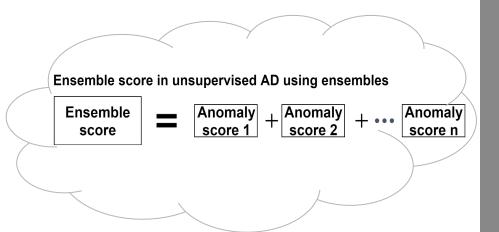
- Earlier researches: AD as Supervised machine learning models that used pseudo-ground-truth labels
 - Limitations: Circular argument
- Current research: IRT ensembles for unsupervised anomaly detection.
 - Latent trait: Uncover the ground truth
- IRT framework in the paper also uses different combination functions like average, maximum and other correlation based functions on the set of the heterogenous anomaly methods.
- This paper implements unsupervised anomaly detection using combination function on ensemble

Summarising AD & IRT

Several keywords in previous slide!!

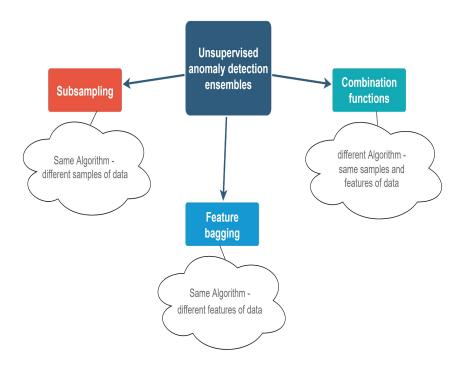
- Anomaly detection?
- Unsupervised anomaly detection?
- Unsupervised anomaly detection using ensemble!?
- Combination function?
- Unsupervised anomaly detection using combination function on ensemble!?

Summarising AD & IRT



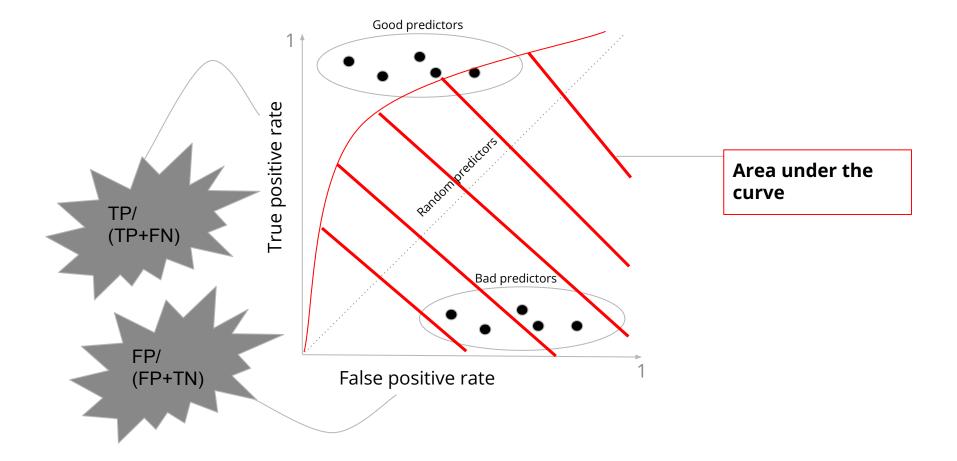
- Anomaly detection: Identifying the outliers
- Unsupervised Anomaly detection: Identifying the outliers when the ground truth is unknown
- Unsupervised anomaly detection using ensembles
 - Unsupervised Anomaly Detection (AD)
 methods gives "anomaly scores" for
 each observation in the dataset
 - Larger scores anomalous observations.
 - Ensemble scores = combination of normalised anomaly scores from several methods

Summarising AD & IRT



- Combination function: One from the flow chart
- Unsupervised anomaly detection using combination function on ensemble:
 - Used in this research.
 - Anomaly scores by several different methods. Ex: LOF - density based outlier with decisions based on LOF score
 - Ensemble score by combination functions like average, greedy, averaged greedy, ICWA, Max, thresh along with IRT.
 - Best performing combination function as per ROC is analysed.

Quick recap on ROC



More on algorithms & implementation

Average

- Computes average anomaly score
- Pro: Benchmark, performs well in homogeneous data distribution
- Cons: Subpar performance in heterogeneous data

Greedy

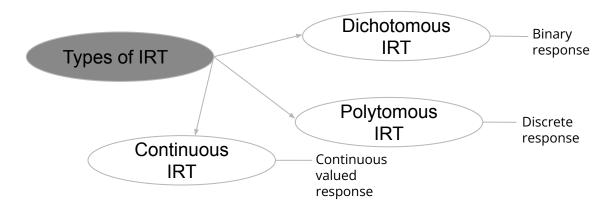
- If something works, we favor it more.
- Selects best methods using correlation and K number of anomalies
- Pro: able to handle correlation
- Cons: slower than average, might not arrive at optimal solution

Many more combination functions

More on algorithms & implementation

IRT

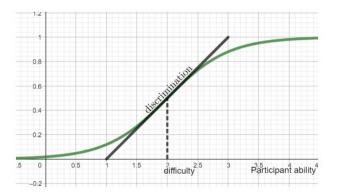
From earlier slides: latent trait model, fitted using responses. There
are several types of IRT based on the responses used in fitting



Look deep into - Dichotomous IRT

More on algorithms & implementation

$$\Phi\left(y_{ij}=1|\theta_i,\alpha_j,\beta_j\right)=\frac{1}{1+\exp\left(-\alpha_j\left(\theta_i-\beta_j\right)\right)}.$$



Assume:

