

A latest anomaly detection method of device

Interpretable, Multidimensional, Multimodal Anomaly Detection with Negative Sampling for Detection of Device Failure

Author: John Sipple

ICML 2020

Speaker: Mengcheng Jin

Supervisor: Bin Li

01.2022

Outline

- 1. Introduction
- 2. Existing Anomaly detection methods
- 3. Studied model
- 4. Anomaly interpretation
- 5. Discussion
- 6. Conclusion and outlooks

1. Introduction

Data streams

- Data arrives in real time
- Data is unlabeled
- Data are always Complex
 - Multidimensional
 - Correlated
 - Multimodal

make anomaly detection harder

Anomalies •01 Point anomaly O. Monthly Temp Contextual anomaly Mar Jun Sept Dec Mar Im Sept Mar

Time

Problem solving

Unsupervised learning

2. Existing Anomaly detection methods

Few/no failure labels challenge supervised approaches

One-class Classifiers

Learn a transformation to separate the observed points from the origin.

- One-Class SVM (2001)
- Deep SVDD (2018)

Density-Based

Anomalous points occur in low-density regions

- Local Outlier Factor (2000)
- Isolation Forest (2009) and Ext. Isolation Forest (2018)

Autoencoders and Generative Models

Anomalies have larger reconstruction errors than Normal points

- AnoGAN (2017)
- GANomaly (2018)
- DAE-DBC (2018)

Negative Sampling Methods

Explicitly define negative space for anomalies.

- Neg Selection
 - Algorithms (NSA) (2002)
- Neg Sampling Classifiers (this work)

Negative sampling algorithm in AD

Negative Sampling Method

- Use Negative Sampling algorithm to find positive and negative training sets
- Train the model with positive and negative samples

Studied Models

Implemented classifiers

Random Forest(NSRF)

Neural Network(NSNN)

Evaluation metric

AUC

DATA SET	SIZE	DIM	ANOMALY	
FOREST COVER (FC)	286,048	10	2,747 (0.9%)	
SHUTTLE (SH)	49,097	9	3,511 (7%)	
MAMMOGRAPHY (MM)	11,183	6	260 (2.3%)	
MULCROSS (MC)	262,144	4	26,214 (10%)	
SATELLITE (SA)	6,435	36	2,036 (32%)	
SMART BUILDINGS (SB)	60,425	7	1,921 (3.2%)	

	OCSVM	DSVDD	ISO	EIF	NSRF	NSNN
FC	53 ± 20	69±7	85±4	93±1	80 ± 2	86±4
SH	93±0	88±9	96±1	91±1	93±7	96±5
MM	71 ± 7	78±6	77±2	86±2	85±4	84 ± 2
MC	90±0	54 ± 17	88±0	66±4	94±1	99±1
SA	51±1	62 ± 3	67±2	71±3	65±4	73±3
SB	76 ± 1	60±7	71±7	80 ± 4	95±1	93 ± 1

Anomaly interpretation

Integrated Gradients

 Baseline set U* from positive sample U

 Choose the closest u* to the data x

• Calculate the contribution of each dimension

 $U^{*}\subset U:orall_{u\in U^{*}}F\left(x
ight)pprox1$

$$u^{*} = argmin_{u \in U^{*}} \left\{ dist\left(x,u
ight)
ight\}$$

$$B_{d}(x) \equiv (u_{d}^{*} - x_{d}) \times \int_{\alpha=0}^{1} \frac{\partial F(x + \alpha \times (u^{*} - x))}{\partial x_{d}} d\alpha$$
$$\sum_{d \in D} B_{d}(x) \approx 1$$

Application: Smart Buildings

Smart Buildings Fault Detection and Diagnostics (FDD) project

- 145 buildings at Google
- over 15,000 power and climate control devices
- Over 44% TP in real usage in 2019

Discussion

Pros

- Simple method with good effect
- Handling multidimensional and multi-modal data
- Help technicians understand anomalies

Cons

- High FP rate in low dimensional data
- Only for point anomalies
- Choose baseline set

Reference

Sipple, J. 2020. Interpretable, Multidimensional, Multimodal Anomaly Detection with Negative Sampling for Detection of Device Failure. In Proceedings of the 37th International Conference on Machine Learning (ICML 20).

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribution for deep networks. CoRR, abs/1703.01365, 2017.

Liu, F. T., Ting, K. M., and Zhou, Z. Isolation forest. In 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422, Dec 2008. doi: 10.1109/ICDM.2008.17

Hariri, S., Kind, M. C., and Brunner, R. J. Extended isolation forest. CoRR, abs/1811.02141, 2018

Thanks for listening!

Any questions?