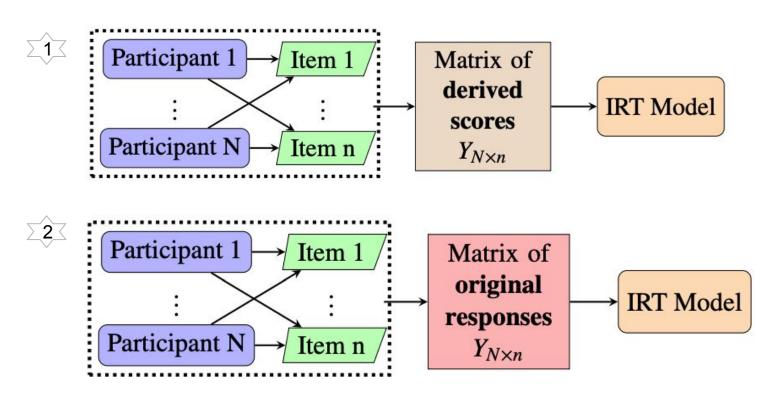
- \circ $i = 1, 2, \ldots, N$ participants
- \circ $j = 1, 2, \ldots, n$ test items
- $Y_{ij} \subseteq \{0, 1\}$ score or response of the *i* th participant to the *j* th test item

Parameters:

- Discrimination parameter α_{j}
- o difficulty parameter by β_{j}
- Equation and 2-Parameter
 - Logistic (2PL) mode as shown. θ _{i} is ability.
- Note: When α_{j} = β_{j}, , Φ =
 0.5

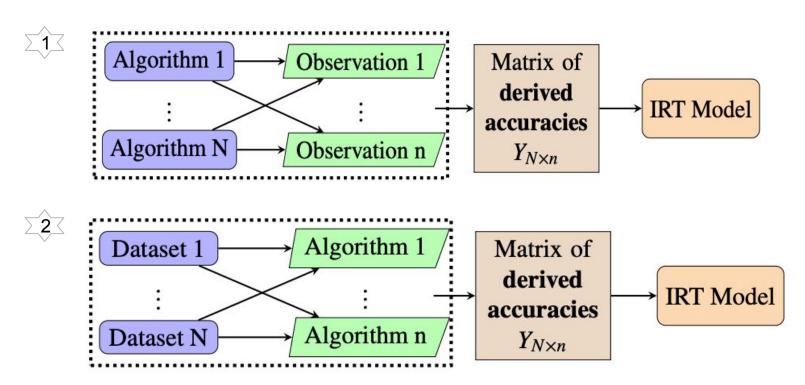
Mapping IRT to ensemble

Two possibilities of mapping the response in psychometrics

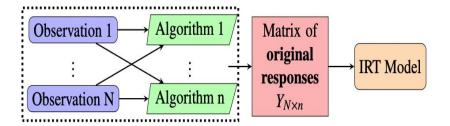


Mapping IRT to ensemble

Two possibilities of algorithm evaluation



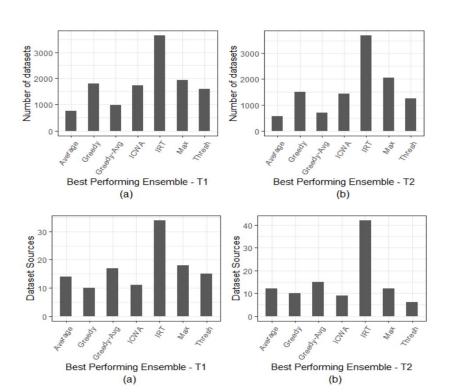
Mapping IRT to ensemble



- Current research Mixture of both
- Uses Standardised Original responses instead of an accuracy measure.
- Maps participants to dataset observations and test items to algorithms.

Experiments in Ensemble

Results:



Data set:

- 12433 publicly available anomaly detection datasets
- prepared from 119 source datasets
- minority class is considered anomalous
- Methods: KNN-AGG, LOF, COF, INFLO, KDEOS, LDF and LDOF
- Combination functions: average, greedy, averaged greedy, ICWA, Max, thresh, IRT.

Parameter Setting:

- T1: default values for k = k_min = 5 and k_max = 10
- T2: k = k_min = max(N/10, 50) and k max = k + 10
- Performance evaluation: AUC

Conclusion and improvements

Conclusion

- In unsupervised learning constructing ensemble using heterogeneous AD methods challenge
- Introduced IRT uses latent trait to compute the ground truth for the first time.
- Evaluated the IRT ensemble w.r.t.
 6 other AD ensemble techniques.
 Result IRT performs the best

Improvements

- When and why ensembles work is not explained
- Can justify more on the base models used
- Harder to justify Ensemble results
- AUC is a basic performance evaluator. Does not compare anomaly scores.
- IRT & Ensembles in general is computationally expensive.

References

- Kandanaarachchi, Sevvandi. "Unsupervised anomaly detection ensembles using Item Response Theory." arXiv preprint arXiv:2106.06243 (2021).
- Zimek, Arthur & Campello, Ricardo & Sander, Joerg. (2014). Ensembles for unsupervised outlier detection: challenges and research questions. A position paper. ACM SIGKDD Explorations Newsletter. 15. 11-22. 10.1145/2594473.2594476.
- Embretson, Susan, and Steven Reise. (2013) 2013. Item Response Theory. 1st ed. Taylor and Francis.
- Martínez-Plumed, Fernando et al. "Making Sense of Item Response Theory in Machine Learning." ECAI (2016).
- A. Chiang and Y. Yeh, "Anomaly Detection Ensembles: In Defense of the Average," 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), 2015, pp. 207-210, doi: 10.1109/WI-IAT.2015.260.
- Schubert, Erich & Wojdanowski, Remigius & Zimek, Arthur & Kriegel, Hans-Peter. (2012). On Evaluation of Outlier Rankings and Outlier Scores. 10.1137/1.9781611972825.90.

Thank you!